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TOPOLOGICAL CHARACTERIZATIONS
OF THE TYCHONOFF CUBES /¢

ATANAS L. HAMAMDIIEV

Every Tychonoff cube /¢ may be broken into a grid by a finite systems of parallel hy-
perplanes. Thus we can get a sequence of inscribed grids which separates points of /f. Con-

versely, it was found that, if a compact space X is spanned to its essential system f:{F_s.
F44:5€8) and there exists a sequence of inscribed “grids” which separates points of X, then
X is homeomorphic to /7, where t=|S|. Here we define a “grid” by means of a finite systems
of “parallel” partitions between the sets F_g and Fg

This paper sets forth to discuss some “inner” characterizations of any
topological space, which is homeomorphic with some cube /7, where T is a
finite or infinite cardinal number. The results below are contained in the
author’s Ph. D. thesis “Cantor manifolds” Sofia University, 1980 (unpublished).

Preliminary Notions. Let S be a set and t is its power. We shall say
that the system & ={F_,, F, }ss is a 1-system in the space X if for each
s€S, F_; and F,; are closed disjoint subsets of X. The system & is called
essential in X, if for any choice of the partitions C; in X between the sets
F_, and F,, we have N{C,:s¢S}+Q@.

It is well known [, p. 67;27) that the t-system of all pairs (/Z;, [5s) of
opposite sides /~; and /s of [t is essential in /=

Let A and B be two closed and disjoint subsets of the normal space X.
The ordered system A=(L,, Ly, ..., L,) will be called a spectrum in X with
respect to the pair (A, B) if:1) L, is closed subset of X, v=1, 2,...,n
2) 1=i<j<n implies L,cIntL;; and 3) AcIntL,, BNL,=@.

Evidently such spectrum A exists in every normal space.

Further we put:

[Ly L =L \IntL, for l=i<j<n,
[Lpy Lin=L; and [L; Ly Ja=X\IntL;, for 4 j=1,2,...,n

Every spectrum A with respect to (4, B) induces a closed cover II(})
={[L,, L“+1]},:i=0, 1, 2, ooy n} Of X.

Let p=(M;, M,,. .., M,) be another spectrum in X with respect to (4, B).
We shall say that p is a refinement of A and set p<A or A>p, if {L,, L,,

o Lyc{M, M, ..., M,}. In particular n<r.

Similarly we shall say that p is a strong refinement of A and set u<<i
or > if p<A and for each i=0,1,2,...,n there exists an index k= 4k(i)
with L,cInt My,cM,=IntL,,, (here we put So=A and L,.,=X)

It is clear that the relations “<” and “<” are transitive,
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Let # ={F_,, F,J«s be a t-system in X and let put 7 ={(F_o Fyis)}ses:

We shall say that a grid % in X with respect to & is given, if for every s¢S
we have a spectrum A,=(L$, LS, ..., L) with respect to (F_;, F,;). Then we
s

put & ={A}s ¢ s.1f # ={p}scs is another grid with respect to #, we shall say that
# is a refinement (resp. a strong refinement) of & if p, <A, (resp. p<<A;) for
each s¢S. Then we put #<¥ or >.M (resp. <L or >M).

Every grid % induces a closed cover [J(£)=A{ll(A,):s¢S} of X. It is
clear that #<.% implies that the cover [J(«4#) is a refinement of the
cover [J(&).

Let us consider a sequence

©) Ly Lo Lo

of grids &, in X with respect to & for which £, >%,>-.-->2,>:-- We
shall say that this sequence becomes tinier if for every open cover # of X
there exists a number k=A%) such that the cover (%,) refines %. Similar-
ly we shall say that the sequence (2) separates points of the space X if for
every two distinct points p and ¢ of X there is a number m=m(p, q) and
two elements P and Q of (1(<¢,,) such that p¢P, ¢g€¢Q and PN Q=Q.

Now we may formulate the main result.
.y 'I‘theorem. For a compact space X the following conditions are equi-
valent :

1) X is homeomorphic to I+,

2) There exists an essential t-system F ={F_g, F.}ses in X and a se-

quence of grids with respect to F which become tinier;
3) There exists an essential t-system F ={F_,, Fi}ss in X and a se-

quence L\>Ly>- - ->F,>--- of grids &£, in X with respect to F with
the following property : for each open cover ¥ of X with|¥%|<3 there exists
an index k=k(%) such that [3(%,) is a refinement of %« ;

4) There exists an essential t-system F ={F_; Figss in X and a se-

quence of grids with respect to &, which separates points of X:
5) There exists an essential t-system F ={F_,, F,J}«s in X and a se-

quence £y, %y, ..., &L, ... of grids &, with respect to F which separates
points of X and L \>Ly>: - ->L,>- - -

The proof of the theorem will be carried out on the scheme: (1)=(2)
=(3)=(4)=(5)=(1).

