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ON THE SECTIONAL CURVATURE
OF KAHLER MANIFOLDS OF INDEFINITE METRICS

OGNIAN KASSABOV, ADRIJAN BORISOV

In this paper we study some curvature properties of Kdhler manifolds of indefinite metrics.

1. Introduction. Kulkarni [5] has proved, that if a connected manifold of 1_ndef
finite metric has bounded from above or from below sectional curvature, then it 15 ¢
constant sectional curvature. Similar results for indefinite Kihlerian metrics &
found in [1]. b

Harris [4] and, independently, Dajczer and Nomizu [3] generalise [5) h%
using restrictions only on the sectional curvatures for the timelike planes (or for t ¢
spacelike planes). The purpose of this paper is to prove analogous results for Kahle
manifolds of indefinite metrics. J

Let M be a Kihler manifold of indefinite metric tensor g and complex structuré
Let vy denote the covariant differentiation with respect to the Levi-Civita conneCt“;le'
Then g(/X, JY)=g(X, Y) for X, Y¢¥(M), vJ=0 and the curvature tensor R has
properties:

1) RIX, Y, Z, U)=—R(Y, X, Z, U);

2) R(X, ¥, Z, U)+R(Y, Z, X, U)+R(Z X, Y, U)=0;

) RKX, Y, Z U)=—R(X, Y, U, 2);

4) RX, Y, Z U)=R(X, Y, Jz, JU).

A pair {x, v} of tangent vectors at a point p¢M is said to be ortonormal of 5‘.%:
nature (+, —) if g(x, ¥)=0, g(x, x)=1, g(v, y)=—1. Analogously are defined Pa“;
of signature (4, +) or (—, —). Similarly, one speaks of the signature of a 2-plan¢”
depending on the signature of the restriction of the metric on o [2]. is

We recall that the curvature of a nondegenerate 2-plane ¢ with a basis {x; 9 F
defined by

Ry, 5, x)
K(G)_ﬂl(x' BARA x)'

where
(X, Yo 2, W)=g(x, w)g(y, 2)—g&(x, 2)&Y, u).

A plane o is said to be holomorphic (resp. antiholomorphic) if 6=Jo (resp. G,LJ?
Then a 2-plane o is holomorphic (resp. antiholomorphic) if and only if it has a ba;i\
x, Jx (resp. x, y with g(x, y)=g(x, Jy)=0). We call the pair {x, y} antiholomorP .
of signature (+, —), if g(x, x)>0, g(¥, ¥)<0 and g(x, y)=g(x, Jy)=0. Similarly

can define antiholomorphic pairs of signature (4, +) or (—, —).
If o is a nondegenerate 2-plane with an orthonormal basis {x, y} we denote
K(x, y)=K(o)
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| ad in particular, if x is a unit vector, i. e. g(x, x)=1 or g(x, x)=—1 we denote
H(x)=K(x, Jx).

) The manifold M is said to be of constant holomorphic sectional curvature if for
Y point p¢ M the curvature of an arbitrary holomorphic 2-plane o in T,(M) doesn’t
fpend on 6. As in the case of definite metric this occurs when and only when the
tWrvature tensor R has the form

R= % (my + ),

Where
To(x, ¥, 2, w)=g(x, Ju)g(y, Jz)—8&(x, J2)g(y, Ju)—2g8(x, Jy)g(z, Ju).

I this case it is a global constant if M is connected.
i 2. Preliminary considerations. All the manifolds under consideration in this and
1 the following sections will be assumed to be connected.

. Proposition 1. Let M be a 2m-dimensional Kahler manifold of indefinite
Metric, m=2. If

(1) R(x, Jx, Jx, ¥)=0,

;’;"enever the pair {x, y} is antiholomorphic of signature (+, —), then M is of con-
nt holomorphic sectional curvature.

y Proof. Let p¢M and x, y be unit vectors in T,(M), such that {x, y} is an anti-
°l°m0rphic pair of signature (+, —). According to (1), for any a, |a|<1

R(x+oy, Jx+aoJy, Jx+aJy, ax+y)=0

h°ld8 good and hence using (1), we obtain

a{H(x)—K(x, y)-—-3K(x, Jy)}

+ o¥{H(y) — K(x, y) — 3K(x, Jy)} + 3+ 0)o’R(y, Jy, Jy, x)=0.
Hence we derive
t) R(y, Jy, Jy, x)=0,
9 Hx)— K%, 9)—3K(x, Jy)+aXH ) —K(x, y)—3K(x, Jy)}=0
for la|<1, a3=0 and hence (3) holds for any o, |a|=<1. Now let a=0. Then
H(x)=K(x, y)+3K(x, Jy).

Henge we find
X K(x, 9)=K(x, J9),
3) H(x)=4K(x, y).
From (3), (4), (5) it follows
© H(x)=H( ).

th If m=2 we put p=H(x). Then from (1), (2), (4), (5), (6) and the properties of
€ curvature tensor we obtain R=(p/4) (r,+mn,), which proves the assertion.

111 Let m>2. We choose a unit vector z¢ T,(M), such that span{x, y, 2} is antiholo-
Orphic. Then (6) implies H(x)=H(y)=H(2), i. e. (6) holds also if the unit vectors
»Y form an antiholomorphic pair of signature (4, +) or (—, —). Now let {u, v} be
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arbitrary unit vectors in T,(M). We choose a unit vector x in 7,(M) such that
span{x, u) and span{x, v} are antiholomorphic. Then (6) implies

H() = H(x) = H(v),

thus proving Proposition 1.
) (Rema)rk 1. Obviously, the signature of {x, ¥} in Proposition 1 can be replaced
y (= +).

