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SOME MINIMAL ABELIAN GROUPS ARE PRECOMPACT
LUCEZAR N. STOJANOV

The main result of this paper is that if X is an Abelian group, D is the maximal divis-
ible subgroup of X, T is the periodic part of ‘X and card X/(D+T)<c, then all minimal
group topologies on X are precompact. Some other results are obtained for precompactness of
minimal Abelian groups.

A Hausdorff topological group G is said to be minimal and the topology
of G is called minimal group topology, if the topology of G is a minimal (in
Zorn sence) element of the set of all Hausdorff group. topologies on G. All
compact Hausdorff groups are minimal. It is shown in [2] that in non-Abelian
case there are non-precompact minimal group topologies. For the time being
there are not known examples of non-precompact minimal Abelian groups.
Prodanov [6, 7, 8] proves that all elements of some classes of minimal
Abelian groups are precompact. Another result of that kind is proved in [9].
Here some new results are obtained for precompactness of minimal Abelian

roups.

& Prodanov [7] studied minimal group topologies by means of maximal
ones. Here we continue the use of this technique. In Section 1 we introduce
the notion relatively maximal group topology and study the connection bet-
ween relatively maximal and maximal group topologies. The results of Sec-
tion 1 are used in. Section 2 to prove that each minimal Abelian group G
such that nG is precompact for some natural n, is precompact. In section 3
we prove the main theorem. It is shown in Section 4 that all complete minim-
al group topologies on torsion-free Abelian groups without non-zero divis-
ible subgroups are compact. As an application of this theorem we prove that
UG < card G for each infinite compléte minimal Abelian group G.

The maximal (in Zorn sence) non-discrete group topologies we call maxim-
al group topologies. By P we denote the set of all primes, by Z, — the
compact group of p-adic numbers (p€P), by T' — the one dimensional torus
and c=cardT. The closure of the set A is denoted by A and by (x) is de-
noted the group generated by x. If G is an Abelian group and {H.}. is a
set of subgroups of G, by Z./, we denote the smallest subgroup of G, which
contains M, for each a. The subgroup of the periodic elements g of G such
that the period of g is not a multiple of a square of a prime, is called the
socle of G. If A and B are subsets of G, A is said to be big with respect
to B, if there is a finite subset F of G with A+ F>5B. The group G is called
bounded, if therc exists a natural » with nG=(0). If G is a topological group,
by x(G) we denote the character of G i. e. the minimum of cardp when B
runs over the fundamental systems of neighbourhoods of O in G. For each
prime p by td,(G) is denoted the smallest subgroup of G which contains all
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76 L. N. Stojanov

elements x of G such that the completion (x) of (x) is a compact Z,-module.
Some properties of the groups td,(G) are established in [10].

1. Relatively Maximal Group Topologies. Everywhere in this section G
will be an Abelian group, / will be a subgroup of G and t, — a complete
Hausdorff group topology on A. If 7 is a group topology on G, by 7 »4 we
denote the corresponding relative topology oif / and by Z/H — the corres-
ponding quotient topology on G/H.

Definition. A Hausdorff group topology 7 on G is called maximal
with respact to v, if T is a maximal (in Zorn sense) element of the set of
all Hausdorff group topologies 7' on G with T \u=1, and H¢ T,

By g, ., we denote the infimum (in the set of the group topologies on G)
of all maximal with respect to 1, group topologies on G. If H=(0), %g,., coin-
cides with the submaximal topology #; on G (see [7]), i. e. the infimum of
all maximal group topologies on G. It is shown in [7, 1.3] that ;=% where
P is the biggest precompact group topology on G.

In this section we study the connection between maximal with respect to
T, group topologies on G and maximal group topologies on G/H.

The following lemma will be used many times.

Lemma 1.1. If T and T are group topologies on G, 7'=Sup(T, T)
and T\u=T \u, then T'\p=T 4.

Proof. A typical neighbourhood of Oin ' is UNV, where 0¢U¢T and
0¢VeT. Since (UNV)NH=(UNH)N(VNH) and UNH¢ T \n=T 1, we have
(UNV)NHE¢T a4, hence T' g=T \u. The opposite inclusion is obvious. q. e. d.

Lemma 1.2. For each maximal with respect to t, group topology I
on G, I/H is a maximal group topology on G/H.

Proof. Let t be a non-discrete group topology on G/H .and J/Hc+t
We show that 7/H=r.

Denote by ¢ the canonical epimorphism G— G/H and by 7 — the group
topology on G with a fundamental system of neighbourhoods of O the set of
all o~!(W), where 0¢ We¢r. Clearly, 7\x={H}, hence by Lemma 1.1

(1 '7-;”"—‘10'

where 7' =Sup (T, 7).

We prove that //¢.J'. Suppose H¢J ', then there exist U and V with
0eUeT, 0eVeaT and UN V= H. By the definition of 7, there is a subset W
of G/H with 0¢ W¢t and U>e~(W). Hence

(2) o~ (W)n VcH.
Now we have
3) Wne(V)=(0).

