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SEVERAL MATHEMATICAL PAPERS
BY ANDREANA STEF:NOVA MADGUERCVA

The present book contains seven unpublished yet mathematical papers.Some

c¢f them resolve old problems. For instance, the problem of the geometrical
description of the rolynomial ideals hazs been actual since 1877, when Max

Noether geometrically described the zero-dimensional polynomial ideals. The
first article here gives the geometrical description of the polynomial
ideals by differential operators and their corresponding sets of common
zeros on the described ideal in the sense of Max Noether's descrption of
the sero-dimensional polynomial ideals, The given here description is for

the rolynomiel ideals of the polynomial ring 'KL%?] y where K is a field
W\

- N
E% € aLls
tion supplies with new properties Max Noether's description of the zero-

" 1}, being a universal extension of the field K . This descrip-

dimensional polynomial ideals, The problem of the geometrical description
of the polynomial ideals has been extensively elaborated, because it is
connected with the resolution of the systems of linear differential equa-

tions.
The second article here introduces and studies functional spaces with

strong generalized derivatives, which are a generalization of Sobolev's
spaces, & generalization of the spaces of Schwartz, Bessov, Lizorkin, Trie:
bel, The introduced here spacesdo not a2lways coincide with Sobolev's space:
For instance, the space q\/\ﬁ ‘;'I sy 1L pL Do,y With A - a linear constant-
coefficient differential operator of order N , coincides with Sobolev's
space wg if and only if the operator A is elliptic (I is the identity ope-

g\d? Agpeeey A

A

rator). Moreover, the introduced speces are such that eac!

solution ref;f* gf the iystem {Akf - uk‘k : “kf'l&f%k y k=1,.,.,m, belong:
to the spacqu£ « 10T m e Fundamental law of Physics are expressed bY
differential equations. Their resolve has imposed extensions of the studied

functional spaces. In this way Sobolev's spaces, Theory of distributions,
the spaces of Bessov, Lizorkin and Triebel have appeared. Although the

solutions of systems of linear constant-coefficient differential equations

are expressed by distributions, i.e, by continupus linear operators, solur+

tions of more classical kind are important for Applications of Mathematics.



IV,
That is why Sobolev's spaces &re actual still and are an intensively deve-

lor ed tranch of Analysis. Therefore the introduced here functional spaces
are also important. lMoreover, these spaces are genuinely connected with the
functional algebras of tyre C @and their connection is established in this
study. Necessary and sufficient requirements for & closeness of trese spa-
ces relatively the multiplication of their functions are also formulated.

The article "A note on the automorphisme of the tori" gives a new more
conatructive form of the necessary and sufficient conditions for automor=-
rhisms of the elliptic zlgebraical curves (i.e. of tori), and as 2 corolla-
ry proves some results on integers.

The proposed here article "Cn a model of the real numbers" exposes a
new model of the real numbers, constructed by the rationmal numbers, analo=-
gously with the well known models of Cantor-Méray, Dedekind, Bachmann and
others., The model, present here,is more natural from the gnosiological (i.
e, epistemological) and the ontological points of views., The problem to
construct the real numbers by the intervals of the line in the sense of
the”method; MULPL here, has been proposed by Whitehead and Russell in the
begiﬂqhg of this century. Tre idea of Whitehead and Russell of such con-
structions by psychologically more primary objects (for instance by the
events for the instants, or by intervals for the real numbers) cdoes not
concern the instants only., This idea also includes the recl numbters, This
idea has found a general recognition since the events, or the intervals ar:
psychologically more primary conceptions, while the instents or the rezl
numbers are intuitive-mental constructions. That is why it is worth-while
the conceptions of the instants or the real numbers to be built by logico=-
mathematical ways from the more primary psychologically objects, as the
events or the intervals correspondingly.

The article "Two models of Time with Walker's definition of instants by
events" constructs two models of Time, using Walker's definition of the in-
stants by events, It follows from either of the proposed two systema of
axioms on the events, that the instants, constructed by events after Wsl--
ker's definition of the instants, compose an open-ended linear continuum

with a " dense" sequence of instants, I.e. Time continuum has the proper-
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ties, characterizing the real line. The expositiom of the paper is based on

Walker's definition of instants (without mixing up Russell's definitiom of
instants). The used here systems of axioms are simplier than the previous °
in the literature and treat only events, The Walker's definition can be in-
terpreted as definin;h;nstanta, belenging to the Present and borders, divi-
ding the Past from the Future,

The sixth article is on the measurement of Time in the axiomatic theo-
ries of Time, which development has been begun by Bertrand Russell, 4A.N.
Whitehead, Norbert Wiener,Gerald J. Whitrow. Here are formulated only exact
mathematical results, almost without commentaries, following Newton's mot-
to "Hypotheses non fingo". The result of this article is very small in com-
parison with the immensity and grandiosity of the problem of Time, This ax-
ticle further develops the axiomatic models of Time, proposing & measure-
ment of Time im all of them together. Any measurement consists in an estabd-
lishment of a correspondence between the measured object and a number, or
a vector, or some other mathematical quantity. Here we establish anone-to-
one correspondence between all moments of Time and the real numbers for
each of these Time models. Moreover, this correspondence preserves the or-
der, i,e, it maps to the later moments larger real numbers,

The article "On the derivatives of a2 composite function" gives the for-
mula of the n-th derivative of composite functions. (Professor V.N.Vrzgov
denoted on Conference of Mathematics and its Applications, Varna, 1C89,

[ ]
that the coefficients for such a formula did not determined yet.)
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VIII.,
This book presents seven unpublished yet mathematical papers, Some of

them resolve old problems, For instance, the problem of the geometrical
description of the polynomial ideals has been actual since 1873, when Max
Noether geometrically described the zero-dimensional polynomial ideals. The
first article here gives the geometrical description of the polynomial
ideals by differential operators and their corresponding sets of common
zeros on the described ideal in the sense of Max Noether's description of
the zero-dimensional polynomial ideals, The given here description is for
the polynomial ideals of the polynomial ring K‘_g], where X is a field,
:; € _f)j\ ,,11 being a2 universal extension of the field X . This des-
cription supplies with new properties Max Noether's description of the ze-
ro-dimensional polynomial ideals. The problem of the geometrical descrip-
tion of the polynomial ideals has been extensively elaborated, because it

is connected with the resolution of the systems of linear differential
equations,
The second article here introduces and studies functional spaces with

strong generalized derivatives, which are a generalization of Sobolev's
spaces, a generalization of the spaces of Schwartz, Bessov, Lizorkin, Trie-
bel., The introduced here apaceﬁ do not always coincide with Sobolev's spé-
ces, For instance, the space w ;'I y 1£ pZL oo , with A = a linear con-
stant-coefficient differential operator of order N , coincides with Sobo=-

lev's space Hg iff the operator A is elliptic (I is the identity operato:
A .-.o’l
Moreover, the introduced spaces N ] ™  are such that each solutior

tEé ;2;/ of the system J A, f = 3 € &.’) y kei1,...,m, belongs to
% BT U * k

the 5paceC\J2*11’...'Am . Fundamental laws of Physics are expressed by di-
ferential equatioms Their resolution has imposed extemsions of the studied
functional spaces. In this way have appeared Sobolev's spaces, Theory of

distributions, the spaces of Bessov, Lizorkim, Triebel., Although the solu-
tions of the systems of linear constant-coefficient differential equations
are expressed by distributions, i.e. by comtinuous linear operators, solu-
tions of more classical type are importamt for Applicatioms of Mathematics.

That {s why Sobolev's spaces are still actual amd are am intemsively deve-

1 O eg



IX,
loped branch of Amalysis, Therefore the imtroduced here functiomal spaces
are also importamt, Moreover,these spaces are genuinely connected with fum=-
ctional algebras of type C and their conmectioms are established in this
study. Necessary and sufficiemt coﬁditiona for a closeness of these spaces

relatively the multiplication of their functions are also formulated. In-

A1’.l"Am

clusions among the spaces and the Sobolev's spaces are in-

vestigated here,
The article also gives a generalization of Fetrovsky's parabolicity to=-

gether with characterizing inclusioms among corresponding functiomal spaces
These inclusions also demomstrated the necessity of a gemeralizatiom of
Petrovsky's parabolicity, although such investigations are new and for the
classical parabolicity.

The article "A note on the automorphisms of the tori" gives a new more
constructive form of the necessary and sufficient conditions for automor-
phisms of the elliptic algebraical curwes (i.e. of tori), and as a corolla-
ry proves some results ¢m integers.

The investigations of the automorphisms of the Riemamm surfaces of the
first genre are old amd traditional for Complex Amalysis.Such imvestigasicr
are included in basic courses as Hurwitz A., R.Couran®. Allgemeine Funktio-
nentheorie und Elliptische Funktiomen, Geometrische Funktiomentheorie,
Serre J,.,-P, Semimar on Complex Multiplicatiom, Lecture Notes im Mathematic:

The proposed here article "On a model of the real numbers" exposes a ne\
model of the real mumbers, constructed by the ratiomal numbers, analogous=-
ly with the well kmown models of Cantor-Méray, Dedekimd, Bahmanm and other:
The model, present here, is more matural from gnosiological (i.e. epistemo-
logical) amd omtological poinmts of views., The problem to comstruct the real
numbers by the intervals of the line im the sense of the method, built hers
has been proposed by Whitehead and Russell in the begimning of this cemtur;
The idea of Whitehead and Russell of such comstructioms by psychologically
more primary objects (for imstamce by the evemts for the instamts, or by ir
tervals for the real numbers) does not concerm the instants omly. This ides
also imcludes the real mumbers, This idea has found a gemeral recogmitiom &

since the events, or the intervals are psychologically more primary comcep-
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tioms, while the instants or the real numbers are intuitive-mental const-
ructions, That is why it is worth-while the comceptioms of the instants or
the real numbers to be built by logico-mathematical ways from the more pri-
mary psychologically objects as the events for the instants or intervals
for the real numbers.

The exposed here model of the real numbers has a resemblance with the
other models of the real numbers, as well as the other models of the real
numbers have resemblances, although each of these models has its importance
The model of Cantor-Méray amd Dedekind's model of the real numbers-are con-
sidered as the most differemt., But each of these comstructioms evidemtly
can be reduced to the other, Although each of them is independemtly and
thoroughly exposed in the literature, Here we shall show how easy and clea-
rly the constructiom of Cantor-Méray of the real numbers by fumdamental se-

quences can be reduced to Dedekind's construction of the real numbers by
sections, Let us remind the basic definitions,

Definition. A sequence i{rui} is called fundamental if for every natural

number m there exists a matural number ooy such that
\‘C,h- "C\.\{ A /v :?t:rr‘vl 203 12 n ,‘Sf ', n'? »

disjoint
Definitiom. The nonempty'subsets A amnd B of the set of the ratiomal

numbers Q form a sectiom A I B of Q if they have the following prope:
ties: I, Ifp €A and p'Zp , them p'€ A ; p, PLE Q 3
ket Q€ Band q' >q , then q'EB,(Q.Q'GQ\:

III. The set Q - ( ALJ B ) does not contain more tham ome ratiomal mum-
ber,

We shall easily reduce the comstructiom of Cantor-Méray of the real num-
bers by fundamenmtal sequemces to the comstructiom of the real Humbers by
sections, I.e, we must show how does any fixed fumdamental sequence {'rlk
of rational numbers determime a correspomdimg Dedekimd's sectiom A I B of

~

Q . Let 1-%_1) : pPEQ, P...érl- 1/m for\f m,Vn with n},nm, m,n,nme Z,
and 3-£q=qEQ.q,>r.+1/m roer, V'nwithnann,m,n,nmez%

Evidently, AIB is a Dedekind's sectiom by the comstructiom: Clearly,
A I B has the properties I and II of a Dedekind' sectiom. III. If a
AUB ,‘ae'Q , them we have
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r, -Um{a(;l+ﬂm ﬁm%m,%n,n;nm,

But this camnot be satisfied from more tham one ratiomal, since the sequenee
ce {rn} is fundamental . ®

Although each of these two constructioms of the real numbers is indepen-
dently exposed in the literature amd has its advantages,

Therefore the proposed in this article model of the real numbers has its
rights to be exposed also.

