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ON TWO ANALOGIES IN THE ALMOST HERMITIAN
GEOMETRY

GROSIO STANILOV

The paper is an extension of ideas and results given by G. Stanilov, F. Tricerri and L. Vanhecke

Rei In the first part we give some analogical theorems of the classical theorem in the
imannian geoemetry of Schouten and Struik for the case of the almost Hermitian
geOmetry. In the first three theorems is used the classical notion of holomorphic sect!o-
al curvature as the first theorem in another more classical form is given in our earlier
?:DEI ['1]. Iq the second three theorems we used our notion of Kihlerian defect
I 4-dimensional holomorphical tangent subspace given in our paper [5].
leri In the second part we discuss the problem about the global constancy of the Kih-
G“an defect. Here we have theorem 9 which is a full analog of a theorem from A.
sfay and L. Vanhecke where is treated the corresponded problem for the holomorphic
Sctional curvature in the geometry of QKj-manifolds.
. ‘In the third part we give an interpretation of the well-known almost Hermitiap
Ofﬂmfolds of constant and conformal type. Namely an almost Hermitian manifolds is
constan (conformal) type iff the projections p(R)=0,i=5,6,..., 10 (p(R)=0,

=6,..., 10
W In the fourth part we consider an analogous tensor C¥R) of the classical
eyl's tensor C(R) in the almost Hermitian geometry. For their first components we
Prove theorem 13 which says that Cy(R) (resp. C;(R)) is the projection of the curva-
:tu(rree te"SOS R on the l-dimensional U(n)-invariant subspace orthogonal to the tensor
(resp. my,).
" One can say that in the paper among the results is underlined the analogy in the
Most Hermitian geometry which exists and has an important meaning between:
i) the holomorphic sectional curvature and the Kahlerian defect and
i) the Weyl’s tensor C(R) and its analogous tensor C*R).
uten and

st 1. Some analogical theorems of the classical theorem of Schout: 1
n_‘l;uik'. In [6] we find the following theorem: A Riemannian manifold of dimension
ﬂe‘a-3 is of constant sectional curvature iff it is an Einstein manifold and conformal
at. We give now to this theorem six analogical assertions in the geometry of the al-
Most Hermitian manifolds.

5 Let (M, g J) be a 2n-dimensional almost Hermitian manifold, R — the
Urvature tensor in respect to the Levi—Civita connection. The classical Ricci tensor
:ﬂd the scalar curvature we denote now by p(R) and t(R). The proper Ricci tensor
ﬁ“d the proper scalar curvature we denote by p*(R) and t*(R) [L, 3, 7]- The projec:
ons pi(R), i=1, 2, ..., 10, of R on the U(n)irreducible components of the curva-

ture tensors space are given in the following way [6]:

puR)="RIEIR) (),

16n(n+1)

P )
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PR =Tty (0+¥) {0-+3p%) (R+LiR) — - ((R) + 3*(R))g),

Po(R)=5-(I+Ly) (I+Ly) (I+Lg) R—p:(R)—pa(R):;

PR =T R (3r, ),

PAR)= 15235 30— {(p—p*) (R+LaR)— - (:(R)—*(R))g).
PARY =~ (I—L) (14 Ly) I+ LyR—p(R)—p(R);
Pi(R) =~ (I —Ly) I+ Ly)R;

Po(R)= 5=, @ (R —LaR)),
PAR) =i V(O (R—LaR)),

Pro(R)=3- (I~ L)R—p(R)—py(R).

