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FUNCTION SPACES, GENERATED BY THE AVERAGED
MODULI OF SMOOTHNESS

VASIL A. POPOV

In the paper the connection between the one-sided K-functional (for spaces L, and
W,’,) and the averaged modulus of r-order is proved. There is proved also the connection

between the spaces, generated by the averaged moduli of smoothness, the Bessov’s spaces
and the spaces, generated by the best one-sided trigonometrical approximation.

In this paper we continue the investigations from [16], where the results

are given without proofs.
1. We shall begin with the definition of the .notion of averaged moduli

of smoothness.
Let f be a function defined and bounded on the finite interval [a, b]. The

local k-th modulus of the function f at a point x¢[a, b] is given by
(1, x; 8)=sup {| A% f(t)|:¢, t+kh€[x—kS/2, x+k5/2]N [a, b]},

where, as usually, A f(x)=2‘.f”=0(—l)*+"'( :, ) f(t+mh),
The k-th averaged modulus (or t,-modulus) of function f in L,
1=p=<o, is given by

w(f; 8)Lp =l 0.(f, x; 8)||Lp(a. b)s
where

b
I glleyia =11 glle, = {55 | |g00)1Pdx}P, 1=p<eco,

gl = sup{l g(x)|: x¢€[a, b]}.
If we compare the averaged modulus in L, with the usual k-th modulus
of continuity in L,:
(Fioy = sup {1 T 1AkfCx) Pdx)le
o/ 8, = oonss o—a 3 " ’
we see at once that
e @y f¢ 5)Lp$‘tk(f; )z, l<p< oo,
and ©u(f; 8),, =0, (f; 8)=Tuf3 )L,
Some examples show that in general w,(f; ), and t,(f; ')’-p are not
equivalent in case p< co.
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The properties of 1, are similar to the properties of w,. For the history
and the properties of t,-moduli see [1—3]. We shall mention only the follow-
ing properties:

PL t(f+g3 8), =Ty f3 8z, +T4(&5 ) »

P2. w(f; 8), =c(R)* [ f® ., it fwek,,

P3. w(f; AS)Ld§(7»+1)2’=+lrk(f &)z,

Here and in all the following pages c(k) denotes a constant, depending
only on k.

The averaged moduli have many applications:

a) in problems connected with the convergence of sequences of linear
positive operators (P. P. Korovkin [4], Bl. Sendov [5], A. Andreeyv,
V. A. Popov [10]);

b) in Hausdorff approximation of functions by means of piecewise mono-
tone functions (E. P. Dolgenko, E. A. Sevastianov [6]);

c) in one-sided approximation of functions(we shall consider these applica-
tions more in detail below);

d) in problems connected with estimations of the error of quadrature
formulas (V. A. Popov [3], K. Ivanov [7]);

e) in problems of estimations of the error of numerical solution of differ-
ential equations (A. Andreev, V. AL Popov, Bl. Sendov [8]), etc.

It is well-known that the usual A-th modulus of continuity wx(f; 8):
connected with the following K-functional of J. Peetre [9], [10]: K(f’; t)
=inf{ll folle,+ 211 /Pl : F=fotfr}-

It is mterestmg that the A-th averaged moduli are connected with the
so-called one-sided K-functional. First we shall give the definition of one-sid-
ed K-functional.

Let G be a set and X, i=0, 1 —linear spaces of real-valued functions
on G with seminorms || -||;, i=0, 1. We suppose that X}, i=0, 1, contain the
constant functions. The lower K-functional in X,+ X, for seminorms || « ||,
i=0, 1, is given by Ki(f;&)=inf{|| follo+2Ilfilly : f=Ffo+ /15 fo=0}.

The lower K-functional is meaningful for all functions in X,+ X, for
which inf{f(x): x€G}>—co.

The upper K-functional in x,+x; for seminorms || - ||, {=0, 1, is given
by K_(f:H)=inf{|l follo+£Il f1]]s f fot 11, fo=0}.

This functional is meaningful for all functions in X,+Xj, for which
sup { f(x) : x€G} < oo. _

The one-sided K-functional is defined by K(f;¢)=max {K.(f; 1), K_(f;t)}

In what follows we shall consider for simplicity the 2n-periodical case
with L,-norm

2r
gl ={z; [ lgCx)iPdx}r.

