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HENSEL MODULES

IVAN PRODANOV

In [8] and [9] I noticed that the study of minimal compact representations of finitely
generated free modules, over Dedekind domain R in which each non-trivial ideal is of finite
index, involves p-adic technique. A kind of compact modules appeared episodically in [9].
They coincide with p-adic completions, if the latter are compact, i. e. each non-trivial ideal of
R is of finite index, and otherwise these modules are something distinct. There are reasons
to call them Hensel modules. -

i It is well-known that the p-adic completions Rp of a given ring R play an important
role in the study of R. This is especially true if R, are compact. It turns out that when the
compactness of R, does not take place, sometimes the role of R, could be performed by
Hensel modules. ﬁere I consider only one application of that type, but I hope the number of
the examples could be enlarged. In this way we find an extension of p-adic methods.

In Section 1 the definition and general properties of Hensel modules are presented. Atten-
tion is directed mainly to the cases of Noetherian and Dedekind domains.

Section 2 contains a study of Hensel modules of the field of fractions Q of the ring R con-
sidered as R-modules. There are useful connections between them and the maximal Hensel
modules of R. The main results concern Dedekind domains.

Section 3 contains a description of minimal compact representations of torsion-free mo-
dules over a Dedekind domain, by means of Hensel modules.

In Section 4 the results of Section 3 are specialized when natural additional conditions
are fulfilled.
~ Section 5 is devoted to.a topological characterization of Hensel modules in terms of mi-
nimal compact representations.

) In general, the notations and terminology follow {9].

1. Definition and General Properties of Hensel Modules. Here we shall
study Hensel modules. By definition, they are naturally connected with minim-
al compact representations of modules. The main tool used to establish their
properties is Pontryagin’s duality. It turns out that each Hensel module is
associated with a maximal ideal p of the ring R. The set of the Hensel mo-
dules associated with p has minimal and maximal elements. If the ring R is
Noetherian, all they are topological modules over the p-adic completion R,.
In case R is aDedekind domain, Hensel modules have rather special properties.

1.LA. Definition. Let R be a commutative ring (with unit) endowed
with the discrete topology. A Hensel R-module is a compact topological R-
module = such that there exists a closed submodule Z,F+Z of E with McE,
for ea;_h proper closed submodule M of Z. Z, is called the maximal submo-
dule of =.

The following theorem shows that Hensel modules may be useful when
minimal compact representations are concerned (see [9, Corollary 7, p. 519]).

1.1. Theorem. Let R be a commutative ring endowed with the dis-
crete topology. Then every non-zero compact R-module contains a Hensel
R-module as a topological submodule.
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24 I. Prodanov

Proof. Let C be a non-zero compact R-module. Denote by x: C—T
an arbitrary non-zero continuous character of the compact group C. Let U be
a neighbourhood of the zero element of T which does not contain non-zero
subgroups of T. Denote by M the set of all closed submodules M of C with
x(M)NT U+ @. By compactness arguments, Zorn's lemma implies that there
are minimal elements = of M. Clearly =Z=0. Let M be a closed submodule
of = with M+4+Z. Since = is minimal, y(M)c U, and by the choice of U, we
have y(M)=0. Now it is clear that, if M, is the additive subgroup of = gene-
rated by the union of all closed submodules M of = with M=-Z, then x(M0)=-:0.
On the other hand, M, is a submodule of Z. Let Z,=M,. Then Z, is a closed
submodule of Z, Z, contains all closed submodules M of Z with M=-Z, and

U E) = 1(Mo) = (M) = {0} = U.

Hence Z,-+Z, and the theorem is proved..

1.2. Corollary. let R be a commutative ring endowed with the dis-
crete topology, and X be a topological R-module. Then an injective compact
representation r: X — C of X is minimal, iff r(X) contains non-zero elements
of each Hensel submodule of C.

I.B. Pontryagin's duality. There is a trivial extension of Pontrya-
gin's duality for modules over a given commutative topological ring R. Let 2
be one of the categories of discrete or compact topological R-modules, and &
be the other of them. For arbitrary object X of 2, consider the topological
group X (discrete or compact), and denote by X* the conjugate (compact or
discrete) group of X in the sense of Pontryagin’s duality for groups (see [1]).
Endow X* with the multiplication RX X* — X* defined by

(X)) = x(sx)

for arbitrary se¢R, x€ X* and x¢ X. It is trivial that X* becomes a topological
R-module, and X*¢&. Moreover, X** is naturally isomorphic with X.If4: X—V
is a morphism in 92 (continuous module homomorphism), define the morph-
ism A%: Y*— X* in &, by

(R* (X x%) = x(h(x))

for arbitrary x € Y* and x¢X. It is again trivial that A* is a morphism in &,
and A** is naturally isomorphic with 2. We shall use in the sequel the above
extension of Pontryagin’s duality without references.

1.C. Associated maximal ideal. Let R be a commutative ring.
Clearly, a compact R-module = is a Hensel R-module, iff the conjugate module
=* has a minimal non-zero submodule. The latter coincides with

i ={x€=*: x| Z,=0}.
We shall call the ideal
(L.1) p={s€R: SEZ})={s¢R; sZ{ =0}

associated with =.
1.3. Proposition. Let R be a commutative ring, and = be a Hensel
R-module. Then the associated ideal (1.1) is maximal.
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Proof. Let s&p, and x be an element of ="\ {0} with sx30. Since
=i is minimal, there exists £¢ R with £sx=x. Therefore, 1 —£s¢ p, and so pis
maximal. _ ) i

I.D. Minimal Hensel modules. Let p be a maximal ideal in Ry
and Z be a Hensel R-module associated with p. We shall call Z minimal, if Z
is an epimorphic continuous image of every Hensel module associated with p.

14 Proposition. Lét p be a maximal ideal in R. Then (R/p)* is a
minimal Hensel module associated with p. It £ is a Hensel module associat-
ed with p, each continuous epimorphism h: (R/py* — Z is an isomorphism.

The proof is straightforward. ~—

15 Corollary. Let p be a maximal ideal in R. Then the minimal
Hensel modules associated with p are topologically isomorphic.

., LE. Maximal Hensel modules. Eckmann and Schopf [4]
psoved that for every R-module M there exists an injective R-module /, and
essential embedding M — /, i. e,, each non-zero submodule of / contains non-
zero elements of M. / is called injective hull of M. :

Let p be a maximal ideal in R. Denote by /,, the injective hull of the
R-module R/p. f £ is a Hensel module associated with p, we shall call
maximal, if every Hensel module associated with p is an epimorphic continuous
mage of =. T

16. Proposition. Let p be a maximal ideal in R. Then I; is'a ma-
ximal Hensel module associated with p. If = is a Hensel module associated
with p, each continuous epimorphism h: = — I, is an isomorphism.

Proof. Let M be a non-zero submodule of /, Since the embedding
R/p — I, is essential, we have R/pN M%{0}. On the other hand, each non-
zero submodule of R/p coincides with R/p. Hence R/p=M. Therefore I, has
minimal non-zero submodule, and so /] is a Hensel R-module. It is straigl:tfor-
ward that the associated ideal of /) is p. '

Let now £ be a Hensel module associated with p. Then the submodule
E{ of E* is isomorphic with R/p. Since 1, is injective, there exists a _homo-
morphism A: E* — [, such that k| Zi is a monomorphism. We prove that % isalso
monomorphism. Indeed Ker/4=={0} implies Ker 2DZ/, and that is a contra-
diction. By Pontryagin’s duality, the conjugate homomorphism A*: I;— Z is an
epimorphism. Therefore, /7 is a maximal Hensel module associated with p.

