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INTERVAL METHODS OF NEWTON TYPE FOR NONLINEAR EQUATIONS

NELI S. DIMITROVA, SVETOSLAV M. MARKOV

Two interval iteration methods of Newton type for finding real zeros of nonlinear equa-
tions are formulated and their convergence is investigated. A realization of the methods in
computer arithmetic is obtained and some computer experiments are presented.

1. Introduction. We consider two interval iteration methods of Newton
type producing two-sided approximations of real roots of nonlinear equations
of the form f(x)=0. The first method, considered in section 3, is of linear
convergence and assumes continuity and monotonicity of f. A second interval
method of Newton type, formulated in [8], is discussed in detail in section
4. A proof of quadratic convergence of the method is given in the situation
when f possesses continuos second derivative (Theorem 2). In Theorem 3 we
prove quadratic convergence for rather relaxed assumptions on f. Thus, it
may be asserted that our method never fails in the sence of [10], and pro-
duces always two quadratically convergent sequences. A detailed computer
realization of both methods is presented. Since our methods are formulated
in a nonstandard interval arithmetic [8], a new computer realization technique
is- used, which is discussed in some detail in section 2. Some computer expe-
riments with the methods are reported.

2. Preliminaries. A. Computer realization of two-sided-algo-
rithms. We shall first consider the computer realization of two-sided algo-
rithms which are not formulated in interval-arithmetic form. Let # be the set
of real numbers and let #, % be a finite set of machine numbers (see [1],
p. 47). For a¢# we denote by |a the largest machine number |a¢Z, such
that |a<a, and by {a the smallest machine number 1 a¢ 2, such that {a= a.
We thus obtain two mappings |, 1 from # onto #,, called monotone directed
(downwardly and upwardly, resp.) roundings in 2 [6,7]. By means of these
roundings we define the following computer arithmetic: if a, b€¢&um and
#€¢{+, —, X,:},thenaxb=|(a+b), axb=1(a+b). We thus obtain 8 computer
arithmetic operations which may be used for the computer realization of arbit-
rary two-sided algorithm.

If a, b are real, then the computation of |(axb) and t(a+b) on a com-
puter is not possible in general (a, &6 may not be machine numbers). In this
situation we compute upper and lower bounds of a*b using the following
inequalities :

la¥lb<a+b<taFtb;
la—tb<a—b=<ta—|b;

laxX|b=axb<taxtb, if a>0,6>0,
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tax|b=axb=|axXtb, if a>0,b6<0,
) laxtb=axb=tax|b, if a<0,b>0,
taXtb=<axb=|axX|b if a<0,b<q;
laTtb<a:b=tat|b, if a>0,b6>0,
taitb<a:b=|at|b, if a>0,b6<0,
lai|b=a:b<ta:tb, if a<0,6>0,
ta?lb=a:b<la:tb, if a<’.b<o0.

In order to demonstrate the utilization of formulas (1) consider the fol-
lowing example :

Example. Assume that f¢Cy[a,b] and the derivatives f’ and f” have
constant signs on [a, b]. Assume also that there is a unique real (unknown)

zero x* of f in the (known) interval X,=[x,, Xol<l[a, b], that is f(x*)=0 and

x*€ X,. In this situation the solution x* may be sought by means of the well-
known two-sided (interval) method

Xer1=X,—fx)/f (x4):
Xrs1=2X,—f(X}) (}k—fk)/( f(;k)—f(_{‘k))’ k=0,1,...,
in case that f(xo)f''(xo)>0 and

)

Xei1=X,—[(x,) (e— Xl f(;k)—f(«_‘k))»
;k+|:.x-k~f(;h)/f'(;k)’ k=0,1,...,

in case that f(x,)f"(x6)<O0(f(xo) f"'(%)>0).

The method (2) —(2’) delivers two monotone sequences X,=x;=--- and
Xo=X,=-.. converging to x*.

