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Abstract

An existence theorem is proved for solutions of autonomous differential inclusions
with an upper semicontinuous and nonconvex right-hand side. The proof is based on an
inner and directional continuous parameterization. The solution is obtained as a limit
of disturbed systems solutions. An example of differential equation with discontinuous
right-hand side is considered.
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1 Introduction

This work considers autonomous differential inclusions. The first section presents a set
of conditions, named the Z condition, is presented in the first section. These conditions
guarantee the existence of solutions for the differential inclusions with an upper semi-
continuous (u.s.c.) right-hand side. This part is closely related to the ideas of many
authors, see f.e. [1] [2], [5 - 10], [12 - 14], [16 - 17]. The first part of the Z condition is
equivalent to the existence of the fixed point of some map. This fixed point is is equivalent
to the solution of the Euler’s implicit scheme for numerical solving of differential equations,
as well as the Yosida approximation of maximal monotone operators [2].

An example of autonomous differential equation with discontinuous right-hand side
is considered in the second section. In abstract way, a low semicontinuous and left-hand
side continuous scalar function is constructed by two continuous functions. Applying the
existence theorem, the respective differential equation (or differential inclusion) admits a
solution.

Consider the following differential inclusion:

&€ F(z), 2(0)==0, tE€ [O»I]v (1)

where z € D C R", F(z) is a upper semicontinuous (u.s.c.) multi-function with compact
values, D is a bounded domain, a¢ € mtD.
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Notice that the existence of solutions of (1) is problematic when the right-hand side
() is an upper semicontinuous multi-function with nonconvex values. There are simple
examples of differential inclusions with above mentioned right-hand sides which have no
solutions.

Solutions of differential inclusion (1) ¢xist in the convex case (Le. 1], [2], [1], [9 10],
(14], [16], [17]) as well as in the continuous or low semicontinuous case (f.e. [5-7], [13]).
There are few papers (f.e. [8]) with suflicient conditions for the existence of the solutions
in nonconvex and u.s.c. case.

2 Main Result.

Definition 1 FEvery absolutely continwous function a(t) which almost cverywhere in [0, 1]
salisfies the differential inclusion (1) is said to be a solution.

Definition 2 (see [6]) Let I' be a cone in R™ and le Y be a metric space. A map [ :
R™ — Y s ['-continuous at a point & € R™ iff for every e > 0 there exists & > 0 such
that d(f(z), f(Z)) < € for all 2 € B(x,6)N(z +T'). We say that f is I'-continuous on a
sel A if [ is I'-conlinuous al every poinl & € A.

Z condition:
1. For every (s,z) € [0,3] x intD there exists a vector z(s,x) for which the following
inclusion .

z(s,x) € IF'(x + sz(s,x)) + w(s,x)B (2)
holds, where 5 > 0is any constant, I3 is the unit ball centered at the origin, li_l‘l(} w(s,x) =0,
and w(s,z) is a nonnegative scalar function which is measurable in s and continuous in

2. The multi-function {z| z € I'(x + s2) + w(s,2)B} has a selection z(s,a) which
is jointly measurable in (s,2) (or only in @) and directionally continuous at (0,2) with a
constant M (sce [4], [6], [7]), i.e. for every € > 0 there exists a positive number §(e, ) > 0
for which

| 2(0,2) — z(s,y) |l<e il Ja—yl|l<Ms, 0<s<é(e ), (3)

-

where M is some constant.
3| F(z) || +w(,2) < L, 2€D, L<M.
The first part of the Z condition holds for the u.s.c. multi-functions I'(-) with
compact and convex values. The prove is easy, applying the Kukutani fix point theorem.
Continuous multi-functions () with compact values satisfy the first and the second
parts of the Z condition.

