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TWO INTERVAL METHODS FOR ALGEBRAIC EQUATIONS
WITH REAL ROOTS

NIKOLAI V. KJURKCHIEV, SVETOSLAV M. MARKOV

Two interval (two-sided) algorithms for the solution of algebraic equations with real roots
are considered. Both algorithms deliver on each step bounds for all roots simultaneously. The
first algorithm has a quadratic convergence, and the second has a cubic convergence. A com-
puter realization of the algorithms is proposed.

I. Introduction. We propose two interval (two-sided) algorithms for the
simultaneous determination of all roots of an algebraic equation possessing
only real roots. The first method has quadratic convergence whereas the se-
cond has cubic one. The proposed methods can be considered as two-sided
analogues of the methods described correspondingly in [4, 5] and [6]. A machine
realization of the methods is proposed in the spirit of the new computing con-
ception, which assumes the utilization of a computer which executes the arith-
metic operations with directed roundings in the sense of [1,7]. We note the
interesting fact that our realization involves computation of intervals with
contraction (in the sense of [2]), which provides additional control on the
round-off errors in the computations. Our considerations do not make use of
interval-arithmetic.

2. A two-sided method with quadratic convergence. The two-sided
method formulated in this section can be considered as a modification of the
algorithm for simultaneous determination of all roots of an algebraic equation
proposed by K. DocCev ([4, 5], see also the last section 6 of this paper).

We assume that the algebraic equation of degree n with given real coef-
ficients :

(1) f(x)=x"+a, ;x" '+ .- +a,x+a,=0
has 7 simple (unknown) real roots x;<x3<---<x, and therefore f(x)
=ITj_((x—x;). We also assume that the roots are located in n nonintersecting

(known) intervals X ¥ =[x{”, x{}, i=1,...,n, that is XN X = for i+j

and x;¢ X{ for i=1,...  n.

We propose the following two-sided iteration algorithm for simultaneous
computation of the roots of (1):
{ D < 3P f )TN — eI (D — x40,

XD = 0 — f (RP)(TZY— XN, (60— ),

where the value of the symbols Tj—_y(x{”—x{"), M)_y(x{® —xP), Mpia(x®
—x) and ML, (x{”—x{¥) is assumed to be equal to one,

(2
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In what follows we denote by & the number d= ming4, | x;,—x;|. Since the
roots x;<x,<- - -<x, are assumed simple, we have d>0.

In these notatlons we can formulate the following assertion on the rate of
convergence of (2):

Theorem 1. Let g and ¢ be such that 0<g<]1, 0<c<d/n. If the two-

sided initial approximations {[x\?, xO}»_, satisfy the inequalities
0= x"—x,<cq,
O=x,—x"<cq, i=1,2,...,n

(©))

then for the two-sided approximations produced by (2) the inequalities
0< x{P—x,<cq?,

(4) k) k
0=x,—x{"=cg®, i=1,2,...,n,

hold true for all k=1, 2, .
Proof. Inequatlons (3) 1mply that (4) hold true for £=0. Assume that
(4) hold true for some k=m, that is we have

(5&) Oéxf )_—xigcqgm’ i= 1) 2’ ceey R
(5b) Osx,—xM=<cg®™, i=1,2,...,n
Since g<1, the inequalities

6 Og;}m)—x,§c, .

©® O=x,—xM=c, i=1,2,...,n

hold true as well. From (6) and the choice of ¢ it follows that no two of the
numbers x{™, x{™, ..., xt™, x{m, xm, ..., x™ can be equal (with a possible
exclusion of the numbers of the pairs (xf’") xm), i=1,...,n) and therefore

the denominators in (2) do not vanish.
We shall prove that (4) hold true for k=m+1, that is we have

(7a) o< }y'"*”—x,gcq’"'“, i=1,...,n
(7b) O=x,—xmtV<cg?™ ™ j=1,...,n.