We consnder the computer realization of this method. To this end the

following four possibilities can be distinguished :
i) f/<0,f”>0 on X,. In this situation we have f(x,)f""(xo)>0 and therefore

we should use (2). Consider the first equality of (2). The ideal situation would
be xpi1=(xe—f(xk)/f'(xx)) but this cannot be computed in general. Using the

fact that x; is a machine number (and hence | Xp=x,) and that f(xe)>0,
f(xx)< ', by means of (1) we obtain

L — A/ ()= xe— 1 (fxe) 2 f(e)) = xe—(Lf0x) T f/Con))-

The last bound is already suitable for the computer realization of Xi41
(unless the computer realization of | f(xx) and | f'(xs) remains to be done,
which depends on the particular expression for f and can be _done again on
the basis of formulas (1)). Thus we may set ka—xk—(l f(xk) L F(xw))-

(2)
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For the sake of brevity we shall write down the above arguments in the
following conditional form:

a1 = | (e FoR) F () = e 1 () ) =0 () fxn) T | F ().

The reader should note the nonstandard meaning of the equality nota-
tions used above. Such notations are used throughout the paper, where ma-
chine realization of algorithms is involved.

Similarly, for the machine realization of the second sequence x;.; of (2)
we have

Xrpr=Xe— L ((f(x) 2 (SR —Fx0)))X (e — xx))
= xe—(} (f(xx) 2 (fOee)— () X | (xe— X))
= X —((1fr) T4 (fOoR)—F(2) X (e x8))
=3 (1) T (L f) =1 () X (Xn— x8)-

Here again the equality sign is used in the sense mentioned above. The
calculations are given in detail in order to demonstrate once more the com-
puter realization technique based upon inequalities (1). In what follows we
shall omit such detailed calculations.

ii) />0, f"<0 on X, In this situation using the technique described
above we obtain from (2)

X =2xe—(1 f(xn) 3 1 (),

Xrr=xe— (LX) T (1 fOeR) = | f(xa) X (er— x))-
iii) f/>0, f””>0 on X, In this case we have from (2')

nsr=Xe—((1 f(x) T (1 fx0)= | f(x))) X (Xr— X8))s
Xnsr=Xxy—(} f(Xe) T 1 /(%))
iv) f/<0, f’<0 on X, Using (2’) we obtain
| xper=2a—(()fx8) T () FOR) =1 X)X (Xa— ),
Xes1=x— (1 f(x6) T L' (x0)). |

This accomplishes the computer realization of (2)—(2). )

It is often convenient to use two additional types of roundings: round-
ing towards zero
la, a=0,

Oa=
{Ta, a< ,
and rounding away of zero
ta, a=0,
la, a<O.

These roundings generate the following computer arithmetric: a[=]b
=[J(a*b), a[=])b=[1a=*b), where =¢{+, —, X,:}.

Doa‘_-{
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The part of formulas (1) concerning the product and the quotient of two
real numbers can be written in terms of the operations [ *], [#], as follows:

e[ xX]Ob=aXxb=<1,a[X]e[1eb, if ab>0,
(1) Doal XoOeb=axb=a[X]0b, if ab<O;
Oal : 10p=<a :b=0ea| : ,00b, if ab>0,
Toal : JvOb=a : b=a| : ], if ab<O.

Using the roundings |,1, (J and [, the computer realization of the
method (2) —(2') obtains the following compact form:

X1 =Xe—(OfxR) [ 2 130 (X)),
Xnrr=Xe— (0 f(x) [ 2 1(To fCxe) [— Jo o (X)) [ X ] (Xe—X4))
in the situation when f(x,)f"'(x,)>0, and

xrrr=xe—(Of(x) [ 2 1(T0 fxR) [—1oTIo f(xe)) [ X ] (Xr—X2))s

Xnsr=xe—(0 fxR) [ 2 1000 f/(x8))

in the situation when f(x,)f"(x,)<0.