The article "Two models of Time with Walker's defimition of instants by
events" constructs two models of Time, using Walker's definitiom of the in-
stants by events, It follows from either of the proposed two different sys-
tems of axioms om the events, that the instants, constructed by events af-
ter Walker's definitiom of the instants, compose an open-ended linear con-
tinuum with a "dense" sequence of instants., I.e. Time continuum has the pro
perties, characterizing the real line, The expositiom of the paper is based
on Walker's definition of instamts (without miximg up Russell's defimition
of the instants.,) The used here systews of axioms are simplier tham the pre
vious in the literature and treat only events, The Walker's definition cam
be interpreted as defining the instants, belomging to the Present and as
borde rs, dividing the Past from the Future,

The attempts of mathematical constructions of the instants of Time by
the events, derived from Russell and Whitehead. Such constructions of Time
are also elaborated by Robbs, N.Wiemer, Walker, G.J.Whitrow, Thomason. 4.S.

in other articles

Madguerova has comstructedYtwo models of Time, based om Russell's defini-
tiom of the instamts by events., The nmatural sciemces are in accord that the
conception of the evemts is more primary amd fundamemtal, whereas the ins-
tants 2re intuitive-memntal comstructioms. Russell amd Whitehead have pcsed
the problem to obtain the comstructiom of the instants from the events by

a logico-mathematical way. Th# present article proposes two differemt mo-
dels of Time, based om Walker's defimitiom, amd having more simple require-
ments about the evemts. For imstamce, here omly the relations—< ("before")
and ® ("simultaneously") are required amomg the evemts, whereas the literas

ture usually needs the rolationl-44,-4°,-<' ,@ among the events, Here the
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constructions amd proofs use only Walker's definitiom of the instants (with
out a mixing Russell's definitiom of instants,

The constructed two models of Time with Walker's definitiom of instants
are based on two different systems of axioms on the events, It follows from
either of these systems, that the instants, constructed by the events after
Walker's definition, have the discussed in the literature properties of the
Time continuum of Mathematical FPhysics. This is the instants compose an
open-ended linear continuum with a "demse" sequence of instamts,which are
characterising properties of the real lime, The second model of Time in
this article is introduced not omly to show a new possibility of a constru-
ctiom of Time., The second model of Time avoids the conceptual imperfection
of the first more asimple model of Time here, All events are finite in the
first model, whereas the second model admits unbounded events also. The

on the events
first system of axiomsYis satisfied for instance by all nonempty compact
segments of the real line, The second system of axioms on the evemts is sa-
tisfied for instamce by all nonempty opem intervals of the real line, The
axiom zﬁS belongs to Russell, Wiemer, Walker,

The sixth article is on the measuremeat of Time in the axiomatic theo-
ries of Time, which development has beem begum by Bertramd Russell,i.N.
Whitehead, Norbert Wiener, Gerald J.Whitrow. Here are formulated only
exact mathematical results, almost without commentaries, following Newton':
motto "Hypotheses non fingo". The result of this article is very small in
comparison with the immensity and grandiosity of the problem of Time. This
article further develops the axiomatic models of Time, proposing a measure-
ment of Time in all of them together. Any measurement consists in an estab-
lishment of a correspondence between the measured object and a number, or
a vector, or some other mathematical quantity. Here we establish an one-to-
one correspondence between all moments of Time and the real numbers.for
each of these Time models. Moreover, this correspondence preserves the or-
der, i.e. it maps to the later moments larger real numbers,

The constructed correspondence can evidently be changed in many aspects

The poseibility of many kind of mesurements of Time reflects the real rela-
Tivy
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tivity of the measurement of Time, depending on the choice of the "periodi-
cal" processes, i.e. depending on the choice of the "clocks" and their com-
parisons and confrontations. The choice of the clock would reflect on the
choice of the basic dense sequenceg{; of instants of Time. The sequence
ﬁg& is constructed by a given sequence K of events. That is why it is not
difficult and it is almost evident to substitute the proposed here const-
ruction for a measurement of Time by such one, based on the sequence K of ¢
events, avoiding the aidding anquencei§<} of instants.

The proposed measurement of Time is for any arbitrarily chosen ee-ordi-
nate system of account and is based on the events of K in this system. Thic
assures the compatibility of the measurement of Time with Theory of Rela=-

tivity.
Coarsely, we can choose a suitable sequence of "pertedical" events for

K . As an example, K can consists of the motions of an"eternal" clock pend:
lum, whose motions are reduced to fragments. We can choose for% the in-
stants of the fixed positions of the pendulum. Then the proposed in this

article construction of a measurement will coincide with the usual measure-

ment of Time.
The construction of 2 measurement in any co-ordinate system of account

is necessary for the comparison of different co-ordinate systems of accoun-
The different measurement of Time in different co-ordinate systems of ac=-
count can as usual be assuredi and obtained, postulating the Lorentz's for-
mulas or Newton's formulas.

The article "On the derivatives of a composite function" gives the for-
mula of the n-th derivative of compesite functions. (Professor V. N.Vragov
denoted on Conference of Mathematics and its Application, Varna, 1989, tha-
the coefficients for such a formula did not determined yet-)



ON THE GLOBAL DESCRIPTION OF THE POLYNOMIAL IDEALS
Andreana Stefanova Madguerova

The present paper gives the description of the polynomial ideals by lime:
near differential operators, i.e. determines (roughly speaking) each poly=-
nomial idealZ] by sets of common zeros of differential operators over the
polynomial of‘Ej . The results proposed here include new properties of Max
Noether's description of the zero-dimensional polynomial ideals, 1873 .

The problem of the geometrical description of polynomial ideals has been
explored at least since 1873, when Max Noether has given the geometrical
description of the zero-dimensional polynomial ideals [j,é}. Van der Waer=-
den writes in all editions of his Algebra Lz] that : "The main problem in
the theory of the polynomial ideals consists in the establishing... a me=-
thod,which would simultaneously elucidate the construction of the ideal anc
elicit the geometrical relation between its roots and its elements." That
is, the main problem is the geometrical description of the polynomial : =
ideals in the sense of the Noether's description of the zero-dimensional
polynomial ideals, This problem is largely investigated because of ite con-
nections with the resolutions of the systems of linear constant-coefficien-
pértial differential equations, That is why the geometrical description
of the polynomial ideals and of the polynomial modules is important not on-
ly in the Algebra. Max Noether's descriptiom of the zero-dimensional poly-
nomial ideals is only considered in the literature as geometrically satis-
fying[LB]. Lasker has proved [2,4] in 1905 that every polynomial ideal is
an intersection of algebraically primary polynomial ideals, where we have:

Definition, A polynomial ideal :3 is algebraically primary iff the con-
ditions ab = 0(:] ) , a¢ O(Z} ) imply that there exists some integer Q su

such that b5 = 0(‘3 )e
Gentzelt has reduced the case of the algebraically primary polynomial

ideals to Max Noether!s theorem about zero-dimensional polynomial ideals
Y?.i}. Gentzelt's method is not considered in the literature as sufficient-
ly geometrical (aee‘;jlz "This method has been prcposed by Gentzelt., How=-
ever, the described method, for the sake of its imsufficient geometricity,
does not give in full measure a solution of the problem of the description
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of the polynomial ideals"). Let% be an arbitrarily fixed algebraically

primary polynomial ideal. Let N be the algebraical manifold of all its ze-
ros., Gentzelt's method consists in the following: The algebraical manifold
N of the algebraically primary polynomial 1dea1% can be parametrized as
followag = (gdv‘.q'“"gn) -=§ (‘2), ’Z - (’Z‘ S 2& ). let us fix ar-
bitrarily a value of the parameter 2 ’ »2 - ?ﬁ . Gentwelt has proved that ths
sat% of all restrictions of the polynomials of the algebraically prima-
ry idaaloig for ’2— ’20 is a zero-dimensional polynomial ideal in the polyno:
mial ring K [_‘é] . That is why the belonging of a polynomial p to the alge
braically primary polynomial ideal @ is determined by Max Noether's condi-
tions for any fixed value '2° of the parameter /2 .

Max Noether's theorem asserts that a polynomial f ©belongs to the zero-
dimensional polynomial ideal(‘;j iff some finite number of linear relations
among the coefficients of the expansion of the polynomial f at the point
x° are satisfied at any fixed point x° of the manifold N of the ideal‘a
i.e. the ideal :] is determined by the manifold N and by a finite number
of linear differential operators 4, ,..., 10’ with Aéf(x") = 0 for ’o‘rea
)Q‘x"e, N, J=1¢0eypy @ « Further on, the sets

N“-{x : DP#(x) =0 for Y p € z, , \pl¢m, Ve ‘*EﬂS S R
have been considered in the literature for the description of the polynomie
ideal | of C[x] » x€R" . In this way important results have®been obtainec
But these sets Hm do not uniquely determine and describe any ideal 3 of
c[x]. x¢€ R® , in the case n >2 . For instance, the following ideals of

* Y
C[_x] s X € R2 . ‘a -{x’; + x';_} and 3 -&‘:’ » xi’ have the same complex
44
of sets H;-i'x 1f(x) =0 , ¥ fég'}, ]I;*. ix : f(x) = 0,’#163 Band
5 :
N odx s £ w0 Hp ez | |p| 4 ,’freﬁ}. relx s P a0,
’

¥pez?, |pls1, V2ed "} m have N* = N}* , N% « N**, but it hold

p_._.lpé, + Thus we have N/ = N;° , N = N ', bu 0

«

simultaneously 3' ;‘3* o

The present paper gives a global description of the polynomial ideals in
K [g .....‘g’l by linear differential operators and by the sets of commom

4

zeros of these operators over the polynomials of the described ideal, Here !

is an arbitrarily fixed field. Let ﬂ be a universal extensiom of the field
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K, 1.0 .O- is algebraically closed and with infinite degree of transcen-
dentality over the field K . Let & = ( €, reees gh) with “3.; ¢ L, J=

Lyessyed It 18 enient to examine K|¥ ,... with 2, where
goeey conven L%q, ,gﬂ] é& G_O. ’
.O_ is a universal extension of K as have been noticed by 4. Weyl .

Definition., We shall denote by ZDk s RS Zﬁ s, the operator

Tk [g:\*——" A [g]

such that if

2 5 T\l "
D = E C'.’,\gt 7CT/6K we have DP = C‘C('!)'L § ;
I'r-lé.'h\ : \'b\e’.-‘m,‘?-é.!
L A
The operator A : K{_’S] ————sK[Q] » A 'Z Q"t/D 'a'té K ?
12} 2w

will be called a linear differential operator of order not larger than m ,
If at least one of the coefficients Ow , \k| = m , is not annulling at sc
me point kg‘ , we shall say that the operator A4 is of order m at g. 3
If the coefficients (X,L , \k|4m , do not depend on g , then the operator
A will be called constant-coefficient linear differential operator;

AP ,> at('e)c?‘.'DM' =T ol

s m 0“5“9— W

The operator

will be called an operator derivative of the operator A ;
A K-linear space & of linear differential operators will be called dif-
ferential-invariant if the condition A€ol involves that A(Q)Ed, ,quz:.
Theorem 1, Let E_j be an arbitrarily fixed polynomial ideal of K[g]. The
ideala determines a K-linear finite-dimensional differential-invariant sps
ce Ol of linear differential operators, such that the space of and its cor-

responding sets

Ha.‘“f‘ -{g t AL(¥) = O forVLeoCm‘) ' %renk o= ¥ng ez

where o(,(w)- {B(Q) " VBGQ{:E , completely describe the idealg « This is,
the complex of the space OC and the sets 'Mot.“()' '\Lqu: y determines "I
the ideal :S ( this complex is different for different ideals of K[g]). I,
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e. in the traditional terminology of the problem, the space oC.and its cor-

responding sets NGL(Q) y #qezf geometrically describe the ideal .
’
Moreover, we can choose the space O for the fixed ideal B such that the

coefficients of its operators are rational functions on the sets

= {
"Nd_(p')' L?—;ﬁ‘l J\mfv"

(Such a space ol can be constructed by an arbitrarily fixed basis %(3)
(fq,...,rm ) of the ideal B .Let é' be an arbitrarily fixed point of th
algebraical menifold F of the ideal a in the cese F # ¢ . (If F= ¢ ,
then then ;3 - K‘_g] and the corresponding space -iol .) Let V Ybe the
largest degree of the polynomials f,,,.:_.,fm and ?ﬁ(g" ) be the maximal

ideal of K\'lg] at the point ; . Let .L

in the canonical homomorphism

(] —— K -KLEl/ W(8).