Let £ be a Hensel module associated with p, and £#: E— 1/, be a conti-
nuous epimorphism. Then A*: /,— E* is a monomorphism. Since /, is inject-
ive, there is a homomorphism @: E* — /, with

(L.2) o(h*(x))=x

for each x¢l,, We show that £* is an epimorphism. Let yeE'\h*(’l,). Then
y—h¥e(¥)#0, and : _

o(y—h*(e( ¥))) =o( y)— (2 (#( 3))) =0.

Therefore, Ker {0}, and hence Ker@>Zi. But =i <4*(/,) in contradiction
with (1,2). In this way, we have proved that 2* is isomorphism, Hence # is
also isomorphism, which proves the proposition. !
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1.7. Corollary. Let p be a maximal ideal in R. Then the maximal
Hensel modules associated with p are topobogically isomorphic.

It follows from Corollary 1./ that up to topological isomorphism, Hensel
R-modules constitute a set (not a class). This and Corollary 1.2 give a prin-
cipal simplification of study of minimal compact representations of R-modules.
. 1.F. Coincidence of minimal and maximal Hensel modu-
les. Here we consider conditions under which Hensel modules coincide.

. 18. Proposition. Let p be a maximal ideal in R. Then the Hensel
modules associated with p are topologically isomorphic, iff for each s¢p
we’ have s¢sp.

Proof. Suppose first that the Hensel modules associated with p are
isomorphic. Then the same is true for (R/p)* and I"‘ and so R/p and
1, are isomorphic. Hence the R-module R/p is injective. Assume now that there
exlsts s¢p with s€sp. Then there exists a maximal among the ideals @ in R
with s€a and sp—a. Consider the R-module Rja. Since a is maximal, each
submodule of R/a contains the submodule (s) generated by s. On the other
hand, ps=0 in R/a, and hence (s)=R/p. At the same time R/p is an injective
module, and there exists a homomorphism %: R/a — (s) such that #4/(s) is the
identity of (s). Since (s) is the minimal non-zero submodule of R/a, £ is monic.
Therefore £(1)==0, and so A(1)=s,s=~4A(s,s). Now it follows 1—s,s€¢a, which
requires

s=8(1—s,8)+s,5%¢a,
and that is a contraduction. This proves the necessity.
~ Now for each s¢p let us have s¢sp. We prove that R/p=1, Otherwise
there exists x¢/,\ R/p. Let

a,={s¢R: sx=0}.

Clearly a, is ideal in R. Lety(R/p\{O} Then there is S,€R with sox =y
For each séa we have sy=s,sx=0. Therefore, a,cp. At the same time
sp€a,. We shall prove that s,¢p. Otherwise there would exist y, € R/p with
Soyy=y. Then sy(x—y,)=0, and hence s, €a,_y. But x—y,=0 implies a, ,,cp,
which is a contradiction, since s,&p. Therefore, x=y, which is impossible,
since x&R/p. Hence s,€p. At the same time ps,x=py=0, which requires
pso=a,. In this way we see that s,€ps,, and the proposmon is proved.

1.9. Corollary. If p is a maximal ideal in R such that the Hensel
modules associated with p are isomorphic, and 1+ p does not contain zero
divisors, then R is a field.

1.10. Corollary. Let R be a commutative ring. The Hensel R-modul-
es are topologically isomorphic, iff R is a field.

1.G. Extension of scalars. It turns out that, if R is a Noetherian

ring, Hensel modules associated with a given maximal ideal p have a natural
structure of R,-module. Here R, is the p-adic completion of R..
. 1.11 Theorem. Let R be a commutative Noetherian ring,'p be a ma-
ximal ideal in R, and = be a Hensel R-module associated with p. If
i:R—R ts the canonical mappmg, and RX E — E is the multiplication with
scalars in Z, there exists unique contmuous multiplication

(1.3) R,XE =
such that the dtagram
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(14) g |

~

f \

RpX =

is commutative.
Proof. Consider the discrete module Z*. By Pontryagin’s duality the
statement will be proved, if we show that the multiplication

(1.5) RXZ*— =%
has a unique continuous extension
(1.6) Ry 8% =+ 5",

Since #R) is dense in R,, the uniquenessof (1.6) is clear. It is straightfor-
ward that the existence will be established, if we prove that (1.5) is contmuous
when R is endowed with the p-adic topology. By Proposition 1.6, = is an
epimorphic image of Ip Hence =* is a submodule of I,,. But in [7] Matlis
has proved that the multiplication Rx/,—/, is continuous, when R is en-
dowed with the p-adic, and /, with the” discrete topology. This completes the
proof of the theorem.

1.12. Corollary. Let R be commutative Noetherian ring, and p be a ma-
ximal ideal in R with finite index. Then the maximal Hensel module asso-
ciated with p coincides with the R-module R,.

Indeed, since p is of finite index, R, is Compact Let E, be the maximal
submodule of an arbitrary Hensel module = assocnated with p and E€ENGE,.
Then R,E is a dense and compact submodule of Z, and so R, Therefore,
= is an epimorphic image of R,. On the other hand, R, is clearly Hensel
module associated with p, and the statement is proved.

Theorem 1.11 shows that if R is a Noetherian ring, then the Hensel mo-
dules associated with a given maximal ideal p coincide with the Hensel mo-
dules for R, Since {R)c. Ry =R, Hensel modules associated with p coincide
also with the Hensel modules of the localization R, of R at p.

I.H. The scalars as monomorphisms and eplmorphlsms

1.13. Proposition. Let R be a commutative ring with unit, p be a
maximal ideal in R, = be the maximal Hensel module associated with p,
and s¢R. Then the condition s&E==0 (s fulfilled for each &¢=E\{0} iff for
each x¢R with sx=0 we have x¢xp.

Proof. Suppose first that for each zero divisor x for s we have x¢xp.
Consider arbitrary element y of /,, and the ideal a={c¢R: ocy=0}. We shall
prove that x¢a. Otherwise we w0uld have xy=0. Therefore there would exist
element s, ¢ R with s,xy€R/p and s,xy=+0. Then spx&a and s,xp—a. There-
fore s,x € s,xp, in contradiction with x ¢ xp.

Hence for each zero divisor x of s we have xy=0. Now we can consider
the homomorphism %: (s)— /, defined by h(zs)=zy for arbitrary z¢R. Since
1, is injective, there exists an extension A,: R— 1/, of h. Clearly sh(l)
=hy(1.s)=y, and therefore s: /,— 1/, is epimorphic. Then the conjugate

homomorphism s: = — Z is monomorphlc
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Let now s: = —Z be monomorphism. Then s: I, — 1, is epimorphism’
and if x is a zero divisor of s, then xy=0 for each y¢/, Assume that x& xp.
Then there would exist a maximal ideal @ in R with x&a and xp—a. Thus
we can construct a monomorphism k£: R/a— 1, 1t is clear that 0=xA(1)
=h(x), in contradiction with x&a. This completes the proof.