Let us mention that in 2n-periodic case the sup in the definition of
ox(f, x; 8) is taken over all ¢, ¢+kk for which ¢ t+kh € [x—£k8/2, x+ k5/2].
We shall denote by W7% the Sobolev space of all 2n-periodic functions f

with absolutely continuous (k—l) -th derivative, for which f® ¢ L,[0,2x].



134 V. A. Popov

The following theorem is valid:
Theorem 1. Let G=[0, 2n], X,=L, X;=Wk IIfIIO—IlfHL, 1IN
—Hf“’IIL and let K(f;t) be the one-sided K-functional in Xo+ x,(=L,) for

semmorms Il - ll;, i=0, 1. Then there exist constants c(k), i=0, 1, dependmg
only on k such that

(2 k)t f3 ), <K(f1 )= cilkyu(f By,

Remark. Obviously K(f; £) as well as t,(f; 8)/_p have a sense only for
bounded functions in L, and only for bounded 2=-periodic functions in L,
theorem 1 has a sense.

Proof of theorem 1. Let f be a 2m-periodic bounded function, f¢L,.
It is known (compare with [9; 10; 12]) that for every integer 2>0 andh>0
there exists a function f,, such that

3 [ f(x)—frn(X) | =on( f, x; 2h),
(4 | f—Ffan llz, o f; )L,
(3) fra€ We and || fE0 N <c'(RY—*ou £ h),,

For example we can set

_ (=1t 2 h
funy=—f— J .. J{ Sttt )

—( )+l )+ =B e gy,
Obviously from (3) it follows

©) Srnx)—on f. x; 2R)=f(x).

From the results in [11] it follows that there exist two trigonometrical
polynomials P and Q of n-th order such that

Px)=of, x; 2k)=Q(x),
1Q— O)k”L =Q— P”L =cy(R)ywu(f; h)l-

Since Q is a trigonometric polynomial of n-th order we have in view
of (7)

8 I Q""HLpéﬂ"II QIILp‘én"{II Q—onllz,
+ll @elle, }=n*(ca(k)+ Dyl f5 2h),.
From (6), (7) it follows
) 0=/(x)—frn(x)+ Q(x)
and obviously frs— Q€ W: (see (5)).

(7)
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We have from (1), (3)—(9)
Ki(fi =Ilf—fer+Q llz, +2*11 f{H—Q®W Ile,,
= f=Fanlle, 11 Q—welle, + 1l @ lle, + {1l fB Nz, + 11 QP 1l }

=u(f; /l)Lp-f-Cg(k)Tk(f: h)Lp +(fs k)L, + ' (R f 5 h)Lp+tknk(c,(k)
+ D f; 2h),,p.

If we take £=h, n=[1/¢t]+1, we obtain in view of P3 that (we may
assume that £=<4n, otherwise (2) is obvious, see also lemma 2 below): Ki(f; t*)
<c(R)u(f3 e,

In a similar way we obtain that K_(f; #*)<c,(k)u(f; O,

which proves the right hand side of (2).
To prove the left hand side of (2) we arbitrarily take two functions f;f

and f; with the properties

(10) FrOSf=fr,  fHewr, frewr
Let us set fff=f—fF. Then we have f}=0, f;<O0.
Let us estimate now 1 f ;t),,p. We have in view of Pl

(11 W f5 e, = 5w S5 O+l fi s B,

+(fy s t)Lp+Tk( = t)Lp}.

From (10) we obtain, using P2:

(12) w(fiE 5 O, =c(REN (FEP L,

It is a little more difficult to estimate t.( f§; De,
Let x be fixed and ¢, £+kh ¢ [x—k3/2, x-+k5/2]=As(X).
If Azf3(£)=0, we have, since ff =0 and f=f:

(13) 0=Mfy()= X (—1pn( X ) fit+mh)

= I (M)mermn= 5 (k) frermh)

m= m=t
m=k(mod 2) m=k(mod 2)

= I (M)Sr—sixt+mb).

m=0

If we set g=f;‘—fl+eW;, we have from (13)

(14) 0=t fi(H= éo(:,)g(t-f-mh), t+mheAs(x), m=0,..., k.
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For every function g¢ W% we have the Taylor formula
K e—0" k—1 5 (k
(15)  g0)=gx)+ i'—_ & (x)+(k i J f(9 Ss)yt=1gM(s)ds.