The space of the linear functionals on Kv which are annulling over the

be the image of the ideala

ﬁ-

ideal I,‘;. » generates the space OLg- of linear differential operators,
annulling over the ideala at the point g" . A space 0( with the proper-
ties of Theorem 1 can be constructed by the spaceasvo(.g.kg. e-; >4
Remark 1. In the case of C[x], x € R s this is a result of A.S.Madgue-
rova [:5-71. In the case of Cs_g] 5 ge c? , the result can be precised.
A similar descriptionof the polynomial ideals of C[‘g], 23&' c? , follows
from the results [_5-7], noting only that we have z = x + iy , x,yER1. for
any complex number 2z .That is why the polynomials in complex variables
are polynomials in real variables with complex coefficig'nts. Moreover, any
ideal 8 of c\‘f“...,z,ﬁl uhiquely generates an idealD of C x‘....,xz“}
where (¥, /310 851 )E 602, MEaRgsl. fansre R® | After the results [5-7J, the
ideal B‘ is umiquely determined by a C-linear finite-dimensional differen-
tial-invariant space O of linear differential operators on R°® and by the
corresponding sets No(.(Q) ’ qGZfl . The coefficients of the operators of
the space ({ have upper semicontinuous modules.

Definition., A polynomial 1deala of K[g] will be called a primary po-



S

lynomial ideal‘zs in the sense of G.E.Shilov (or Shilov's primary ideal) if +
the idealg is contained in & unique maximal ideal of X [%1.

Remark 2, The maximal ideals of K[_g-] are determined by the points Z_‘;’ (see
[2]). The maximal ideal M of K[g], determined by the point zg will be de-
noted by M = M(g') and will be called the maximal ideal of KLQ] at the
point %' « A Shilov's primary idealg of KL@}, contained in the maximal
ideal M( g“), will be denoted byg :8 (g’) and will be called a Shilov's
pPrimary polynomial ideal of K\-gl at the point ‘g' .

Theorem 2, Any Shilov's primary polynomial ideal E of X \_gl has the kind

92 §e K, (M) -0 VA,

where O is a K-linear finite-dimensional differential-invariant space of

(1)

linear constant-coefficient differential operators on K['s:l and the identity
operator IEX (If=2f ) .

Inversely, the set (1) is a Shilov's primary polynomial ideal of K‘g}at
the point g' for each fixed K-linear finite-dimensional differential-inva-
riant space O(of ligear constant-coefficient differential operators with
I€ol , and for each fixed point ‘%' ,

Corollary. Each polynomial ideal of K Lg] is an intersection of Shilov's
primary polynomial ideals,

Proof of Theorem 2. Let the Shilov's primary ideal :S be contained in
the maximal ideal \n, -\u.(g*) (see Remark 2). Thus the ideal U is of the
kind % = D ('f:). The ideal ES is finitely generated after Hilbert's Theorer
on the basis, let 3 be generated by the polynomials

om0 Gt inet

Let N be the largest degree of the polynomials f1 joe e fm .

Let us scrutinize the natural homomorphism

Klg) )/

]
and let us denote the quotion ring K[\g]/mn” by QN . LetI be the image

X

N % % 2
in Q of the ideal in the latter homomorphism. 1 is an ideal of Q o

Let Gq?g. be the unique K-linear finite-dimensional space of all linear fun-
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* 7 ;
ctionals on QN , annulling onI . This space ,If e uniquely generates

the K-linear finite-dimensional space OC -o{,(a ) of a1l linesr constent-
coefficient differential operators, annulling on B at the point g’. The
space O(:ris the prototype of"lr g,. whe::'e,,D“L corresponds formally to the
functionals on X,’t. Thus the order of the operators of the space O is not

larger than N .,
This space (X is also differential-invarian{ which is involved by the

following : Let AEoC . It is sufficient to prove that if

A2 P o -

4
with some k: >0 for a corresponding a”&”‘ 0, k= (k:....,k: ), then the

Operator

A“,0,0,... ,0) € ol .

We have that e ) (@)
AKSC@;L q" %“\D A“\ (5

ift, ge€ th] and f €& :S . For the polynomial
- - t
4= (8- &)
we receive that

; (1,0, - - .,D) o . (450, v 1y
o,—.A(gQg):A ((£")=0, i.c.A & ol )

Therefore we have inductively that all operator derivatives A(G' EX .

Moreover, the identity operator I € ol , since we have B z j(g"),

Inversely, each fixed point g"'and each K-linear finite-dimensional dif-
ferential-invariant gpace X of linear constant-coefficient differential
operators with I £EQ( , determine a primary polynomial ideal in the sense
of G,E,Shilov in K[_};] ;

o ‘gj(%;«r):{g: ge'\(]';g], AS(‘%’):O gcr, W\eocg

@8 it is involved by the following: Let N be the largest order of the opera-
tors of C£ The space X uniquely determines the corresponding space "t}f’g*
of linear functionals on Q . Let I* be the ideal in Q on .which 1(!:9&11]{f
all functionals of Gw’f* are annulling ,



-
[ e

<
Then the ideal 3 (g’) is the prototype ofTL in the canonical homomor-

: MM
(] QY=g A (g,

The set D (ﬁ*) is an ideal in KL‘g] since the space oL is differen=-

phism

tial-invariant, wm
Froof of Theorem 1. Let F be the analytic variety of all zeros of the

ideal Z’j . If F = ¢ then we have ‘3 = K‘g] and the space o = io} . Let
now F 4 ¢ and let Q'€ F . For the arbitrarily fixed g" € T let the
ideal ‘} \5, be the image of the ideal 8 in the canonical homomorphism

¥ N
Klg] ALl /W7 (¢7) = Qge

where N is the largest order of the polynomiale of & fixed finite basis

of the ideal 3 . At first we receive the K-linear finite-dimensional spa=-
ce "‘[_W % of all likear functionals, annulling on the ideal ;S\ga. of ng .
The spacew'g! uniquely determines the K-linear finite-dimensional space
0(.%1, of all linear constant-coefficient differential- operators on K[_g\,
annulling on 3 at the point g*. Further on, sinceg is an ideal, hence
the space °"\g* is also differential-invariant (confer the proof of Theo-
rem 2), Moreover, let d,gb = &'OE if we have \S*’ *, F . By the set of all

Spaces &(OL gﬁg é*

We can construct a K-linear finite-dimensional differential-invariant
space o of linear differential operators on KE} in a way that if A €ol
then at each arbitrarily fixed point %’ there exists an operator A.s. €
ﬁbga such that Ag. is equal to A at the point ‘g" in the sense
LAS't -g(\%) ] Gl - [ Ag (‘%)1~§___~§t , \d S EKL\’S] ‘
The space ol can be chosen such that the coefficients of its operators

to be rational functions on the indicated in Theorem 1 subsets, We shall

construct ol more effectively to prove this : Let ¢g~* be the canonical

deri hIg]——K[8] / MW"y

where g" is an arbitrarily fixed point of F , ILet

homomorphism



(0]
.

(bg*(o&
Wik Qi -5

The ideai < of Qg, has a basis

b v 4 5
%i}gﬁ] /bg,z ; d»O,‘,...,‘k,E,

where the elementa

. o\,
Qél‘l\{-_l" i d

e\ )

QLlﬁe,lé)/

with B°t- 0, Q>0 if g’e F , are linearly independent ; B‘:L are conse
tants in Z but eventually depend on S*. Therefore we may determine

-—:'ﬂ--‘3 ) A‘A 2 | *'
-.-.. Z [wod \oo)y T30,

0 i

Ay =03 A‘EL € K and if kl>\k.\ , then &%, = 0 . Thus we receive
A N
Yo g )
Q‘ﬁ"/zg* i< X N AT PR TR TP I A ’&’
=04 orbs Cu ‘
n ek )
Q> 0 2 e peradiin 2om Aoz
P m\é){ L, 370 1 Qe
Y ‘*"m"\i\é\is\
o a»rZa,‘Hz,vo
3P QREN: un.,,,ma\i\

Dgy-L, Uz-5Y 0]/



Then we have

o Py 2Dy 742 o (e,
dpg ( ) mléQ/D /P;(\g') Q<Iﬂéﬂ',%+l@;l'tl4w.\i\ .*'(g')
[T et e 20 M) D R(gh /411 2" (wd ).
That is why the sp;a—ce OL".";' has a basis y 4 J O \
J% (0&%*) ,S:D : Yoo with v 2 ll,,_-— (@ /np,\‘ *&ZQA'-(?)D/{&
Q <lvl & M? N4y, 1ne| .‘.L\WL(‘\ 3 ‘Tf,&:[),-\,..\ ,'QS

The coefficients A’I,L are rationals relatively p4(§ Yossiny D (g ) yand
their derivatives ¢
Y—

where%‘(g Yesnnd pe’( g)} is a fixed bssis of the ideal a L
the matrix (/b-‘t(g'))i " et the point \g' has the same character relati-

vely its adjunctive elements as the&matrix (/bb'c-(€")>.) ¢ ‘then we can
)
A L2

choose at the pointgﬂthe san/;)z yeeen Z ¥ as at the point %" ~

L,.
(here g‘ ,g"' EF ). Let C

RaoLi and their derivatives. We can

of the polynomials P, (‘g )s ’ﬂ. P{/( é) n o T 8 c
choose the same Zt' gecey Z t out of the set CS . Therefore we can con=

be the set of all zeros of at least one

struct the space ol such trat the coefficients of the operators of ¢( to
be rational functions out of the set C(SD . =
The assertion of Corollary immediately follows from Theorems 1 and 2 .
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THE GENERALIZED PETROVSKY'S PARABOLICITY AND FUNCTIONAL SPACES
WITH GENERALIZED DERIVATIVES
Andreana S, Madguerova

A generalization of Fetrovsky's parabolicity is given here, Some aprio-
ri estimations for the generalized Petrovsky's parabolic differential ope-
rators are investigated. The results are new even in the classical case.
Some inclusions among functional spaces, characterizing the parabolicity,
are studied. The strong generalized derivatives (introduced by the—author
D-4}) can be extended in severazl directions. Fundamental physical laws
are expressed by differential equations. In this way Sobolev's spaces, The
ry of distributions, the spaces of Bessov, Lizorkin, Triebel are introduce:
although the solutions of systems of linear constant-coefficient differen-
tial equations are expressed by distributions, i.e. by linear continuous
Opérators, solutions with more classical properties are important in the
mathematical applications. That is why Sobolev's spaces are actual even

today and ar an intensively developed part of Analysis. The spaces

w‘i“...,lm of functions with strong generalized derivatives are ge-
neralizations of the spaces of Sobolev, Schwartz, Bessov, Lizorkin, Triebe
They do not always coincide with Sobolev spaces Wg . For instance, the
space w;’l , 1< p4 0o, where A is a linear constant-coefficient dif
ferentizl operator of order N, coincides with the Sobolev space Wg e

if the operator A is elliptic. Furthermore, the spaces

A1’...'Am
¥ X .
“reé such that each selution f ec:f of the system {A f = W k-1,---.mi
" P M v -
u, € %* x » velongs to the space x 1k M . Moreover, it is gi-

ven the necessary and sufficient condition for [to beitiese gggqgg.algebras
The generalization of I.G.Petrovsky [ﬁ]of the classical parabolicity is
@ recognized stage in the development of the theory of the differential
Operators. Petrovsky's parabolicity has been studied by I.G.Petrovsky and
its scool, by 0.£.0leinic, M.S.Agranovich, S.D.Eidel'man, M.I.Vishic, M.I.