1.14. Corollary. Let R be a Noetherian commutative ring, p be a
maximal ideal in R, = be the maximal Hensel module associated with p,
qmi? 0¢R,. Then o: =— Z is a monomorphism iff ¢ is not a zero divisor
in R, . . .
115, Proposition. Let R be a commutative ring with unit, p be a
maximal ideal in R, E be the maximal Hensel module associated with p;
and s¢R. Then s: = — Z is epimorphism iff s€p and then it is isomorphism.

Proof. Lets: Z— Z beepimorphism. Then the conjugate homomorphism
s: I,— 1, is monomorphism. Since R/p—1, we have s&p. Conversely, if s€p,
then i(s)¢ R,\ pR,. But pR, is the unique maximal ideal of R,, and hence #(s)
has an inverse in R, By Theorem 1.1, s: = -— E is isomorphism, which prov-
es the proposition. :

1L Hensel modules over Dedekind domains. In the general
case of arbitrary Noetherian ring R, the structure of /, is rather complicated,
and the detail study of Hensel modules seems hopeless. If R is a Dedekind
domain, however, the description of all Hensel R-modules is simple.

Let R be a Dedekind domain, and p be a maximal ideal in R. Let R( p~)
= Q/Rp), where Q is the field of fractions of the ring R, and R, — the loca-
lization of R at p. It is well-known that the submodules of R(p=) are R( p*)
=R/p* (k=1, 2,...), and that the embedding R/p=R(p>) is essential. On the
other [hanfzjé R(p=) isdivisible R-module, and by [3], R(p*) is injective. There
fore, 1,=R(p>).

1.16. Proposition. Let R be a Dedekind domain which is not a field
and p be a maximal ideal in R. Then the Hensel modules associated with p
are :

Ep=(R(pD), k=1, 2, ..., co.

The proof is straightforward. :
~ Clearly the minimal Hensel module associated with p is Z, and the ma-
ximal — E,=. If the ideals p or the powers k£ are different, the corresponding
Hensel modules are also different. Proposition 1.16 applies when R is not a
field. If R is a field, by Corollary 1.10, there is unique Hensel module = =R*
In this case = is a compact linear space over the discrete field R. Since Z is
the minimal Hensel module associated with the ideal 0, the unique closed li-
near subspaces of = are 0 and =. :
1.L17. Proposition. Let R be a Dedekind domain which is not a field,
and p be a maximal ideal in R. If t¢p\ p><R,, the unique closed non-zero

siubmodules of E,- are
#Epm, k=0, 1, 2,...

The prooi is straightforward.

If R is a Dedekind domain, the p-adic completion R, has no zero divisors.
By Corollary 1.14, the maximal Hensel module Z,= is torsion-free R,-modulg-
The following theorem gives the rank of Z,~ as R,-module. '
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1.18. Theorem. Let R be a Dedekind domain, and p be a maximal
ideal in R. If the ideal p is of finite index, the R,-modules R, and Zp=
are topologically isomorphic. [f the index of p is infinite, then

(17) card Epw =rank Epw = Qcard R/p,

Proof. If the ideal p is of finite index, the statement follows from Co-
rollary 1.12. ‘

Suppose p has no finite index. Then F=R/p is infinite field. According to
Kakutani [6],

card F¥=2card F |
Hence
(1.8) dim F*=2card F |

where dim F* denotes the dimension of the linear space F* over F. Let {Xa}o¢ a
be an F-basis of F* From (1.8) it follows

card A=2crd F

Since F= R/I{; is canonically isomorphic with a submodule of R(p>), the cha-
racters xa: /— T can be extended to characters x_ : R(p=)—T. In this way

we find a family {z}, , of elements of = . It mnay be proved that taca
is independent over R,. Therefore, rank = o, =2¢d ki,

Now it is clear that (1.7) will be proved, if we show that card Z .. =2 ®2,
It is straightforward that card R(p*)=card F. Since R(p=)=Ug_,R(p*), then
card R(p>)=card F. From [6] it follows that card Z,.,=2%**#, and the theo-
rem is proved. -

1.19. Proposition Let R be a Dedekind domain which has at:least
two maximal ideals, p be a maximal ideal in R, and C be a compact
R-module such that each Hensel submodule of C is p-adic. Then there exists
unique continuous multiplication R,<C— C, which extends the multiplication
RXC—C. :

Proof. Let g be a maximal ideal in R with ¢==p, and x be an element
of C* with x==0. We state that x¢gx. Otherwise there would exist a maxim-
al submodule ‘A of C* with x€A and gx<A. Then C*/A=0, and C*/A has
a minimal non-zero submodule (x). Since ¢(x)=0, (C*/A)* is a g-adic Hen-
sel submodule of C, and that is a contradiction. Therefore, x¢gx. Hence there
exists s,€qg with x=s,x.

In this way we have proved that C* is periodic. Let a,={s¢R: sx=0},
Since 1—s,€a,, g+ p implies a,d-q. Let a,=pg). .. q;" where p, q,,..., q,
are different maximal ideals in R. If n,=+0, then a,=g¢,, which is impossible.
Hence a,=p" Now it is clear that the multiplication R X C* — C* is continuous,
if R is endowed with the p-adic, and C* with the discrete topology. Now the
statement follows from Pontryagin’s duality. :

2. Q-adic Modules. In Section 3 we shall study minimal compact repre-
sentations of -torsion-free modules over Dedekind domains. Along with the
Hensel modules of R, we shall need for the purpose the Hensel module of
the field of fractions Q. We shall study it in the present section. '
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2.A. Definition. Let R be a commutative ring without zero divisors,
and Q be the field of fractions of R. By Corollary 1.10 the ring Q has
only one Hensel module ==Q* Of course = is a compact linear space over
the discrete field Q. Therefore, = is R-module without periodic elements.
We call that R-module Q-adic module of R.

From Kakutani [6] it follows that if R is infinite, the dimension of =
over Q is 2@rdR Hence = algebraically is a direct sum of 2¢rd R copies of Q.

2.B. Closed submodules of the Q-adic modules. If we con-
sider = as Q-module, the unique closed submodules of = are 0 and Z. But
as R-module = has more closed submodules.

Let p be a maximal ideal of R. Then the localization R, of R at p is a
submodule of Q. Hence we may form the module

@.1) " Riy={E€E: €| Ryy=0}.

The following algebraic lemma permits to prove an important property of the
closed submodules (2.1) of =

21. Lemma. Let R be a commutative ring without zero dtzltsors,
and M be an R-submodule of Q such that for each maximal ideal p in R

(2.2) M+Rp=Q.
Then if R is not a field, M= Q.

Proof. Let s, t¢R and ¢=-0. We show that s/£¢ M. For the purpose it
is enough to prove that s¢¢M. Assume the contrary. Then (M N R is ideal in
R, different from R. Therefore there exists a maximal ideal p in R with
tM N Rcp. Since R is not a field, it follows from (2.2)that M==0, and hence
there exists T¢ M R with t==0. Let o ¢ R\ p. By (2.2), there are 1¢ M, T ¢ R\ p,
and o' ¢R with o/tt=r+0c’/t’. Then

ot =rtit' +o'tt.
Therefore, ot ¢ (M R=p, and since t’ €p, then o¢p, which is a contradiction.