To prove the first implication it is obviously sufficient to make use of
the following well-known and elementary proposition:

Lemma 1. For each open cover % of I- there exists a positive number
3 with the property : if A,cl;=1 and diam A,<38 for each s¢S, then the
set A=Tl{A,:s¢S} is contained in some element of % (here t=|S|).

The implication (2)=(3) is evident. The next (3)=(4) is proved by easy
verification that each sequence of grids, which satisfies the conditions of (3),
also satisfies the conditions of (4).

To prove the implication (4)=(5) we employ the following simple
assertion :
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Lemma 2. Let Ay Agy ..., A, ...be asequence of spectra \, in a normal
space X with respect to the pair (A, B) with M>Xy>--->A,>--- Then
there exists a sequence |, Mo, ..., W, ..., Of Spectra u, in X with respect
to (A, B) for which :

1) p>pe>- - ->p,>- - - and

2) <A, for each k=1,2,..

The simple proof of this lemma will be omitted.

For the proof of (5)=(1) some notions will serve to the purpose.

Let A=(L,, Ly, ...,L,) be a spectrum in a normal space X with respect
to the (A,B) and let #,i=0,1,2,...,l+1 be a [+2 points for which
—1=t,<t,<---<t,<t,=1. From the normalities of X it follows that there
exists a continuous function f:X—/=[—1, 1] for which f([L; L.\h)<[ts tivals
i=0,1,2,...,. Such a function will be called a function induced from A.

Let p=(M;, M,, ..,, M,) be another spectrum in X with respect to (4, B)
with p<€A and g be a function induced from p. Let —l=u,<u,<- - -<u,
<u,.,=1 be the subdivision of the segment [—1, 1] which defines g. We shall
say that g is subordinated to f and put g< f or f[>g, if g satisfies the follow-
ing condition: if k,<k,<---<k, are all indices for which L,cM, =M,

« =My, =Ly, then subdivision f;=u <utg,<- - -<up, =t divides the seg-
ment [¢; ¢;1,] into equal subsegments, i=0,1,2,...,/.

It is clear from the normalities of X that a subordinated function g to f
exists. Also if we put m=max{t;,,—#:i=0,1,2,.,.,4} and {=max{u,,—u;:
i=0,1,2,...,r} then

(3) {=mn/2

and

(4) | f(x)—g(x)|=n for each x¢X.
Let

(5) VI PR S

be a sequence of spectra A, in X with respect to (A, B) for which A,>4
> . .>)\'">. ..
It is easy to consctruct by induction a sequence

(6) by Boy ooy By oo

of mappings #,:X—[—1, 1] for which:

1) &, is induced from A,;

2) Ry <lb, n=1,2,...

Lemma 3. The sequence (6) is uniformly fundamental in X.

Proof. By virtue of the inequalities (3) and (4) we get | A, (x)—%,(x)|
<n/2"! for each x¢.X, where n=max{t;,—£:i=0,1,2,...,} and —1=¢,
<t,<---<t;<tg =1 is the subdivision of the segment [—1, 1] which corre-
sponds to the first function %#,. From this inequality we easily get

11 1
| i p()—Ri(X) | =0 Grmt 57+ -+ + i)

for each x¢ X, n=1,2,... and p=1,2,..
Now, the assertion of this lemma is clear.
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Hereby we get immediately the following :

Lemma 4. Let us put h(x)=1im,_.k,(x). Then the function h:X—[—1,1]
is correctly defined, is continuous and h(A)={—1} and k(B)={l}.

Proof of (5)=(1). Let #={F_, F,}ss be an essential t-system in X and

(7 L Lo L.

be a sequence of grids &, in X with respect to &, which separates points
of X and

@®) P

We shall construct a homeomorphism H:X— /[ with H(# ¥s)=1%, for each
s€S and hence H( X\ UZF)=I\ U/,

Set #,={A}scs. Then by virtue of (8) we have A{>Ai> - - - >AS>. . -
for each s¢S.
Let us consider a sequence

9) B Ry RSy

(as (6)) of mappings 45:X—[—1, 1] for which:

1) &5 is induced from A$;

2) kb <Ak, n=1,2,...