Ventzel, S.D.Ivasishen, I,¥.Gel'fand and G.E.Shilovl;él made a generaliza-
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tion of Petrovsky's paraholicity in some cases. G.E.Shilovrdenoted in Yj']
that a future description of some algebras of type C"may serve as a basis ¢
of a specific classification of the second order differential operators",
Indeed, elaborating such a description, the author observed the necessity
of a supplement to the classical definition of a parabolic operator of se-
cond order with complex coeffitients, so that the same operator not to be
Simultaneously elliptic and parabolic, which is a natural requirement to
any classification (see Definition 3 and [8,9]). Moreover, the description
of the algebras of type C, their inclusiopns and their comparisons with the
e

classical Sobolev spaces open and impose the necessity to extend the

definition of Petrovsky's parabolicity. For instance, if A is a constant-

N1

coefficient elliptic operator of order N =>2 then the space W_ with

the corresponding supremum norm contains the space :’I

N-1 WAI
LI | M

(Here I is the identity operator.) But it is not so if A is a parabolic se-

cond-order constant-coefficient differential operator, or a parabolic af-
ter I.G.Petrovsky differentied operater, or a generalized parabolic diffe-
rential operator, introduced here. Then we have

w S oM de!
Thus there exists a function £ € Q\NQ i’I » which does not have all conti-
nuous partial derivatives till order N=1 inclusive, f é ‘NE,” . This is

4 new result even in the case

A =2/9¢+ adfOt | a0,

o
The same is also true for the spacesw“ s where of is the linear dif#
ferential-invariant space, generated by a generalized Petrovsky's paraboli.

differential operator A of order N>2 ,

\E

Similar results are true for the spaces W;J o 140400
Definition 1., The system (.&q )q y q=1,4.4o,m, of linear constant-coeffi-
cient differential operators in n+1 variables, n 2>*1 , is called parsbo-

lic of order N>2 if each operator Aq( is of order not larger than N ;
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at least one of the operators Aq is of order N ; each operator d()‘ telo=-

nging to the linear huul of the system (Aq )q , q=1,...,m, which operator

is of order N, can be transformed by some real linear nondegenerated tranc

form I of R™' into a differential operator A of the following kind:

(1)

m
Au -T > a_, D° D 1 ZDL"k 2 , P 4

m
+t Pj(D'Dt) U, with u = (u1,...,um X5 5 2.7 \bsj\ £0 ,

j=1 J=1 \8| < K

whereoélsjAN-k if ‘y-k,io, and 1_, =0 1if Nek ; O k KN ; P

s] J

J=1,...,m, are polynomials of D and D, of degree less than N and their

degrees relatively D are less than N-k if N>k and O if N=k ; u

.Jt ’ 1

ey U are complex-valued functioms in (x,t) ; % U iy ; ‘Jﬁ"ﬂ, = A L2
=Au; s = (8,900098)) ez‘j § X (LiyeacyEag) ,’D:’b/’bd..

Remark, The definition .f the generalized parabolicity of a system for
the nonconstant-coefficient case can be received exiging the requirements
of Definition 1 to hold for any point (x,t) of some domainy . The trans-
formation L can depend on (x,t) € l‘y

Theorem 1. The Definition 1 is a generalization of the Petrovsky's par:
bolicity 5 in the constant-coefficient case. (The proof in the noncons-
tant-gnefficient case is zlmos* the same.)

(In the particular case of m = 1 we have the following simplser

Definition 2, The linear constant-coefficient differential operator ﬂﬁs
in n+1 variables, n > 1, of order N> 2, is called parabolic if there
€xists a real nondegenerated linear transformation L of R**! such that the
operator Iﬁl‘ is transformed in an operator A of the kind:

()E_—‘_“
i- ansnlsq.nif'kz bD+P(DD) :lblp‘o

|s| +1_ =N S t [sl £k |s| £k

where 0 £ 1, Z N-k if N-k#0, and 14=0 if Nuk ; 0K k N ; P is a polynomi-

al of degree less than N and its degree relatively Dt is less than N-k if
N>k, and 0 if Nek :

3 D =0/x ; '(xh...,xn) :Q:f)/?'\:‘,



S-(S1lloo,sn ) e Zz [} ‘S‘- S1+ooo+sn .

Remark. Definition 2 is equivalent for the second-order operators in two
variables to the following Definition 3.

Definition 3., The constant-coefficient linear differential operator of

second order

3+! :
o= o & /o +20~fb/91’3‘h1'0'o?.® N "Z jz /’ax’%i’f

AT T4A

. R
s called r:rabolic if Gy Q,,~Qy = 0 and if Oy £ 0 then Q,, /Oy,

real, if Qz, # O then @, /Qg, is real.Here the constants a ™%

k
Theorem 2, The Definition 2 and Definition 3 are equivaleni in the case
of linear constant-coefficient differential operators of second order in
two variables,
Theorem 3, Definition 2 is a generalization of the Petrovsky's paraboli-
city in the case of one linear constant-coefficient differential operator,

Theorem 4, lIet A, B ye++yB be linear constant-coefficient differential

1
operators in variadbles (x,t), x-(x1,...,xn) y, N2 1; Let A be parabolic (a
ter Definition 1) of order N > 2 and respectively Dt let its order be N-k,
CL k& N, et

i E
A s S N-k s
A -Z ag D=¥D + Dt bS D™ + P(D,Dt) , where 0 <€ 1S <

s1+ 1, = ¥ . 1sl< K

N-k ; P is a polynomial in D , Dt of degree less than N and P is of degree
less than N-k respectively D, (see (2)). Let all operators ByseeesB be of
orders less than N and respectively Dt be of orders less than N-k,

Then the operators A, B1,...,Bm do not jointly dominate the operator

N~k
Bl o™ y k-2 ke P 0-0n oeg, 0 4gé0°. I.E; does not exist such a cons=-

tant 22 that

IDF™g ) < (I Agl+ gl - 1 gl

for‘v g € c;@g , where @S is the set of all real-valued infinitely dif-
ferentiable functions with compact supports in i(x,t): \(x,t)léq]s

bebcm pEAg
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Remark.The additional condition in Definition 3 for the parabolicity of
2 linear second order constant-coefficient differential operator assures
that the operator?ﬁ? cannot be simultaneously parabolic and elliptic,
which permits the usual definition for the parabolicity of linear second-
order constant-coefficient differential operators. For instance, if B =
(9 Nx + i?/gy )2 then we have for the operator B that CL‘OC\_GZ-Q.?; =0.
But simultaneously the second order homogeneous part of the characteristic
Polynomial of the operator B is zero on R® only at the origin of the pla-
ne R® . Thus the operator B is also simultaneously and elliptic.-But fun-
damental exigement to any classification is different classes not to inter-

sect,
Lemma 5, Let A be a linear constant-coefficient differential operator ir

——

[#]
n variables. Iet X be a compact in R® with K = K s K # 08 . Let the space
Ly of complex-valued functions, L“g;l;.I , be the completion of C"‘ K13¢
4 norm P , which is stronger than the convergence in the distribution spae
o@’ . Let there exist for the function f € L, such a sequence {L?""‘/k i

V'Lgme c"’]K N TSI )
{‘-ka W »f , i.e. ’C((Qm_g)—_-)o and S'A (Q“‘I e

If for another sequence i’k.ymk ’ VWM € Cw\K y we have

A

3 5 v 5
{\‘Pm]‘ >f and th \th »G , then we have

F=Gin 1, .(Here C™ is the set of all infinitely differentiable func-

tions on R" ,)
Definition 4. Let the function f € Ly . Let exist such a sequence {\9‘1
v Ug,me c"\x, that

* o > o>H ;
%.Lg'ml >f and S’A L?'m} — in T
Then the function H will be called a strong generalized A, derivati

Ve of the function f and will be denoted by A,f .

Theorem 5', If a function f ¢ I, has an A, stréong generalized deriva-
tive, then this derivative is uniquely determined by the function f and by
the operator A , (This derivative does net depend on the croice of the

auxiliary sequence Ug“’k , used in Definition 4) .
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Let Agreeny A~ be linear constant-coefficient differential operators.
The subspace of Ly , consisting of all functions f€ L, with KAy seeny
A, strong generalized derivatives A1g;..., Am,f in L , we shall de-

A L A
note by W, LA

The strong generalized derivatives are extended further in the follow-

ing direction (cf.[ﬂ): 1. It is constructed an extension of the strong
generalized derivatives in the case when the Yase spaces z, have a more

complicated structure than the spaces L*:L,I :

2. Tt is constructed an extension of the strong generalized derivatives
in the case when the used operators A1""' Am are not linear constant-
coefficient differential operators;

3. It is constructed an extension of the strong generalized derivatives
in the case when the function f ‘belongs to the space z, and its strong
geéneralized derivatives A ,f Dbelong to the sPacesz . The correspon-

g ey il
ding space of all such functions f 1is denoted by S\'\F 1 055

’
4. It is construct an extension of the strong generalized derivatives
in the case of functirns, defined on manifolds.

Now let w‘f

be the Sobolev space of the restrictiona on K of all comp-

-léx-valued Pfunctions of L, with partial derivatives of order till X
inclusive in 1, . Purther, let L, = Ip = LP(K) y P=1,2,¢.4300 . Here L4
is examined with the supremum norm for the importance of the continuity
and for concisement.

Theorem 6. Let A Ye a linear constant-coefficient differential opera-

tor of order N> 2 in n 2 variables, We have

Ad _____ N 1 &
S\JZP ===y for P < OO0

if and only if the operator A is elliptic.

We have

A% 1 N=-1 L N-1
N f1 Gl Nons * RIS

if A is elliptic.(and only if A is elliptic for n >3 ),

Theorem 7, Let A be a linear generalized Petrovsky's parabolic (after
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Definition 2) constant-coefficient differential operator of order N> 2 in :

A / » N=1

n > 2 variavles. Then we have

7% Z
o0 oo
7
and mereover,
>
w A,oo.’ A(B) ’.o.’I( / wN-1
@ ” oYy

where A(S) is an operator derivative of the operator A , S = (81,...,811)
€ 2, . This is , if ' 0 0o
A -Z:(,&‘.Dz , then A(s) -Z 0&5.(5),D -
(7 s<@

Definition . A set o of linear constant-coefficient differential ope-
rators is called differential-invariant set of linear constant coefficient
differential eperators if o/ is such that A €gl implies that all operato:
derivatives A(B) y 8 & ZI: y, of the operator A ©belong also to the set of .

Theorem 8, Let the set ol # § of linear constant-coefficient differenss
tial operators Ay geeey An in n variables is differential-invariant. lLet

K be a compact connected set with XK =K , KCZR" . Then the space

& A L l
Q\le (k) .V 001' ' m (K) is an algebra of complex=-va-

lued functions of type C on K respectively the pointwise multiplication an

the norm n
\\Ill-; SEp l A f(x)l .

Theorem 9., Let the system O = ( Aq ) Q= 1,s0.om, of linear cons-

s
tant-coefficient differential operators :e differential-invariant and para-
bolic (in the generalized Petrovsky's sense of Definition 1) system of or-
der N >2 in n 2 variables. Then we have
A\ . ¢ =1
o0 ]
Theorem 10, If the system ol = ( Ay )q y q=1,...,m, of linear constant-

coefficient differential operaters is differential-invariant system of see¢

cond erder in n:'s 2 variables and if

W CZ—Vas
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then o is a generalized parabelic system (in the sense of Definition 1),
Remark, Theorem & shows the sufficiency of the differential-incariance

of oL for the algebraicity of the ﬁpacew . It was proved [‘8-103 and

00
the necessity of this condition.I.e. it is proved that 11Wi is an al-
gebra of type C then the spuce of is differential-invarient.