This completes the proof of Lemma 2.1.
22. Proposition. Let R be a commutative ring without zero divi-

sors, and C be a non-zero closed R-submodule of Z. [f R is not a field,

then there exists a maximal ideal p in R with C ﬂl?(p)+{0}
Proof. The proposition follows directly from Lemma 2.1 and Pontryagin’s

duality.
If R is a Dedekind ring, and p is a maximal ideal in R, the sequence

0— Rip =2+ Q22+ R(p=)—0
is exact. So the sequence

i:s: j::a

Y Ay A
O =R, ~— =" Fe—0
is also exact. Hence
(2.3) Ripy = Ker ip= j(Z,0).

Since j, is a monomorphism, Ry is a copy of the maximal Hensel module E,-
We shall call Ry, the standard copy of Z,.. in Z.
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Let us remind that the elements of the p-adic field Q, of R are of the
type o/tk, where c¢R,, t is fixed element of p\ p? and k= 6 1,2,... Since E

is a linear space over Q, it is clear that for each E€R7), and for each ceQ,
we may form the product of. So we can consider continuous homomorphlsma

h: Rip— = defined by h(é) ot. The next proposition describes the set of all

homomorphisms R, —
2.3. PI'OpOSltlon Let R be a Dedekind ring, and p be a maximaj

ideal in R. Then for each continuous homomorphism h: R(p) = there exists
o€ Qp with
(2.4) h(g)= ot

for each &ER(},,.
Proof. We consider only the non-trivial case A==0. Then % is a mono-

morphism. Indeed, if Kerz=0, then Kerk=¢*R,), since Ri)is isomorphic with
Z ... Therefore, h(Rj) would be periodic, and at the same time Z is torsion-
free. So 4 is monomorphlsm

Let H,= =h(R))- By Proposition 2.2. H, contains non-zero elements of Rz).
Clearly g= p Since = is torsion-free, it follows from Proposition 1.17 that
Rip=H, or H,=Ri;. In the second case / is of the type &: =, — Z . Con-
sider the conjugate homomorphism A*: R(p*=)— R(p=). It is not difficult to

see that there exists c¢ R, with A*(x)=o0x for each x¢R(p=). Now by Pon-
tryagin’s duality, A(§)=0o& for each &E._ - It is easy to reduce the first case
to the second, and the proposition is proved

2C. Global Hensel modules. Let R be a Dedekind ring. Then R
is a submodule of the R-module Q. So we may form the compact R-module
H=RL={¢Z: E|R=0}. We shall call / global Hensel module of R.

Since §| R =0 requires £|R=0, the standard copies of Z,~ in E are
submodules of AH. The next theorem shows that they are the coordinate mo-
dules in a natural representation of H as a product.

24. Theorem. Let R be a Dedekind ring, and p be a maximal ideal
in R. Then there exists a unique module homomorphism

(2.5) h,: H— Ris)
such that
(2.6) (R (E)Xs/t*) =E(s/t?)

for arbitrary E¢H, s¢R, tep\p? and k=0, 1, 2,... The homomorphisms
(2.5) are continuous, and their product '

(2.7) Il hy: H— 11 R}
pem pEm

where n denotes the set of all maximal ideals in R, is a topological iso-

morphism. If u, : Ripy— H is the corresponding embedding, the composition

hyit, coincides wltlz the identity ot R
Proof. Since £,(&) |R»=0 (é(H) (2.6) ensure the uniqueness. It is not
difficult to see that the homomorphisms

ry
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Myt R(p=)— QIR
defined by
(2.8) Ho(S/t+ Rip) = s/t*+ R

for arbitrary s¢R, tepp? k=0, 1, 2,..., represent Q/R as a direct sum of
R(p=). Hence the product

(2.9) I op: (Q/R)*——; n=.
pem pen

is an isomorphism. Identify = .. and Rip, by (2.3). From Pontryagin’s duality
it follows that (Q/R)* and H are also naturally isomorphic. Define #, by
h,~p,. Now (2.6) follows from (2.8). Since (2.9) is isomorphism, the same is

true for (2.7). From (2.8) it follows that %,|R(, is the identity of R. This
completes the proof of the theorem.

2D. Dense submodules of the Q-adic modules. To study the
compact representations of the type r: X— = we have to know the dense
submodules of =. They are described in the following theorem.

25. Theorem. Let R be a Dedekind ring, and X be R-submodule of =.
Then X is dense iff one of the following conditions (a) or (b) holds :

(a) there is §¢ X such that sE€H for each s¢ R\{0};

(b) there is an infinite sequence {s,}> | of non-inversible elements of R,
and a sequence {£,}> | of elements of X with

n==1
(2.10) $1S2...8, 1§, €H and s;8,...5,_,8,8,€H

for each positive integer n.

Proof. It is easy to see that X is dense in Z iff X separates the points
of Q. Being a Dedekind ring, R has a good divisibility. Using that, we prove
that X separates the points of Q iff one of the conditions (a) or (b) is fulfilled.
We omit the details.

2E. Copies of A in Z. It is trivial that the R-module Q/R endowed
with the discrete topology is a topological module over the ring R endowed
with the topology with a fundamental system of open sets — all non-zero ideals
in R. Let R be the completion of R with respect to this topology. Clearly the
multiplication RX Q/R — Q/R has an unique continuous extension RXQ/R— Q/R.
Since H=(Q/RY*, H is a topological R-module, by Pontryagin’s duality.

The embedding R — R, has an unique continuous extension e,: R — R,
which clearly is a ring homomorphism. Thus we find the continuous ring ho-
momorphism

(2.11) e= lle,: R— 1 R,
pem pim

It is a wel}-known fact that if R is a Dedekind ring, e is a topological iso-
morphism. The isomorphisms (2.7) and (2.11) are closely related, since we have

(2.12) (,,Igl,. hpX0E) = ((e,(0)N A,(E))), ¢

for each celA? and for each £¢H. We omit the proof of (2.12).
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The next proposition describes the continuous homomorphisms from H
to E=.

26. Proposition. Let R be a Dedekind ring. Then for each continuous
homomorphism h: H— Z there exist c¢R and s¢ R\{0} with

(2.13) h(E)=ot/s
or each &¢ H.

Proof. Clearly the conjugate homomorphism £*: Q — Q/R is not a mo-
nomorphism. Now Pontryagin’s duality requires that 2 is not an epimorphism.

Let p be a maximal ideal in R. Then R(!,,,("H We apply Proposition 2.3.
to #/Rip), and find o,€R,, t,ep\ p% k,=0, 1, 2,... with

(2.14) h(E,) =0, /t

for each §,€R;,
possible value.
Now we prove that £,>0 only for finite number of indices p. Since %,
is minimal, we have o z:,,eR(m\t,R(p), and so o .”;,,/t"péH if £,>0.1f &, )0
for infinitely many p in (2.14), Theorem 2.5 would 1mply that Iz(H) is dense
=. Since H is compact, A(H)=Z, and this is a contradiction.
" Denote by @ the finite set of the maximal ideals p in R with £,>0.
Direct checking shows that if s=1Il,¢xtsp, then

(2.15) h((Epp ¢ )= 5 (O,E, ) ¢ o

for each finite subset @, of n with @, >®d. Since each elenient (§,),¢x of H
admits - approximation by elements of the type (§,)p¢ o, (2.13) foflows from
(2.15). This completes the proof of the proposition.