B. Computer realization of algorithms in interval-arith-
metic form. We shall next consider some concepts and relations connected
with the computer realization of algorithms written in interval-arithmetic form.
Thereby we shall use the interval arithmetic as formulated in [8]. We first
give a short review of this arithmetic.

We shall denote the compact intervals by capital letters A, B, ... through-
out the paper. We adopt the notation [a\/B] for the compact interval with
end-points a and B (a not necessarily <B). The end-points of the interval X
are denoted by x x so that X=[x, x]. If X30 we shall also write X'=[x,, x4],
if X>0 and X=[x, x.], if X<0; x. meaning always the closest to zero end-
point of X and x, the other end-point. We also define w(X)=x—x and for

X=:[0,0]:

(20)

(20

x/x, it | x|<|x],

X(X)={§/_Jg, othe_rwise.

We shall make use of the following interval-arithmetic operations:
A+B=[a+b,a+b];
A—B=[(a—b)V(a—0);
aA =[(aa)V(aa)], a¢ R (in particular —A=[—a, —a]);

AB= [(a.b)V (asb)]

’ A 1B—0;
A/B=[(ac/bz)V(ad/bd)]} when 430, B) |
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AB=b,A

A/B—b—‘A}’ when A30,B%0;
— T

AB=[min {ab, ab}, max {a b, ab}], when A30, BO.
The following notations are introduced for brevity:
A®B=A—(—B)=[(a+b)V(a+b);
A©OB=A+(—B)=[a—b, a—b];
A®B=A/(1/B)= [(ab,)V (azb.)]
AOB=A(1/B)=[(a:/ba)V (aalb,)]

ARB=A/(1/B)=b,A
A®B=A (1B)=b-'A

}, when A0, B30;
}' when A30,B30;

A®B =[max {ab, ab}, min{a b, a b}], when A30, B>O.
The following two kinds of roundings are introduced in the set of in-
tervals
OA=[la ta]; OA=[ta, |a], when w(A)=0,
which generate the computer interval-arithmetic operations:

A()B=0(AxB); A(+)B=0O(A+B),

where x can be any of the interval-arithmetic operations defined above and
A, B are machine intervals (that is intervals, whose end-points are machine
numbers).

The rounding ¢ is examined in [1, 6, 7]. The rounding O may lead to a
decrease of the width of the resulting intervals (contraction of intervals),
which may be used for additional control of the machine calculations. This
fact is discussed in some detail in [2].

If A,B are nondegenerate intervals with real end-points, then the follow-
ing inclusions hold true (by the assumption that the intervals in the left-
hand sides of the inclusions can be computed):

O A(+)OBcA+Bc O A+ )0 B

OQA(—)0 BcA—BC O A(—) OB, when w(A) =w(B),

O A(—)O BcA—B=Q A{—) O B, when w(A)<w(B);
(3) QA(X)OB=AXB=O A(X)O B

QA(:)0OBcA/B=O A : )O B, when w(A)<=«(B),

O A(:)OB=A/B=(O A( : )0 B, when ®(A)>n(B);
and, correspondingly,

O A@)0 B ADB= O A®D) O B when w(A)=w(B),

0 A(®) O BcADB=0O A(®) ¢ B, when w(A)<w(B);
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(3" QA OBcAQB=0 A©) O B;
O A®) O B=ARB=O A(X) O B, when w(A)=x(B),
O AX®) O BcARB= O AX)O B when x(A)>x%(B);
QAO)OB=AOB=O A®) 0 B,

by the assumption that the intervals in the denominators (in the inclusions
involving division) does not contain zero.

The above inclusions can be used for the machine realization of interval-
arithmetric algorithms in the same manner as relations (1) were used for the
machine realization of (2) —(2’). This is demonstrated in the computer reali-
zation of the algorithms considered in sections 3 and 4.

C. Convergence of interval sequences. Denote | Al=max {| a|,
|al|} for any interval A=a, a.

Definition l. The interval sequence Ay, A,, ..., A, ... converges to
the interval A, if lim,n.|A,—A|=0.

