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UNIVALENT FUNCTIONS THAT ARE LOCAL
EXTREMA OF TWO REAL FUNCTIONALS

VICTOR V. STARKOV

The class S consists of all functions f(z)=z+c,z%+ ... that are regular and univalent in the unit
disc. Let the functionals F(c,,..., c,) and ®(c,,..., c,,) has nonvanishing gradient in domains
containing sets of the type {|c,|<2,..., |c,I<r}. A function f,€S is found for which the functionals
F and ® attain local extremum.

Let S be the class of functions f(z) =z + £, ¢, 2, ¢, = {3 - 1 +i{5, regular and
univalent in the disc A={z:|z|<1}.

If f, geS the metric p(f, g)=max_,,|f(z2)—g(z)| turns the class S into
a compact metric space.

For a function ¢(z)=X;-,7,z" regular in a neighbourhood of the origin we
shall use the notation {¢},=7,.

Let F=F(c,,..., ¢,) be a real-valued function of the variables C (B=j=2n)
defined and contmuously differentiable in some domain contammg the set
{le,1=2,.. ., |c,|=n}. Moreover suppose grad F#0 in this domain. We shall
consider the function F as a functional on the class S. Let ®=®(c,,..., c,) be
another functional on S of the mentioned type.

With some additional assumption concerning F and ® we find the form of
a function f, €8, which is locally extremal for both of these functionals. Earlier
[1, 2, 3] (see also [4, p. 347-351]) solutions of this problem has been obtained under
some restrictions on F, ® as well as on f,. For the couples of functionals

F=|c,|, ®=|c,l
F=|{log f(2)},|. ®=|{log f'(2)}.l.
F=|{log[f(2)/z]},]. ®=|{log[f(2)/z]}nl
(n#m in all the three cases) the set of functions f, has been described by
V. V. Andreev and the author [7] for the first case (the last two are submitted for
publication).
Denote 1, =2(0F/0¢,)=(0F/0( k- 1)+ i(0F/d,3), k=2,..., n,
=2(0®/0¢,)=(0®/0L 2 - 1)+ i(OF/3L5), 1=2,..., m.

Let ue(2, n] and ve[2, m] be the greatest integers for which 4,#0 and u,#0
respectively. It is well known ([3, Ch. 1], [4, p.338-343]) that if the functional
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On univalent functions locally extreme 17

F=F(c,,..., c,) posseses a local extremum at the function w= f(z)=X{% a,z",
a, =1, the following differential equation is satisfied

zw"\?
(1) ~ 0.w)+ P,(2)=0,

where
u k—1 k—1 _
P,(z)= X I:I,‘< p ) (k—j)a,‘-jz">+(k——I)I,‘a,‘+A,‘< z (k—j)a,_,-z’)],
k=2 j=1 j=1

—Q.w)= T Z,q,(w),

k=2

2 k—1
aom={ I -5 i e

On the other hand, if the functional ®=®(c,,..., ¢,,) posseses a local extremum at
the same function f;(z) an analogous differential equation will be satisfied. Namely

'\ 2
) (%”—) Q,(w)+ P,(2)=0,
whert;

v -1 -1
P(2)= % [ﬁ,(z (l—j)a._,-z'f)+ﬁ.a—1)a.+u,( > (l—j)a.-,zf>].
2 j -

1= =1 Jj=1

2,wW)= X a,q,(w)
1=2

Theorem 1. Let u=2, v=2 be integers,

Hooty_3)4 %(v—s) >4lu—v|

v u

(€)

and f,€S satisfies simultaneously the equations (1) and (2). Then
4) fo(2)=2z(1—z€"1)" 1 (1 —ze2)" 1,
where t,, t, are real.

In the equality case in (3), but u#v, fo(z) is also in the form (4).
I.fu=v=3 and (lu—l/lu)#(#v—l/uv) or
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Au—l

(5) =4 (Ay,..., A)#* Wy, ..., u,)

fo(2) is also of the form (4).