We use un the proof the following generalization of a theorem of K.de
Leeuw,H,Mirkil Lﬂl:

Theorem 11, let A, Ay yeeey Ay be linear differential operators for
which we have: 1. The coefficients of the operators A,,..., A are defi-
ned and are continuous on some neighbourhoed UC__R™ of the origin O =
(0,...,0) 3 2, The orders of the operators 11,..., im are not larger
than N on U ; 3, The operator A is defined on U and there exists
2 constant 2£ , for which

\A%(o)\ <X (\lA‘%\\c%-- A \\c)

ror'v g € ,_-,%’ with¥support - supp gC— {x :lxld&kc:u for seme £ > 0.

Here ||t | = swp \ f(x)\ , 2€ oD%, Then it is true the following:
x €R?
'. The order of the operator A at the point O = (0,...,0) iB net larger

than N ; 2, If we denote the homogeneous parts of the operators A , Agn
An of order N by AN',Aﬁ gesey Aﬁ correspondingly, then we have
m
N 2 ! t the origi h
AV (0) = s c AJ(O) a e origin , where c,,...,c are
constants,

Corellary 12, let A,A1,...,Am be linear differential operators with
coefficients in the open set UCT R" ,

k

'k - a Dk ’ A ajk D ’ J- 1’00., m " for WhiCh

kieM K

1. The complex-valued functions ajk s J o k= 1,...,m , are continuous ;

J -\kléN

2. The orders of the operators Ayyesey Ay are not larger than N on U ;

3. There exists such a constant £ , that

“As“c P ﬁ(“;&1 5“0 +...+“Ang“c ) for’dg Gg@uwith sur
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perts , supp gc—U and diam supp g <€ for some £ >0 , then :
1. The erder of the eperator A on U is net larger than N ;

2. We have on U that

L c1(x) Azg * oee ok cm(x\ Ag , where c1(x),..., cm(x) are com-

plex-valued functiens on U H
3. If the functions a,(x) , ag(x) , |k| =N, 3= 1,...,m, are conti-
nuous on U and if

rang ( ajk(x) )(k = P m , then

the functions cj(x) , j=1,...,m, are alse continuous on U ,

The generalized here Theorem of K.de Leeuw, H.Mirkil [11] is abo.ut 1li-
Near constant-coefficient differential operators.

We have constructed the following extensions cf the spaces
(see {3,4,10]):

I. Let the sets L G be subsets of R® , n>>1 , with the closures Ed,'

¢, coinciding with the closures of their corresponding open sets,i.e.

o ' Lo A
ﬁh‘- .?* : and G = G ,whereef-egf ,andéjo is

@ family of indexes,

Let \T[‘)( K::L) be a linear space of complex-valued functions on X

With a lecally convex topology, generated by the set of seminorms

x } ’ S-O ’ 1' 2 ) see .
S Jds

The corresponding locally convex topology of D ( Ka(/) is as usual with
the base of neighbeurhoeds U, of any function { € vpo (K,) of the

kind
u"I’ ¥ { ol ‘Tp(K") ) tht('-g-‘\‘)‘if,h ""41“'1'31 , €20
Let be a up-ordered Shatunovsky system, i,e., aj’ is a partially or
dereqd family of indexes such that if ol , {5 € then there exists %GJ
with

.L-_é 5 y P “._é% ’
( In the expesed case it suffices thatv -LO, SO SN 1 y dbut there

®Xist interesting generalizations.i
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Let the space 7‘9 (G) be the inductive 1limit of the spaces hW(Ka") with .
3;,%,» W =G ifaap o K SK,  TAK) = T744,)

and the maps 'L: be inclusiens, where i:’ are the maps frem the definitien

of the inductive limit.
Definition 5. Let be a system of locally cenvex topelegical spaces,

Xd, and continuous maps LE :-)g,—>)§_°, ol .f.‘aey y ol £ [5 ’
m =&XL? 'lf Y d, Pe bok ’

where qy? be a up-ordered Shatunevsky system of indexes, such that

1. 1 ig the identity map for ¥ o e ;
0 B 'S
- =0 .
2 p Ly = 10 1 oLt p=<8

Let us introduce the relation of equivalence in the space-)( -U )Q&

S0 that the element x,d- e)(:&and '.I-rbE,XP are equivalent iff there exists i:

dex E.(y ,OL,‘% ,(5-_-_;8 such that

' &

Let ‘:;C_ be the space of all classes of equivalence in the spaceX -

I

Let \ be the mapping LUL =}Ci—-—->)C which cﬁeapondu te any ele-
ment ar.d' e -)Cd, its class of equivalence. The space -y examined with th:
Most strong lecally convex topelegy in which all maps Lo o oL € ;70 , are

continuous, will be called the inductive limit of the system of the lecall:
convex vector spaces Xd., and their inclusiens LE o (3 c (bp 5

Further en, let the space ‘Tﬁ (G) be with the strongest lecally cenvex
topelogy in which all maps '\.‘f :/7‘) (Kd_’) —->5P° (G) for ¥°L€ﬁ are
continuous, where lJ_ ’ cLe(b’ y are the maps from Definition 5 of the in-
ductive limits,

Let the space ry‘)’fS) be the dual space of the space {\PQ (S) , where S
May be some of the sets K.L, ot.eo“f or & . I.e.hr/‘)'(s) is the space eof
211 linear centinueus functionals f defined en the space (s) .

The functienal r(Lg) for Lge?" (S) 1let us denete by ( r,Q) .

Let us fix a methed by which every k\) 67‘) (S8) defines a linear conti-
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nuous functienal on the space D (s), denoted by (Y ,Lg ) and such that
the functional (Y , Le ) on the space S}a (G) is the correspending projec-
tive limit of the functienals (Y ,\y) on the spaces Da (K) +* 53 ,

requiring in additien that the family i':(/" (Kd)k ,cLEQ_\Jﬁ is regular (see
Definitien 7). o

)
Definitien 6. Projective limits. Letw be a system of linear locally

o)

convex topolegical spaces X‘L with projective maps ".r., : Kﬂ,ﬁ—-——)]r[*5 ,ql_\,./-P}

ol , P(; 3 , where ij) is a up-ordered Shatunevsky system of indexes anc

ol _ )
the prejective maps ‘L; are such that 1. Ld_’ is the identity map_f_or Vu&,

.o ,
2.‘-!5 LOE.:-.. Lz ,%“ﬁ(‘)éd', d’l[b-.%ey.

Threads will be called any constructien of the kind
: .P y
X-{X&e X&, ‘:Lxd'- XP' d"?,';r[b ,d—,{be b.
The linear space of all treads X = limproj iX‘U Ld‘ » ol ,[bééjo/k
will be called a projective limit of the system p of the linear lecally

P

convex tepolegical spaces X, and the projective maps { —,d ,Pé .

P !

if the spuace ir is examined with the mest weak lecally convex topolegy,
r

in which all maps L‘* e < —-——)Xd' are continuoua,VoL e;jo s Where

L X = xw . :
< P ?,f eg

Definition 7. A family =P Ey L oL B el 3

is called a regular family if any bound subset B of the inductive limit

I

n
X 1is equal te id' (By) for seme oL € and for some bound subset B, of

the space xd', where tne spaces X , the maps ld’ andg satisfy the con-
ditiens of Definitien 5.

Theerem ( Gedement [_12], V.P.Palamedev [1'51). Let% be a regular fa-
mily 51 qu . 'Lb , d‘:‘éP N pI € &f satisfying the conditiens of De-

o n

finitien 5. et X' , ieg ,(X )* be the dual spaces of the spaces X,
In o«

- b B ol € correspondingly and the mappin
X o= imgg 3 X, 1) yol P L ' o
A‘é’ be the dual mappings of 1, ,of .[5 6—% They it helds the natural

isemerphiem
(}[,n )! = 1imney {x:b 'At ’d‘é(:” ¢’Pey} :
That is why the convergence in the dual space V) '(S) is the usual wea)
cenvergence, i.e, (1'“)____._.,.! y where f_ , fé(m'(S) it
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/O
%-(fm-‘g)}————)(f,cg) for#l-g 6\9 (s).
Definitien 8, We shall say that the space (8) is a space of funda-

mental functions and that its dual space (;3 '(S) of 211 linear continuous
functionals onw (S) is a distributien space.

let the operators A and B with A : %9 (K,) W(Kw),)dd_ey,
~
B J/D (Kd_)_.__._;I/(‘)(Ko(_) ,Vo{,egjo, be linear continuous eperators for
which

( A\.V,Lg) - (W, BL@) for Vk? ' Vl{/er:(/‘) (X ,Vo(.étf and let
12&«; -mﬁ’kg .‘thevip(xd_) ol ,‘V(begf .uL—_éPp‘b—A i B

Then the projective limits of the operaters A and B exist on the space
'V) (G) , and will be deneted alse by A and B cerrespondingly. We shall de

fine the eperator A en the distributien space %'(G) by the equatien

def,
(Af Q) =emmmm (£, 3Q) .

Let the space of cemplex-valued functiens 2’* (KOL) be the completion
oL
of the space ‘}’/3 (Kd,) in the cemplete family of seminerms{ QBES , which
induces a lecally cenvex topolegy in the space &, (K, ) and“f/a(xdl)
(:&0* (x d.)‘ If the sequence {(q,m:&, L@Me{m (Kd.,)’ is a fundamenta’
Cauchy sequence relatively the family eof seminerms s.g'fé' }S y determing the
' : b

function n € z* (Kd.) , let thés -imply that the sequencel iwkgm is
a fundamental Cauchy sequence relatively the family of seminorma{g-g g’
deteming the function g € ‘I/D(x’) . Then we can extend the mappings \

ol..‘[h e/ , on the spaces Sl (x,

o
in the follewing way:

'y B

Dol Zatx )L (& p) \*® iswith ) hag, where h an
g are from the latter requirement.

Now we can construct the inductive limit d* (G) of the system Q’a (K.L
'1-2 , oL-_‘.-P ; aL.,(‘b(:PEf’k : fZ, (G) = 11mind§/@, (K.b),i,* ud‘""l"'n;‘.
Since the requirements from Definition 5 of the inductive limit are satis-
Tied by this system. Iet the methed, by which each \Y € ‘Vc) (S) defines a
linear continueus functienal on W (S), be extended on z,(s) : any fune-
tion Y £ M, (S) defines a linear centinuous functional on l7:)(3), dene*
ted vy “‘P’Lg) and such that (\y ,Lg) on W"(G) is the cerrespending prejec
tive 1imit ef the functienals on 'VJ(KOL). oL € ba . Moreever,let the te-
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Pology in the space ’;f’, (S) be strenger than the cenvergence in the distri-
butien space ‘I/a'(s) in the mention sense, We shall use the netatien

I[ka —2_ 5% in the space &0* (s) iz gcg (Ee,“- A) —>0 i‘orhlg when
S- K.b , and g; (zf,.m-ﬁ&)——yo forvg for ¥ &ngp ’XMGXIM{
X EXR ,when S =G .

7
Let {&mk —2-40 in the space &e, (S) implies its weak convergence in

the distribution space Cm\(s) ,i.e. implies that

{(&,m,(g)i——-—‘:ro for’dgge %(S) ,S-K&,G,Oﬂeg s

Jlet H=M mfy‘)'(s) and E , Mg i.. (S) invelve that H = M in &f,,(s}.
(Some of these requirements are censequences, but since the main subject he
re is not this extension, we shall net scrutinize the spaces %* (S) minute

1y in the general case.)
Theorem 12, Let the functien héz* (S). Let there exist a sequence

i(grm.g ) &.QME% (S), such that L('?wn.&_‘!_‘“’h inw* (S) and
{A Qul—2—>H in Lx(s) . If there

exists anether sequence {'L{/mk, \-\/hew (S) , with
W s o YRl e

then we have H = M in i} (s) .
Preef, Since (Lg“ -V, ) ——>»0 in the space mt(S) » then (@ -

‘-\‘ )=————>0 in the distribution space j/‘) '(S) . This invelves that H -
e

M in 'I/') '(S) . Since we have alse H , M Cgf* (8) (as functiens, unique-
1y determing functienals enhj/a (S) ), hence H = M as elements of the apa-
ce Q’f' (S) . m Therefore we can give the fellewing definitien:

Definitien 9. Let the functien h €5y (S). Let there exist a sequence

s,(?mk- ‘-@méw (s) , such that SL?m] * $h in z' (s) and

S‘ALQ -2 _3H in ,’,'Z, (S) . Then the function H will be called a genera-
o
lized streng A, derivative of the functien H and will be denoted by A h .