Indeed, if £¢ WN @(V), there is v¢V with E=¢(v). Since E¢W, veo~ (W)
and therefore veo~(W)N V. By (2) v¢H and £=0¢(v)=0.

On the other hand, V¢Z and 7/Hcrt imply @(V)¢€t. Since Wer, by (3)
we obtain {O}¢t which is a contradiction. Hence H¢.7’. Now (1). #<=J' and
the maximality of 7 give J =7"'. Therefore, T<Z and t=T/H implies
t=J/H q. e. d.

In case 1, is compact, the opposite is also true,
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Lemma 1.3. Let 1, be a compact Hausdorff group topology on H.
It © is a group topology on G/H with Pauct, then there exists a Haus-
dorff group topology 7 on G such that T \u=1, and I |H=1. Moreover,
if ©is a maximal group topology on G/H, then I is a maximal with res-
pect to vy group topology on G.

Proof. Let ¢: G— G/H be the canonical epimorphism and 7" be the group
topology on G with a fundamental system of neighbourhoods of O the set of
all =} W), where 0¢ W¢rt. Hence T\m={H]}.

Denote by X the group of all characters y: G— T! such that y,4 is con-
tinuous with respect to t,. Since 1y, is compact, X separates the points of G.
Therefore, the smallest group topology 7y, on G such that all elements of X
are continuous with respect to 7, is Hausdorff. Moreover, T is precompact
and (Ty)\n="1,.

Consider J =Sup(7T, T,), obviously J 1is a Hausdorff group topology
on G. Since T\ncto=(Tx)n, by Lemma 1.1

4) T \H="1,.

We show that .7’/H=t. By TcZ we have 1=T/HcZ/H. To prove the
inclusion J/Hc+t let us consider a typical neighbourhood UNV of 0 in 7,
where O¢U¢T and 0¢ V¢ Ty Thereis W=G/H with 0¢ Wet and o~ }(W)=U.
We have

®) oUNV)>e(e (W)N V)=Wne(V).

Since T, /H is precompact, Ty/H=Pgn. Now Pguct implies Ty/H=1 and
by V¢Tx we obtain ¢(V)¢t. Hence WNoe(V)¢et and by (5) J/Hcr. There-
fore I /H=r.

Assume now that t is a maximal group topology on G/H. Since I /H=1
and t is non-discrete,

(6) H¢T.

It remains to prove that J is maximal with (4) and (6). Suppose I’ is a
Hausdorff group topology on G, 7 ,=1, H¢7' and 7 <J'. Then 7'/H is a
non-discrete group topology on G/H and 1=9/Hc=ZJ'/H, hence I /H=9"|H.
According to I in=1=7 , and J<=J' we obtain T =7" (see [4]). There-

fore, 7 is maximal with respect to 7, q.e.d.

We shall use the following lemma here and in Section 3.

Lemma 1.4. Let T be a maximal with respect to v, group topology
on G and T be a Hausdorff group topology on G with T\u=1, If T T,
then inf(T, ) is Hausdorff.

Proof. Denote 7'=Sup(7, ), by Lemma 1.1 J =1, Since T 7,
we have 7', 747" and therefore H¢Z'. Hence there exist U, and V,
with 0¢U,¢ T, 0¢ V€7 and

) U,N Vo< H.
Consider an element x of G with x¢U+ V for each U and V with
(8) O0cUE€T and 0¢Ved.

We show that
) x¢eUNH+VNH
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for each U and V with (8) and
(10) U—-UcU, and V—VcV,.

Since x¢U+V, there exist x, €U and x, €V such that x=x,+x,. For each
U’ and V' with O0¢U €T, 0¢cV'¢T, U'cU and V'V we have x=xy + xv’
for some xy €U’ and xy-€V’. Therefore, by (10) and (7)

Xy—xu =Xy — X, e (U—U)N(V=V)=U,N V,=H,

which implies x,€¢U’'+ H and x, ¢ V'+ H. Since H is closed with respect to T
and J we obtain x,¢H and x,¢H. Hence (9) holds. Now T\y=9 z=r1, imply
x=0. That is why inf(7, J) is Hausdorff q. e. d.

Consider the map A, defined by MJ)=7/H. By Lemmas 1.2 and 1.3, A
maps the set of all maximal with respect to 1, group topologies on G onto
the set of all maximal group topologies on G/H. We are going to show that
A is an injection.

Lemma 1.5. Let 1, be a complete minimal group topology on H, I be
a maximal with respect to t, group topology on G and T — a Hausdorff
group topology on G with T\y=1ty and T/IH=J |H. Then Tc 7.

Proof. Suppose 77t 7. Then H¢Sup (T, ), hence there exist U, and V,
with 0¢U,€T,0€V,€Z and (7). Choose U, ¢ T such that 0¢ U, and U, + U, U,.