Proof. We shall consider first the case u#v. Let the function f(z) satisfies (1)
and (2). Following [3, p.260-261], [4, p.346-350] we shall show that f,(z) can be
continued on C as an algebraic function. Really after dividing the equation (1) by
the equation (2) we obtain

Q.w) P2
©) 0, w) P,2)

where H(z) and G(w) are rational functions and H(0)= G(0)=1. It follows from (6)
that f(z) is an algebraic function. Hence f(z) can be continued from A to C except
for a finite number of poles and algebraic branching points. Denote such an
analytic continuation by & (z). The function w=%(z) satisfies the equations (1)
and (2). It has be shown [3, p. 261], [4, p. 349] that in a neighbourhood of the origin

&= =>w'""G(w)=z"""H(2),

every branch of #(z) has the series expansion £ (z)=B,z+ ... Extracting
(v—u)-th root from the both sides of (6) we obtain
(7) p(w)=e"Y(2),

where ¢ and ¥ are regular in a neighbourhood of the origin, ¢(0)=y/(0)=0,
@' (0)=y'(0)=1, €~ =1 (0 characterizes the branch we have chose). From (7) we
conclude that in a neighbourhood of the origin every branch of w=.%(z) has the
series expansion

(8) F()=¢ Y(e®Y(2))=b,z+ ..., b, =¢€"

In the sequel we shall show that under the hypothesis of Theorem 1 the only
possible value of b, is 1. Together with (7) this will give that every branch of #(z)
coincides with fy(z) in some neughbourhood of the origin and, thus, #(z) is
single-valued in C. Moreover this shows that #(z) is a rational function.

Assume that b, #1. Using (8) we obtain

[zF'(2)/F (2))> =1 +2b,b; ' 2+ O(2?),
[y(z)]_j=(b12)-j—jbzb,_"'_ 121=i4 0(z2 7).
Hence

A, Ib,u—1) A (u—1a,+4,-,

= — — 3-u
Qu(y(z))_ [(blz)u—l b.;zu—z + b-;-zzu—z +O(Z )]'

Z, ib,u—3) Zu—1a,+74,-,

b Tt T2 T (b2 2

2F'(2)/ F () QUF (2))= — + 0(z37").
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On the other hand,

V3 2 _
P@)= 5 + I““zﬁ,f}' Lt o@z2).

Compairing in (1) the coefficients of the terms containing z2>~* and z'~™*
respectively we obtain

A,by(u—3) _ Au—Na,+7,_,

9 27.a, + b pi-2 =0,
A,—Abl *=0.

Hence b} =1 and we derive

(10) (u—3)b,—a,b,[(u—1)b, —2]= %b,(bl— 1).

Proceeding in the same way we derive from (2)

(11) by '=1,

(12) (v—3)b,—a,b,[(u—1)b, —2]= ﬁ"_—’ b,(b,—1).

u

Eliminating b, from (10) and (12) we find

L [ﬁ"__l(u—3)—x'i.—l(v—3)j|.

2= 200—w| 4 ;

The well known estimation |a,|<2 [5] for f,€S with extremal function the
Koebe function z(1—ze®)~2 and (3) yield either f,(z) is the Koebe function or
b, =1 and hence the function f(z) is rational. It is known [1, 6] also [4, p. 347] that
if the rational function f, € S satisfies an equation of type (1) f,(z) is of the form (4).

Let now u=v. From (3) and (5) it follows that with respect to w (6) is an
algebraic equation of degree greater than zero. Hence w=f(z) can be continued in
C except for a finite number of poles and algebraic branching points. We rewrite
(6) in the form

AW+ . +4, A2V + L+
AW+ ... +h, w22 Y+ +i4,

(13)

where s, r are positive integers and A,, 4,#0. After subtracting 1,//, from both
sides of (13) it becomes

(14) w*G(w)=z"H(2),
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where x is some positive integer and G(w), H(z) are rational functions. Since the
equation (14) is satisfied for w=f(z), G(0)=H(0)=0. As in the first part of the
proof from (1) and (14) we obtain that in a neighbourhood of the origin every
branch of #(z) has the series expansion #(z)=b,z +b,z2+ ....=w,bi=1 and the
statement of the theorem will be proved if we show that b,=1 for any
branch of Z(z).