By virtue of Lemma 4 the transformations #,:X—[—1,1] defined by
means of the formula A (x)=lim,-e. £5(x) are mappings and A(F_,)={—1} and
h.r(F+:)C{1}‘ . . . i

Now let us consider the diagonal mapping H=s/(§Y hy: X—I. We shall prove

that A is a homeomorphism of X onto /-

First of all let us observe that H(Fxs)= I for each s¢S.

To prove that H is a mapping onto /¢ it is sufficient to use the following
elementary assertion contained in [2].

Lemma 5. If #={F_,, F.Js«s is an essential t-system in a compact
space X and ¢:X—I is a mapping with O(Fxs)=Iy, for each s¢S, then
o(X)=F.

Thus in order to complete our proof it suffices to verify that A is one-
to-one.

Let p and ¢ be two different points of X. Since the sequence (7) separat-
es points of X there exists an index % and two elements P and Q of the
cover [J(&,) for which p¢P, ¢€¢Q and PN Q= (). Setting Aj=(Lt, Lt ...,
Lk ) we get

s,m(s,k)
— k k = k k
p— QS[LS".S’ Ls','s.l,.l]li and Q_s(r]s [LS.fs’ LS./S‘*‘I]A';’

where 0=, ji<m(s, k). o o
Now we shall observe that |i;—j,|=2 at least for one index s¢S8. ‘Really,
assuming the contrary we get |i,—j;|=1 for each s¢S. - PR
Then putting - d
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FrL* it i;=j, and i;=j.<m(s,k);

S, is+1’

FrL*

'
S.IS

if ig=j, and i;=j,=m(s, k);
Co=VFrLr, it =i+l
Frit,, if i,=j+1,

we define partitions C; in X between F_; and F,, Since # is essential in
X we get C=N{C,:5€¢S}==@. On the other hand it is clear that cs:[L;,.s,
L : and C,c[Lﬁ_js, L-’:.is+1];.; (since |i;—j;|=1) and hence Cc=PN Q, which
contradicts PN Q=@. Thus we proved |is,—js |=2 at least for one s,¢S.
Now we have two cases: is,—js, =2 or j,,—is,=2. By means of symmetry we
can get the first case: i, —Jjs,=2 i. e. Js, +2=i,,. Therefore, since p¢[L* , ,

Sord. So

and g¢[L* . ,L* . .4 s, from the properties 1) and 2) of the sequ-
g

Lfr.-i; +x]As° SeiJg, Scil s,
0 R o 0
ence (9) it follows that 4, (¢)<hs(p) and hence H( p)#=H(g). Thus the Theo-
rem is proved.
To end up with we shall complete with the following remark.
For a compact space X we may weaken the condition 2) of the Theorem
as follows:
(%) There exists an essential t-system F ={F_,, F, J}ss in X with the pro-
perty: for each finite open cover # of X there exists a grid & in X

f. is+l]x

with respect to # such that the cover [(1(%) refines the cover %.

Then it is natural to ask whether the condition (%) implies that X is
homeomorphic to /=. The answer is “no”. To get convinced in this, let us con-
sider the space “Extended Long Line” (for example [3, p.71]). This space X
is constructed from the ordinal space [0, ®,] (where o, is the first uncountable
ordinal) by placing between each ordinal a and its successor a+1 a copy of
the interval (0, 1). X is then linearly ordered, and we give it the order topo-
logy. This space is evidently compact, connected and locally connected. By
putting F_,={0} and F,,={0,;} we get an essential 1-system & ={F_,, F,} in
X. There are no difficulties to verify that X satisfies the condition (). On
the other hand it is well-known [3] that X is not homeomorphic to /. By
multiplication of X on /, /2, etc. we can get other examples of higher dimen-
sion. However, let us note that the condition () implies dim X=rt, when
1< oo,

REFERENCES

ypeBuy, I Boamsn. Teopus paamepHoctn, M., 1948.

agxuusaHnoB O npolomKeHHH 0TOGPaXKeHHit B Chepbl H O CYETHBIX PA3NOHKEHHUSAX TH-
XOHOBCKHX Ky6os. Mam. c6., 84, 1971, 119—140.

teen, J. Arthur Seebach, Jr. Counterexamples in Topology. Holt, Rinehart &
Winston, Inc., 1970.

Centre for Mathematics and Mechanics Received 12. 1. 1981,
1090 Sofia P. 0. Box 373

1.B. T
2.1 X
3. L S