Here:
. a) if S is a symmetric tensor of type (0,2) ¢(S) denotes the following curvature
ensor

o(S) (%, ¥, 2, w)=g(x, 2)S(y, w)+g(y, WS(x, 2)—g(x, W)S(y, 2)—g(y, 2)S(x, 1)}
b) if S is a tensor of type (0,2) and
S(Ux, Jy)=S(y, x),
y(S) denotes the following curvature tensor
V(S)(x, v, 2, u)=2g(x, Jy)S(z, Ju)+2g(z, Ju)S(x, Jy)+ g(x, J2)S(y, Ju)
+8(y, Ju)S(x, J2)—g(x, J)S(y, J2)—g(y, J2)S(x, Ju);

¢) o(g)=2m;, w(g)=2m, and m, m, are the basic curvature tensors invariant under
the action of U(n).
d) the operators L, i=1, 2, 3, are defined in the following way :

1
(LiR) (x, ¥, 2, u)=7{R(Jx, JY, 2, w)+R(y, Jz, Jx, u)+R(Jz, x, Jy, u)}
for all tensors R with the property

I~ R(x, ¥, 2, )=R(Jx, Jy, 2, u)+R(Ux, y, Jz, )+ R({Jx, ¥, 2, Ju);
(LoR) (x, , 2, u)=—;—{R(x, ¥, 2, W)+ R(Ux, Jy, 2, 1)

+R(Ux, ¥, Jz, )+ R(Jx, y, 2, Ju)}
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for all tensors with the property
@ RUx, Jy, Je, Ju)=R(x, ¥, 2, 1);
(LsR) (x, ¥, 2, u)=R(x, Jy, Jz, Ju)
for any curvature tensor R.
The holomorphic sectional curvature of direction x at a point p ¢ M in respect to

’ﬁ]_is denoted by Hy(p; x). Let x, y, Jx, Jy be an orthonormal basis for a holomor-
Phical 4-dimensional tangent subspace E* of the tangent space M,. We have the cur-

Vature K (p; E*), defined in [2] using the linear mapping
. GM —_ R X, ’ z) E M
id is given by I o g
Kips EY=R(x, Jx, x, JX)+R(x, Jy, X, Jy)+R(X, ¥, % Y)
. +R(J)C, ./_)’, jx‘, Jy)+R(Jx’ ya jx’ y)+R(.V’ jy’ y‘ ‘/y)'
M the same way using the linear mapping
26 Mp = R(jzr X, -/.V) E Mﬂ’
Ve get the proper curvature [1, 3]
Ki(p; EY=R(x, Jx, x, Jx)+2R(x, Jy, ¥, Jx)

+R(Y, Sy, ¥, Jy)+2R(x, ¥ Jx, JY).
h In our paper [5] we have defined the notion “Kahlerian defect of a 4-dimensional
Olomorphical tangent subspace E*”

Ar(p; EY)=Ki(p; E)—K(ps EY).

I .
U the Kahlerian geometry because of the identity

©) R(x, v, 2, t)=R(x, ¥, Jz Ju)
(Kahler identity) the Kahlerian defect is identical zero
Ap(p; E4=0.

Let RL: Z;LJH(R), R1J‘=Z?=4pi(R)'
i At first our main goal is to show that the function Hp is related to the
o0 R, and the function A, — to the projection Rj-. ;
We have Hp=Hy [7, 5] and Ap=Ag, [5].
1

projec-

Using the explicit formulas for the projections p(R), we can compute
R)+3t%(R
Hpyr)(x) = i‘ir)z(T-:%—)

R)+3t%(R)
iy () =g (0489 (R +-LoR) o 3) — 5708

Hau)(X)=Hp— Hpy—Hpurs
R)—*(R)
Apur(%, Yo Sx, J,v)=j'(n(),;1 n
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Bor%s 9 J%, JY) =1 {(p—p*) (R+LoR) (%, x)

+(p—p*) (R+ LsR) (y, ¥)—2

Apor)( X, Vs Jx, JY)=Ap—Bpur)—Apyr) -

Now we have the following assertions:
Theorem 1. He=Hpir) <> Ri=py(R)
AR)+3t*(R).

The condition Hp=Hy,z) means that Hy = an(nt1) is pointwise constan
by a standard way it follows R;=p(R). The assertion follows also by some
sults in [7]. ’

Theorem 2. Hy=Hpr <> Ry =py(R).