27. Corollary. Let R bea Dedekind ring. Then the copies of H in
Z are the submodules of = of the type

f

5 We may suppose, of course, that &, in (2.14) has the smallest

T [(In tppR(P ”
where s¢R{0}, t,ep\ p? and k,=0, 1, 2,... (pen).

3. Minimal Compact Representatlons of Torsion-Free Modules over
Dedekind Rings. Hensel and Q-adic modules permit to describe minimal com-
pact representations of modules over Dedekind rings. Here we consider one
problem of that type.

3.A. General form of minimal compact representations.
The following lemma shows that the range of a minimal compact representa-
tion of a torsion-free module over Dedekind ring has a very special form.

31. Lemma. Let R be a Dedekind ring, and X be a torsion-free R-
module. Then every minimal compact representation r of X has the form

(3.1) ' ‘ re X— I 2% x=
pEx P

where a, (p€n) and a are cardinal numbers.
3 IMawcka 1. 6



34 I. Prodanov

Proof. Let r: X— C be a minimal compact representation of X. Then
r is essential (see [9, p. 519). Since X is torsion-free, it follows that C is also
torsion-free. Therefore, C* is divisible R-module. From [10] it follows that

C*= @ RPN @ Q.

Now the proposition follows from Pontryagin’s duality.
The next lemma gives conditions under which an injective compact repre-

sentation of the form (3.1) is minimal.
32. Lemma. Let R be a Dedekind ring which is not a field, X be a
torsion-free R-module, and (3.1) be an injective compact representation of X.

Then (3.1) is minimal, iff for each q¢n and for each copy éqw of Z,. in
My¢x E;&XE" we have )

(3.2) HX) N Eg==:{0}.

Proof. Il ¢« 2% XZ7 is torsion-free. Therefore, its Hensel submodules
are of the type E,~ Now the lemma follows from Corollary 1.2.

If R is a field, then (3.1) reduces to
(3.3) r: X— =4,

Therefore, from Lemma 3.1 it follows that (3.3) is the general form of the

minimal compact representations.
33. Lemma. Let R be a field, X be a linear space over R, and (3.3)

be an injective compact representation of X. Then (3.3) is minimal iff for
each copy = of Z in Z° we have
(3.4) r(X) N E=+{0}.

Proof. Clear.
3. B. Necessary and sufficient condition. Lemmas 3.2 and

3.3 require to know more about the copies of Eg (resp. E) in the right-hand
side of (3.1) (resp. 3.3)). Let

(3.5) i:

— I Eap X =@
pEm

q>° poo

be a continuous homomorphism. By composing i with the corresponding pro-
jections, we find continuous homomorphisms

(3.6) la

p By T By (PET, ,€a,),

and

@7 la:E,0 — E (ata).

?Ut if p=q. the unique homomorphism R(p=) — R(g*) is the trivial one. There-
ore, .

(3:8) la,=0, pq, a,¢a,.
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On the other hand, each homomorphism %£:R(¢>) — R(¢>) has the form A(x)
=o0x(x€R(¢g)), where o is an element of R, Therefore, for each a,€a, there
exists oqq(Rq with

(3.9) oy (E) =00, &

for each £¢Z .. By Proposition 2.3., for each a¢a there exists ca€ Q, (the g¢-
adic field for R) with

(3.10) la()=048 (E€Z )

The above analysis permits to examine minimal compact representation in
more detail.

34. Theorem. Let R be a Dedekind ring which is not a field, and X
be a torsion-free R-module. Then the minimal compact representations of X
are the injective compact representations of the form (3.1) such that for
each point

@ DERIXQN\ {0}, gen
there exists E€Z .\ {0} with
(3.11) 0, ok, t§)er(X).
Proof. Since the set
{(0, of, £):E€ZE o}

is clearly a copy of = .. in Il E:&XE“, the necessity follows from Lemma 3.2.
pEm

Conversely, each copy i,oo of £ inII E:ﬁ’oXE" is an image of Z .. by

1S3
a continuous homomorphism (3.5). The coordinate homomorphisms (3.6) and
(3.7) satisfy (3.8) — (3.10). Since i is a monomorphism, at least one of the

conditions
G = (cﬂq)ﬂq(aq:*: 0 or t= (cﬂ)ﬂ(a:%:o

holds. By assumption, there is §€Z .\ {0} with (3.11). Then i(§)=0, and
iE)€r(X)N E . Now the sufficiency follows from Lemma 3.2. This completes
the proof of Theorem 3.4.

3.5. Theorem. Let R be a field, and X be a linear space over R.
Then the minimal compact representations of X are the injective compact
representations of the form (3.3) such that for each point (Sa)ag,€ Q7 {0}
there exists ¢ =\ {0} with (6a€)aw@€ r(X).

Proof. Analogous to the proof of Theorem 3.4.

4. Minimal Compact Representation of Torsion-Free Modules in Spe-
cial Cases. There are natural conditions under which minimal compact repre-
sentations are of one of the forms
(4.1) rrX— Nz, Mca

PEM
or

(4.2) r: X — E.
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Let us note that an injective compact representation of the type (4.1) is
minimal, iff for each p¢M we have r(X)N Z,.+{0} (see [9, p. 520] and Pro-
position 1.17). By Proposition 2.2, an m)ectlve representation of the form (4.2)
is minimal iff for each maximal ideal p in R we have r(X) nRP):#{O}

4. A. Minimal compact representations of the R-module
R. I:y Theorem 3.4, minimal compact representations of the R-module R have
the form

(4.3) riR— Z,., pem

Since r is a homomorpaism, there is EEEpm with 7(s)=sE for each s¢R. The
density condition is fulfilled, iff £¢ Z 0™\ ¢ Z, . It is interesting to note that
if the ideal p is of finite index, different § define equivalent compact repre-
sentations. If the index of p is infinite, different & give equivalent .compact
representations iff they are colinear over R, By Theorem 1.18, in the last case,
there are 2¢a74 R/p classes of equivalent mminimal compact representations (4.3) of R,.

If the ring R is a field, by Theorem 3.5 the minimal compact representa-
tions of R are of the type

(44) r:R —_— =,

Since the unique closed submodules of = are 0 and Z, each injective repre-
sentation (4.4) is minimal. Clearly for each r there exists &¢=\_{0}, with r(s)
=sE for each s¢R. The density condition is always fulfilled.

4. B. Minimal compact representations of the R-mo-
dule Q. The problem is already considered, if R is a field. Let the Dedekind
ring R be not a field. It follows from Theorem 3.4 that the minimal compact
representations of Q have the form

45) . r:Q— = o
Since H is a closed submodule of =, and H= Il £ «, by Theorem 24 it fol-

pén

lows that if R has at least two maximal ideals, Q has no minimal compact
representations. If the ring R is local, an injective compact representation (4.5)
is minimal, iff 7(Q)N A+{0}. By Theorem 2.5, the last condition guaranties
also the density of r(Q) in Z. .