Definition 2 [5]. The interval sequence {A,} | is inclusion mono-
tone decreasing, if A\, DA;>A3>---.

Proposition [l]. Every inclusion monotone decreasing interval se-
quence {A,}= | is convergent and lim,..A,= N A,

In what follows {A,}=  denotes an inclusion monotone decreasing in-
terval sequence. The following definitions are taken from [5].

Definition 3. {A,};>, is point-wise convergent, if lim,_.w(A,)=0.

Definition 4. {A,}> | is linearly convergent, if there exists 0<g<1,
such that w(Ap1)<qw(A,) for n=1,2,....

Definition 5. {A,}> | is superlinearly convergent, if w(A,.1)=gq,w(A),
where lim,—.q,=0.

Definition 6. Let {A,}, be point-wise convergent. {A,}>  isquad-
ratically convergent, if there exists ¢>0, such that w(An)=c(w(A,))? for
n=1,2,....

Obviously, if the inclusion monotone decreasing sequence {A,}=  is
point-wise convergent and a¢A, for all n=1,2,..., then {4,}>  is conver-
gent to a.

3. An interval method of Newton type with linear convergence. Let
f be a continuous function on [a, b{j=Z. Assume that there exists a unique
solution x*¢[a, b] of the equation f(x)=0. Assume also that the interval

Xo=[xo Xo]<l[a, b] is such that x*¢X, and one of the conditions

(49 0<m=(f(x)—A yN(x—y)=m< s for all x,yeX,, x+y,
or

(4) — o <m=(f)—fYN(x—y)=m<0 for all x,yeX,, x+y,
holds true.

Denote by f(X) the interval extension of f on Xc[a, b], that is f(X)
={f(x) : x¢ X} and consider the interval iteration process
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(5) Xe1=Xe—f(Xp)/M, k=0,1,2,...,

where M=[m, m].

Theorem 1. By the above assumptions on f and X, the interval se-
quence defined by (5) conwverges linearly to x* and x*¢ Xy for k=0,1,2,....

Proof. In order to prove the theorem we shall consecutively prove the
following assertions:

i) {Xk}p_, is inclusion monotone decreasing, that is X, >X,>---;

iil) x*¢ X} for £=0,1,2,...;

iii) there exists 0<g<1 such that @w(X,i1\)=qgw(X:), k=0,1,2,....

Let (4) hold true; the case (4’) is treated analogously.

We shall first prove simultaneously i) and ii) by -induction.

The assumption (4) implies that f is monotone increasing in X, =[x X,),
so that f(Xo)=[f(xo) f()'c:))].f(_)fo)<0<f(}(,). From the definitions of the in-
terval-arithmetic operations we have f(Xo)/ M= f(x,), f(xo)l/M=[ f(x,)/m, f(xo)/m],
and hence w( f(X,)/M)=(f(xo)- f(x0))/m,

According to (4) (f(xo)—f(xo))/(xo—X)=m, m>0, and therefore (/(x,)
— f(xo))/m=x,—x,=w(X,), so that @(f(X,)/M)=w(X,). This implies that (5)
for £=0 can be written by means of end-point as follows: x; =:t0——f(:v0)/;1,
;1=;0‘f(;0)/’”_l- _ o _

The inequalities x;—x,= —f(x,)/m>0, x;—x,= — f(x,)/m<0 imply that
Xo<X1, X,<x, and hence X,>X,. We recall that x*¢.X,. Assume now that

XX, D DXp 12Xk and x*¢ X, for some £>0. We shall prove that
XkDXk_H and X*EX/H.l.

From X,>X,, x*¢ X, and (4) it follows that f(,_vk)<0<f(;k) and there-
fore

F(X)IM=]f(x), f(x))/ M=[f(xx)/m, f(xx)/m],
@ (X)) M) = (f(xr)—f(xr))/m.