Theorem 1 Let the Z condition hold for the differential inclusion (1) and let the fol-
lowing equality
z(s+ 1,20 —712(8,2)) = 2(s,2), s,720 (4)
be fulfilled for the selection z(s,x) of (2).
Then there exists a solution of (1)

domain [0,1] x D.

o



If the differential inclusion (1) locally has a solution then, by traditional methods, it can
be continued up to the bound of the domain [0,1] x D. As long as z(0,z) € I'(x), the
above theorem 1 immediately follows from:

Theorem 2 Lel the bounded funclion z(s,x) (|| z(s,x) [|< L) be jointly measurable in
(s,x) (or only in x) and divectionally continuous at (0,z) with a constanl M (sce (3)).
Let L < M and the following equality be fulfilled

2(s+ 71,2 —12(s8,2)) = 2(s,x), s,720. (1)
Then the Cauchy problem
&= z200.2), =(0)= =z, (5)
locally has a solution.
Proof. Let us denote
Zls,r) = csslirnlz(s,y), (6)
il
where u € (‘,s'f]ijgnz(s,y) il for every set N C R" with Lebesgue’s measure pu(N) = 0

there exists a sequence  {yr}pe, € N for which kli{}\layk &= m and klllgo z2(s,yx) = u. Il
the function z(s, ) is jointly measurable in (s, z) then the multi-function coZ(s,x) is the
Filippov’s extension of the right-hand side for the ordinary differential equations with a
measurable right-hand side ([L0], [11]). This function is u.s.c. in @, jointly measurable in
(s,z), measurable in s and for any continuous function x(s) the multi-function Z(s, z(s))
is measurable (sce [10], [11]).

Consider the following differential inclusion:

a(s,l) € coZ(s,x(s,1l)), x(s,0) =m0, s3>0, (7)

where s > 0 is a constant, Z(s,2) is defined by (6) and co means the convex hull. It is
wellknown that the differential inclusion (7) has a solution (see f.e. [10], [11]) which can
be extended closely to the bound of the domain [0,1] x D (see [10]). As long as o € D
there exists T' > 0 for which the solutions a(s,t), s > 0 of (7) are well defined on the
interval [0, 7.

The derivative @(s, 1) of the solutions (7) a.e. can be represented as follows (see [11]):

n+l
z{s,1) = Z (s, )zr(s,t), s>0, (8)
k=1

where z(s,t) and ag(s,!) are measurable functions on (0,7, and a.e. in ¢

n+1
zk(s,t) € Z(s,x(s,t)), ak(s,t) >0, Z ar(s, t)=1, k=1,2,...,(n+1). (9)

k=1

For fixed ¢t which satisfies (8) we are going to estimate || &(s,t) — z(0,2(0,1)) ||, where
(s, -) uniformly converges to x(0,) if s = +0. As far as z(s, ) is a bounded function with
a constant L, the set of solutions of (7) is conditionally compact in the space of continuous



functions C[0, 7. Thus, we can choose a subsequence which uniformly converges to some
function x(0,1t).

Let € > 0 be sulliciently small, for C\ample € < . Let 7 > 0 be chosen under

the Z condition, i.c.
| 2(r,y) — 2(0,2(0,1)) ||[<e if |y—=a(0,t)]||<TM

As well as z(s,t) € Z(s,a(s,t)), one can choose yi(s,t) which are sufliciently close to
x(s,t)such that (. = k,j,1=1,2,...,(n+ 1))

| zk(sy ) = 2(s,mx(s,0)) IS €. (10)
If s > 0 is sufliciently small we have
| ye(s,t) — 7 2(s,yx(s,t)) —y;(0, ) ||< 7 (L +¢) <7 M.
Under the directional continuity of z(s,2) and (1) we obtain
I 25, a5, £)) = 2(0,2(0,0) =] 2(s 47, ya(s, )= 7 2(5, 3, 1)) = 2(0, 2(0, 1)) [|< € (11)

We can write

z(s,t) —z(0,2(0,t)) = :i:ﬂ'k(s,t)(zk(s,i) = 2(0»-’"(0,”)) =
5 (o, 8)(z6(, 1) — 25 welss 1)) + 3 o, 2) (2, (o, 1)) — 2(0,2(0, 1))
By (u)k,z(] 10) and (11) we have: h
I @ (s, 1) — 2(0,2(0,2)) || < 2. (12)

By (12), on the contrary, we obtain that a.e. in t € [0,7]

lim 2(s,t) = z(0,2(0,1)).

3—40

According Lebesgue’s theorem, limiting s to +0, we obtain

t

z(0,1) = lim a(s,t) =xy + lim a(s,€)dé = ao + /Ot 2(0,2(0,&)) dé¢

s—+0 0 s—+0
which is equivalent to
#(0,1) = 2(0,2(0,1)), (0) =9, te€0,7T]

Q.E.D.