4. C. The case card X<2%0. This is another condition under which the
conclusion of Lemma 3.1 is simplified. ‘

4.1. Proposition. Let R be a Dedekind rmg which is not a field,

and X be a torsion-free R-module with card X <2N0 Then the minimal-com-
pact representations of X have the form (4.1) with card M<rank X, or (4 2).2
Proof. Let P be a maxnmal ideal in R. Then

(4.6) O card R, =2Mo,

Indeed; let £¢p ™\ p*. Then the series L2 s, is clearly convergent The‘;
equality £® efv=X> etv, where &,, & ¢{0, l}, is fulfilled, iff e,=¢ for each

v=0, 1, 2,... Thus (4.6) is proved. .
By Lemma 3.1, every minimal compact representation of X has the form,
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(4.7) r X —TI0Es= ap =a,

o p(n P : .
Assume that there exists a minimal compact representation of X with a form
different from (4.1) and (4.2). Since = contains a copy of each Z . (p€n), the

right-hand side ot (4.7) contains a copy of Ejm for a pen. Let c€R,. Then the set
(4.8). Ms={(E, 08) : £ € E o}

is a non-zero closed submodule of _;w By (4.6), the modules (4.8) are at

least oo, Moreover, Ms N Mg ={0}, if o40c’. Since r has to be essential, then

card X=2%0, in contradiction with card X<2%0. This completes the proof of
the proposition.

4. D. Minimal compact representations of finitely gene-
rated torsion-free modules. It turns out that in general minimal
compact representations of a finitely generated torsion-free module over De-
dekind ring also have the form (4.1) or (4.2). The following Lemma is basic
for the proof.

42. Lemma. Let X be a field, and, L be an extension of X . Suppose
there are finitely many elements &, &, ..., &, of L such that for each &¢L
there exist a,, Q,, ..., a,; by, by, ..., b, from X with

(4.9) i< % ady) £1 biE,.

Then L is a finite algebraic extension of X .

Proof. Assume the contrary. Then there exists a non-void transcendent-
al basis {x;, X5 ..., xp}={&, &s ..., E,}. Then the subfield of L generat-
ed by x,, X, ..., X, coincides with the field X '(x;, xo, ..., x,) of the ra-
tional functions of m variables and coefficients from A. At the same time L
is a finite algebraic extension of A '(x;, X, ..., X,,).

I L=X(x), X9, ..., X,), the right-hand 51de of (4.9) is a rational func-
tion of x;, xy,..., X, with bounded degree such that the upper bound does
not depend on a, and b,. Therefore, (4.9) cannot be fulfilled for each E¢L.
Thus the case L=X (x;, Xo, ..., X,,) iS" impossible.

So it only remains to consider the case L% (x;, X5, ..., X,,)- Then there
are algebraic over H(x,, Xs ..., X,) clements y;, v,,..., ¥y, of L and ration-
al functions Ry=Ru(Xyi Xa ...+ Xps Vis Vos . oy ¥,) With coefficients from &

such that for each £¢L -there cxnst elements ay, Qg ..., Ay by. by ..., b, of
X with - . :

(4.10) £ = d}’:’ @Ry | E bR,
=1 . v=1

We shall use induction with respect to £ The case £{=0 is already consi-
dered. Let £=1,2,..., and we have obtained a contradiction for ¢#—1. Let
I=1, 2,... be the degree of y, over the field

L'=f(x1,, x?, s ey x,,,; yly yz,.. .y yi—])'
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Then
—1
(4'11) R\’: z vay}; V=1,2,..., n,
r=0
where
(4'12) va=va(x]; xg, .« ey x,,,; yl’ y2' es ey yt—l)

are rational functions with coefficients from . From (4,10) and (4.11) it
follows

—1 n n
(4.13) L& X bRuw— T aRu]y} =0.
A= V= v=

If £¢L’, (4.13) is an equation with coefficients from L’. Since the degree
of y, is [, the coefficients of (4.13) have to be zero, i. e.

(4.14) E % bRa— T aRa=0, A=0,1,..., [—1.
v=I1 v=1

but
I—1 n " on
Z Z vav)‘:? z vav:#:()’
1 v=1

d=0 v=
by (4.10). Hence there exists A=0,1,2,..., [—1 with Z*_, b,R\»=+0. Now (4.14)
implies

n [

n n n -1 —1
(415) E_,= z avRvk/ z vav)-:z z akavk/ z z bkavb

v=1 v=1 v=] A=1 v=1 A=0
where a.. and b., are suitable elements of #". Thus we found for L’ a repre-
sentation (4.15). But by (4.12), the number of variables y in (4.15) are £—1,
in contradiction {o the inductive hypothesis. This completes the proof of the
lemma.

43. Proposition. Let R be a Dedekind domain which is not a field,
and for each p¢n the rank of the R-module R, beinfinite. Suppose that X is
a finitely generated torsion-free R-module. Then the minimal compact repre-
sentations of X have the form (4.1) with card M<rank X, or (4.2).

Proof. Assume the contrary. As has been remarked before in the proof
of Proposition 4.1, there exists p € n such that »(X') contains non-zero elements
of each of the modules (4.8). Since the rank of X is finite, there are elements o,, o,

..y 0, of R, and elements &, &, ..., &, of E o such that for each o¢R,

there exist &€ Z,0 \ {0}, @c€ R\ {0}, and avw€R(v=1,2,..., n) with

(4.16) Aoto= T Qyoky,
v=1

n
aa°§°= z ovavogv-
v=1

Let
(4-‘7) gl’ éi’ LR gmv m=n,
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be a maximal subsystem of {£,} ,, independent over R, Then there exist
o, € R, \ {0} and A, €R, with

(4.18) 6obv=Z Ak, v=m+1,..., n
n=1

From (4.15), (4.17) and (4.18) it follows

(4.19) 00,Asks = }: 60 Aoy + E Clyvs X MivEps
n=1 v=m+1 p=1

and
m n

(4.20) GOlsbs= X 0.00Quclu+ X  Oulys E MuvEpe
n=1 vem+1 n=1

Since 66,asts+0, there is p such that the coefficients of & in (4.19) and
(4.20) are different than zero. If, for example, pn=1, it follows from (4.19)

and (4.20)

n n
0(0y@ic+ E  AAys)=0,001c+ Z  AOvlve.
v=m+1 v=m+1

Hence

c= al.,+ }: avo)ﬁ]/[olaw-}- > avo}ﬂ!].
vem+1 Go ve=m+1 Go
Since A,y and o, do not depend on o, and a,.€k, Lemma 4.2 implies that the
rank of R, over R is finite, in contradiction to the condition of the proposi-
tion. This completes the proof.

The following two propositions due to V. Tchoukanov (unpublished) elu-
cidate the range of applications of Proposition 4.3.

44. Proposition. Let R be a Dedekind domain, and p be a maximal
ideal in R such that the rank of R, over R is one. Then R,=R.

45. Proposition. Let R be @ Dedekind ring with characteristic zero,
and p be a maximal ideal in R such that the rank of R, over R is finite.
Then R,=R.

5. A Topological Characterization of Maximal Hensel Modules over a
Dedekind Ring. Here we generalize a part of [9]. Namely we shall describe
those compact modules C over a given Dedekind ring, which induce minimal
topology on each submodule X<C. It turns out that in general the torsion-
free modules with that property coincide with the maximal Hensel modules.

5.A. The statement of the main result. Let R be a Dedekind
ring. We call a compact R-module C essential when C induces minimal pre-
compact topology on each submodule X<=C. Equivalently, C is essential if for
each submodule X< C the embedding X< X is a minimal compact represen-
tation of X. Also C is essential, iff for each submodule X< C every non-zero
closed submodule of X contains non-zero elements of X (see [9, p. 519]. The
following theorem gives a concrete description of the essential modules.