The condition Hp= Hp,r) means

(R)—1#(R) }
n ’

t. Then
e

S 1 R)+3t4(R
Hy(p' ¥)— gz (0 30%) (R+ LeR) (x, x)= —Z 25,

In [1] and [3] we have proved the following classification theorem: o
.Let M, g J) be 2n-d|meqsional almost Hermitian manifold and for every unit dr
rection x ¢M, and at every point p ¢ M the linear relation holds

8HR(p; X)+AS*(p; x)=c, (§*=(p+3p*) (R+LsR)/8,
where the functions 6, A, ¢ € FM don’t depend of x. Then
(i) 8=0< S¥p:x)=c*(p);
(i) 8=0, Mn+2)+48=0 < py(R)=0;
(iii) 80, Mn+2)+ 4040 = Hy(p; x)=c'(p),

In our case we have 8=1, A=—4/(n+2) and hence we are in the case (ii):ps(R)’o
From Hp="Hp,r) We have also H, k=0 which is equivalent to p,(R)=0.

Theorem 3. Hy=Hpr) <> R =p3(R).

The proof follows by using the expression for Hp,g)-

~ Remark 1. The Theorem 3 gives an interesting information about the Kj-surf

It is well known that every Kj-surface is a Ricci flat Kiahler manifold. In this
R=R, and py(R)=0, py(R)=0, which implies R=py(R).

Theorem 4. AR=AP¢(R)<:>RfL=p4(R)-

The condition Az=Ap(r) means that Ap=(1(R)—1* —1i intwise constan®
In [5] we have proved the following theorkém(: (R)=RNin(r—2ls pointwise e

For an almost Hermitian manifold of dimension 2n>6 the following assertion art
equivalent :

(i) The Kihlerian defect is pointwise constant

(i) pa(R)=0 and

aces
cast

(p—p*) (R+LsR)=TR=FR) o

n

Now it is easy to see that the last relation is equivalent to py(R)=0. Then the”
rem 4 follows immediately.

Theorem 5. Apg=Apr) < Rl =py(R).

Proof. We denote 6=(p—p*) (R+LsR). The condition A=A, r by usin
expression for A, and Ay, r) gives R) ondition Ag=As, by usiné

the
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R(x, ¥, X, V)+R(Ux, Jy, Jx, IN+R(x, Jy, x, Jy)
LRUx, v, Jx, V)—2R(x, ¥, Jx, Jy)—2R(x, Jy, ¥, Jx)

:—”—lj{cy(x, X)g(y, y)+o(y, yg(x, x)—2 %&-ﬂx, x)8(¥, M}

;Vhere (x, ¥, Jx, Jy)is an orthonormal basis for E*. If (x, z, Jx, J2) is an arbitrary basis
Or E* the last relation implies

R(x, z, x, 2)+R(Jx, Jz, Jx, J2)+R(x, Jz, x, J2)
+R(Ux, z, Jx, 2)—2R(x, z, Jx, J2)—2R(x, Jz, 2, JX)

— Lol gl 2)+ole 2)elx, X) =28, 2% 2)

—2g(Jx, 2)o(Jx, 2)—2 —%%;%(—@—(g(x, x)g(z, 2)—g4(x, 2)—&(x 2))}

Thep by the standard way in [5] we get R}-=py(R).

Theorem 6. Ap=Ayr) < R{ =py(R)

The proof follows by using the expression for Ayyr). )
T Remark 2. There are examples of almost Hermitian manifolds with R=p(R).
nhey are Kihler manifolds of constant holomorphic sectional curvature. But there do
ot exist almost Hermitian manifolds with R=p,(R)=0 [7]. With respect to the above
'®mark | we state here the following problem: Do there exist almost Hermitian manifolds

With curvature tensor R=py(R)?