’

By Lemma 1.4 7'=inf(7, ) is a Hausdorif group topology. Since T ,c1,
and 1, is minimal, 7], =1, Now U, N H¢T\y=1, shows that there exist sym-
metrical U and V with 0¢U¢T, 0¢ Ve€Z and

(11) U+ V)YNnHzU,, UcU, and Vc V,.
W e show that
(12) ' U+HNVcH.

Suppose x¢(U+H)NV, then x=y+h, where yeU and h¢H. We have
h=x—ye¢(U+V)NH and by (11) 2e¢U,. Now (11) and (7) imply

x=y+he(U,+U)NVcU,NV,cH

which proves (12). Since T/H=Z /H, we have U+ H¢Z. Then V¢J and (12)
give He¢Z which is a contradiction. Hence TcJZ, q. e. d.

Corollary 16. If 1, is compact, the map A, defined by MT)=T |H,
is a bijection between the set of all maximal with respect to 1, group topo-
logies on G and the set of all maximal group topologies on G/H.

The following theorem gives a description of %g,. by means of 7,
and UGk

Theorem 1.7. Let t, be a compact Hausdorff group topology on H.
Then (%G, )n="1, and UG, +,| H=UgH. Moreover, Ug,., is the unique group
topology on G with these two properties.

Proof. Without loss of generality we may assume that G/H is infinite.

Since Po =g (see [7, 1.3]), it follows from Lemma 1.3 that there is

a Hausdorff group topology 7 on G with
(13) T\u=1, and T/H=%Ugn. *
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/

Consider an arbitrary group topology 7 on G with (13). We prove that
T=%g,,. Clearly, T is Hausdorff. For each maximal with respect to 1, group
topology  on G we have T/H=Z |H and by Lemma 1.4 T—J. Hence

(14) 7C%G,go.

Since G/H is infinite, there is a maximal group topology on G/H and by
Lemma 1.3, there is a maximal with respect to 1, group topology 4 on G.
By (14) and the definition of %g¢,., we have T < Ug,., = J and therefore,
To= T]HC(OI/G.\',,)|HC9-|H=TO, which implies (%o, To)|H=TO'

On the other hand for each maximal group topology t’ on G/H, there is
a maximal with respect to 1, group topology J’ on G with J'/H=1" and
therefore %g,.,/H=Z'|H=1', because %g,., = J'. That is why %g, .,/ H=%q;n-
The opposite inclusion follows from (14) and (13). Hence %g, .,/ H=%gs. Now
(%q, <) a="10 (13) and (14) imply T =%g,., (see [4]) q. e. d.

It is shown in the following example that in general case if {To}a is a set
of Hausdorff group topologies on G and 7 =inf,7. (in the set of all group
topologies on @), then (7.)#=1, for each o does not imply 7 x=r1,.

Example 1.8. Let G be an infinite countable Abelian group and p be
a prime with pG=(0). If {7.}, is the set of all Hausdorff group topologies
on G, then T =inf,7, is not Hausdorff. Indeed, if 7 is Hausdorff, then 7 is
minimal and by [7, 2.6] 7 is compact, which is impossible. In fact T={G},
since for each non-zero elements x and y of G there is an isomorphism
y: G— G with y(x)=y. Consider a non-zero element x, of G and denote H=(x,).
Then (7a)#=1, where 1, is the discrete topology on A, and T x¥1,.

2. Minimal and Relatively Maximal Group Topologies. It is shown in
[7, 2.1] that each maximal group topology on an Abelian group G is stronger
than each minimal group topology on G. The following proposition specifies
this result.

Proposition 2.1. Let G be an Abelian group, H be a subgroup of G and
1, — a complete Hausdorff group topology on H. If T is a minimal group
topology on G with T\n=1, and T is a maximal with respect to t, group
topology on G, then T — 7.

Proof. Assume 7¢ 7, it follows from Lemma 1.4 that inf(7, ) is
Hausdorff. Since inf(7, )T and T is minimal, inf(7, 7)=T and therefore
T<Z, which is a contradiction q. e. d.

Corollary 22. Let G be a minimal Abelian group and H be a com-
pact subgroup of G. If T is the topology of G, then

(15) T/HC q/olﬂ.

Proof. The statement follows from proposition 2.1 and Theorem 1.7 q. e. d.

Corollary 23. If G is a minimal Abelian group and H is a com-
pact subgroup of G, then the socle of G/H is precompact in the quotient
topology.

Proof. Denote by T the topology of G, then (15) holds. Since the socle
of G/H is precompact in %gu (see [7, 1.3]), by (15) it is precompact in T/H
too q.e.d.

The following theorem generalizes the results of the second section of [9].

Theorem 24. Let G be a minimal Abelian group. If there is a na-
tural n such that nG is precompact in the relative topology, then G is pre-
compact.
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Proof. Without loss of generality we may assume that G is complete.
Denote by » the minimal natural such that nG is precompact. We prove that
n=1. Suppose n>1, then there exist a prime p and a natural m with n=pm.
Denote H=nG and consider the group G’ of those x¢G such that px¢H.
Obviously, G’ is a closed (and hence minimal) subgroup of G and H is a
compact subgroup of @’. Since p. G’/H=(0), corollary 2.3 shows that G'/H
is precompact. Therefore, G’ is precompact and mG<G’ implies that mG is
precompact, which is a contradiction with the choice of n. Hence G is
precompact, q. e. d.