We shall first prove the inequalities 0<x{"+V—x; and 0=x,—x{m+". Set-
ting f(x{™)=Tj_(x{—x,) we obtain from the first equality of (2): '

i—1 x(m_ o n xﬁ m_ —x;
8 XD — ;= e — e — T — 7 )—x,
( ) i i j=1 x(m)_x(m) Jemi 1 xs»z)_x(m) x$ l)

' 1 x$ ’—-x/ n xf,

=M —x) (1— x"’" A i1 T

__x(m)) (X$ )_xixl—nluZ)

wherein &, and =, denote the correspondmg products above. According to (5b)
we have x,—x{™=0 for j=1,2,...,n Using this we obtain in the situation
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J<i that Xx{m—xim=xm—x+x;—xM=x{"—x,>0 and consequently
0<(x{m—x))/(x¢™—xim)<1, so that for the product =z, in (8) we have

o<n = H (x("')——x,)/(x("‘)—-x("'))<l

Analogously it can be seen that O<1[2—nj_‘+](Xi '—x)/(x{™—x)<1 and
therefore the expression |—mm, in (8) is nonnegative. This implies that the

signs of x{"*Y—x; and x{™—x, are equal and hence x{"*"—x,>0.

We showed that )—c‘f\—x,_O and x{”—x,=0 imply x"*"—x,=0."It fol-
lows by induction that x{*>=x; holds true for all i=1,...,n and every k=0,
1, ... Analogously it is proved that x(¥<x; for all i= 1, ...,n and every k=0,
1,... We thus proved that the process is two-sided. ‘

‘We shall now prove that (2) has quadratic convergence, showing first that

x"*V<cq?™ " To this we shall estimate the products =, and =, from below.
If j<i, we have

(9a) x"")—x"">-(x x,)+(x("')—x)+(x,—x<"")>x—x, d=d—c,
using the fact that x{™—x;=0 and x;—x{™=0. 1f j>i, then we obtain simi-
larly for x{™ —x{™
(9b) XM ™ = (o= x)+ (" — %) — (P = x)=d —c.
We shall now estimate m, and =, from below. We have
i—1 x(m_ i— m
mel S T - =T a- -0 e,

where we have used the inequalities (5b) and (9a). Similarly, using (5a) and
(9b) we obtain

T (m) n
- Y l_cq i,
e _;—I;[Hx}"”—x}"" j—t‘+l(l x}"” }"')) =( o)
This implies
oyt = (11— )""‘>1—(ﬂ—1)

and 1 -mmy=(n—1)q*"/(d~c)=q*" since c/(d—c)=<1/(n—1) (which is equival-
ent to the assumption c=d/n in the formulation of the theorem).
Using this estimate in (8) and inequality (5a) we obtain

XD = (™ — X1~ mmp) < cg?"(1 = (1 —g2™) = cqg®™ ™.

Thereby (7a) are proved. The second inequality of (7b) remains to be
proved. It is proved by similar arguments: we shall only note that by the
estimation of the products from below the inequality
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(9¢) X — o = (3= )+ (%= X)) = (= x)=d — ¢ for j<i

is used. The theorem is proved. ;

Remark 1. One can give better estimates of the differences in the de-
nominators in the products =, and m,, relaxing thereby the restrictive condition
c=<d/n in the formulation of the theorem to the condition c<d/(2Inn+1). To
this end instead of (9a) and (9b) we may use the better estimates

P — 2= x— x == =@ —jNd—c) for j<i,

5

X = x{M = (- x) = (" —x)=(j-i)d - c=(j—i)d—c) for j>i,
and obtain
i=1 x;— fyn) i—1 g™ i—1 a -
m= 0 0= )= 1 - e = 1 (- 7) a=egid=0)

For 0=<a=<1, we have I'I,k=1(.1 —a/j)=1—h,a, where h,=3%j(1/j). Using
this inequality we obtain m,=>TI/=i(1—¢/j)=1—#4;_,a. Similarly we obtain
ny=1—h, 0. Further we have | —mny<1—(1—A,_a)1 —k,_0) =y + )0
+h by @2=(h;1+h,_)o<h,a, where ]

Rpthy,_y if n=2m,

k"=12?£,.{”"1+”"—"}={2h,,, if n=2m+1.

However, %,=ZXj_(1/j)=Inn+C+vy,, where the sequence y,>>0 converges
monotonically to zero with #— oo, and C=0,5772156. . . is the Enler’s constant.
Therefore %, has the asymptotics of

2(In(7/2)+C)=2Inn—-21n2+2C=21n n—0,2318632. . . .