In the case in question the equations (10) and (12) become

Zis
(15) (u—3)b,—a,b, [(u—1)b, —2]= I L(b,—1)b,
and ) :
(16) (u—3)b,—ayb, [(u—1)b, —2]= "“ﬁ:‘(b,—l)b,.

If b, #1 (15) and (16) yield (4, - 1/A,) =(t4. - 1/#,) Which contradicts (3). Let u=v=3
and b, #1. From (15) and (16) we obtain

— In—l =”u—1

ket S

Hence, having in mind (5), we obtain |a,| =2, which is possible only for the Koebe
function.

So either f,(z) is the Koebe function or b, =1 and then f(2) is of the form (4).

This completes the proof of Theorem 1.

Corollary 1. If the functionals F, ® posses a local extremum at fo€S and
satisfy the condition of Theorem 1, then fy(z) is of the form (4).

It is known [1, 4] that the statement of Theorem 1 is valid provided the
restrictions (3) and (5) are replaced by the restriction (u—1) and (v—1) to be
relatively prime.

Theorem 2. Let

a) ¥, (&)= 0A,(E—1) and Y ,(§)=Z2 o B,(&—1)' be two functions regular in

a neighbourhood of the point &=1 with A, B,#0,

b) n=2, m=2, n#¥m be integers,

c) a, BeC, a#n/(n—1), B#m/(m—1).

Denote /
L L j=m+1)2, L fLj=m+1)2,
U"U)—{Z j#(n+1)/2, "U)_{Z, j=(m+1)/2.

Suppose
A,0,()o+ (1 —a)(n—j+ Dl[x+(1 —a)j]
A [+ (1—a)n]

By, ()[B+(1—B)m—j+ DB+ —p)j] (
B,[B+(1—p)ym]

(m—2j+1)
(17)

n—2j+1)#(n—m)j
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for all integers j, 2<j<min(n, m). If the functionals

F=F(c,..., c,):Re[{.p,(af—(:-’ +(1=0)f@)}n-1]

and

O=0(cs..... ) =RelY2B 2 + (1L @}m-1]
posses local extremum.at f,€S, then
(18) fo@)= 5 2 “/i=1,

/(1 —eF12%)(1 —e*22%)’

where t,, t, are real, d, is a common divisor of (n—1) and (m—.1).
Proof. For the functionals in the statement we have

T,=A,la+(1—a)n]£0, f,=B,[B+(1—Fm]#0.

Of course the function w= f(z)=z+ X2, a jzf we seek satisfies the equations (1)
and (2). Hence, as in the proof of Theorem 1, we arrive to the conclusion that f(z)
is an algebraic function. In a neighbourhood of the origin any branch of its
analytic continuation % (z) has the series expansion

(19) w=F()= T bz, bj "=1,
j=1

where the different coefficients b, correspond to different brances of #(z). The
function % (z) satisfies the equations (1) and (2) as well. If in (19) b, =1 for every
branch of #(z), then (see the proof of Theorem 1) #(z) is a rational function and
as earlier we conclude that f,(z) is of the form (18).

Assume that for some branch of #(z) we have b, #1 in (19) and let d be the
smallest positive integer for which b{=1. Using induction we shall prove that
aj, bj, An—j+1. Um- j+1 can differ from zero only if j=dk + 1 (for some integer k =0).

1) Let j=2. It is easily calculated that

Fn—1=A,a,0,(2)[a+(1 —)2)[a+(n—1)(1 —a)],
fim—1=B3a,0,(2)[B+(1—B)2][f+(m—1)(1—-p)
For the functionals in the statement the equalities (9)-(12) hold if we put u=n,

v=m. From (9) and (11) we conclude that d is a common divisor of (n—1) and
(m—1). Elimination of b, from (10) and (12) gives
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2a,(n—m)= "L m—3) - F2=L(n—3)

=02[Azan<2>[a+u —afo+(1—afn=1)

Ao+ (1 —o)n]

_ By, B+ =R+ (1 —pYm—1] 3)]
B,[B+(1—Bym] '

which contradicts (17) provided a, #0. Hence a, =0, 4,-, =Hpm-,=0. From (10)
we obtain b,=0. This completes the proof of our assertion when j=2.