Corollary 25. Let G be a minimal Abelian group and H be a period-
ic subgroup of G such that for each prime p the p-component of His bound-
ed. Then H is precompact in the relative topology.

Proof. By Theorem 2.4 and minimality criterion, the p-component H,
of H is precompact for each prime p.

Let U be a neighbourhood of O in G. It follows from [7,1.1 and 2.2]
that there is a natural z such that U is big with respect to nG. Let py, ps, ..., p,
be all primes which devide n. If p is another prime, then H,—nG. Since
I¢_, H, is precompact, U is big with respect to Z¥ | H, and therefore, U+U

is big with respect to Z*_, Hpv+nG:H. Hence H is precompact q. e. d.
3. The Main Theorem. The following lemma will play an important role
below.
Lemma 3.1. Let G be a complete minimal Abelian group,

(16) K= nC
and o
(17) G,= N{nG/n=1,2,..., (n, p)=1} (pe€P).
Then for each prime p the group G,/K is a topological Z,-module,
(18) G,=td,(O)+K
and there is a continuous isomorphism ¢: 1, ¢ pG,/K — G/K with
(19) ¢I@G,,/K=id.

Hence, if G, is compact for each p¢P, then G is compact.
Proof. Let p be a prime. For each neighbourhood U of 0 in G there

is a natural & with
(20) pr*G,=U+K.

Indeed, by [7, 2.9] there is a natural n such that nGoU+K. There exist k
and m with n=p*m and such that p does not devide m. Then

p*G,cp*mG cp*mG=nGoU+K
and (20) holds. It is clear now that G,/K is a topological Z,-module. If
v,:G, — G,/K is the canonical epimorphism, it follows from [7, 2.7 and 10, 1.5]
that v, (td,(G))=G,/K, hence (18) is proved.
Denote G’ =ZX,¢ »G,. Algebraically G'/K may be represented in the form
G'|K=@®p¢ pG,/K. We show that the product topology on @, ¢»r G,/K is strong-
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er than the topology of G’/K. For this purpose it is sufficient to prove that
for each neighbourhood U of O in G there exist primes p,, ps,...,p, and a
neighbourhood W of 0 in G such that

1) WG, + -+ WNG, +Gp e P\{ prs - .. P} K+ U.

Let U be a neighbourhood of O in G. There is a neighbourhood V of 0 in G
with V+ VcU. By [7, 2.9] there exists a natural m such that

(22) mG=K+ V.

Let py, py, ..., p, be all primes which divide m, for each other prime p we
have G,=mG and therefore,

(23) G, /p e P\{pr. - -+ » Paf}=mG.
Choose a neighbourhood W of 0 in G with
(24) W+W+---+WcV

———— e ————
n

Then (24), (23), (22) and V+ V< U imply (21). Hence id: @, ¢r(G,/K)—-G'/K
is continuous when @, ¢ »(G,/K) is provided with the product topology. Since
K is compact, G_’/K is complete. Therefore, there is a continuous homomorphism
¢: I, ¢ p(G,/K) — G'/K with (19). B
We show that G’=G and ¢ is an isomorphism. If x¢G then H=(x) is
compact and therefore AN G, is compact for each peP Since td, (G)=G,
(peP), [10, 1.3 and 1.6] show that X, p HNG, is dense in H, which 1mphes

(25) Y(H)= LPW(H NGy),

where y: G— G/K is the canonical epimorphism. On the other hand I, ¢ py,(H
NG,) is a compact subgroup of I, ¢ »(G,/K) and

(26) 1 y,(HNG,)= @ v, (HNG,).
perP pEP

By (19) we have
o( @P\v,,(H NG,))= @Pw, (HNG,)= X ‘V(H na

Now (25) and (26) imply w(H)=o(l,(rv, (HP G,) and therefore H=G'
+K=G'. Hence G'=G and ¢ is an epimorphism.

It remains to prove that ¢ is a monomorphism. Suppose Ker ¢==(0), then
there exists a non-zero compact subgroup L of Ker¢. The reasonings of the
proof of [5, 3.1] show that L=1I,¢pL,, where L, is a compact subgroup of
G,/K for each p¢ P. Now L,cKerg and (19) |mply L,=(0) for each p and
therefore L=(0). Contradlctlon Hence ¢ is a monomorphlsm q. e. d.

It turns out that in some cases the groups G, are compact.

Lemma 3.2. Let G be a complete minimal Abelian group, p be a prime
and G, be defined by (17). If there is a compact subgroup H of G, such

that G »/H is periodic, then G, is compact.

6 Ilaucka, 1. 6
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Proof. Let A be a compact subgroup of G, and G,/H be periodic. With-
out loss of generality we may assume that Kc Fl where K is defined by (16).
Then by Lemma 3.1. G,/H is a periodic p-group.