Computing %, and 2Inn for the first several values of n, we conclude that
the inequality 2,<2In#n holds true for all n. Therefore by the new assumption
c=d/(2In n+1), which is equvalent to 2cInn<d—c, we have 1 —mn,<2(Inn)a
=2(nn)cqg®™/(d—c)=¢®" and the inequality x™™*"—x,=(™ —x)(1—mm)
<cq?" . q?" =cq?™"" shows that a quadratic convergence takes place. Similarly
the quadratic convergence of the sequence x{™ can-be shown. We note that
the condition c<d/(2Inn+1) is less restrictive than the condition c<d/n
when n=4. ‘ S r

Remark 2. The rate of convergence of the iteration process (2) can be
accelerated if the already computed approximations are used immediately in
the next computations as follows: ’

i—1 n -
R+1) — (k) — f( x(k "y (R) — se(k+1) k) — x(k)
D =60 — feP) (T (e —xf+) T (ef = X)),

)

i—1 n -
= — )
D = 0~ f) T (e = xp+0) T (= 50)),

i=1,...,n; k=0,1,2,....
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Remark 3. The above algorithm can be used also in the situation, when
the roots of (1) are complex, but satisfy a partial ordering z,<2,<- - -<2,.
Remark 4. The equality

m n __ n
%(El P+ ) =T x=—ay, k=12

0 .
“t=1,...,n.

holds true independently of the initial approximations x{, x;
It can be used for a control over the computations.

3. A two-sided method with cubic convergence. In this section we con-
sider a numerical method for a simultaneous bounding of all roots of (1), which

can be considered as a two-sided analogue of the method proposed by L.

Ehrlich [6].
It is assumed again that the equatlon (D):flx)=x"+a, ;x" '+ -+a,=0
possesses n simple real roots x;<x,<---<x, located in nonintersecting ini-

(0) 0)

tial intervals X;" =[x;’, x”]. Consider the iteration procedure

S = X0 — (R (Ge0) — f(g0) E (60 = x0)),

(10) s )
D = X0 () ()~ (x0) T (x40 = X0,
e -_ —_— - - J=1 —
i1

i=1,...,n; k=0,1,2,...

Denote as above d=min.;|x;—x;|>0. The following assertion on cubic
convergence of (10) holds true:

Theorem 2. Let g and c be such that 0<g<1, 0<c=d/(2+\n). If the
two-sided initial approximations {x{*, x(O}_ satisfy the inequalities
0=x"—x 1=cq,
O=x,—x0=cq, i=1,2,...,n,
then for the two-sided approximations produces by (10) the inequalities

(1)

12) 0<x¥ - x,<cq®,
( 0=x,— x‘*’gcq"‘, i=1,...,n

hold true for all k=0,1,2,.
Proof. The inequalities (12) hold true for £=0 in view of (11). Assume
that (12) hold true for some k=m, that is

(13a) 0=x"—-x,<cq®", i=1,...,n;
(13b) O=x,—xmM=cq®, i=1,...,n

We shall prove that (12) hold true for 2=m+1, that is
(14a) 0=x{"*" —x,<cg®""', i=1,...,n,

(14b) 0<x,—xmth=<cg®™ ™, i=1,...,n
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Ws shall first prove that 0=x{"*"—x, and O<x;—x{m+h, that is the
process (10) is two-sided.

Using the identity f(x)/(x)=Zji(x—x,)' for x*+x;,...,x, and the
first equality of (10) we obtain

— — — _ — n

D — s, i — x, = A (G — ) B =L
et Rl Bied

J

==
— — n l n 1
:(Xi,’") —x,)(l - l/((xg”')—xi)(jix —;,('m)—'x/ —J';:l ;‘gm)_x(;,.))))
J=i -

_ — n 1 1
= (XM=, )(1Z1/(1 +H(xfm — x.')lfl (;;m—)_}"j_ ‘—Wﬁ)»

JHi
— _ n xj_fyn)
==X =1+ = x) B = )
j— ]
We thus obtained
—m+1) —m s(m.i)
(15) x‘, —x,::(xi ‘—xi)mmg
wherein
x,—_f(j""

— n
s —(xim) _ ) ¥ — — .
( i l)j=l (x,‘""—x,)(x,""’—x}"”)
J¥i -

Using that, according to (13a, b), 0=x{™ —x, 0=<x;—x{™, and the fact
that x{™-<x{™ (which follows from (11) and the choice of ¢ and c), we see
that s(*9=0 and therefore s™0/(1+smd=0 as well. Together with (15) this
implies 0<x{"*" —x,. Similarly the inequality 0=<x,— x(+) is obtained. We
thus showed that the iteration process (10) is two-sided.