Theorem 12 assures that if such derivative exists for the functien heoly(s)
it weuld be unique,(Here S may be equal te Kol..’ &egf o 0T E9 G_).

Ai seep’A
Let the spacec’\\& sl (K) be the cempletien of the spaceww in
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the cemplete family of seminerms {:né}S '1‘5Lg ® QSLQ +]:cz; ngkk? ’

where 111,...4'1 are linear continuous operators with the proeperties of the

Operators A a:d B above. HenceNZ‘A““”Am (Kd_) is the space of all coi-
Plex-valued functiens from the space &f, (K'L) which alse have the strong
generalized derivatives Aj.jyesey Apx in the space X, (K)o

Furthermore, each selution h € 9.0,, (K, ) of the sisfe‘m}.gﬂkkh = uk} y k=
Tyoaeqm, u € w& (de) , belongs te the space ¥ L # (Kd, ) .

Remark., Analegous nentrivial constructiens by projective limits of func-
tienal spaces give analegous results. Constructions by projective limits of
Spaceg%ut witheut interest, but the inductive limits of spaces are tradi-
tional in Distribution Theery (see Britchkev , Prudnikev [14_‘]).

It is almest evident new that the system

S,V,A””"Am () i’iM* i R L p .d,.,&egfj

ha s the preperties, exiged by Definitien 5,That is why we can censtruct

tre spac

-
A yeeeyh A1!"°iAm 2ol RAqseeerh
s pe )
A 'occ.«k L v
The spacew, 1 ™ (G) alse

has the mentiened properties of thk
Spaces s 1“””"(K.L) .

II. Let us fix the ideas and the results for the fellewing case, Iet the
Space of cemplex-valued functiens 3,(K)EL1(K) be the completien Ofﬁu\f
in the nerm q , which is stronger than the weak coenvergence in the distri-
butien space of)'\x . Here .Z)"’ is the space of all cemplex-valued functien
en R® yith cempact supperts and infinitely differentiable; the cempact K is
a subset of R" with K=K ;n>2 . Let B, ME&L, (K) and H = M 1n08'l
imply that H = M in S, (K) alse. Let A be a linear differential eperator
on the open subset SL of R® , {) )X , A be with infinitely differential
le ceefficients en _ﬂ. . It is well knewn that the operater A has a conjuga-
te operator B en () with infinitely differentiable ceefficients linear dif-

fare“*ia&”.peratﬁr- The assertien that the eperaters A and B are cenjugate
8ignifies that
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S( A@)L{) d x .Sé BLE d x ferv @ .&\y GE(Q), wheref}m(ﬂ.)

is the space of all complex-valued infinitely differentiable functiens with
Compact supperts in .ﬂ. .
Tet the functien h 6;2?1 (K) and let there exist a sequence Q"“\& U; =

oaw\ K, such that {L?"’“\S 2 iAL@ﬂl—-—-—-——)H’ (i.e.,

Q@ -h)——>02and Q(AQ, - E)——0 ).

let i\vm'k - Wm E oaw\l( be anether sequence for which

Then we have

S[A(Lg _Wm\:\@ dx = S(Lq,m W \%@(‘Xx——ao ES M — 300,

’or V© 60‘;37"’\1( ., Therefere we receive H = M1 m ,8’\ . After the requi-
Tements en the space of\(f,. (k) , this invelves that H = M in the space
z* (K) alse . Hence we can define uniquely the function H as a genera-
lized streng A derivative of the functien h and we shall denete it A h ,
S8ince this derivative depends only on the function h and the eperator A
and dees net depend en the cheice of the sequence {(QM}

Remark , The spaces LP(K), 14 p <0 » satisfy all requirements en the

—

Space L . (K) here,
RE, b b :
Iet the space Wy (K) be the cempletien eof the spaceo© h('

in the nerm T ,

_“.(g_ g(g ...; q AkLg , Where A1’”'"m are linea:

differential eperaters en ﬂ with infinitely differentiable ceefficients.

enea . A100007
Roe Y (K) is the space of all cemplex-valued functiens eof the
Space QZ* (K) which have streng generalized Ay 5 kely...,m, derivatives i

the space &4, (K).

Purther en, let the functien h € 6Z4 (K) be a selutien ef the system
{Akh - Uy k i k-1,..£.m, wiih uke&’ (K). Then the functien h be-
lengs te the space e ¢ &

It is preved in [‘IOF“I'OHS‘I‘ result than Theerem 8 , i.e., it is preved
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that the spaceaq\'\ﬂw%””’km (K) are algebras ef cemplex-valued functiens e
°f type C on ¥ iff the system {Ak ’ k-1,....m} of linear differential
°Peraters on _n.. with infinitely differentiable coefficients is a differen-
tial-invariant system,i.e. the linear hull of the system ;,Ak ’ k-1,....ml
1s a linear differential-invariant spaceon ¥,
III. Let the linear centinuous operaters 11,...,Am y Ay ‘% (Iub)

--....._____)w (xol.) Mol, ke=1,...,m , be with the preperties ef the operater
A frem page 21, with the cerrespending cenjugate linear centinueus operaters
31 ressyB . Let the spaces M‘,(S) ,....&"m*(s) » S=K, , G, be-anale-
gous of the spaces ';f‘(s) » received by cempletions with the cemplete sys=-
tems of seminerms { k?g'k s correspendingly, k=1,,..,m. Let the Spaces
;f, k‘(s)', ke ,,.,.,m, have the preperties of the space &oa(s), se that
the result of Theerem 12 te be true for any ef the spaces SZ k*(s) when the
function h € &0/. (S) and its streng generalized derivatives A, oh belong te

raf k..(S) y km1,,..,m . We have Ihe foliowing:

1.....

Theorem 13, Let the space ¥ - (Io(..) be theicampletion of the
Space W) (x -L) in the cemplete family ef seminerms s 50

e QEQ 1 G 4G . s W, e

£
Ce of al] complex-valued functionsYfrom the space &a‘ (Kd) sy Which have the

- (K, ) 1is the sp:

Strong generalized derivatives Ak.f in the space % K (Kd_), K=, se0sits

Furthermere, each selutten h e 5°, (K ) of the S(Y\Tﬁem i‘kh B582 T gl
A ....’A
'--.ml with u € At gx(K )» belengs te the space W, 1 m ().
1t is almest evident that the family

i\w *11,....101 R i'ﬁ SWZ’ Agyevorh (x) , o< (5 et ,(bﬁj}

hag the preperties, exiged by Definitien 5 ef the inductive limits.That is

"“'A'm 11.0.-".

-‘?-'hi we can qg:atr{%ct‘the space " (G) = limj,nd . m(Id-)’
" 1'...’
Lo{'\ S\\F* m(‘x)’d—’ép ,O{-.Pé;f}.

The spage M A1r0200dy (G) alse has the preperties of the spaces

11..0..‘

v m (r'd') of the previeus peints ef Theerem 13,

IV. Let G be an n-dimensienal C* differentiable manifeld. Let Cy be
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the algebra eof all cemplex-valued functiens f on G » fer which IOL? E

v
clg(U) for each lecal chart (U,¥@) ef the manifeld G , where lg(U) is

the algebra ef all centinuously differentiable cemplex-valued functions -
¥111 order V inclusive on Lg (U) yV = 0,1,2)00e500 &

Definitien . A linear centinueus map A : CE."_""CE is called a 1i-
Near differential operator on G if fer any fixed lecal chart (T, \9 ) of
G,the transfer A okg is a linear differential eperater on C?(U) (see
Treves L‘ISJ) Mareover, if the ceefficients of the linear differential ope-
Taters Aot.g are in Ctg(U) fer any lecal chart (U,\g) of the manifold
G , then the linear differential eperater A is called a linear differen-

.

tial operator with coefficients in the algebra Ca -

Theorem 14, let 4 be a linear differential operator on the n -dimensio-
N2l C*® differentiable manifold G with coefficient in the algebra C .

Let the function h € C . Let the sequence L('?";k Lq,me C' y» be sugh
that

G uniformly on G
ifg"“ uniformly on sh , {f“‘?‘w\ y SH .
o
Then if we have for another sequence {}Vm} g k\/me CG ,that
{'\l/ uniformly on G o5 ‘and {,A\V '} uniformly on G M
i v -

1t £0llows that H == M on G .

Proof. Iet the linezsr differential operator B on G be the congugate
Srerator of the operator A , i.e. the linear differential operator B on G
»® o =1 ]
B, C ___,CG , is such that its transfer ‘otg is the conjugate or

Tator of the transfer Aol-g“ of the operator A for any fixed loecal char

(v ‘g ) of the manifeld G . This is, we have

JAog1dly - (o megly Vo ¥,

"he pe @ L?(U)

"hich are infinitely differentiable and with compact suprorts,

is the algebra of all complex-valued functions on (?(U)

Such conjugate operator B exists. Moreover, the coefficients of the

°°n.‘lllga1:e operator B are also in the algebra

Since 1t helds S%(Aa(g,){g?_—g?%ntg.‘]k
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S[(“? -‘Vmﬁafgqu° P ——0
O W 0B for‘d@ € o@a’,f (y) » hence
lim i K 1210\-9"1 ) (i?m otq-‘:, J(x) === 1lim e ( Aolg'1 )(L‘/md(gq)(x)

&% any point x & L@ (U) and on each local chart (U, ) of the manifold

G . Therefore we obtain H == Mon G .,
The uniquely determined function H will be denoted by A h and will be
called a generalized strong A, derivative of the function h |, b
Theorem 15, Let G be a compact n-dimensional ¢ differentiable mani-
fold, TLet AT,...,A be linear differential eperator on G with ceefficients

v L A
in C 5 Letw 1' "m (G) be the completion of the algebra C g in

the norm W 5

W -y | 20| - : sup [&rcs)‘

soegd
The space Q\\(loip '“m (G) is a space Qf all continuous complex-valued

functions on the manifold G with continuous AL, k=1,...,m, streng gene-

Talized derivative on G (up to the natural isemorphism), accerding to Theo-

0
rem 14, Furthermore, each solution héD G of the syatem ;,:kh -,

1'!.0'

i m
k-T,...,m‘& with u, efDG , belongs to the space WV, (G)..