Suppose G, is not compact. For each natural » denote by H, the group
of those x¢G, such that p"x¢ H.If p"G,= H, for some natural n, then p*G,cH
and by 2.4 G, is compact, which is a contradiction with our assumption. Hence
for each natural n there is x,¢G, with

(27) X, €p"Gy\H,.

Consider the subgroup G’ of G, generated by x;, X5, ..., X,,... We show
that G’ is precompact. If U is a neighbourhood of O in G, there is a natural &
with (20) (see the proof of Lemma 3.1) and therefore X  (x,)cU+K. On the

other hand [7, 2.7] shows that ¥*—!(x,) is precompact, hence U is big with

v=1
respect to K+ Z*~1(xy) and U+ U is big with respect to G’. That is why G’
is precompact. Then G’ is compact and if p: G,— G,/H is the canonical epi-
morphism, u(G’) is a compact subgroup of G,/H. Since G,/H is periodic, there
is a natural n with p"w(G')=(0), i. e. p"G'=H and G’ H, Hence x,¢H,
which is a contradiction with (27) q. e. d.

Corollary 33. Let G be a complete minimal Abelian group and H
be a compact subgroup of G such that G/H is periodic. Then G is compact
and there exists a natural n with nGc H.

Proof. The statement follows from Lemmas 3.1 and 3.2 q. e. d.

We are going to prove the main result in the paper.

Theorem 3.4. Let X be an Abelian group, D be the maximal divis-
ible subgroup of X and T be the periodic part of X. If

(28) card X/(D+T)<c,

then all minimal group topologies on X are precompact.

Proof. Let X be provided with a minimal group topology and G be the
completion of X with respect to this topology. We have to prove that G is
compact, by Lemma 1.3 it will be done, if we show that G, (defined by (17))
is compact for each p¢P.

Let p be a prime and K be - defined by (16). Denote by p the canonical
epimorphism G, — G,/K. It follows from (28) that there is a subgroup Y of
X with

(29) card Y<c¢
and
(30) X=D+T+Y.

We show that for each subgroup L of G,/K such that L is topologically
isomorphic to Z,,

(31) LN k(Y N G,)=(0)

holds. There is an element u of L with L=(u). Let v¢G, and p(v)=u. Then
H=(v) is a compact subgroup of G, and p(H)=L. Now [10, 1.5] shows that

there exists an element /¢ td,(//) with p(k)=u. Obviously, H'= (k) is topologic-
ally isomorphic to Z, and
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(32) WH")=L.

By the minimality criterion [1] XN H’ +(0) and by (30) there exist d¢D, t€¢T

and y¢Y with O==d+¢+y¢€H'. Since T is periodic, mt=0 for some natural m.
Hence

(33) O4+=md+my¢eH'.

We have my¢Y 1 G,. Indeed, H'—H<=G, and by (33) my¢H +DcG,+D.
On the other hand D is divisible, hence DcG, and myeG Now y¢Y im-
plies my¢Y NG, By (32) we have A’ N Ker p=(0) and (33) gives p(md+ my)=0.
Now mdeDcK and (32) imply O==p(my)=pu(md+my)€L, which proves (31).

Using the idea of the proof of [5, 3.5] we establish that G,/K does not
contain copies of Z?. Assume the contrary. Then there exists a set {Ld}a with
cardinality ¢ of subgroups of G,/K such that L, is topologically isomorphic
to Z, for each @ and L. Lg=(0) for a==B. By @Bl) L.Nnu(YNG,)=(0) for
ecach’a and therefore card Y NG,=c, which is a contradiction with (29) Hence

G,/K does not contain copies of Z2.

To prove that G, is compact, by Lemma 3.2 it is sufficient to show that
there is a compact subgroup H of G, such that G,/H is periodic. If G,/K is
periodic, we set //=K. Suppose G, /K is not penodnc then there is a non-
torsion element # of G,/K. Choose an arbitrary element g of G, with p(g)=u
and denote H=(g)+K. Clearly, H is a compact subgroup of G and G,/H is

somorphic  to (G,/K) /(). 1f o is a non-torsion element of C »/K, we have
(34) @) N (2)-=(0).

Indeed, (u) and (v) are topologically isomorphic to Z, and @) N (v)=(0) im-
plies that (z)+(v) is topologically isomorphic to Z. Smce G,/K does not con-

tain copies of Z}’, (34) holds. Hence there exists a natural n with pro¢(a).

We established that (G /K)/(u) is periodic, therefore G,/H is also periodic.
Now Lemma 3.2 implies "that G, is compact and this completes the proof of
the theorem q. e. d.

The above theorem generalizes some results from [7, 8, 9]. In particular
we obtain that all minimal group topologies on periodic Abelian groups are
precompact. Using the reasonings of the proof of [3, 3.7] we are able to des-
cribe all periodic Abelian groups which admit minimal group topologies. Here
we mention only the following.

Corollary 35. If p is a prime and G is an unbounded periodic
Abelian p-group, then G does not admit minimal group topologies.