We shall now prove that (10) has a cubic convergence. To this end we
shall estimate s from above. Using assumptions (13) and the inequalities

| x;—xj|=d—c>d—2¢, | x{™—x({™|=d—2c we obtain ~

- — s(md) - (m.)
x(lm+l)_x,.=(x(im)_x‘,) o _s_(xg"')—x,.)s"'
)
— _ n x~—£‘,’"
=(x{m —x)(x™M—-x,) T = L=
( 5 1)( i i)j=l (xyn)_xl)(xsm)__x(jm))
JFi
n 3™ ne2 +1
. gm gm cq _ m+1 — gm
=cq”.0q - T G =4V gmar =0

since the inequalities c<d/(2+yn) and nc?(d—2c)?<1 are equivalent.
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4. Computer realization of the algorithms. We shall make use of the
notations and computer realization technique described in [3], sec. 2A. In addi-
tion, we shall make use of the following notations:

f;’:]a,:al:i\-ael. . -:}\-am §?=|a'=a1;a2¥. . .+an;
ﬁ?:lai:algagi' . ';<an, ﬁ;‘=lal=al>\2aﬂ;<' . .>\Za’"

where a,, a,, ...,a, are machine nuinbers. We note that the values of the
above sums and products depend in general on the order of execution of the
operations; for the sake of definiteness let us assume that the operations are
executed from left to right.

Consider the computer realization of method (2), which we shall rewrite
in the following form:

;Sﬁ+ h_ }sk) _f(}sk))/p(k-i)’

(16)
X0 =xP = fx)g*0, i=1,...,n; k=0,1,..,
where
i—1 n g -—
(ki) — TT (X0 — x(B)) TI (x(® — x(®),
(16') pEO= A G =) L 0 =D

i—1 k —
k) =TT (x® —x®) TI (X0 —x).
q et (xf X5 )jﬂ.}.l(—t 7 )

Using the equality notation “=" in the meaning described in [3] (see the
example in [3], sec 2A) and formulas (1) from [3] we may write

x40l = ey p ") = X0 = 1 F GNP ™).

In order to find a computable lower bound for f(x{")/p*” we observe that,
in the situation when i=n, n—2, n—4,..., the value of f(x*}) is positive
(this follows from geometrical arguments with respect to the polynomial f). On
the other hand, the value of the denominator:

=1 n —_ — i—1 _ n —
prO= T (e —xi) T (60— 0) = (—1)~ TT (e —x{0) TL (<P —xp)

=it
has the sign of (—1)*~ and is therefore also positive for i=n, n-2,....We
thus have |(f(x{")p*")=]f(x{")71p™" and therefore the computer realization
of x**" may be given by

xFV= BT ()Tt p*), when i=n,n—-2,n-4,...

In the situation when i=n-1, n-3, n—5,... the value of f(if") is ne-

gative. Noticing that sign p*” =signf(x) for all i{=1,2,...,n we conclude
that the value of p* is also negative in this situation. Thus we have
XV = P24 {71 p*"), when i=n—-1,n-3,n-4,...

We can unify both situations by utilizing the roundings (J, (J, in the
following formula
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17) XD = B T (YT O, p* ), i=1,2, ...,

For p®d we have [Jop®*0=(—1y—1(Mj=i(x{" — X (e — X)) and
therefore -

(17 Cop™” = (— " MZGE = ") X Wi a5 = X,

Similarly, for the computer realization of x{**» we have

XD = | (X0 —f(xP)/g*0) = X0 =1 (f(x()/q*).

Let i=n, n—2, n—4,... Then f(x»)<O0 and, in view of signg*9=
—sign f(x){¥), g*>0. Hence 1 (f(x{®)/g*?)=1tf (,_vfik>)?1 g*». Thus we can rea-
lize x(+D in the computer by x{*+D=x(k Z( f(xm) Tt ged), wheni=n,n—2,...