But xs xx€ X, so that according to (4) (f(xe)— f(xs))/(xe—Xr)=m, m>0, which
implies (f(xx) —f(fk))/;l ;Zkﬁ)ick =w(X:), and hence w( f(Xe)/M)=w(Xp).

Thus (5) can be written by means of end-points as follows:
X =Xr— (xk /r_n,

(5E) S f:)~

Xri1=Xp—f(xr)/m.

The inequalities §k+1—§k=—f(§k)/;l>0. Xpi1—Xp = — f(xr)/M<0 imply
that X, > X1 Further we have

X1 —x* = Xp— x*— flox) m = xp—x* —(f(x6)—f(x*))/m.

From (4) for x x*¢ X, we have (f(xi)—f(x*)/(xx—x*)=m and using the
inductive assumption §k<x* we obtain (f(_ick)—f(x*))/m;,\_',,—x*. Thus
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(6) Xpi1—X* = Xp— x* —( floer) — f(x*))/m=0.
Similarly, (f(xk)~f(x*))/(xk-x*)>'n and the inductive assumption x;>x*

imply (f(xk) —f(x*))/m=<x—x*, so that

Xy = X* = Xp = x* = fxr) M = dxp—x* — (f(xk)—f(x"))/m>0

This, together with (6), implies x*¢ Xpy1.
We proved that i) and ii) hold true. We shall now prove iii). We have

WX 41) = W(Xe) — W f(Xr)/ M) = Xe) —(f(xr) — f(x))/ m
=w(X) (1 = ((f(xr) — f(x0))/ (X — X2))/ m)=(1 — m/m)y@(Xp),

in view of (f(xk)—f(xr))/(Xx—xk)=m. For g=1-—m/m we obviously have
0<g<1, which completes the proof of iii).

The situation when (4’) holds true is considered similarly. We note that
in this case the end-points-form of the interval method (5) is

Xr+1=Xe— f(xr)/m,
(5E’) - - =
Xr1= X — f(Xr)/m.

This completes the proof of Theorem 1.
Computer realization of the method. Using inclusions (3) we
obtain the following simple formula for the computer realization of (5):

(5C) Xer1=Xe(—) (OAX) () O M).

We shall also give the machine realization of the end-point presentations
of (5). The machine realization of (5E) is

Xpr=xp=1 (fQxe)/m)=xe=(1 fQx) 2 | m),

Xes1== Xn— [(fOm)/m)=xx—(} f(xx) 2 tm),
and the machine realization of (SE’) is

Xpr= x4 = 1(flxw)m)=xx = () flxw) Tt m),

Xupr=xe= [(fOR)m) == (1 f(xi) T | m).
Using the notation

{,ﬁ, if |ml<|ml,
m,= - _
m, if |m|>|m],

we can unify the both cases, corresponding to assumptions (4) and (4’) resp.,
in the following common formula

xppr=Xe— (01 fxe) [ 2 10om,),

(5EC) == e
Xepr=Xe— (0 flxr)[ 2 ]0gm,)
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We not~ the interesting fact that the interval f(X.) should be computed
with contraction, as it is clearly seen from formula (5C). This provides us
with additional control over the computations, since in reality O f(X,) cannot
be computed, when @(X,) is very small and the precision of the calculations
is not sufficiently high (moreover it is necessary that O f(X,))0).

4. Interval method of Newton type with quadratic convergence. Let
f€Cola, b] and x* be the unique solution of f(x)=0 in [a, b]. Assume that
the derivatives f’ and f’’ have constant signs in [a, 8]. Consider the interval
iteration process

@) Xit1=Xe— f(Xe)/f' (Xe),

where x*¢ X, C|[a, b] and f(Xg), f'(Xk) are the interval extensions of f and f,
resp., on X, that is f(Xi)={f(x): x€Xe}, f(X)={f(x): x€X:}.