Proof. Assume that there is a minimal group topology on G and denote
by G the completion of G with respect to this topology. By Theorem 3.4
G is compact and [1] implies that the periodic part of G is a p-group.

By [3, 2.4], there exists an exact sequence

0

»F,—— G—Tn—>0,

where F, is a compact p-group and » is a non-negative integer. There is a
natural £ with p*#F,=(0), hence p*G is isomorphic to T” Therefore the period-
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ic part of T~” (as a subgroup of G) is a p-group which implies #=0. Now
we have p*G=(0). Contradiction q. e. d.

4. Minimal Group Topologies on Torsion-free Abelian Groups. This
section deals with complete minimal torsion-free Abelian groups. Let us men-
tion that by the minimality criterion [1], if G is a minimal torsion-free Abelian
group, then the completion G of G is also a minimal torsion-free Abelian
roup.
£ Proposition 4.1. If G is a complete minimal torsion-free Abelian
group, then for each natural n the homomorphism ¢: G— nG, defined by
o(x)=nx, is a topological isomorphism and nG is a closed subgroup of G.

Proof. Obviously, ¢ is a continuous isomorphism and by the minimality
of G, ¢ is a topological isomorphism. Now the completeness of G gives that
nG is a closed subgroup of G q. e. d.

Lemma 4.2. Let G be a complete minimal torsion-free Abelian group
and p be a prime with Ny, p"G=(0). Then:

(i) for each neighbourhood U of O in G there is a natural n with p"G=U ;

(ii) for each neighbourhood U of 0 in G there is a neighbourhood V
of 0 in G such that x€¢G and px¢V imply x¢U;

(ili) for each neighbourhood U of O in G there is a neighbourhood W
of 0 in G with pWcWcU;

(iv) for each natural n, if p does not divide n, then nG=G.

Proof. (i) If p"Gd U for each natural n, then the sets V+ p*G, where
V runs over the neighbourhoods of O in G and k=1, 2,..., form a funda-
mental system of neighbourhoods of O for a Hausdorff group topology on G
strictly weaker than the topology of G. Contradiction with the minimality of G.

(ii) By proposition 4.1 the homomorphism ¢: G — pG, defined by ¢(x)=px,
is a topological isomorphism and if U is a neighbourhood of 0 in G, then ¢(U)
is a neighbourhood of O in pG. Hence there is a neighbourhood V of 0 in G
with V' pG=¢(U). Suppose x¢G and px¢V, then px¢V (1 pG and therefore
pxee(U). L. e. there is u¢U with px=¢(u)=pu. Since G is torsion-free, x=u
and x¢U.

(iii) There is a neighbourhood V of 0 in G with V+ V< U. By (i) p"G=V
for some natural n. Let V' be a symmetrical open neighbourhood of 0 in G with

(35) VAV V' V,

k

where k=2X7—} p/. Denote
W=V +pV' + - 4 pr=V' +p"G.
Obviously, W is a symmetrical open neighbourhood of O in G. By (35) we have
WcV'+ - -+ V' +p" G V+ Vo U.

— ——
k

Moreover,
pW=pV' +p2V'+ .+ p"V' +p" WG pV' + - - +p= 'V +p"G W,
(iv) Let x¢G. For each natural £ there exist integers s and ¢ with sn+fp*=1.
Then x=snx+tp*xe¢nG+p*G. Hence x¢nG+p*G for each natural £ and by
(i) x¢nG=nG q. e. d.
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The following lemma is fundamental for this section.

Lemma 43. Let G be a complete minimal torsion-free Abelian group
and p be a prime with N> p"G=(0). Then G is compact.

Proof. We show that each neighbourhood of 0 in G is big with res-
pect to G.

Let U, be a neighbourhood of 0 in G. We shall establish first that U,+pG
is big with respect to G. There is a symmetrical open neighbourhood V of 0
in G such that sVc U, for s=1, 2,..., p—1. Denote

—1
U1=<,,LJl sV)—i—pG.

It follows from Proposition 4.1 and Lemina 4.2 (iv) that sV is an open neigh-
bourhood of 0 in G (s=1, 2,..., p—1), hence U, is a symmetrical open neigh-
bourhood of 0 in G and Ul_UO+pG It is easy to see that

(36) Ui+pG=U,
and
(37) nU,cU,, n=0, £1, +2

We prove that U, is big with respect to G. Denote by M a maximal (in
Zorn sense) subset of G such that for each n, if x;, x,, ..., x, are different
elements of M and ry, 7, ..., 7, are integers, then rix,+ryxy+---+r,x, €U,
implies that p devides r; for j=1, 2,..., n. The existence of M follows from
Zorn’s lemma. We show that
(38) Fy+U,=G,
where F, is the set of all sums Xf_, r;x;, where £ is a natural; x;, x5, ..., X,
are different elements of M and for each j=1, 2,..., k; r; is an integer

with |r;|<p. Let x€¢G. If x¢M, then x belongs to F,+U,. Suppose x¢M,
then the maximality of M implies that there exist different elements x;, x,,

., X, of M and integers r,r;,..., r, such that p does not divide  and
(39) rx+nx,+ -+ rx, e Uy
There exist integers m and n with
(40) mr+np=1,
By (39) and (37) mrx+mrix;+---+mrxe€¢mU,c U, and by (40)
(41) X—np+mrix,+ - +mrxp € U,

For each j=1, 2,..., k there exist integers #; and r; with | 7;|<p and mr;
=pt;j—r;, Now (36) and (41) imply x€rix,+---+rXe+U,=Fy+U, which
proves (38).