If i=n—1,n-3,..., we have f(ic?*)) >0, ¢* <0. Therefore t( S(x)/qtn)
= f(fgk))?lq(*v"‘ and the computer realization formula for x{*+! obtains the form
X=X (| f(xP) | g0), when i=n—1,n=3,...

Both situations can be summarized as follows:

(18) XD = ,_cgk):(g f( f(ik)? g ™),
where R R - o
(18) Clogh0 = (= 1= = KR, G0 9.

Note that the computer realization (17), (17’), (18), (18’) of the algorithm
(16)—(16’) requires a computation of the values of the polynomial f with ro-
unding towards zero. This property of the algorithm can be used for automat-
ic control over the roundoff error and a stopping criteria (see [2]). Recall
that for a particular i we have either (Jf(x")=0=< Of(x") or Of(xP)=0=
O f(x®) for all £=0,1,2,... If some of these inequalities is violated because
of roundoff errors, further computations should be stopped.

We shall now consider the computer realization of our second method
(10). We shall first rewrite it in the following way:

XEED 3R fGefBy pn,

XD = X — f(x(®) gD, i=1,...,n; k=0,1,...,

(19)

where
(19 P =1 () — f () Efmryaf(xE® = _’fy))—l»
g% = f1(x) — f ()t (f? = )7

By means of the identity f’(x)#f(x)27=1 (x—x,', which is valid for
x$xy ..., X, we obtain

- x; —xM

. — 1
pEI=f (xf,k’)(-}T’(F_-; + )

b)) - =
J=1G) () —x)) (x P —x)
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X—x®

g*0 = fXON—m—— x(,,,

+ X —)
—x; =1 (xR )—x‘(x(k) (k))’

showing that the equalities sign p'* =sign f(x{”) and sign g% = —sign f (x{®)
hold true. The same situation took place by the first method (16)—(16). Using
this we see that the formulas for the computer computation of x{+" and Xx{k+D

have the same form as formulas (17) and (18) do, but with p*. ’> and g B de-
fined by (19’), that is we have

;gk-ﬂ) ~(A') (Df(x(k))} D p(k l))
XD = x0 Z(Of(x) 0™, i=1,...,n; k=0,1,..
wherein p*9 and g9 are given by (19’).

We shall now discuss the computer realization of [J,p*9, (,g%*H). We
first consider the computation of [, p*9.

i) For i=n,n—2,n—1,... we have p*)>0, f(x*)>0, f(x#)>0.
Using these inequalities and denoting a) =X/ i(x{" —x"'y"1>0, p*d =27 ,,,
(x —xP)y~1>0, so that p*d= f'(}f-’*’)—f(x§k>)(a<kf> B*9), we obtain

Copd=1p®d =1 (f (") = fx"Yo™ = p*7)
=1/G) =L (i)™ —fe)p™)
=1£/G®) = Uy ®?) =1 (f )™
=t GP) (G X L™ =1 £ () X M),

(20)

ii) For i=n—1,n—3,n—-5,... we have p*"<0, f(x" <0, ' (x{*)<0.
Using these we obtain

Do p®d = | p* = I —fx") (@™ - p*)
= 1) =G = LB
= LFGEN = () X o™ =) fOaP X 1),
Both cases i) and ii) can be summarized in a common formula as follows:
o P = Do f/ G =IO} Ja™ =100 £ G X 1o 1B4),
20) e = Em(? Xy = EiS(1 " = 1),
1B = 12’ = %) = Elra(1 (1 =)
The computer realization of ¢ is obtained similarly. The final form of

Clog* is
0% = Do f O — (oS3 Jo 17491 = 100 FHX] | 568,

207)  ty*=ZS = X)),
} M =El (150G = x£7).
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Formulas (20), (20’), (20’’) can be used for the computer realization of
the method (10).

The above computer realization requires (as was the case with the first
method) computation of the values of f with rounding towards zero, which
again can be used for additional control over the computational errors as this
is suggested in [2].

5. Numerical experiments. We give below the numerical solution of a
problem, taken from [1] by means of algorithm (2). A computer realization of
(2) given by formulas (17), (17’), (18), (18’) was used thereby. The necessary
package for arithmetic operations with directed roundings was provided by N.
Dushkov.