Theorem 2. [8] By the above asumptions on f and X, the interval
iteration process (7) delivers a sequence {Xx}> , with x*¢ X, which is qua-
dratic convergent to x*.

Proof. The proof of the theorem is sketched in [8]. Here we give a
more detailed proof of the theorem.

We shall consider in detail the situation when f'>0, f””>0 on [a, b] (the
rest three situations are treated analogously).

In view of the monotonocity of f and f' we have f(X,)=[ f()_co)', f(x0)]1 30
and f"Xo) = [f'(Xo) f'(%0)]-
We shall prove by induction that {Xg} , is inclusion monotone decreas-

ing and x*¢ X, for k=1,2,....
We have

X , f(xo)]y  f(xo)—f(x0) e ey — =
w( ) = (/0 Jolly _ZRTTED  (£1(@)1f (o)l X,), where x,<E<o.
o I'(%0) S (%0)
f' is monotone increasing on X,, so that f(£)<f'(x,), which implies that
W f(Xo)/f'(X,))<w(Xo). Using this, we obtain from (7) for k=0 x, =x,— f(xo)
If'(X0)s  X1=Xo— f(X0)/f"(Xo)- _ o _
The inequalities X, — Xo= —f(xo)/f'(X0) >0, X;—Xo= —f(Xo)/f'(Xo)<O imply
that X;>.X,. Recall that x*¢X.
Assume now that X;oX,>-.-D5X,_ DX, and x*¢X; for some &>O0.
We shall prove that Xp—> X1 and x*einl. 3
Since X, > Xk, we have f(Xx)=[f(xz), f(xx)]0 and f'(Xe)=[f'(xr), f'(x£)]>0.
Using this, we obtain
f(Xp) s SR —S(xR) (&) X -
= — — — — 'y x < <x ’
- R T T L O
and, taking into account f'(8)/f'(xx)<1, we see that w( f(Xe)/f'(Xk)<®@(Xs)-

We thus obtain @(X41)=1w(Xz)— @ f(Xe)/f (X&)
Formula (7) can be written end-points-wise:

Xerr= Xe—fR)/f' (X), Xosr=2xe—FCxu)/f" (x)-

8 INaucka, 1. 5



114 N. S. Dimitrova, S. M. Markov

From the inequalities
Xp+1— Xp= "'f(fk)/f'(;k)>0, Xe+1=Xe—f(Xe)[f'(X£)<0
we obtain that X,>Xj,;. Further we have
X1 = X% = xu—x* = fCeR)/f' (%)
=xp—X* = (f(xXe)—f (X'))‘/f ()= (e — x*) (1= ©)/f (xx),

wherein x,<{<x*. We have ick—x‘<0 by .the inductive assumption and

f(©Q/f (xx)<1 since {<xx and f is monotone increasing. Thus we have
Xp+1<x*. Similarly,

Xi1 = 2% = Xp = X* = fOR)[f'(xr) = (X = x*) (1 = f ()[f'(2)) >0, x*<n<xe.

From xpp1<x* and xzp1>x* we conclude x*¢ Xpy1.
We proved by now that {Xi};, is inclusion monotone decreasing, that is
XD XD Xy,o---» and x*¢ X, for £=0,1,2,.... We shall now prove that
{Xk} is point-convergent. We have

W(Xu+1) = W(Xe) = @ f(Xe)/f (X)) = W(Xi)— (f(x8)—f(x0))/f (x2)
=@ Xe)— (S €)/f (xn)y@( Xie) = (1 —£"(€)/f ()l Xi) < (1 —£"(xo0)/f (xo) ) X),

where £0<x,.<§<x—,.<§o. Since q=l—~f’(ico)/f’()_co) is such that 0<g<l1, we

conclude from @(Xp+1)<qw(X:) that {X,} is point-wise convergent.
It remains to be shown that {X.} is quadratic convergent. We have

W(Xe11) = W(Xe) + (f(xr)—f(x0)/f'(xx)
= @(X0)+ = (000 (o T0) + 5 f(8) ()