H 2. The problem about the global constancy of the Kahlerian defect. An almost
Se{mltian manifold belongs to the class of QK manifolds iff the curvature tensor R
atisfies the condition (1) and for the complex structure J holds

(Vj_y‘l)y = —J(ij)y

The following theorem is well known [8]:
i Let (M, g, /) be 2n-dimensional connected manifold. If n=2 and the polomtl)r-
bP’C sectional curvature Hy(p; x) is the pointwise constant Hr(p), then Hp(p) 1s & £10-
al constant on the manifold. ,
th For the same class of manifolds the same theorem is also true if we put Ap on
€ place of Hj. Namely we have the following . =3
wn, Lheorem 7. Let (M, g, J) be 2n-dimensional connected QK, manifold. If 7=
d the Kahlerian defect Ap(p; EY) is the pointwise constant Ap(p), ther Aglp) is @
&lobal constant on the manifold. : i
v Proof. From the condition and using Theorem 4 it follows that ps(R)=0 is equi-
dlent to the relation
" —1t*(R
pR)—p*(R) =05 g
IS\;‘:}V from [11] it is well known that the tensor fields p(R) and p
isfy the well-known identity in the Relativity theory;

#R) for a QK; manifold

2n 1
El (Ve,P) (x, €) == XT
=
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Then by direct differentiation the above relation it follows that

(R)—1*(R)
AP)=""0—ty

is a global constant on the manifold.

The proof follows also from our Theorem 3 in [4] if we put A=1, p=1.

In (8] is shown that the Schur’s lemma fails for the class of the Hermitian m
folds. Namely there is proved the following theorem : . &

Let ds? be the usual metric on C” and f: C" — C any nonlinear holomorphic f“"O_
tion. Then (C”, (1+Ref(2))™2dS?) is a Hermitian manifold with pointwise constant 10
morphic sectional curvature which is not globally constant. the

We state now the same problem for the Kihlerian defect. At first we have
following . If

Theorem 8. Let (M, g, J) be 2n-dimensional almost Hermitian mamfold'
n>3 and the manifold is conformal flat then:

() Alp; EN=2(H(p; x)+H(p; y));
(i) Alp; E)=A(p) < H(p; x)=H(p).
Proof. From [7] is known that if the manifold is conformal flat then

1 (R)
R= oNn—5 (P(p(R)) - (-2n_-”1 )(2n—2) .

ani-

By directly computation we get
(R)

H(,Uv X) :2”1__2 {p(R) (X, x)+p(R) (Jx’ jx)}'H @2n=1 '(2{:72")"’
A(ps EY=554p(R) (x, x)+p(R) (Jx, Jx)+p(R) (¥. ¥)

41(R
(R Uy 9 =gy, oy

Then Theorem 8 follows immediatelly. e
Using this theorem (assertion (ii)) and the result from [8] we can formulate
following ol

Theorem 9. Let ds® be the usual metric on C" and f:C" — C any noﬂl‘”eiﬂ,
holomorphic ~ function. Then (C", (1+ Ref(2))~2ds?) is a Hermitian manifold ¥
nointwise constant Kdhlerian defect which is not globally constant. ofs

Hence Schur’s lemma fails in respect to the Kihlerian defect for the clasS
Hermitian manifolds.

$
3. Almost Hermitian manifolds of conformal type and their generalizgﬂon
An almost Hermitian manifold (M, g, /) is said to be of constant type A [13] if
R(x, ¥, x, y)—R(x, ¥, Jx, Jy)=Mp)

at
holds good for any antiholomorphic plane spaned by x, y (e. g. (x, y) L (Jx, _f)’)) is
every point p ¢ M. The constant A is equal to(t(R)—1*(R))/4n(n—1). This conditio?
equivalent to requirement that the curvature tensor

«(R)—(R)
R— 4n(n—1) T

satisfies the Kihler identity (3).
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b These manifolds are generalized in [10]. Namely an almost Hermitian manifold is
Conformal type if the tensor