3 Example

Consider the following illustration of theorem I:

Let fi(z) and fy(x) be two continuous scalar functions which are defined on the real
line (=00, +00). Using these two functions one can construct some lower semicontinuous
single-valued and left-hand side continuous function f(a) for which

J(z) € fi(x) U fo(x).

Suppose
Ifi@)| < L<1, i=1,2 (13)

I'inally, denote

]r(m) = Lim sup f(?/),

Y=z

where Limsup is the Kuratowski upper limit (see [.e. [3]). Applying theorem 1, we shall
show that the differential inclusion

i€ P(r), 2(0) =g (1)

has a solution. Obviously, it is sufficient to show that Condition Z is fulfilled. By (13)
the third part of Condition Z holds. The first part of the Z condition follows from the
following lemma, the prool of which is the same as the proof of lemma 5 [15].

Lemma 1 If ¢(z) is a lower semi-continuous and lefl-hand side conlinuous real function
defined on the interval [a,b] for which g(a) > 0 and g(b) < 0 then there exists £ € (a,b)
such that g(¢) = 0.

Il g(z) = f(x + sz) — z then for every sufliciently small s, s > 0, we have

:lll_l(lm g(z) = 0o and ZIH}_L-(/(’:) = —oco.
Thus for every = and every sufficiently small s there exists a solution of the equation
z = f(x + s2) (respectively of the inclusion z € F'(x + sz)).
Note that the case 0 € F(x) is trivial because the differential inclusion (14) has a
solution x(t) = const.
We need the following lemma:

Lemma 2 FEvery real-valued function g(x): (—o0,+00) — R which is continuous on the
some interval [a, b] salisfies the second part of Condition Z at the point (0,a) (respectively
(0,0)) if g(a) > 0 (respectively g(b) < 0).

Proof. We are going to prove only one part of the lemma (the case g(a) > 0) because
the other part can be proved symmetrically. As well as g(2) is continuous, for every
€ = g(a)/4 there exists § > 0 for which |g(z) — g(a)] < € il 0 < 2 —a < é. Choosing
M = g(a)/2 and 0 < s < 46/Tg(a) consider the following equation:

3
z=g(y+sz), |y—a|<sM, Tg(a) <z < —g(a). (15)



As long as —sg(a)/2 < s—a < sg(a)/2 and —g(a)/1 < g(y + s2) — g(a) < g(a)/4 we have

1
0< ;1_3'(](”) <y+sz—a< ;;—s_q(a) < 6.
and 3
79(a) < gly +82) < 7g(a).

[For instance from lemima 1, follows the existence of a solution z(s,y) of the equation (15).
Now, for every arbitrarily chosen (0 < ¢ < g(a)/4 and its respective § > 0 we have

|2(s,y) — 2(0,a)| = |g(y + s2(s,y)) — g(a)| < e
if ly — a] < sM, where 0 < s < 48/Tg(a) because

r

gla) _ —sM + %sy(d) <y-—a+sz(s,y) <sM+ %S!J(“) <é.

L

0<s

Q.E.D.

Note that z(As,y) is directionally continuous with a constant A M. Thus we can
suppose that M > L at every point. As far as g(-) is single valued the condition (1)
obviously holds. By the above lemma 2, F'(2) satisfies the second part of Condition 7
il f(+) is continuous at x or f(x) < 0.

Let z be a point of discontinuity and f(x) > 0. In this case we have I'(x) = fi(x)
J2(x). Asfaras f(+) is lower semi-continuous we obtain that 0 < f(2) = min{ fi(2), fo(x)}.
For example let fi(2) < fo(x). We shall show that f(y) = f2(y) on some interval (z,
6z]. Choosing € < (fa(2) — fi(2))/2 there exists § > 0 for which |fi(y) — fi(z)| < e (2
1,2) il |y — 2| < 8. There exists a sequence {zx}iz,, klllpo x = x, for which zx > o

IR

-

f(zk) = fo(xy) and |op — x| < 6, b = 1,2,.... Consider the following numbers:
yr = sup{y € [vg, @ +8)| [(2) = fa(2) Vz € [xr,y)}.