5.1. Theorem. Let R be a Dedekind ring.

Then the periodic essential R-modules are the products of the form
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(5.1) C=

pf‘x p:3><--~><;pkl,
where | and k. are positive integers, p, are non-zero maximal ideals in R,
and certain ideals py,, pr, ..., pr, may coincide iff they have finite index.
If the ring R is non-compact with respect to any of the p-adic topolo-
gies, the non-periodic essential R-modules are
(5.2) C=Z%,0, ptm
If the ring R is compact with fespect to certain p-adic topology, then
R has unique maximal ideal p, and then the non-periodic essential R-modu-
les are the products of the form

(5.3) C=Z X, XX E

where m, ky, Ry, ..., kR, are positive integers, and | is a non-negative integer.
The proof of that theorem is long, and is broken into parts in accordance
with the titles of the subsections.
5.B. The modules (5.1), (52) and (5.3) are essential. Consider
first the modules (5.1). Let p,, p,, ..., p, be different maximal ideals in R.
Since each submodule X of C is periodic, we have

i
X=11 Xy,

where X3=X1) E,."’x' Then
L,

Being a closed submodule of E,,”x’ the module X; has the form E‘,,’"x' There-
A A

fore, without loss of generality, we may assume that.:\’x=5pkk. Let M be a
. A

{
closed non-zero submodule of C. Since M= II M,, there is A with M=+ {0}.
A=1

Hence M, =s E,,”x' where sEp:k. Now it is clear that
A

XN M>oDXN Ma+{0}

and so the embedding X<— X is essential. »
It certain ideals py coincide, they will have by assumption a finite index,

and so the modules = shall be finite. Now it is clear that grouping together

k
Pk
: A : :
the multiples with equal indices p, we may establish that (5.1) are essential in
the same way.

Since each non-zero submodule of E,« is of the same type, the statement
about (5.2) will be proved if we show that for each dense submodile X of
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£, the embedding X< Z . is essential, and that is clear because the closed
non-zero submodules of E o have the form sZ o (s¢ R\ {0}). .

At the end we consider the modules (5.3). Then R=R,, and since R, is
compact, then = =R, by Corollary 1.12. Now it is clear that the closed
submodules of (5.3) are also R,-modules. Moreover, as R,-modules they are
finitely generated. Since R, is a principal ideal domain, the closed R-submodu-
les of (5.3) are of the same form. Hence the statement will be proved if we
show that for each dense submodule X of (5.3) the embedding XcC is es-
sential. Of course, X is finitely generated, and since R, is compact, X is also
compact Therefore, X=C, and the modules (5.3) are essential.

C. Lemmas. This section contains auxiliary statements used in the

proof of the uniqueneses in Theorem 5.1. :

5.2. Lemma. Let R be a Dedekind ring, C be essential R-modlde and
Xy, X, be submodules of C such that X, X,={0} and X, is closed. Then
Xi1NX,={0}, and the natural mapping h:X\XX,— X,+X, is a homeo-
morphism.

Proof. See [9, p. 534).

53. Lemma. Let R be a Dedekind ring, and p q be different maximal
ideal in R.. If C is an essent;al R-module, and k=1,2...., oo, then C cannot
contain copies of Z,. and Z . simultaneously.

Proof. Assume that EPNCC and EchC. Since E,~ and E, have not

common non-zero submodules, by compactness we have
e X ECC.
‘Let E€Z,0 and n€E , generate dense submodules of ZE,0 and Z . Consider
the submodule
E={(s& sn):s€R}

of EquEqk-

~ First we prove that (& 0)¢E. Let {s.}>_, be a sequence of elements of R
convergent to 1 in p-adic topology, and to 0 — in g-adic. Then

lim (s,&, s)=(& 0).

Therefore, (&, 0)¢ E, and hence,_pmcE Similarly, ._vk(—b: and so E is_dense
in £, 0XEk On the other hand, £ Z,={0}, and it turns out that C is not

essential. This completes the proof of the lemma.
54. Lemma. Let R be a Dedekind ring, C be a compact R-module, and
{En}y., be an infinite sequence of Hensel submodules of C. If )

(5.4) | E+Ert o+ 3N 2 =10)

for each n=1, 2 , then the module C is not essenttal
Proof. The dlrect sum

(5.5) - E=E @50 D50 - TS
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is clearly isomorphic with a submodule of C. Assume that C is essential. First
we prove that the natural embedding

(5.6) o:E— 11 E,
n=1
is continuous. Let
n,: IZ, — E, n=1,2,...,
n=1

be the n-th projection. By Lemma 5.2 with X1=2,, Xo=Z, ® - --- D E,_®D =,+,
@ --- the mappings m,¢ are continuous, and hence the same is true for .

Since II =, is compact, ¢ has a continuous extension
1

n=

0:E— 11 Z,
n—=1

Clearly EfNKerg={0}, and since the embedding ECZ is essential, then

Ker 9={0}. Therefore, ¢ is a homeomorphism. Hence without loss of gene-
rality we may assume that I =, is a submodule of C, and ¢ is the natural
embedding.

First we consider the case when infinitely many Z, coincide. We may
assume that this is true for all =,. Let A be the diagonal of II*_ Z,. It is
clear that £ A={0}, since all but a finite number of the coordinates of the
elements of £ are zero, by (5.5). This contradiction proves the statement,
if infinitely many Z, coincide.

Let now all Z, be different. Then II* =, has non-torsion element & Then
the module RE is isomorphic with R, and the induced topology is minimal and
precompact. Now by 4.A, there exists a maximal ideal p in R with RE = Z .
Therefore, 1l | £, contains the Hensel module = . If among the ideals asso-
ciated with Z, there exists one different than p, we obtain a contradiction
with Lemma 53. Hence we have only to consider the case =,=Z 4, Let

Vil — 5, n=12,...,

be the corresponding natural homomorphisms, and

ViE o — EI{ 2,
be their product. Now Ey(Z,)={0}, and this is a contradiction. This com-
pletes the proof of the lemma.

55. Lemma. Let R be a Dedekind ring, and C be an essential R-mo-
dule. Then the number of the maximal ideals in R such that C contains Hensel
modules associated with p is finite.

Proof. Assume the contrary. Then there exist a sequence {p,} , of different
maximal ideals in R and a sequence {k,}=  of positive integers with
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:.knCC.
Pp

It is not difficult to prove by induction that

Ekl+-='pk+"‘+5 B =2 g XE g, X+ XE g .
. )

Now Lemma 5.4 leads to contradiction. This completes the proof of the lemma

5.D. The uniqueness of the periodic essential modules.
Let R again be a Dedekind ring. We prove that every periodic essential R-mo-
dule C has the form (5.1). Since C has periodic elements, R is not a field.
Therefore, the maximal ideals of R are different than zero. By Lemma 5.5,
there is only a finite nimber of maximal ideals p,, py, .., p, such that C con-
tains associated modules of Hensel. Since C is periodic, C=®px C,, where C,
are the corresponding p-components. It is not difficult to see that if C,,:i:{O}
then p=p, (v=1,2,..., n). Hence for each x¢C there exists m=1,2,... with
(p, P2 p)ix=0. Therefore,

(5.7) C= u Cp s

where C,,={x€C:(p,py... p,)"x=0}. By Bair’s category theorem, there exists
m such that C,, is open in C. Therefore, the group C/C is compact and dis-
crete, and thus finite. Now (5.7) implies that (p,p,...p,)"C=0, and hence

C,={xeC:p"x=0}. In this way we have proved that the modules C, are
closed. Therefore, C=117_, C,..