: R)—t*(R
R— g5t 0p—5") (R) + 4oy

Wisties the Kahler identity (3)
ow we will discuss both manifolds, e. g. to find their projections and to open
3y for their generalizations. ’
% We shall do this in an elegant way. From the Riemannian geometry we have the
Utruction [1]

R(x, v, 2, u):%—{QR(x, ¥, 2, W)+2R(2, u, x, ¥)

i +R(x, 2 ¥, u)+R(Y, 1, X, 2)+ Rz o %, W)+ R(x, 1, 2, V).
R has only the properties
R, v, 2, u)=—R(y, x, 2, u)=—R(x, ¥, & 2),
::C]t? the case_when R is the curvature in respe:ct' to a nonsymmetric Riem{ipni.an‘ cc'm-
tion, then R has the same properties and satisfies also the first Bianchi’s identity
Sides R is the unique tensor with the property
R(x, ¥, X, y)=R(x: ¥ X% V),

3 —
& Rand R have the equal sectional curvatures. .
sing the above construction we consider the mapping

dogs y: R—v(R)
eflned by

6Y(R) (x, ¥, 2, w)=2R(x, y» Jz, Ju)+2R(z, 1, Jx, JY)
i FR(x 2, Jy, Ju)+R(y, u, Jx, J2)+R(z ¥, Jx, Ju)+R(x wn JZ JY)
Ris a curvature tensor the same is also true for tensor ¥(R) and

) r Y(R)= L3Y(R).

We o
¢ omit now the long icalculations and give some results:
13

iy

po Y(R)= 5 P*(R+LsR),

p* o (R)=5-(p+2p") (R+LaR):
t Projections of tensot’ y(R) are:

PYR)=pAR), i=1, 2, 3;

PR = —— PAR), i=4 5, 6;

o pv(R)=—p(R);
P(¥(R)=0, =8, 9, 10.
lis we have the following
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Theorem 10. The decomposition of tensor vY(R) into irreducible orthogonal
components for the action of the unitary group U(n) is given by

3 6
WR)= X pR) — - = piR)—p(R),
or equivalently
4 6 10
R—=1(R) == £ p(R)+2p{R)+ X p(R).

As a consequence we have the following
Corollary. In the case R=L3R the following two assertions are equivalent

() R—1R)=5 piR);
(i) ps(R)=py(R)=p:(R)=0.

This corollary is identical with the following assertion in [9]: L
Let (M, g J) be an almost Hermitian manifold of dimension 2n>8 which satisfies
(2). The manifold is of constant type iff it is of conformal type and

) p(R)-p(R) =R ¢

To show the identity first we observe that R=y(R) iff R satisfies the Kahle
identity. Because 3y(m;)=m, and (2) the condition (i) can be written as

R — R e
R— "R m) (5, 3, 2, w)=(R— R 1) (x, y, sz, Ju)

which says that (M, g, v) is a manifold of constant type.
Now we consider the condition (ii). Because of

p o Ps(R) = oA(p—p*)(R+ LsR) —R=TR). o)

n

and R=L3R the equality p;(R)=0 is equivalent to the relation (4).
To finish the proof we observe that the following assertions are true:
a) if § is symmetric and J-invariant tensor of type (0,2) then

31(e(S)=w(S);
b) if R satisfies (1) then

3Y(R)—2Ly(R)=R.

Using these facts and p«(R)=0, R=LsR the equality p(R)=0 or equivalently
Ri-=p(R)+ ps(R) implies

R)— (R
3BR—31(R) =" (3, —r;)

+ams) Bo—wi{(p—p") (R)—*RTEL g

which says that the tensor
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i ) (=) (R)
R— =555 9 (P—P) R+ o=y ™

Satjot: . . .
Sfies the Kahler identity. But this is the condition (M, g, J) to be a manifold of

"Mormal type.
he above considerations give us the possibility to formulate the following two

‘he(’TEms:
Theorem 11. (M, g J) with (2) is an almost Hermitian manifold of constant

Wpp -

Jpe z);jl" p,'(R):01,2i=5, 6, 7, 8, 9, 10.