Let us set

6— x)

r(0)= 2 ~ g0(x).

Then r is an algebraic polynomial of (£—1)-th degree and we have the
Markov’s inequality (see for example [17]):

0
(16) max lr(e)l— k8 0212(}5) I :[f(y)dyl.

O(As(x)
Using (15), we obtain from (16) for 0 € As(x):
2%k e 12,
I70)1 =% max | [ {&(y)—80) gy | (y—/" gM(s)ds)dy |
3

k8/2 0
a1 =571 le)—g)dy gy max [ [1y—si1g®(s)ldsdy

8 O(As(x) X x

IA

2 T g0+ )~ dy+ g ) ks Tl W+ d
5 y Y+ 5e= 1)1 i 4 y)lay.
Consequently for every g¢ W7 and 6¢As(x) we obtain from (15) and a7

6@ —g) =% T 1gtx+)—g0o)ldy

2kF+1 [ 5 \k—1 K2 1 0 g
+——(k—1ﬁ'(?) _{6ﬂlg<k)(x+y)|a'y+(k—_l)-!| !(e_s)/e 1g®)(s)ds|

S (k—1

(18) <2 T lgte ) — g dy+ Gy (305

O 0L | g4x+ )l dy

- & 1 k8/2 d sk—l k8/2 | k) d
e | | BUc+y)—g0)ldy+81 [ | g¥(xty)ldy.
From (14) and (18) we obtain

O,S_A;:f(;“(t)gmi‘fQ ( ; )(g(t+ mh)— g(x))+2*g(x)
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1 k8/2
(19) =2kg(x)+ 2*cy(k){ 5 _k{ﬂ | g(x+y)—g(x)|dy

k8/2
L 189+ )yt =A(x).
By analogy, in the case, when AXf+(#)<0, we obtain

_ _ % k g
O=—Mff(= 3 ( m ) fHt+mh)<A(x).
m=k—1(mod 2)

Consequently for ¢, £+ kh¢Ay(x) we have | AXfi(f)|<A(x), what gives us
(20) or(f, x; 8)=A(x).
From (19), (20) we obtain
(2D Tk(fér;5)Lp:\:||a4(')”LpéQ"{lIglle+Cs(k)(2kllglll.p+k5"||g"')lle)}.
Since g=fr—f}=fi—fy we obtain from (21)
(22) Tk(fg';5)LP§C4(k){I|f3'IIL’+l|f0_IILp+5"(H(f?)"‘)||Lp+I|(fl—)"’)“l.p)}-
By analogy as before we have
(23) w(fys B)Lp§c4(k){llfg"le+||ff)—||Lp + 8”(H(ff’)“”llL,,*i-ll (fl_)‘k)lle)}-

From (11), (12), (22), (23) it follows that for every fie W%, fi=f
=fi=0, fr=f-f <0, we have :
@Y (i O, =csR)ILSE NI, + 41 CSDD Mz, + 1 f e, + 41N ® e, }-

Since Jir€ W are arbitrary functions with the property fir<f<f;, from
(24) we obtain

W/, O, =cs(RXK(f3 )+ K_(f; )}

=2c,(k) max {K+(f; £), K_(f;8)}=c"(R)K(f B),

that proves the left hand side of (2). Theorem 1 is proved.
2. Using the one-sided K-functional or the averaged moduli of smooth-
ness it is possible to introduce classes of spaces like well-known Bessov

spaces.
Let us recall that the Bessov space B°

functions f, for which "
(] (0 f3 D)% pia< co, k>0,
The norm in B%, is given by

fllgs =I1flle,+{ T (=0 f By, )05 }1o.
Pq 0

is the space of all 2r-periodic
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In a similar way we can introduce the spaces qu of all 2n-periodic
functions f, for which

{ f (Ew(f: ), )5 < oo

with the norm
(25) 1 1Lgg, =11/, +{ ] (&5 £ 21,7}

Let K(f; t) be the one-sided K-functional for the function f¢L, for the
seminorms ”f”L “f(k)”L By theorem 1 we see that the spaces A° have an

equivalent norm
(26) 1/ llgo= 1 lle, +{ [ (6K f3 )7 G .