A
. R
Moreover, the spaceqwzo. (6) 1is an algebra of type C of com-

Plex-valued functions on G j_ff the linear hull of the system inT,...,Am}

is 44 fferential-invariant.

n
Remark, The expression "up te the natural 1aom2:??f?TAmhere signifies
(G) formally

- following: any element of the completion mw;l”...,im
‘onsists of several limits, i.e. for any fixed element o (G)

hat
*here exigts a sequence i g f ec o SuCh ¥

uniformly en G
{rrl uniformly on G i“‘ ¢ g "

ku

Tseeuym . This is, the element? formally consists ef f , slk ) ka1,

L, according to Thooreu AT m"“_"“ &
" ,m'f i'f' . i .. ; L
et d nd on the ehoie. .f

e sequoncn
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function f + Moreever, the function ng is Ake' strong generalized de-

rivative of the function £ ’ Ak f , which is uhiquely determined by o
k=1,,,,,m s+ Thet is why if we map to the element "' the function £ “Yig
o ."“4’...’:‘.‘?

will be an iEOEIO.—"_"?}liSm tetwen the completionwoo : - (G) and *+le

et of all functiens £ € D®, with strong generalized derivatives Al
on G , k=1,,..,m , The differential-invariance of the system iAk sk=1,
-..,m}, of linear differential operators on G signifies, that the linear
hull of the system of the transfers {Ako@d .k-T....,m,}is differential-
lnvarient for any fixed local chart (U, Q ) of G . A proof of '.D_};_éorem
15 is contained in T_10]. Let us remind the following :
Definitien ©, I.G.Petrovsky, see I.G.Petrovsky[5,16], S.D.Eidel "man

U7, M.s.igrenovicn, M.I.Vishik[1€], S.D.Ivasishen [19]). et us stugy

the system

(3) W-, &)
-D qu.. « Z > h ,L{D ’\U. o555y, ..e ,\)&Z

kz | o? +l$\émkp

8)

: A( of (t,x) , ui(t’x) are complex-valued functions in

J iJ

the variables t and xs(xq,...,xn) 3 p is an even integer, p 22, nj> 0 ;
Ky 20
The system (3) is called Petrovsky's parabelic in the demain %

1:‘n”(x t) if for any point (x,t)€ the real parts of the equation
(4) m

0 .
“ TR AN ] 20 Yad | G
Q‘OP'PI‘.&\:L‘!\.P d ‘tig,{

With k £ n

Satigey th +
G)'- "’f'{ n g"‘"’{?‘eq"?f"l“i?ry N -t x.,‘;"“‘f%‘
' e A 'i $°':; gl




P e B‘n 5 for which
|

g%+ ?§+...+§2=1,

n

for any real B'.I e G

d3(t,x)>0
Proof of Theorem 1., We must prove that Definition 1 is a generalization
of any fetrovsky's parabolic system, Let_us prove that an arbitrary fixed

Fe
trovsky's parabolic system Q{ =X Ve 31 » i=1,...,m, (3), parabolic
after Definition 8 , is also a generalized parabolic system after Definji-

tlon 1 in the constant-coefficient case, where after Definition 9 we have
CS) : i ! ("135\ Y% s
— I.\.La:Dt_ u, — A ’D /D W. .
P ris| < "~ P "\ 1 )
(Remark, Tre proof in the nonconstant-coefficient case is almost the same),

Since (4) and (5) hold for g, then all

)7 \ A.:::)\*ﬂ_o_ b s,

T ?""ﬂ*“"\’(’"‘&

(6)

(If we assume that for some i =~ we have

D 2 I N i -

=4 ?-to-f\-a\-.-a?m& °4

then the first determinant in (4) is zero and (5) cannot held),

Therefore the order of E is N = p ( maxj nj o ko) + ko o Let us de-

Note maXJ 1'1.‘_J by n*, Let n =n" iffj":l1 .---.3 ’ 1‘@5 m,

J

Now let @)
T : oy SI W

b of order N , where OC, ,

Shaly prove that ﬁbk has the kind (1) . We have

. I v B

B-—‘.‘.J' “‘> 23: > - d‘t-Al ’Dt /D“'le

e o . 1 . : ‘,x oy "
oy 03 "a_‘_‘»*'-'&_ -*l-f:"'- “ﬂ‘% o gt VR b R v S 2

i=1.0.ym , are complex constants, We
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a
Lo e o S0 D, -

‘d.&*_l_'_'_ﬁ_‘.‘& '
W RAAY >
4 O gt Y T
ST ne,,‘nl"aléy £\ &

The order N of%) is larger than ny , anj » d=1y..0ym, since N - o e
TP (0% k) vk, - ny=p (0% K, Y3} g 2rley Loy 0RE 0, Lin;py 2

Since k, <n s V‘ j , then N=k from Defimtion 1 here is net larger
than p= - and N-k - ko . That is why‘?S W has the kind (1).Therefore any
Petrovgkyls parabolic system after Definition 9 is also a generalized pa-
fabolic system after Definition 1 in the constant-coefficient case , g

Remark, The most important characteristics of the linear constant-coe*-
ficient differential operators on R® remain the same after linear real
"ondegenerated transformations of R™, The Definitions 1 and 2 satisfy the
Natura) requirement that the preperty ef parabelicity te remain after
real linear nondegenerated transfermations of ) i (Definition 9 does not
Satisfy this requirement.)

Proof of Theorem 2. I. Let us set N = 2 in (2) , Since 0< k€< N ,hen-
°® k might only be either k=1 or ke2 . Sinc%o €1y £ Nk in Definitton 2
When # N , then in the case k=1 we have 1B = 0. We receive also 1S =0

in Definition 2 in the case k = N = 2 , Thus the operator A from (2) rere

Might only have the following forms - either:

(21
Awio Q.’OL/J-I:'* @’}/’% +CQ’/®1*°L with a $0, b40, or

(2w
) . G,’B?”/)T}' *wagx .‘.CL with a ¢ 0, ( ¢ might be 0

Wthough 2 __ [ o| #0 in Definition 2 , since the corresponding
tern 3’3/%@ in the case N = k = 2 might e annulled by P(0/0x Dot

Tter Definition 2 .

e
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(where F* ve a pelynemial of degree not larger than 1) , be an arbitra-
Ty fixed constant-coefficient linear differential operatecr, parabolic af-
ter Definition 2 , and of second order in two variables. Then there exist:
& linear re=l nondegenerated transformation T : (u,v)—-——__;(x,t) suech
that the trengfer 'I'P.H. of‘H, has either the kind (2') or the kind (2")
after Definition 2, 4is it is well known, this signifies that o..wqo Q“;C
SInce the trensformetion T must also be real, then if Guy # O it follows

that CL“ /Gw is real in this case; if &“_;4 c then QU /0'03 must be

Teal, Thereforethe operator \}L is parabolic after Definition 3 also.Thus
I‘oughiy speaking, we have Definition 2 C” Definition 3 in the case of

Second-order linear constant-coefficient differential operators in two

Varisbles,

1. row 100 W = A, B v ooy +0, [T P R/

GNhEre FY be a polynomial of degree not larger than 1,] be a linear cons-

tant-coefficient differential operator of second order in two variables
and:\{, be rarabelic after Definition 3. S.‘mce\‘j’l is of second order and

>
%Cl,z -, = 0, then we have lowl'*lapg_( # O. Witzout loss of generalj-
ty let us suppose Q,p # O . Then we receive Qe, = Oy / Que  and ve nave

LN N
T = G (ofon. + 32 OPVY D" B

Hence the sought real nondegenerated linear transformation is

2
L \ A ., m ™ “ -/
T= x = y +((4\/n/0a4_\v R v hen ‘}{ C\.w'b /ze' + T P’
has either tre form (2') or the form (2") . Therefore the ope_“ator\.H is
Parabolic after Definition 2 also. Thus roughly speaking,we receive

Definition 3 ©= pefinition 2 . =

The assertion of Theorem 3 follows from Theorem 1, but since this par-

tienler case is important we shall prove Theorem 3 independently:

Iroof of Theorem 3, Wie must prove that the operator

3Dt EE T, D oanen,
‘1‘)*-\5\ W p . pa zl,%ﬂ,l,... :
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for which the requirements (4) and (5) helds is parabolic after Definitionm

2. We have for the operator ¥ that
A {&ﬁ’$\
) S AT e,
P%«-ls\fp"\
Since (4) 2nd (5) kold. Then the order of ZS is N=p(n, =k ) +k )
D io o] o]
'p, As ;( £ ny s then N-k from Definition 2 is equal to n, . That is why

0
ﬂ?e operator @ hes the kind

®. =i 2 M A(ﬁ,&_\__/Dj:,Df +-/D .;o */P €D:t :DB )

Coprls| = ’
where T ig = rolvromial in D ~ « The order rf}S relatively _.'3+ is n,
Pol; 1
A
= Nek and +he sum E \ = 1 has on,y one member, corresponding to
Isl& k

= (C,...,C-) ; moreover , the crder of?S is N . The rest of the addende
Q)
cf 7_5‘ Are with orders less than N , and their orders relatively Dt are

equal to k°< n, = N-k . Thus these addends can be included in the cor-

1o

T€Sponding from Definition 2 me~ber P(D o DY & at is why the operator

<

‘]S is of the kind (2). Therefore any Fetrovsky's perabolic after Jefini-
fion 9 1inear differential operator is also 2 generalized rarabolio ope=-
Fator after Definition 2. wm

Theorem 16, Tet O £ g 4 00 and MEC be a constant, It does not

°¥ist such a constant ¥ , thet

! %"&“ a c&;,‘ Y %'hlh- lt%‘,.h\\fa\\l
for V‘ g éo(z‘q , where ﬂg is the set of all real-valued infinitely

differentiable functions with compact supports in

‘._(*,u&:l@t,tg\ggk o KS =m@\§(%@\.
Let ys remind thet if the linear differential operator B is equal to
fb- Gt‘/b /):L"Qg'

!.+'b£}1
then itg full characteristic polynomial S'C‘b) is equal to



5%

¥(B) = 6o (“XYL R

L+T £

wWe shall use the fnllowing theorem:
Theorem 17,(K.de Leeuw , H.T’;irkil[j?]}-leﬁ,ﬁ“ ““L s'-'s‘j‘m be constant-

m

=
coefficient linear differential operators on R™ . There exists a constant

. & suck that

(7 k| & ‘*S,“"‘w | SR [ g“} ror Y g(_—,@m-:@ ife

%’(A)=$_1__ M S (&)

L) s
for suitable Fourier-Stieltjes transforms Mo geany M of some integrable

(i.e, with final totsl mass) me=sures B 4 » ece s 4 o
. . 2 A A ? -
*f +he condition (7) holds for the operators A-!' Ag seesy Ao 0F crder

t is 21lso £ N , #nd the homogeneous part of order

N N
, AN , is a lineer combination of Ak s K=1,.,..,m, where Ay is

&£ ¥, then the order of
T
Nof 4

the corresponding homogeneous part of A, of order N , kel,...,m,

(E) 3 N
AN g g 1 o K 0o where Cy is the mass assi-

Ened at the origin by P/k ’ k= 1]..-1 m
Theorem 1& (W F Eberlein [-2(;.]), Tet P, be zn integrable measure; let C

L13

Ye tre assigned rass at the origin Ly IA, snd let M be the Fourier-5tiel-

tles +ransform of W Then the céfistznt function ¢ can be approximated

niformly by W M with T = a probably measure of finite support,

Eroof of Theorem %. If b = 0 then the assertion of Theorem 16 is evi-

dent, So further let S # O » I. Let us scrutinize the case g =00 at

Tirst o # we agsume the contrary of Theorem 1€ in the case g =00 , ther
it 20110ws from Theorem 17 that

(9)
) 2 for it N
1Y-M1(-x +1)3Y)+1M2X+M3 suitable Fou

*ier-Stieltjes transforms My » My » My
= where C is a constant ; Let us
bogs iy . In(9) letusfix Xat ’

Uvide 1t bv Y 4 O and let |Y| —_— 00 . M, Mg » Ma are Fourier-Stiel-

of some integrable measures }L 4
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ties transforms of integrable measures =nd therefore are bounded as \Yl

~———3 00 . That is why we receive that the limit

lim i, (C,Y)="1/ #0 . We also get from Theoren
\Yl-—-poo
17 that 0 = QL’B)'/’D_L?' , wrere 0C is the mass at the origin of the

-

Teasure },L . o Fence O = C ., The Fterlein's Theorem 18 interrrets of in
- LT |

"€rm of the Tourier-Stieltjes transform My o 30 we obtain centrzdicsser

tion, since O4= C , but 1lim M, (C, ¥ ) #C . The constructed contradic-
N0

ticn rroves that Theorem 16 is true for Q =QC .

II, let now (;A o0 . hgein let us assume the contrary, i.e. that the-

o 5 } with
‘e exists a constant & for 02% with

E}“ < 265_“;,'Qc + hell o+ e+ 0 g“} fcha&c@Q_

(Ctviously if tris assumption is true for some fixed ‘{o L 00 , then thi.

