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PROBABILITY DISTRIBUTIONS RELATED TO SOME
EPIDEMIC MODELS ON RANDOM GRAPHS

LJUBEN R. MUTAFCIEV

Random graphs, corresponding to random self-mappings of the finite set {1, 2,..., n},
are considered. 1t is supposed that a bacterium is placed at one of the cyclic elements of the
random graph. In this case the probability distribution of the infected area for two schemes
of infection’s spread is derived. Mare exactly, it is supposed that (i) the infection deliveres
inversely to the directions of the arcs, and (ii) the infection deliveres in two sides;to the arc-
direction and conversely. The density of the arcsine law as a limit version of the exact pro-
bability distribution in the cases (i) and (ii) is obtained as n — co.

Consider the set T, of all mappings of the finite set X,={1, 2,..., n}
into itself, which satisfy the condition: Tx#x for each 7¢T, and each x¢X,.
There are (n—1)" different mappings in T,. Each mapping 7¢T, is a digraph
G,, whose points belong to the set X, ; an oriented arc goes from x to y iff
y=Tx. Gy may consist of disjoined components and each component includes
only one cycle. We classify the components of G, corresponding to their size,
i. e. to the number of points they consist of. Let an uniform probability dis-
tribution P, on T, be given (each mapping T¢T, has probability (n—1)—").
The random mappings just described are the second type mappings studied by
Harris [1]

We shlxll consider random variables connected with two epidemic models
on the random graphs G;. These epidemic interpretations are introduced by
Gertsbakh [2],

Define T*x to be the k-th iteration of 7¢T, on x¢X,, where & is inte-
ger. In other words, T*x=T (T*'x), and T°x=x. If for somek>0, T*x=y,
y is said to be a k-th successor of x in 7. The set of all successors of x in
T is Sp(x)={x, Tx,..., T" ' x}. If for some k<0, T*x=y, y is said to be
a k-th predecessor of x in 7. The set of all k-th predecessors of x in T is
denoted by 7 (x), and Py(x)= U%__, T®¥ (x) is the set of all predecessors of
x in T,

Let one bacterium be placed at an arbitrary element x,€X,. An inverse
epidemic process (IEP) is defined by the infection being delivered from the
infected point x, to all its predecessors. The area which will be infected is
the set Pr(x,)

Imagine that the arcs connecting vertices in Gy have lost their orienta-
tion, and the arc between two arbitrary vertices x and y carries infection in two di-
rections: from x to y if x has been infected first, and conversely. In this way
is defined the two-sided epidemic process (TEP): the infection is delivered
from the point x, “backward” to all its predecessors Pr(x,), “forward” to all
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128 L. R. Mutafciev

its successors Sy(x,) and again “backward” from each x¢S;(x,) to all its
predecessors. The infected area in this case will be By (x,)=Pr(x0) U Sr(x0)
U Rz (Xo), where Rr(xo)= U . Pr(x), x€Szr(Xo)-

Denote the number of distinct elements in the set PT (x0) (Br(x0)) by | Pr{(xo) |
(1 Br(xo)1), and let v, =v,(T)=|Pr(xo)|, Va=75(T)=| By (x,)|. We shall study
the random variables v, and v, on the probability space (T,, B(T,), P,), where
B (T,) is the c-algebra of the subsets of T,,.

At the beginning we may notice as in [2] that two different points of
view are acceptable (i) the bacterium is placed always at the same pomt Xo
for each mapping T¢T, and (ii) the bacterium is randomly “thrown” on the
set of n vertices X, with each of the n different occupations being eqally
probable. It is easy to see that both approaches are equivalent. Actually, if
PO(IT) and PUH(IT) are the probabilities that randomly chosen mapping T¢T,
has a fixed property IT in the cases (i) and (ii) respectively, and N (IT) is the
number of these mappings, then obviously P (IT)=N(IT)(n—1)"". In the case

(ii), according to the formula of the total probahility,
PO (M) = Z P,{IT| the bacterium is placed at xo}

xof X n

(1) XP,{the bacterium is placed at xo}
=z N(IT) (n— 1)~ = N(IT) (2 — 1)~ = P (T)

ll
which yields the desired equivalence. Thus we can study the random variables
v, and v, only in the case (i) accepting that the bacterium is placed at the
point 1 (x,=1) for each mapping T¢€T,.
First, we shall consider the random variable o,. Its probability distribution
is known [1], and follows from easy combinatorial arguments:

) Pa{o) =j}=(’}‘ i)j/—ﬁ (n=j=1y"~/(n=1)="+, j=1,...,n
From this formula some limit expressions can be obtained. For example, if
Jj=tn, 0<t<1, and n—oco, applying Stirling’s formula, we find

P, {v,=tn}= +0(%).