4, Lheorem 12. (M, g, J) with (2) is an almost Hermitian manifold of conformal
e iff p(R)=0, i=6, 7, 8, 9, 10.(

'"etr4' An analogous tensor of the Weyl’
is Y- In the paper [7] the classical Weyl’s tensor

§iven in the following way:
B 1 ) (R)
CR) =R—5,;=5 ¢ ° PR+ Gy @a—e) ™

s tensor in the almost Hermitian geo-
for an almost Hermitian manifold

Beg; .
Sldes this tensor is decomposed into 7 orthogonal components:
C(R)=C(R)+Coy(R)+Ep{R), =3, 67,9, 10,

Where
_ YR)—(2n—1)T¥(R)
CR) = "guimt—1) a1y (BT— (21— 1)ma},
Co(R) =~ {30—(n—1)v} (S, S1),
anq

16(1+2)8, = (p + 3p*) (R+ LyR) — - (1+37%) (R)&.

16(1—2)Sy = (p—p*) (R+LoR) — (=1 (R) &

]| ,
these components are conformal invariants and are characterized by the require-

I]]e
“tAthey have Ricci tensor p=0.
\a el; the recommendation of mine in [14] is founded an analog of the tensor C(R).

£3 . 1 i T*(R)
¢ (R)=R— 2,l+2“l’0p (R) + (2n+1) (2n+2) Tg-

Thi
S tensor is decomposed into 7 orthogonal components
CHR)=Ci(R)+CyR)+Z piR), i=3,6,7, 810

Whege

i _(2n+1) t(R)—3t(R _
Ci(R) =“gm=ny@+y (&t Dm o}

CiR) =L (- Do—v} (Si+35y)



96 G. Stanilov

All these components are characterized by the requirement they have * — Ricci tem
sor p*=0.

The tensor C*(R) is a new one even in the Kihlerian geometry. It follows by the
next theorem 13 which gives an interesting geometric meaning of the tensor Ci )
and C{(R).

Theorem 13. (i) /n the U(n)-invariant 2-dimensional subspace spanned by the
“vectors” m, and m,, the tensor C\(R) is orthogonal to the tensor m, and Ci(R) isor

thogonal to the tensor my; (ii) C((R) is the projection of the tensor R on the 1-dimen
sional U(n)-invariant subspace orthogonal to =, and Ci(R) is the projection of the

tensor R on the 1-dimensional U(n)-invariant subspace orthogonal to Ty
Proof. The first part follows by the formulas [7]

(Rim)==2t(R), (R, m)=61%R)

and
(ny)=2n(2n—1), 1(mny)="6n,

() =2n, t¥(my) =2n(2n+1).
To prove the second part we take the “unit” tensor

3, —(2n—1)m,
R ——— ()
V 48n(n2=1) (2n—1)

orthogonal to m; and compute that
<Ry e)e:Cl(R)'
Also

¥ — (2n+1)m; —m,
Vi6n(n2=1)2n+1)

is a “unit” tensor orthogonal to m, and
(R, e*)e*=C{(R).

We finish our considerations with the following

Theorem 14. Let (M, g, J) be 2n-dimensional almost Hermitian manifold. If
n>3 and C¥(R)=0 then

. 2

) A(p; EY)=— 5 {H(p; x)+H(p; y)};

ii) A(p; EY)=A(p) <> H(p; x)=H(p).

The proof is going in the following way: C*(R)=0 implies

. 3 3 (3 # R .
H(ps 5) =" (R) (5, )+, 50 s

Aps EY= = (0R) (5 D +0 R (3 M g

from which it follows (i) and then (ii).
We remark that Theorem 14 is an analogous theorem of Theorem 8.
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