2) Suppose our assertion has been proved for all positive integers less than
kd+1+1 for some integers k and | (k=0, 0<l/<d). We first consider the case
kd+1+ 1 <min(n, m). From the inductive assumption it follows

Tn—xa—1=A014+1+ 10, (kd + 1+ D[a+ (1 —a)kd + 1+ D][e+ (1 —a)n—kd —1)]
so that for positive integers j <kd + [ the quantity 4,_; can be different from zero
only if j=rd (for some integer r20). In the following R;(&), R(0)=0 will stand for
a polynomial of ¢ of degree at most j, and h; (§)=Z}%;y,¢" for a regular function.
We have
[Z (@] =(b,2) 1 + Ry (z*) —jbra—1-1b1 2" + hras141(2)].

[2F'(2)/F (2))* =1+ Ry () + 2(kd + Dbya s 1+ 1 b7 ' 2" + hua141(2),

k n—kd—1—1
Q,w)=Z Zn—rdGn-rd(W) + A —ka—1Gn—ra—1(W) + z  Aag.w),
r=0 v=2
where
n—rd—1
q»-rl(w)= - Z {f{)+l(z)}n—rdw_l'
=1

Further ! '

{6 @}a-a={1 +R,‘(z")+au+,+,z"”“+hu+,+1(z)]’“ In—ra-j-1

can be #0only for j=n—rd—1,n—rd—d—1,..., n—@r+kd—1,n—(r+k)d—1-—1|,
as well as for j<n—(r+k)d—1—1. Moreover

{]’6""’"'(2)}.=("—kd—1)au+:+ 1.

Consequently

Q.(w)=— %[1 + R, (w)+ (In—l—u—' + ("—kd—’)au+l+1)W““+hu+l+1(w):|-

Thus



On univalent functions locally extreme
— I,, bkd-;-l+l d+1
Qn(‘g;(z))— - 1 1 +Rk(zd)—‘(n'— I)T—-z"
1

Aon— kd—
* (%+(ﬂ—kd—[)a““+l)b'lzkd+l+hkd+'+l(z)]_

n
So we obtain

27 (@) F @PQu(F ()= —

x

Ay

-1 +R,‘(z‘)+z"“‘(£'%':—5b‘l

"
z n

b
+by(n—kd—Dayg+1+1 + M;‘+1(2(kd+l)—n+ 1))+hu+1+ 1(2))
1

From the inductive assumption it follows that
P(2)=z'""[£,+ R (z%)+ 2 (A (kd + 1+ 1)ara v 141 + Zn—ka-1)+hras14+1(2))
Comparing in (1) the coefficients preceeding z*¢ +1+1-n we obtain

(20) (n—1—2(kd+ D)byas1+1—by(bi(n—kd—)—(kd+1+ 1)+ 1+1

- I—""I—"‘"—'(b',—l)b,.

Analogous reasoning for the functional ® gives

(21) (m—1 —2(kd+I))b,‘,,+,+1—-b,(b‘,(m—kd—l)—(kd+l+ D)aga+i+1

= ﬁ"'—'_L_'(b‘, —1)b,.

Here
fim—ka—1= By a1+ 16mkd + 1+ D)[B+(1 = BYkd + 1+ DB+ (1 — pYm —kd — D).
Elimination of by 4,+; from (20) and (21) gives

(22) (by —Daggri+1(kd+1+1)(n—m)

= — 1)[5"‘7*“—'(m— 1 —2(kd + 1)) — ‘7—"';3“—‘-’(n— 1 ——2(kd+I))].

Since b% #1 then if ayg4,+,#0 it follows from (22) that

A,0,(kd + 1+ 1o+ (1 —a)kd + 1+ D[+ (1 —o)fn—kd — 1))

(kd+ 1+ 1)n—m)= A la+(1—o)n)
1

23
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B,o,(kd+1+ 1)[B+(1 —pXkd + 1+ DB+ (1 — B)Ym—kd —1)]
B,[B+(1—pB)m]

x (n—1—2(kd +1)),

x(m—1—2kd+1)—

which contradicts (17). Hence a@xg+1+1=0, Ap—ra—1=Hm-ra—1=0. From (20) we
obtain b4+, =0. We may assume that min(n, m)=n which means we have
proved our assertion for j€[2, n]. It has been shown that Q,(w) and P,(z) contain
only these powers of the variables which are multiples of d.