To prove that U, is big with respect to G by (38) it is enough to show
that M is finite. Assume the contrary. Then there is an infinite sequence
Xy XoyeoosXp ... of different elements of M. For each natural n denote by
L, the subgroup of G generated by X, X,i1...s Xpip ... It is easy to see
that the sets U+L,, where U runs over the neighbourhoods of O in G and
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n=1, 2,..., form a fundamental system of neighbourhoods of O for a group
topology t on G. Moreover, t is strictly weaker than the initial topology on G,
because x,¢L,\ U, and therefore U+ L,d U, for each neighbourhood U of 0
in G and each natural n.

We show that t is Hausdorff, this will be a contradiction with the mini-
mality of G. Let x be an arbitrary element of G such that

(42) x€ N{U+L,/U is a neighbourhood of O in G; n=1,2,...}.

In order to prove that x=0 we shall need some technical preparation.
Using Lemma 4.2 (ii) and (iii) we construct a sequence U;, U;, ..., U, ...
of symmetrical open neighbourhoods of 0 in G such that

(43) pU,cU, n=23,...,
and for each y¢G, pyeU, implies yeU,_,, n=2, 3,... It is easy to see that
(44) vucU,_,, n=2,3,...,
and
(45) p*tyeU, implies yeU,, n=2 3,...
For the element x, satisfying (42), we prove
(46) L.Nn(x+U)c=p"L,, n=1,2,...;5;m=1, 2,...

To prove (46) we shall use an induction with respect to n. We omit the case
n=1, because its poof is similar to the proof of the general case.

Suppose £>1 and (46) is true for n=k—1 and each natural m. Let m
be an arbitrary natural. We show that (46) holds for n=#% and m. Take an
element y of L, N(x+Ux). By (44) x+Urcx+U,—; and by the inductive
hypothesis y¢p*—'L,. Hence there exist integers £, ¢,+y ..., % (s=m) and
ueU, with

(47) V=P by X+ -+ X)) =X+ U

Since u¢U, and U, is open, there is a symmetrical neighbourhood V of O
in G such that V<U,_, and

(48) u+VcU

Since x¢€¢V + L+, (see (42)), there exists z¢L,; with 2¢ x—V. By the induct-
ive hypothesis we have

Loty N (x+Upy)=pr—'Lg+,
and therefore,
z€Lg  N(x—=V) Loy N(x+Ury)=p*—'Lgy.
Hence there exist integers £,+y,..., £, (r=s+1) such that
z=ptteXser+ oo HEX)
Now x¢ V+é implies
(49) x € V+prtoyxer)+ -+ 1)



Some Minimal Abelian Groups Are Precompact 87

and by (47) and (49)

pk—l(tmxm+ st t.rxs) =xtucu+ V+pk_‘(ts'les+l Tt trxr)‘
According to (48) we obtain

pk—l(tmxm_{" o +tsxs—t:+1xs+1_ ot -—t,x,)(u+ VCUI!
and by (45)

(50) tmxm+ "'+t.rxs'- .r+lxs+1_"'~trxreul'

Since x,,..., x, are different elements of M, the definition of M and (50)
give that p divides ¢; for j=m, m+1,...,r. Hence by (47)

y =pk_l(tmxm+ <+ LX) EpEL,
which proves (46).
Now we are able to prove that x=0. For this purpose it is enough to
show that x¢U for each neighbourhood U of O in G. Let U be an arbitrary
neighbourhood of 0 in G and V be a neighbourhood of 0 in G with V+ V< U.

Then p"G< V' for some natural n. It follows from (42) that xe VN U,+L,,
hence there is y¢L, with

(51) xeVnU,+y.

Then yeL,N(x+U,) and by (46) y¢p"L,cp*G. According to (51) and the
choice of V' we have

xeV+ycV+p'Go V+ VU

Hence x¢U for each neighbourhood U of 0 in G and x=0. In this way we
have established that t is a Hausdorff group topology on G strictly weaker
than the initial one, which is a contradiction with the minimality of G. Hence
M is finite and by (38), U, is big with respect to G. Since U,cU,+pG, we
obtain that U,+pG is big with respect to G.