As long as f() is a left-hand side continuous function, we have f(yr) = fa(yx). If ) <
Yr < = + 6 then there exist z; >y, 1 = 1,2,..., for which lim z; = y. As well as f(-) is

1—00
-

a lower semi-continuous function we obtain
Ja(x) =€ < falyr) = [() < ,.l_ij);_ Ni(z0) = Nilye) < fi(xe) + €

or fo(x) — [i(x) < 2e. This contradiction implies that yp = o + 6 for all k= 1,2, .
Thus fo(y) € F(y) on the interval [v,2 + §]. According to lemma 2, the multi-function
I'(2) satisfies the second part of Condition Z as well as the equality (4) holds with a
constant M L < M.

Applying theorem 1 we obtain that the differential inclusion (14) has a solution.

The existence of the function z(s,x) (sce (2)) without a directional continuity is not
suflicient for the admission of solutions. In the paper [12] is presented a respective exam-
ple.

6



References

(1]

(6]

8]
9]
[10)

[11]

[12]

13)

[14)

J.-P. Aubin and A. Cellina (1984), Differential Inclusions, Springer-Verlag, Berlin,
Heidelberg.

J.-P. Aubin and L. Fkeland(1981) Applied Nonlincar Analysis, A Wiley-Int.. Publ.,
John Wiley & Sons, New York and others.

J.-P. Aubin and II. rankowska (1990), Set-Valued Analysis, Birkhauser, Boston o
Basel o Berlin.

V.I. Blagodatskikh and A.I". Filippov (1985), Differential Inclusions and Optimal
Control, Trudy Mat. Inst. Steklov, 169, pp. 191-252. English transl. (1986) in Proc.
Steklov Inst. Math., 4 (169).

A. Bressan (1983), Solutions of lower semicontinuous differential inclusions on closed
sets, Rend.Sem.Mal.Univ.Padova, 69, pp. 99-107.

A. Bressan (1988), Directionally Continuous Selections and Differential Inclusions,
lFunkeialaj Ikvaciog, 31, 1, pp. 159 470.

A. Bressan (1989), On the Qualitative Theory of Lover Semicontinuous Dillerential
Inclusions, J.of Differential Iquations, 77, 2, pp. 379 391.

A. Bressan, A. Cellina and G. Colombo (1989), Upper semicontinuous differential
inclusions without convexity, Proc. Am.Math.Soc., 106, 3, pp. T71-775.

AT, Filippov (1963), Dillerential equations with multi-valued right-hand side (in
Russian), Dokl. Akad.Nauk USSIt, 151, pp. 65 68.

AF. Filippov (1985), Differential equations with discontinues right hand side (in
Russian), Moscow, Nauka.

R.P. Ivanov (1989) Measurable Strategies in Differential Games (in Russian), Math.
Sbornik, 180, 1, pp. 119-135 or (in English) (1990), Math. USSR Sbornik, 66, 1, pp.
127-143.

R.P. Ivanov and N.M. Kitanov (1993), Ixistence ol Solution of Dynamic Systems
with Discrete Speed Values, Discrete Mathematics and Applications, edited by K.
Chimev and Sl. Shtrakov, Proccedings of the "Third International Conference on
Discrete Mathematics and Applications”, Blagoevgrad, Bulgaria; September 1992
pp. 92-595.

H. Kaczynski and C. Olech (1974), Existence of solutions of orientor fields with
non-convex right-hand side, Ann.Polon.Math., 29, pp. 61-66.

A. Marchaud (1934), Sur les champs de demi-cones et des équations différentielles
du premier ordre,Bull.Soc.Math. France, 62, pp. 1-38.

=1



[15] I.P. Vasilev and R.P. Ivanov (1971) Some Approximating Methods for Solving
Time Optimal Control Problem in Banach Spaces with Phase Constraints, J.of
Comp.Math. and Math. Phis., 11, 2, pp. 328-347.

[16] T. Wazewski (1961), Systémes de commande et éqnations an contingent Bull. Acad.
Polon. Sci. Ser. Sci. Math. Astr. Phys., 9, pp. 151 155.

[17] S.K. Zaremba (1936), Sur les équations au paratingent, Bull.Sci.Math., 60, pp. 139
160.

Radostin Petrov Ivanov

Dept. Operation Research,
Institute of Mathematics,
Bulgarian Academy of Sciences,
Akad. G. Bonchev Street, Block 8,
1113 Sofia, Bulgaria

Nikolay Metodiev Kitanov
Dept. Operation Resecarch,
Institute of Mathematics,
Bulgarian Academy of Sciences,
1, Ivan Iliev Street,

2700 Blagoevgrad, Bulgaria