1
nt2n(1—%)

For an arbitrary fixed natural number j, using also Stirling’s formula, we ob-
tain another limit version of (2):
e -1

hm P.{vi=j}=
For the probability dlstnbutnon of the random variable v, we get

3) P,.{'va=f}=( )u DT fr (= j= 1y~ a1y, j=2..

The relation (3) follows from the fact that the number of all indecomposable
mappings in the set T, j=2, 3,...,is B;=(j—1)! Z/Z2 j*/k! (the mapping
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T¢T, is called indecomposable iff it generates only one cycle). It is known
[2] that the number A;, of indecomposable mappings in T, with & cyclic ele-

ments is A,-,,,=(£ )k!j/—”—1 , J=k=2. Then, actually,

J ) J=2 Jjk
Bj=ZX A;p=0(-1D!Z 55-
k=2 £=0

The limit value of the sum /-2 j*/k| can be obtained using the normal
approximation of the Poisson’s distribution [3, Chapter 3, § 18]

xke—l— L x w2

A= o fe du.

—0

lim X
Aooprtx i

Putting in this relation A=/, and x=0, we get

j—1 sk ,—7 0
lim £ Lol [eerdu=1 .
Jmoo k=0 Vo —

Thus, taking into account that j/—'e—//(j—1)!I—0, as j—oo, we have
4) E 4 =5 €e(1+o0(l)

Now, applying (4) and Stirling’s formula in (3), it is easy to check that for
Jj=tn, 0<t<1, and n—oo, the limit relation

®) Pofy=tn)=— et , )

holds. The limit expression (5) shows that under the same assumptions
the sequence of radom variables {zy/n}> | converges weakly to beta-distributed
random variable with parameters 1 and 1/2.

Remark. The events {v,=¢n}, i=1,2, will take place in our main asym-
ptotic result too. They denote that the bacterium, placed at the point 1 will
infect f-part (0<f¢<1) of whole population X,

Remembering the epidemic mechanism, it is not difficult to show that the
relation Br(x)=P(x) holds iff x is one of the cyclic elements of the mapping
T €T, According to the equivalence obtained in (1), we can write v, (T)=1v,
for each T¢T, containing the element 1 as cyclical. Let C, be the set of
all mappings 7 ¢T, in which the element 1 is one of the cyclical points. Fur-
ther we shall obtain the conditional probability distribution of the random va-
riables w;, i=1, 2 with the condition C,. These two variables have same va-
lues with equal probabilities on this set. As a limit version of the exact distri-
bution we shall derive the density of the arcsine law. Consequently, if the
bacterium is placed at a cyclic point of the random mapping, then »/2 is the
least probable area of the population X, which will be infected (n—oo). In
order to prove our main result we need two preliminary lemmas.

Let Tao be the set of all indecomposable mappings of T,, and 7 ¢ T,o. The
first orbit of the cycle of 7 consists of those vertices which have as their
direct successors the cyclic elements. The predecessors of the elements on the

9 Ilnucka. T. 7
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first orbit constitute the second one, and so on. The following combinatorial
lemma is based on some argumenis contained in [4].

Lemma 1. |C,NTaol=(n—-1)n"2, n=2, 3,....

Proof. Let us denote by E{y """ the set of all indecomposable mappings
which have the following three properties: (i) they have 1 as a cyclical ele-
ment, (ii) they have exactly & cyclical elements, (iii) they have exactly n, ele-
ments on the [-th orbit, /=1, ..., p.

It is clear that the elements {2 3,...,n} can be partitioned into p+1
groups of k—1, n,,...,n, elements in (n—1)!/(k—1)!n,!...n,! different
ways, and there are k!/k=(k—1)! ways to arrange the cycle of % elements
(the elements of the first group and the element 1). The places of the ele-
ments on the /-th orbit can be chosen in ﬂ;'i; ways,l=1,..., p, where n,=*k
So we find the formula

__!__l_l_'- k"‘ll"’ . e n:f—l'

l E(k’,’i‘ oo np)l —
If [n—£k], stands for the collecti o n of all non-zero p-part partitions (ny, ..., n,
of n—k elements then (see [4])

E'm™. .. ongp k-1
P Inl, kny U Tnpl T (n—R)!

Using this relation, we get

n n"— —k—1
CaNTaol=E £ X |E@p-mp|=(n—1)!Z
Gl nt k=zp|,._u,,| ape = DU R

—(-D"T (n—k)-'ﬁ=(n--1)1 ["EQZ‘f_"f?_'L"__]
Z, Y Z R T A
_(n—l)ln"_2

=g ==,

The following combinatorial ldenhty is a corrolary of well-known identities of

Abelian type [5, Chapter 6.6]. It is not essential for the proof of our basic

result but it gives a possibility to write our relations in a. simpler form.
Lemma 2. For each integer n=2 the following identity

k=2 k!