We are going to prove that U+ p"G is big with respect to G for each
neighbourhood U of 0 in G and each natural n. Up to here we have proved
this for n=1 and arbitrary U. Suppose n>1 and V+p*'G is big with res-
pect to G for each neighbourhood V of 0 in G. Let U be a neighbourhood
of 0 in G and V be a neighbourhood of 0 in G with V+ V<U. Then W={x¢G
/px €V} is a neighbourhood of O in G and by the inductive hypothesis there
is a finite set F—G such that W+ p*—!'G+ F=G. Since pWc V, we have

V +p"G+pFopW+p"G+pF=p(W+p"-'G+ F)=pG
and therefore,
(52) V+V+p"G+pFoV + pG.

On the other hand V+pG is big with respect to G, hence there is a finite
set £Ec G with

(53) V+pG+E=G.
Now V+VcU, (52) and (53) imply
(54) U+p"G+pF+E>V+V+p"G+pF+E>V+pG+E=G,
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Since F and E are finite, (54) shows that U+p"G is big with respect to G.

Let U be a neighbourhood of O in G. There exists a neighbourhood V'
of 0 in G with V4+VcU. By Lemma 4.2 (i) there is a natural » such that
p"G= V. Since V+p"G is big with respect to G and V+p"GoV+VcU, we
have that U is big with respect to G. Hence G is precompact and the com-
pleteness of G implies that G is compact q. e. d.

The following theorem is the main result in this section.

Theorem 4.4. Let G be a torsion-free Abelian group without non-
zero divisible subgroups. Then all complete minimal group topologies on G
are compact.

Proof. Since G is torsion-free, K= [ ,nG is divisible and therefore
K=(0). For each p¢P denote G,= N{nG/n=1, 2,...; (n, p)=1}.

Let G be provided with a complete minimal group topology. Then by
Proposition 4.1 nG=nG for each natural » and therefore G, is a closed (hence
minimal) subgroup of G. Moreover,

oo m
N PG, = N mG=(0)
n= m=

and by Lemma 4.3 G, is compact in the relative topology. Now Lemma 3.1
implies that G is compact q. e.d.

Corollary 5. Let G be a complete minimal torsion-free Abelian group
without non-zero compact connected subgroups. Then G is compact.

Proof. By Proposition 4.1 and [7, 29] K= _,2G is a compact sub-
group of G. On the other hand K is divisible and therefore K is connected.
Hence K=(0), which shows that G is a group without divisible subgroups. By
Theorem 4.4, G is compact q. e. d.

Let us mention that on the assumption of Theorem 4.4 (or Corollary 4.5)
G is topologically isomorphic to II,¢p»Z,» for an appropriate sequence of car-
dinals {t,},. .

Now we shall consider an application of Theorem 4.4.

Theorem 4.6. Let G be an infinite complete minimal Abelian group
Then there exists a compact subgroup H of G such that y(H)=y(G). Hence
241G < card G.

Proof. Denote by S the socle of G. By [7, 1.3, 2.2] § is precompact in
the relative topology, hence § is compacl. If x(S)=x(G), we set H/=S. Sup-
pose x(S)<x(G). Then there is a set # of open neighbourhoods of 0 in G
with card # < y(G) and

(55) SN n{UUeF}={0).

Moreover, we can assume that for each U¢Z there is V¢F with V—-VcU.
Indeed, for each U¢ # there is a sequence U, U,, ..., U,, ... of neighbour-
hoods of 0 in G with U,—U,cU and U, ,—-U,.,=U, (n=1, 2,...). The
set #, of all U, where U¢Z and n=1, 2,... has the properties of # and
if We#,, then there exists W’ ¢#, with W’ — W< W. Hence we can assume
that G’ = N{U/U¢F} is a closed subgroup of G and by (55) G’ N §=(0). There-
fore G’ is torsion-free. Except that we have

(56) wG@") =x(G).
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Indeed, if y(G')<y(G), then there is a set #’' of open neighbourhoods of O
in G with card #'<y(G) and

(57) G' N{ViVeF'}={0}.

Now (55), (57) and the definition of G imply N{UNV/U¢F, VeF'}={0}
hence by the minimality of G, y(G)=card #.card #'<yx(G) which is a con-
tradiction. Therefore (56) holds.

Consider K= Nn=nG’. By [7, 29] K is a compact subgroup of G’ If
WK)=x(C"), we set H=K and by (56) x(/7)=x(G). Suppose x(K)<x(G'). As
above we find a closed subgroup H of G’ such that AN K=(0) and yx(H)
=y(@). It is clear now that in the relative topology /7 is a complete minimal
torsion-free Abelian group without non-zero divisible subgroups. By Theorem 4.4,
H is compact. Since y(H)=x(G’), (56) implies y(H)=x(G).

For each compact Abelian group L we have 2*f) =card L. Hence 2x/)
=card H and therefore, 2%% =card H=card G q. e. d.

Since card X=<2#X) for each Hausdorff topological space X (w(X) is the
weight of X), it follows from Therem 4.6 that 2X®<card G=2% for each
infinite complete minimal Abelian group G. It is interesting to see whether
card G=2% or card G=24® for each infinite complete minimal Abelian
group G.

The author wants to thank Iv. Prodanov for the permanent stimulation of
this work.
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