Now let kd+I1+1>min(m, n)=n(l#0 yields kd+!+1#m, n). Denote
no—1=(m-—1)/d, k=n,—1. Then

0. = — 2214 R, )

1+ Ry )~ (= ) P )

Q.(F(2)— W
b,

27 (2)/F 2)PQF (2)= — ff S[1+R, (%) + ﬁ‘%iii(zku 2l—n+1)z+4+!
1

+hggs141(2))

On the other hand, P,(z) does not contain z**'*'*" Thus comparing the
coefficients in (1) we obtain by,,+, =0 for every branch of % (z). In particular
aya+1+1=0. Hence for 2<j<m our assertion concerning y; is true.

This completes the proof.

So

A) foD=z+ I e, 21

k=1

and P,(z), P,(z), Q. (w), Q,(w) contain only these powers of the variables which are
multiples of d.

Let d,, 1 Sv<s, be different positive integers with the property for every d,
there exists a branch #(z)=b,z+ ... such that bj{v=1, b, #1 for all integers
le[1, d,). The number d earlier mtroduced is among the number d,. Let d, be the
smallest positive integer that is multiple of d,,..., d,. Since (A) holds for each

fol2)=z+ Z auonzuoﬂ

k=1

and P,(2), P,(2). @(w). @,,(w) include only such powers of the variables which are
multiples of d,. Moreover bjo=1 for any branch #(z)=b,z+ ..., i.e. in
a neighbourhood of the origin
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(23) wio = Fdo(z)=2z%+ ...

This allows to make in (1) and (2) the substitution w, =w, z, =z%. Denote
fi(zy)=f1(z")=f{(2), f,€S and with n, —1=(n—1)/d,

P, (2,)=P, () =P,2). §, (w,)=0,, (w)=0,(W)
Analogously for m; —1=(m—1)/d,
P, (2)=Pu2). O, (w))=0,W).
Then (1) and (2) become

2
and

2
(29) (i—l %) 0 (w))+ P, (z,)=0.

On the other hand (6) becomes
wit™"G (w,)=2zT1""1H (z,),

where G,(w,) and H,(z,) are rational functions, G,(0)=H,(0)=1. We mark that
fi(z,) satisfies the equations (24) and (25). This yields that w,=w,(z,) is an
algebraic function. As earlier we obtain that in a neighbourhood of the origin any
branch of w,(z,) has the expansion w,(z,)=B,z, + ... From (23) it follows that
B, =1. It means (see the proof of Theorem 1) that w,(z,) is a rational function, i.e.
fi(z,) is rational. But a rational function in S that satisfies an equation of the form
(24) has the form (4) [1], [6], [4, p.347], i.e.

Z
—z e 1)1 —z,€"2)’

fl(zl)=(1

Consequently f,(z) has the form (18).

Theorem 2 is proved.

For a=pf=1 and y,({)=y,(¢) we derive from Theorem 2.

Corollary 2. Let the function Yy(&)=X2o A(E—1), A, =0 be regular in
a neighbourhood of the point E=1and n=2, m=2, n#m, be integers. Let the integer
Jj#m+1)/2 and j#(m+1)/2. Suppose that — A,/A,+#j/2, 2<j<min(n, m) and
—A, /A, #(n+1)/2, (m+1)/2 if (n+1), (m+1) is even respectively.

If the functionals
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e[ (D) e ()]

posses local extremum at f,€S, then the function f(z) is of the form (18).
Corollary 3. By the initial assumption of Corollary 2 suppose

A n+m—1-2j
222 (j—1)——— 1 1
A,[(j ) nm ];é

and —A,/A, #2n/(n+1), 2m/im+1) if (n+1), (m+1) is even respectively.
If the functionals Re[{Yy(f'(z))}a-1] and Re[{Y(f'(z))}m-1] posses local
extremum at f,€S, then the function f(z) is of the form (18).

Chosing Y(&)=¢ and Y(&)=log & the results obtained by V.V. Andreev and
the author appear.
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