Now we prove that each element & of C,, belongs to a Hensel submodule,
Epk cC,, Let (§) be the R-module generated by & Then (§)=R/p*=R(p*)

Let n be element of R(p*) with pn=0, and x,:R(p*) — T be a continuous
character with xy(n)#0. Then the R-module Ry, separates the points of R(p%)
Since the topology of R(p%) is minimal, R x, is the module of all continuous
characters of R(p")(see [9,p. 519]). On the other hand, Ry,=R(p*). Hence

®=R(pA)*=

First we cons1der the case when the ideal p, has an infinite index. De-
note by Ep the Hensel submodule of C,, with maximal 2. We prove that

Co,=Epk- Let S, be a Hensel submodule of C,,. By induction we shall show that

P[ cE pt Let l=1 Since = Z,, has not proper closed submodules, from E, d:._.,t
it follows E g, N E,x={0}. Thereiore, '”VX'P'JCC and so E% cC. Since the
index of p, is infinite, then

card E =y =card (R/ pv)* 2Clrd Rlp, )

Therefore, :,, has at least two elements & and &, independent over R/p..
Consider the R-submodule M={(s,§,, s,&e) Sy, Sa€R/py} of :2v Clearly M is
dense in E2 . . Hence the embedding M E? is essential. But from  the inde-
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pendence of &, and &, it follows that M does not contain elements of the dlagon-
al of -z different than zero, which is a contradiction. Therefore, Z, C'Pv

and the statement is proved for /=1. Now it follows that if CeC,, and va 0,
then (¢ =,

Suppose now that the assertion is true for /—1, and consider a submo-
dule ._pz of C . Then tZ, 1 =E,- 1c_5 (tep, \p’) If E€ =y, then t&e...,,k

Since k is max1mal l<k. On the other hand, ¢! (¢£)=0. Hence there exists
neE,k with tn=¢&. Therefore, {n—&)=0, and n— &e_pk Thus we see that

Ee_pk, and the statement is proved if the index of p, is infinite.

‘ Let now the mdex of p, be finite. Then Z,x=R(p%). Let My = {teC
P x=0} (k=1, .)- Clearly M, is a linear space over R/p . The dunen-
sion of M, is fmlte, by Lemma 54. Therefore, M, is a finite set. From the

exactness of the sequence 0 — M, — M, LN M,_, by induction it follows
that M, is finite for each positive integer k. But there exists £ with C,,v=Mk.

Therefore, C,,v is a finite module. Since C,,v is a module over the ring" va
which is a principal ideal domain,

! X to
C’V - klil va /p“k = )}-_I—l =gt

Thus the uniqueness of the periodic essential modules is established.

v 5. E. The uniqueness of the non-periodic essential mo-

dules when p-adic topologies are non-compact. Let R be a

Dedekind ring. We prove that, if R is non-compact with respect to p-adic

topologies, then every non-torsion essential R-module C has the form (5.2).
Let § be a non-torsion element of C. As has been remarked in the proof

of Lemma 5.4, Ré—_ »CC. Now from Lemma 5.3 if follows that each Hen-

sel submodule of C is assocxated with p.
We now prove that = E,~ has-at least two elements &, and &, mdependent

over R. If R, is non-compact, this follows from Theorem 1.18. Let R, be com-
pact. Then é’:l-R Now Proposition 4.4 implies that the rank of R, over R is at
'least two. On the other hand, = <,‘,—R by Corollary 1.12. Therefore, the rank

of E, o over R is at least two.’

Without loss of generallty we may suppose that €, does not belong to
-the: maximal submodule of = Ep We are ready to prove that C is tor-

sion-free, Assume. that .a is a periodic element of .C, and consider- the
submodule X = {518+ 5L+ 5a: 5, €R} of C. Since & and &, are in-
dependent, X is torsion-free. On the other hand, the “embedding X< X
is essential. Therefore, X is torsion-free. Let s,=1. Since RE, is a dense sub-
module of = E joosr. there exists a sequence of values of s such that s§, converges
to —§, Therefore, a¢ X whlch is a contradnctlon

Assume that ::,.,_C Consider- the submodule X= ={(5:&i s,&.,) St s,eR}

of - '-',,°° ~Clearly X is dense in “:°° and so the embedding X c =%, L has fo be
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essential. But X has not non-zero common points with the diagonal of Z;_

which is a contradiction. Therefore, the copies of Epm in C have non-trivial
intersections. Now Lemma 5.6 implies that the unique Hensel modules in C

have the form Z . Itisnot difficult to deduce from here that if =’ and =" are Hen-
sel modules in C, then Z'—Z" or Z"C Z".

We are ready to prove that among the copies of = . in C there is a
maximal one. Assume the contrary. From the elementary properties of Z . it
follows QcC. If R has at least two maximal ideals,this contradicts 4.B. Let

now R be local, and p be the unique maximal ideal of R. Then Q>Z. But

there are submodules of = such that the induced topology is not minimal. To

see that, let £--0 be element of = with sE€H for each s¢ R\ {0}. By Theo-
rem 2.5, Q& is a dense submodule of =, and the embedding Q&=Z= is not
essential, since Q&1 H={0}. The contradiction shows that there is a maximal
copy of E 0 in C. A L o

Let ceC. Then Rc:-EpmcC, and so ¢ belongs to the maximal copy .of
Epm in C. Therefore C =Epw. and the proof is completed.

5. F. The uniqueness of the non-periodic essential mo-
dules when a p-adic topology is compact. Let R be a Dedekind
ring, and p be such a maximal ideal in R that the p-adic topology in R is
compact. Then R=R, and there are not maximal ideals in R different than p.
By Corollary 1.12, R w=R,.

Now Lemma 5.4 implies that the rank of C over R is finite. Let rank C
=m, and E/:”"" be a copy of R;" in C. For arbitrary [=1,2,..., let M,={¢C:

pEc Epw}. Clearly
c= 1 M,
=1

and the Bair theorem implies that there exists /=1,2,... with

(5.8) p'C==".

P

Let 7 be the periodic submodule of C. Clearly T=T,.1f Z,={£¢ T:p*£=0},
it follows from Lemma 54 that Z, is a finite-dimensional linear space
over the field R,/pR,. Since the index of p is finite, Z, is also finite. By in-
duction, each of the sets Z; is finite. On the other hand, it follows from (5.8)
that Z,=T7, and hence T is finite.

m

Since p'C is a submodule of the free R,-module .':‘p“,, and R, is a prin-
cipal ideal domain, the module p'C is free. Let t/€,, t'€, ..., t'€, be a basis of

p'C. Clearly C is generated by &, &,..., &, and the elements of 7. Hence C
is a finitely-generated R,-module. Therefore, C has the form (5.3), and the de-
sirable uniqueness is established.

In this way the proof of Theorem 5.1 is also completed.
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