= W Xi)— @ Xe)+ 5 (F"(E)f (Re)ywd(Xe)=(1/2) (S "(E)/f (x))wi(Xa),
where x,<E<x: The continuity of f/’ on [a, 8] implies that f’’ is bounded,
f"(&)=c,, ¢,>0. Since f'(xs)=f'(x,), we have
W Xi+1)=(1/2f"(%0)YWH X)) = WX X), ¢>0,

showing that {X,} is quadratically convergent to x* This proves the theorem.
From the above proof it becomes clear that the end-points form of (7) is

Xe1=Xe—f(xr)/f'(xe),
Xar1 = Xn—f(XR)/f' (),

where xp=xu, if f/f"<0 and xe=x, if f'f"">O0.
Computer realization of (7). Using (3), we obtain

(70 X1 =X(—) (O AX) () O f'( X))

(7E)
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This can be also written as Xp1=X«—) (O f(Xe) (2 ) Oof'(xr)), where
Xe=Xp, if f'f'<0 and xp=xs, if f'f''>0.
The computer realization of the end-poits form (7E) is

Xprr=2xe—(0 fCe) [ 1] Oof' (),
Xerr=Xe— (T f(xe) [ 2] 0o f'(xx)),

where again xp=x, if f'f'’<0 and xp=x, if f'f'>0.

We note that the interval f(X,) should be computed in (7C) by contrac-
tion, which supplies us with a tool for additional control over the round-off
error in the computations.

In what follows we show that (7) is quadratically convergent by rather
relaxed assumptions on f and X,.

Theorem 3. Let f possess a derivative f' on [a,b] and the deriva-
tive f' be Lipschitzian on [a, b] and f' have constant sign on [a,b]. Let x*
be a unique solution of f(x)=0 in [a,b] and the interval X,—|a,b] con-
tains x*. Then the interval iteration process (7): Xpt1=Xe— f(Xe)] f'(Xe),
k=0,1,..., produces a sequence {X.}, x*¢X. for k=0,1,..., quadratic
convergent to x*. .

Proof We shall consider in detail the situation />0 on [a, b]; the

case f'<0 is treated analogously. We shall prove by induction that X,>X;>---
and x*¢ X;. We have x*¢ X,. Since f'>0, the function f is monotone increas-

ing on X, so that f(X,)=[f(xo) f(x,)]3 0. Denote f'(Xo)=[rLto:_1710]>O. We
have @( f(X,)/f"(Xo))=(f(Xo)—f(Xo))/mo=(f'(E)/moY(Xo), X0<E<Xo- But f'(8)
€f'(Xo)=[m,, m,)] implies f'(§)<m, and therefore @w( f(X,)/f'(Xo))=w(X,). Thus
the end-points form of (7) becomes for £=0:

(7EC)

X1 =fo“f(£o)/7no’ X =;o—f(;o)/7'lo-

The inequalities xl—-)_co=—f(fo)/ﬁo>0, X, — Xo = —f(Xo)/my<0  imply
X,oX,. Assume now that X,oy;>--- DX and x*e Xy for some k>0. .We
shall prove that Xi>Xes1 and x*€Xep1. Denote f'(Xi)=[me, me]>0. Slllce
X, > Xz, we have f(Xe)=[f(xx), f(xs)] Where, in view of x*¢€ Xe, f(x)<O<f(xs).
We have

FXy_SE S &) o
0 i A

where x,<E,<Xe Since f'(&)€f'(Xe), that is f(E)=m we have f'(€,)/me<1
and therefore w(f(Xk)/ f'(Xs))<w(Xz). Thus (7) can be written as