Proposition 2. Let M be a 2m-dimensional Kahler manifold of indefinit
metric, m>2. If the signature of M is (—, —,..., +, +, +, +,...)and (1) kol
whenever the pair {x, y) is antikolomorphic of signature (+, +), then M is of co
stant holomorphic sectional curvature.

Proof. In a point p¢Mlet{x, y} be an arbitrary antiholomorphic pair of signatur®
(+, —). We choose a vector z in T,(M), such that {x, 2} is an antiholomorphic P2
of signature (+, +). Then for sufficiently large a the pair {x, y+az} is antiholomo®
phic of signature (+, +). Now from

R(x, Jx, Jx, y+0z)=0,

we obtain the conditions of Proposition 1. Hence Proposition 2 follows.

Remark 2. If the signature of M is (—, —, —, —, .., 4+, +, ...), the signatus€
of {x, y} in Proposition 2 can be replaced by (—, —).

Proposition 3. Let M be a 2m-dimensional "Kihler manifold of indefinit
metric, m>2. If

R(x’ ,V, y1 z):o

whenever span{x, ¥, z} is antikolomorphic and the pair {x, y} is of signature (+> -)
then M is of constant holomorphic sectional curvature.

Proof. Let e. g. the signature of M be (= ==y —eeey +y +y.l) and let
{x, y} be an arbitrary antiholomorphic pair of signature (+, —) in a point p ¢ M.
choose z in T,(M) such that span {x, ¥, 2} is antiholomorphic and g(z, 2)<0. Then we
Ean ch‘;osrlgha:#o such that the antiholomorphic pair {x+az, aJx+.z} is of signatuf®
+, —). Then

@ R(x+az, aJx+Jz, oJx+Jz, ¥)=0

and since (7) holds also if we change a by —a, we obtain
R(x, Jx, Jx, y)=0.

According to Proposit_lon 1, M is of constant holomorphic sectional curvature.

Remark 3. The signature of the pair {x, y} in Proposition 3 can be replaced by
(—, +) or by (+, +) or (—, —) in the case of an appropriate signature of M.

Remark 4. We can define in an obvious manner triples of signature (+, +» +)
(+ 4, —), etc. Then in the case of an appropriate signature of M Proposition 3 can b
formulated for antiholomorphic triples {x, y, 2} of signature (+, +, +) or (+, +, — ) etc

3. Main resuits.

Theorem 1. Let M be a Kahler manifold of indefinite metric, m=2. If for
each point p¢M there exists a constant c(p), such that for any wector x€ Tp{.M)
with g(x, x)=1 the holomorphic sectional curvature H(x) satisfies |H (x)léC(P)'
then M is of constant holomorphic sectional curvature. . .

Proof. Let p¢M and {x, y} be arbitrary orthonormal pair of signature (+, —)m
p, such that gx, ¥)=gx, Jy)=0. Then from
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| HEED) =)

for la|<1 we obtain
®) | H(x)+4aR(x, Jx, Jx, y)—2a2{K(x, ¥)+3K(x, Jy)}
+40°R(x, Jy, Jy, y)+otH(y)|=c(p)(1—a2).

Hence we obtain casily
9 | F(x)— 202 {K(x, 9)+3K(x, Jy)}+atH(y) < c(p)(1—ad.
On the other hand, from (8) it follows by continuity
M)+ 40 (v, v, Jx, 9) — 202 {K(x, 9) + 3K(x, Jy)}+46°R (x, Jy, Jy, y)+at H( y)=0
for t=+1, which implies
(1) R(x, Jx, Jx, 9)+R(x, Jy, Jy, ¥)=0.
From (8) and (10) we find
) —202 (K(x, 3) + 3K(x, )} + da(1—a®R(x, Jx, Jx, )+ @ H(¥)| = o p)(1 —a2)?
d hence and (9)

| aR(x, Jx, Jx, 9)] =4 c( p)(1 —a2).
EI(?S‘;Jti(?g 1continuity we obtain R(x, Jx, Jx, ¥)=0 and the Theorem follows from Pro-
§\l}em:ark 5. In Theorem 1 the requirement g(x, x)=1 can be changed by g(x, x)

& Theorem 2. Let M be a Kahler manifold of indefinite metric, m>2. If for
2~"’l point p¢ M there exists a constant c(p), such that for any antiholomorphic
mligmte o in T, (M) K(o)=c(p) holds, then M is of constant holomorphic sectional
Qture.
0 Proof. Let p¢ M and {x, y} be an arbitrary orthonormal pair of signature (+, —)
lod 8(x, Jy)=0. We choose a unit vector z¢7,(M) such that span{x, y, 2} is antiho-
Morphic, Then
K(span{x+ay, z)=c(p)

a1 implies
K(x, 2)+2eaR(x, 2, 2, ¥)—02K(y, 2)<(l—a2)c(p)

"lq |<<1 and
K(x, 2)+280R(x, 2, 2, y)—o*K(y, 2)=(1—a)c(p)

for io>1, where €=g(2, 2). By continuity
K(x, 2)+2eaR(x, 2, 2, y)—a?K(y, 2)=0
2;1?‘? good for a=711 and hence R(x, 2, 2, y)=0. So the theorem follows from Re-
4,
Remark 6.In Theorem 2 the requirement K(o)=<sc¢(p) can be replaced by K(c)=c(p).
emark 7. The conclusion of Theorem 2 rests true if | K(c)| < c(p) for any anti-

2?1°_morphic 2-plane o of signature (+, —). Analogously for antiholomorphic 2-planes
Signature (+, 4-) or (—~, —) in the case of an appropriate signature of M.
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