> (k )k"“(k—l)(n k—1y—*=n z ? (=1

holds.
Proof. Let §,=%X7_, ( : )k"—l (k—1)(n—k—1)"—*. This sum can be re-

presented as follows:

(6) S,=SH—SB, SW= % (” )k"(n—k—l)"—",s(2)= z (" )k""“ (n—k—1)"—*,
n n n k=2 k - n R=2 k



Epidemic models on random graphs 131

For simplifying the sum S we shall use the following Cauchy’s
[5, Section 6.6.1] identity:

s (n - 5 (k.
go(k )(x+ka)*(y—ka)" *=n1 £ C0 o,

Putting here x=0, a=1, and y=n—1, we obtain
"1
@ S®=p] :_2—_0 =Dty (n—2y,

For the sum S@ we shall apply another well-known identity (also [5, Section 6.6.1]):

n—1
z ( : )(a+n—k)"""‘1 (x+kR}F=a"t [(x+a+n)"—(x+n)"].
k:
Substituting n—k=1{, x=—1, and taking the limit of both sides as a—0, we
find
8) S@=n(n—1)""'—n(n—2)""1.
Relations (6)—(8) yield Lemma 2.
Now we shall formulate the following statement.

T2heore m. If j€[2,n) is an arbitrary integer, and 0<t<1, then for
i=1,

©  Putu=jiCh=(" ) U=D @1l 7 o, o,

(10 P{vi=1tn|Cy}= +0(%),ﬂ—*00.

1
~nVH1—t)
Proof. First we shall prove that

Ay Pau=n C=(j1 ) U= i1y =)

Actually, the cyclic element 1, in which is placed the bacterium, will infect
area with size j iff the element 1 belongs to a component with size j. There

are (n:: ) different ways to choose the other j—1 elements of this compo-
nent. Lemma 1 gives the number of ways in which this component will be
constructed. This number is ( j—1)j/2. Finally, the remaining n—j vertices
can be connected in a graph Gp, T €T, in (n—j—1)*~/ different ways, which
proves relation (11). Using (11), and the identity of Lemma 2, we obtain that

(12) nP.(Co=nE P.(o=RNC)

n n—2 '
=(n—1)y" n\ pk—1(p_ b AV—k—p l(n—1)"F B—1F
(n—1) ki‘.z(k)k (k—1) (r—k—=1Y"*=n(r—1)" T “5
Dividing (11) by (12) we get (9).
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The limit version (10) can be found in some different ways. For example,

one can use Stirling’s formula and approximation’s formula for the sum
In2(n—1)¥/k! as in (4). Here we shall give another proof, based on the

properties of the probability distribution of the number of the cyclic points in
random mappings [1].

Let us consider the following combinatorial problem. In how many diffe-
rent ways will a randomly chosen vertex be cyclic element for a randomly chosen
mapping T¢T,?

The proof of (12) shows us that this number is equal to n! Z=2(n — 1)¥/k ]|,
Now we shall count in a different manner. Suppose that the vertex which we
shall choose belong to a mapping with & cyclical vertices. Harris [1] has
found that the number or all mappings from T, with & cyclical vertices is

n*=kD, (Z:i) for k=2, where D, is the nearest integer to k! e~1. So Harris’s pro-
n-1

-position shows that the sum 2';=2ka(k_l)n”—" gives also the desired num-

ber of ways. Thus we obtain the following identity:

R A WS =y VR )
(13) k§2ka(k_l)n _n'E—.o k!
But the left-hand side of (13) multiplied by'(n-l)—" gives the mathematical
expectation of the number of the cyclic points in a random mapping. The
asymptotic form of this expectation as n—oo is known [1]:

”‘1) n—k = "_7"(1-}—0(1)).

k—1

More exactly, in [1] the limit distribution of the number of the cyclic ele-
ments in a random mapping is obtained, which leads trivially to (14). Com-
bining (12) and (14), we obtain

(15) nP(C =\ T (L+0 (D).

(14) (n— 1)—"’25_'5__2 kD, (

But by virtue of (9), we have
(16) P, {vi=J1 C,}= ( ; )jf~1(j—1)(n—j—1)"—f[n P, (Col .

Now the asymptotic formula (10) can be easily verified putting j=n# in (16)
and applying Stirling’s formula and (15). So the theorem is proved.

We shall notice that beside the proof of (10) we obtain also a curious
combinatorial identity — (13).

The results (3), (5), (9), (10), and (13), were presented at the 14th Euro-
pean Meeting of Statisticians (see [6]) without proofs.

The author wishes to express his thanks to J. Jaworski for the helpful
discussion about these results.
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