Xr+1=Xe— f(_x_k)/;lk; ;k+l = ;k— f(;k)/’ik

The inequalities xis1— X = — f(Xx)/mx>0, Xrs1—xe=— f(xXx)/me<0 show
that X, >X41. Further we have .
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K1 — X" = X0 x*— () — f(x*)/my
= (£ () mt8) G %) = (e—x*) (1= /()] )

where x,<n<x* From f'(n)¢f'(X:) we have f'(M)<my and using that x,=<x*
we obtain x.11—x*=<0. Similarly, -

X1 —X* = Xp— X" —( f(xe)— f(X*))/mp = (xe— x*) (1 = f'(M)/me)=0, xp<m<x*.
We thus obtained x*¢X,;;. Thereby we showed that the interval se-

quence {Xp} is inclusion monotone decreasing and x*¢ X} for all k=0, 1, 2,

We shall prove next that {X}} is point-convergent. We have

W(Xie41) = @(Xe) =@ f(Xi) f'(Xe)
= W X)—(f(x)— F(x0)) mu = Xe) (1 = FE)me), X <E<xs.

From f'(&) ¢ f'(Xe)< f'(X,) we have f'(§)=m, On the other hand, mx<m,
and therefore @(Xpi1)=w(Xk)(1—my/my).

This inequality, in view of 0<1—my/my<1, implies that w(X;)—0, that
is {Xk} is point-convergent, and because of x*¢ N3 Xi we have limg,eXe=x*.

It remains to be shown that {X}} is quadratic convergent to x*. We have
for xp<E<Xp

W( X 1) = @( Xe) (1 — f1(E)/ms)
< W(Xi) (1 — 10/ ) = W(Xi) (mae— ) mie = (XYl f*( X))/ m.

Using that f’ is Lipschitzian on [a, b] and therefore w(f'(Xk))=yw(X:)
where y does not depend on &, we obtain @(Xpe41)=<(y/me)w(Xe)<(y/mo)w?(Xs)
= cw?(Xz), c =y/my>0. This proves the theorem. -

Ramark 1. Since f’ is not assumed monotone, the end-points from (7E)
is not valid by the assumption of Theorem 3. Rather we have

Xp1=Xe— f(xk)/ M, Xkt = Xp— f(Xr)/Mrs

me, i | | < | mel, _ , _
where mk={ - _ and mpg, m, are defined by f'(Xk)=[ms, m:].
me, if | mg|>]mel, a -

Cor;esponding_ly, the computer realization of these formulas is
{k+1=§k:(D fCer) [ 2] Oome)y X1 =2xx—(0 fOa) [ ] Come).

Remark 2. It is noted in [10] that the interval Newton method sug-
gested by Moore [9] is always convergent by the assumptions f¢C[a, 8], f'F0
on [a, b]. As Theorem 3 shows the same assertion holds true for the method
(7) as well. )

Remark 3. The interval method (7) was reported on the Conference on
Computer-oriented Numerical Analysis in Berlin 1979 and was published in [8].
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In this paper we answer the question about the computer realization of (7),
posed by Professor U. Kulisch on that Conference.

Numerical experiments. The methods (5) and (7) were tested numeric-
ally on an IBM/360 computer. An interval-arithmetic FORTRAN precompiler
[3] and a package for directed roundings [4] were used for this purpose.

Here we present the numerical results of the computation of the solu-
tion of the equation x(x°—1)—1=0 with X@®=[1,1.5] by means of (7C).
This example is taken from the book of G. Alefeld and J. Herzberger [1, p. 99].

X© = [1.000000000000000, 1.500000000000000]
XM =[1.002608013529070, 1.356128831793315]
X =[1.008941568406117, 1.234922296044664]
X® =[1.022860766838954, 1.143520152776015]
X =[1.046577598453889, 1.091730230277842]
X® =[1.068925528839930, 1.076824667785088]
X® =[1.075501427047270, 1.075770989848197]
X =[1.075765745837712, 1.075766066193790]
X® =[1.075766066086384, 1.075766066086338]
X =[1.075766066086837, 1.075766066086838]

The computations are performed in double precision interval arithmetic
with corresponding directed roundings.
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