Problem (see[l, p. 133]). The eigenvalues of the matrix

[121000

1 9 0
A=10 1 6 1 O

0 01 3 1

0 0010

are to be determined. '
Numerical solution. The values of the function f(x)=det(A—xE)
can be obtained by means of the iteration procedure
fo(x)=1, filx)=x—a,,
(P) frl(x)=(x—ar) fooy(X) — fr_a(%), k=2,....5,
J(x)=fo(x)

wherein a,=12, a;=9, a3=6, a,=3, a;=0 are the diagonal elements of A.
The Gerschgorin’s theorem produces the following initial intervals for the roots
of f(x)=0:

x0=—1.0 xP= 10
xP= 10 xP= 50
xP= 40 x"= 80
x0= 170 x®=110
x®= 110 x® =130

We note that the algorithm (2) turns out to be convergent, despite of the
fact, that the initial intervals do not satisfy the conditions of Theorem 1

The following results are obtained by means of formulas (17), (17", (1_8)
and (18’). We remark that the necessary expression for [1f(x) can be easily
obtained on the basis of formulas (P).

x{" = —0.719907 407 4074074 < 10° x{V=0.6473214285714287 X 10°
xh= 0.1 820226879446260 X101 x{h=0.4617563739376772x 10
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0.4564671364076611 x 10!
0.7539111875953470 < 10!
0.1149454285461972 < 102

x{(» = —0.5211150132880801 x 10°

xP=0.2470322263560911 < 10t
xP=0.5361068299164786 10!
xP=0.8395360657675520 < 10*
xP=0.1204068694431710x 102

x® = —0.3880642333754079 10°

xP = 0.2851853164017119 10!
xP = 0.5899901017430998< 1 ot
xP=0.8959670263685125% 10t
xP=0.1230205734618671< 10?
x{h = —0.3259323686327761 = 10°
xh = 0.2976643022829831 X 101
x{h= 059986216021 55305 10t
x{» = 0.9015912894699321 X1 ot
x=0.1231684961799 483102

x{P=—0.31 69458949086399 = 10°

xP = 0.2983858069614485< 1 0!
x9P = 0.5999999928184809 < 1 ot
xP=0.9016136300743464< 10t
xP = 0.1231687595245489 X 102

x{®=—0.31 68759530274313 %< 100
0.2983863696837963 < 10!
0.5999999999999999 < 10!

6) —
xp=

6) —
x(s).__

x{h) =0.7547201038706979 < 10!
x(»=0.1014422125380727 X 102
XM =0.1264037058382799 X 102

x{? =0,2698718059591119 < 10°
x@® = 0.4052152078430105 % 10
X = 0.6829199528827650 % 10!
x®=0.9365625676545370 < 10*
x® =0.1240485912575107 X 102

x® = —0.8123150524417208 X 10~

xP=0.3370608047750820x 10!
x®=0.6155600921679866< 10!
x® = 0.9045091486413074< 10!
xP = 0.1232129478228744 <102

x(» = —0.2845342295060234 < 10°

x®=0.3008403665908639 < 10t
x® = 0.6002233886891408 < 101
x=0.9016250730604659 < 10t
xH=0.1231688378892840< 102

x{® = -—0.3166231111746032< 10°

xP=0.2983883011113905x 10
x®=0.6000000116470558 X 10
x99 = 0.9016136304400465 10
x®=0.1231687595266509 < 102

x® = —0.3168759511325731 < 10°

0.2983863696838936 < 10!
0.6000000000000001 x< 10!

x(6) —
x(z)_

- (6) —
xg)_



Two interval methods fof algebraic equations with real roots 129
xP=0.9016136303161817 x 10! ;515): 0.9016136303161819x 10!
x® = 0.1231687595261686 < 102 )?‘56’ = 0.1231687595261688 x 102

x{"=—0.3168759526168761 X 10°  x{" — __(.3168759526168759 % 10°
xP = 0.2983863696838181 10! x{= 0.2983863696838183 10t

) — x6) () — ¥ ©
X = x® x(N = x§
7) — (6] 7) — (6
x&’——x(“) xﬁ)_.xa)
7) — (6 6
X, = x® x0) =x®

The computations are performed on an IBM/360 computer using double
precision arithmetic with directed roundings. The results show that the round-
off error in the above example is negligible.