Using the best one-sided trigonometrical approximation, we can define
the spaces A) in another way. Let us remember (see [1]—[3]) that the best

one-sided approximation of the 2m-periodic bounded function f in the metric L,,
by means of trigonometrical polynomials of n-th order is given by
(27) E( D= inf{{IP=Qllz,: P, QeT,; Plx)=f(x)=Q(x) for every x},

where T, denotes the set of all trigonometrical polynomials of n-th order.
For the best one-sided trigonometrical approximation the following direct
and converse theorem holds:
Theorem A ([1]—[3], [11]). There exist constants c¢(k), c;(k), depend-
ing only on k such that for every 2mn-periodic bounded function f we have

EA P, scbyedfi ne, ol fime, = £ (st B S,

By means of Theorem A it is easy to prove the following theorem:
Theorem 2. The following norms are equivalent :

i) £l
i) AN =11f W+ B P, +{ E (Bl fe, 1.

For the proof of this theorem we shall use some lemmas.
Lemma 1. Let f be a bounded 2n-periodic function. Let h=2nm+a,
where m is an integer and |a|<n. Then Aff(t)=Akf(¢).

Proof.

AR F(t) = éo(—l)**"( 5 ) fie+sh
k k k k
=3 (_1)k+s( s )f(t+2ums+sa)= z (—1)"+’( s )f(t+8a)=A§f(t)-
§=0 =0
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Lemma 2. Let f be a bounded 2n-periodic function. Then for t=4=n
we have t(f; B, =ulf: 4m),, = o(f, 0; 2m).

Proof. Obviously the statement of the lemma follows from the follow-
ing equality : for £=4n we have

(28) ol f, x5 )= f, x; 4m)=ou(f, 0; 2m).
Let us prove (28). By definition ‘
o(f, x5 t)=sup{l AR f()|: 3, y+khe[x—kt/2, x+kt/2]}.

From Lewma 1 it follows that for every 4 such that y+k&h¢[x—kt/2,
x+kt/2] there exists a, |a|<m, such that

(29) AR (V)| =1 AEf( ).

If a=0, since f is 2n-periodic, there exists y’, —2rn<y’=<0, such that
(30) [ARA(3) =1 ALf(Y)I.

If <0, again since f is 2n-periodic, there exists y’, 0=y’=2r, such that
(31 TAZF(N)I=1A5 ().

From (20)—(31) it follows that there exist y’, a such that [A¥f(y)]
=|ALf(y')| and ', y'+ka€[—kn, k] for k=2, y', y +ka¢[—2m, 2n] for
k=1. Consequently

(32) o fr x5 H=o(f, 0; 2r), k=2;

o, (f, x; H)=o,(f, 0; 4n).

We have for x¢[—m, n]
o(f, 0; 2m)<ox(f, x; 4m), k=2;
o, (f, 0; 4n)=wy(f, x; 4n)

From here and (32) follows (28).
Lemma 3(Whitney [18]). We kave

Eo(f)c=inf{ |l f—Allcio.2m : A = const}
=cq(k) sup {| AXf(x)| : x€(= oo, ), he(—=o0, )}

- where cg(R) is a constant, depending only on k.

Lemma 4. Let f be a bounded 2m-periodic function. There exists a
constant cy(k) depending only on k such that E,( f)Lpgcg(k)tk( fi2m)L,.

Proof. We have

- ’ 2n . : 1

@33)  Edfr,={5 [ (supf—inf fydx}p = sup f—inf f= 5 Ei( e

From lemma 2 it follows ;

sup {| Af flx)| : R€(— o0, o)} =an( f, x; 4n) =i f, 0; 2m)

sup {| AEf(x)] : X€(— oo, o), hE(=c0, )} =k f, 0; 2n).
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From here, lemma 2, lemma 3 and P3 it follows

(34) 5 E = cdB)on(f. 0; 2m)

= 5 cskyeu £ Ame eyl f 5 20z,

From (33) and (34) follows the lemma.
Proof of Theorem 2. Let us prove first that |[|fll|<clIfll;o. From
pq

theorem A we have
E( ), =clkyu( f3 m), n=1.