6. Appendix: The Docev’s method with a new proof of convergence.
In this section we shall formulate the method of K. Doev [4, 5] and shall give
a proof for convergence involving a less restrictive assumption of closeness
of the initial approximations to the roots, as the assumptions used in the asser-
tions for convergence known to us.

Consider the algebraic equation of nth degree, n=2:

(21) f(z)=z’l+an—-lz’.—1+' . '+a12+a0=0

with given coefficients a,, @y, ..., a, ;. We assume that (21) possesses n simple

roots 2,, 2,,...,2, Thus we have f(2)=II;—i(z2—z2,). Denote d=min.;|z,—2z,l;

since 2y, 25, ..., 2, are simple, d>0. ) )
Assume next that » numbers 220, o v v s 2 are given, which will be

considered as initial approximations of the corresponding roots 2y, 29, ..., 2,
The method of Docev is

(22)  2FV=2B—fe)r, (2P —2P), i=1,...,n; k=0,1,...

The following assertion for quadratic convergence of (22) holds true

Theorem 3. Let 0<g<1 and 0<c<d/(1+an), where a=1,7632283. ..
is determined from the equality a=exp(a—1). If the initial approximations
20, 20, ..., 20 of the roots zy, zy, . .. , 2, of (21) satisfy the inequalities

(23) |20 —2z;|<cq, i=1,...,n,
then for the approximations delivered by (22) the inequalities

(24) 12P—z,|<cq?, i=1,...,n,

hold true for all k=1, 2, ... . .

Remark. The proof of convergence of (22) given in [8], p. 206, requires
the substantially more restrictive assumption for closeness of the initial approxi-
mations to the roots: c<d/(2+2") (in [8] this is written in the equivalent
form 2%c/(d—2c)<1).

9 Ilnucka, KH. §
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Proof. By induction. The assumption (23) shows that (24) holds true for
k=0. Let (24) be satisfied for some k=m, that is

(25) 2™z |<cg®™, i=1,2,...,n.
This implies, in view of ¢<1,
(26) |zim—2z;|<c, i=1,2,...,n

From (26) and the choice of ¢ it follows that z{m3-2(m for i%j. More-
over, for i+j we have

(27) | zf.""—-zg"') I=12,—2z51—lz—2z)| —| z}""——-z,lgd—?c =>ca(n—1),

the last inequality following from the assumption c<d/(1+an).
Using (22), we obtain for the difference z("+V—z2;:

2m

n n n -
m+1) __y — pm)— [ (z(m— I (zim —zm) > —(2(m _— 1 —z;
2§ 2;=2! P (zfm—z;)/ Jom (" —zm)—2,= (" —2,)( /=1 zZm z(’"))

i i /

We shall transform the last expression by means of the identity (see [9]):

nou—z; n ou—zg s—lu—z;

—l = 2 »
j=1 4i—u; s=18i—Us ;_ Ui—Uj
i s i

which holds true for arbitrary 27 numbers 2,, 2y, ...,2,; @, 4y, ..., 1, such
that u,=u; for iFj. Using this identity with #,=2z{™ (which can be done be-
cause of z{™s=2(™ for i¥j), we obtain

n (m) —2z s—1 zyn)__z’

M) g | = | zm Zs
[ 2} zl=lzm—zIl T o ;Hn S [

Zj
m)__ —
=|z zil 2 I (rn) z(ﬂl) I I +z(m) |
-'=#=t 14: ’
|2{™—zg| 1 |2 —z;)
(m) LA _f_i_
SI Z zll z |z(;u) z(ll) | j=1 ( ‘zyn)_z}m)‘ )-
JF

Using inequalities (25)—(27) in the above expression, we obtain

n s—1

1 cq ¢
IZ(,"'H' )—2’,- |§L‘q3m’§=l _——“———l Z0m | jI=Il (1 +_—| z(”')—"z- (my | )
e o
§Cq2’n(n— m (n (l + ca(n 1) )

it - 1
" (U i) Seq g e,
since a is such, that a= e‘la
This implies that (24) holds true for £=m+1, which proves the theorem.
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