Consequently

(35) A N=1Fe,+ B e, +{ E @0yl e}

SN flle,+ Bl e, +{ E (@ eakye(f3 2707},

Since
2—n+l

@Ou(f; 2L =249 [ (S B Y
2——n

we obtain from (35)
2—n+l

36) NN U, +EkPe, o204 B " [ (#=5(f3 80,0
n=| 2——”

=1 f e, + o P, + o209 [ (655 f5 B0, )74 .

From lemma 2 and lemma 4 we have E( N, seodkyu(f14m), = cok)e (fi )
for t=4n, consequently

Ed /e, =ch O | (6973 004300

P

what, together with (36), gives us ||| fll[<cllfll,, where the constant ¢ de-
rq

pends on 6, &, ¢ (06>&).
Let us prove now that ||f|| e =<clllflll. We have
pPq

37) 1 lLag =I1flle, +{ (=55 £ £, -}

—n+1

=+ E T s o e e
= 2—~’|
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Since
——n+l

I, 0n(f s 8,0 S20@r (£ 270,

we obtain from (37)
3 < 02%+1f 3 (On0 . 9—nyg 1V C (. N
(38) 1Sl =IFlle, +2% 1 B (20 f; 27 Pia{ [ (-}
From theorem A we have for n=>1
. - (k) & 0 FE
(39) WS ), = B (mr D E(f)
From (38) and (39) it follows

oo 2"
(@0)  iflg SFll, + 20 E T S (et 1B (i

+{ ] &Pl O g e

For 2<f{< oo we have in view of lemma 2 t(f; t),_ =w(f; 41:);
Using (33), we have wx(f, x; 41t)<2"(supf—mff) 2‘Eo(f)1, , what
gives us

(41) w(f s 4, <2* Eo(f)e,
From (41) it follows

(42) ([ sty

a~ oo dt ~
=2 LN, ( [ ) a=ck, 6, PELS)L,
On the other hand, we have
2n ~ ~ n -
3 (et DY e, <Ed Dt 2 2B ey
what, together with (40), (42), give us
(43) I lla0 <I1flle,+c'(k 0, @)Eo f,
rq
(43) ek} T (2000 5 2mAE () N},
n=1 m=0
Since

o n - » ~
(44) I 20000 B 2™ E (e, }i=c" (R, 6, 9) Z 2% Eym(Nry)
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(compare with S. M. Nikolskii [17], p. 260]), (43) and (44) give us
17l = el 1, + Eo P, +( E (2Eon( Sz, Y1},

where the constant ¢ depends on &, 6, ¢, k> 0.
3. The following connection exists between the spaces qu and the Besov

spaces B) :
Theorem 3. For 6>1/p we have A} =Bj (by equivalent norms).
Proof Obviously is fEA“ then fEB" and IIfHBe _\||f||A9 .'Let now

feB? , and let 6>1. Then it is well-known that f is absolute contmuous and
the norm

11z, +( Of (M op(f'5 ), )"—)“q k>0,

is equivalent to || - ||ze

D
For f absolutely gontinuous the following inequality holds:
w(f; t)L =c(R)tor(f; t)Lp (K. Ivanov, for the case k=2 see [13]).

Consequently
(T (0 f )yl T (-0 ona(f'5 B Y40,
(V] o g

feAp, and IlflIAo »_CHfHBo

In the case when 1/p<6<1 we must use fraction derivatives. The proof
is the same, if we use the following inequality of K. Ivanov [18]:
If a>1/p and f has a fraction derivative f(® of order a, then

W[ 8)r,=c(a, p)@r—a( fP; 8)L,.

For 6<1/p the spaces A are not equal to the Besov spaces (see the

example in the above-mentioned paper of K. Ivanov).
Let us mention at the end that the spaces qu are obviously Banach

spaces and that the usual imbedding theorems are valid for them.
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