“1ll te true for every fixed g £330 ). Iet Ee,;’ denote

P RS A 1 Px Ule;‘m ek Uayl ) s or

vr € @} . Evidently we have EBg >0 , Then for aeg 0 LE &
o g » there exists a functicn fg € 92)9 g, BECH thab

i O TR N Y YA R | 22 u%gg“ -

. ) . ps 1%
ilet the funeticn gs(‘J,v) he defined by

ggtax,aiy)-rgtx.w

me let aaQ,/Q . s lexlg Q, ety @ /G then 1f 04Q, <
. Trhe inequality (10) can be transformed in

gl il

(911; we have ggeo@go )
(24-€) S_C% | (3% *r}s’&/éﬂcz\g | *Ol@‘u%g

; we a have
‘ Since _r_rg eggo, hence we 4lsSo
(12)

_\l% A | « i.g.b.[\l (Bfel+ Hofin) 06,“*‘ “%-Lo&\\f\\ 9s \\E :

Fatting (12) 1n (11) we get



-\ (37 v lrald ol g | |

?

<aag (102 55009+ 12 o | gt

Th ;
~l€refore we receive

(13)

o (Gyel /) o | e - -2, ] + Q\Le?icz\g \\'L?"-g z

frok [+ logh[g-£-a 2 | <0.

~he case Q' =Q0 ~f Theorem 16 is alrezdy pr-ved, hence sup '?eg = 00 .

That is why we hzve
(£ -2, | >0, [2-e -0, 150, [ -¢ —o%aeg;l%

-

*Or any sufficiently large g . This contradicts with +he inequality (13)
The cttzined contradiction finishes the proof of Theorem 16 |, P

Further ,@g s V0 4‘; ~ 00 ) (@ao =$ ), be ‘he set of 11 infinites.
Ly differenti«ble complex-valued functions compact supports in the closed
ball with rzdius (g and a center - the point O .
Definition, Let & , A, yeeey AL be linear constant-coefficient di<fe-

Tential operators. If there exists a constant @ such that
“A g“ L &{‘ Al gu + oo +“ - é’“-k fOI‘V g € Qg y where “_‘;‘"

szupw \ flw) \ , Then we shall say thet A1 §elalnly A'__l Jointly dominate the
°Ferater 4 ong% (in tre supremum norm ).

S

Froof of Threorem 11, Let us scrutinize the set 5,
S’L(%g-...-,a g ) stw@ with supp gC[ '\X\-..e}
8 is a subspace of the space @ 4% » where C° is the space of =211 con-

tinuous functions, vanishing at infinity, with the usual topology,
The correspondence (A€ 1eees ALE JF———(4g)(0) determines



On

3

a continuous functional on 5 . Let us extend this functional on the spa-
@ m 0° zfter Fekn-Ranach' Theorem , According to Riez' Theorem there
exist regulsr and tounded me&sures LL1 ,...,l,,l,r1 (see for inst=nce Dan-

ford, Schwarz tz'rl, p. 264) such that

(14)
f\%{o\ = Q(P\%\J&u* B b +€(Am cl\\ ck'.u,,m

let 5 € Ly and r>0 . et us study (14) for gu(x) = g(rx) =

g(I‘.‘(T il rxn) s A =‘k|; ak(x) Dk ; ,'._j =lk% a:k(X\ Dk ’v_‘:‘:‘l,.oq

m . ave

(15)#7: - \b \ -;Z 4 u\J,u.
Q.LCYC 0\(\ ‘7 *'(,L ( 1

N = .
We divide tre equality (15) ty r and let ?r =00 . Since tie measu=-

reg F" veess g BT bounded =nd reguler, and tre ccefficients a,, (x)

fve pontiniote o6 T , moreover without loss of generslity U c2n be chan-
ged by snether neighbourhood cof the origin in which the ccocefficients ik

ére not only continuous but also &nd bounded, hence the right part of
(15) hes the 1limit

™

2 )(o)

| c(,L(o) %O)-L_(\A«A
2 P {

ants. But then the left part of (15) =must alsec

where ¢, ,.. yC, are const

havE a limit zs 1 ,___?w ’ whiech is T‘Oﬂﬂihle only % 4 HéN .

’f‘")uﬂ we nbtain from (15) *'h?’”'

m d_(c)(D@(o) =Z C (Af 3) (0)
- Kyl g (g

i=4

Sinece the “unctions ¢ t‘:@ are gufficiently much, hence we get

A (0) = c, 11(0) + owe ® O Ag(o) . m

Proof of Corollary 12, The first two points of Corollary 12 immediate-



z
.

1y follows from Theorem 11, Tet us prove the point 3 , Let choose an ar-

bitreyy X, U . Iet the functions g, yeeey Em D'(U) . Let us study

the svstem
l 3y (fﬁ__ M

1
If we can choose the functions By sevey g_ne Dh(U) such that the cdeter.

minant

N )
det ( (A g)(x,) ) # 0, then since Ay g, “re con-

‘—i

tinuous hence det Y(x) is also continuous and therefara .
fd re non
v

Amnulling on some neighbourhood V. C_—U . The functions e, (x) ,...,

O
¢,(x) can be determined in the neighbourhood V_ by the Framer's for-

Mulag, It is clear by these formulas that cT(X) pesey cm(x) would “e con-

tinuous on Vx . Since the point x_ was arbitrarily chosen, this would

0
Prove the continuity of 01(1) peeey cm(x) on U,

Eut we have L\q... L.,,a M

)&’
( Cz\\(xﬂ / — )('0 A C&(’I.\,.. im%m(")’

.

\ R
Ch): o ch‘u)... 1
/( (~ ~P4 & \Ph ' "'\m?m

L'!'"wa\) ‘P‘ = =

.',%ckm Lﬂ) Ny As D Q@ 7D o\,,._c:n
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: § Hhe B s BFT0L

LY

Since Ji-ang ( a k(3«:) ) = m , hence not all A o are annulling , Ace
k| =N
cording to Eorel's Theorem of Taylor's series, there exist such functions
By soeny G € DN(U) , for which
N
det ( ( Ay G, )(x,) ) 0.

This finishes the proof of Corollary 12, = AS
Proof of Theorem 4, I. Let us prove the theorem in the case e.m at

first, Let us assume the contrary of the assertion of Theorem 4 in this

Case, Then from ILeeuw=-Mirkil's Theorem 17 as well from Theorem 11 it fol-

5 D) 8 ) s M)

for the Fourier-Stieltjes transforms Mo ’ M1 yoeeey M of suitable inte-

grable measures ,A,1 dopefe P’m v oo In (16) let us fix X =« C = (c, ,

teay cﬂh) , where Cy peeey Cp arTe constants, Let us divide the obtained

®quatibn by oM=K and 1et ‘Tl——-)QP for a fixed X = C . Thus we re-

Ceive that 1im lmo(c,m)\ exists ( it may be equal to po if k }k* :
[ T|=>o0

and the contradiction, so obtained, proves our assertion in this case of

1im \Mo(C’T)l is strictly positive for each C
[T1=>p0
With eventual exeptions of the zeros of a polynomial in variables Cyneeny

k> k, ). Moreover,

Cn » which polynemial is not equivalent to O . The Leeuw-Mirki]l's Theorem
1?(Theorem 11) and the equation (16) yield that O© =of AV , where A g +
the homogeneous part of A of order N and ol is the mass , assigned at
the origin by the measure }L,. Thus o = 0 , The Eberlein's Theorem 18 in-
terprets the constant function © in terms of the Fourier-Stieltjes tran-
Sform M, . The function oL = 0 can be approximate uniformly by W« e
Withet - a rrobably measure wi’rh@'finitc suppert. Hence we obtain a con-
tradiction since L= 0, but 1lim \H (O.T)\ > 0 almest evorywhero 3

T8 . e |
. g S ol R o 1) o i R ﬁ#”’"’."f”’"‘“ R
Therafore the assertion of Theorem 4 is tm ﬁr the case g -00 . o
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II. Let new 0<Q £ 00 . Let us assume the contrary of the assertion |
0f Theorem 4 in these cases, i,e, let us a2ssume that for some 9 o ? 0<

‘f)@o + But 1t follows from this assumption that A,B,,...,B  jointly do-
Dinate Dg'k' on each °Z>€ y 0£Q<& o€ . Thus let us assume that A ,
n Jointly dominate Di-k* on each Eg with 0<Q < o¢ ,

If k >k, , then the proof of Theorem 4 might be simpler by choosing
any Qg (u,v) 5,81 , U= (u1,...,un) . l? 350 , and examing the assumed

inequality for the function.e g(x,t) = (g (e x ,Pt Jyob>=1,8> 1,
' i

B1’GOC'B

olx = (OLx.I ,...,wxn) , i.e, examing the inequality
(17

| el aae { s awol - 2\ et}

Where 2 is a correspending constant f°r°@4 .The inequality (17) is res-
Pectively o& and F for a fixed cg a "polynomial" inequality with coeffi-

Cients
k 1l
D, Dy ?(u,v) %
oL andp can increase to infinity,remaining g in .8‘ + Then a neces-
. nN=-
S8ary requirement for (17) is that the order of - : Dy Ky s Heky , to be
ot larger than the erder of the operator A relatively Dy « Thus a

Contradiction of the assumption is obtained in the case k M ky si.e, Theo-
T®m 4 is true in this case.

Furthermore, as B1,...,Bm are of orders less than N and their orders
relatively D, are less than N-k , then a similar argument proves that
1t is sufficient to carry out the proef for the case P == 0 ’ 31 == 0 ,
*esy By == 0, Thus let k = ky, B, == 0, g=1,...,m ,

- 1
§ -kz :
A = a, DF D% # Dy SD“ » 0 €1 < Nk ,°

lBl+ 1, =8 ° Isl¢ k

Moreover, we have Z ‘a \ # 0 , since it is given that the order of
the operater A is N . We also have :' \b \ ¥ 0 , since the order o

‘hq.op.rn:tor A ﬂsmomwwq‘m* ' g
We have assumed the contraﬂ of Theorem 4 on “°H zp 0 '{g <°°




40,
Let

P N E I P IR R Y

Evidently ﬁg S 0 for Vv Q, , O 4(;;:00 . Hence for aeg -€ >0 2nd for
fixed & > 0, there exists such a function fg € 83 that we have

(1& |
L el sl me @goel e Nl |

z . v X - L] .
Let +he funeticn g (u“...,‘\-w—v’ ) be determined by

-
gg{%-: £, ’.-n’d/ K 'Pt ) = fs(xA‘goo ’x f) N where w

_‘_ -
4 ! J Figenn,

n, ? are constents, ;fﬁb_‘-(-go/q » d=Tyese,m, Pé"q /g “hen we
have 60@ “oer \;‘g 0 28,400, uégé.oo . In trese rases

the s* of “—e inequelities (1€) might be transformed in

('”taeg-em,*gg\\ m“a -4 <
% p 1Ay ol

If some function tg!g eo@q’ satisfies the inequalities (18) s then
fach funetion W@ ”S “‘?e (wkere CS # C is = constant )y 2180 satisfies

-

*he inequalities (15) . Co we cen su;}!"se the 1'“ “‘u,v g.’ “ = 1 ‘.‘:r'\* g -

e Q<& o . Then it follows from (ic) that
(20)

/) L pL)M’D’D%S»r

5
islftszﬂ

tae.g-e\

.&’-fe.\——— . 5 :
Dy L b Dy <
"*ered.=(.¢....,g, ) .

A\
Theorem 4 is already I-roved on 06 --:8,, , therefore 2{.; snsmtinel ) D8




<ince Theorem 4 requires 0 £ k £ N , and since the operaztor a is psra-

1'""'Jl'if:'-le zfter L‘-e?“;r;‘w‘on 2, then C & 134 li=k . Thus we hrve Nekel_ >0 ,
L]
Let now oL, qo/g pef =B Q) (MBS UL Wt 4
"seeeyn , 2and 2aventually 8: = SS(Q) y 8= K(QE; C< Qoéoo ,ga ig

fixed, Iet us scrutinize the expression :

{5 : ’
'23) E% - xf.‘,:a' \5\ +E5 .._):{-'ﬂ \')S\ +5(25'—)‘+‘Q) K(N.Ps_,‘) _\‘OE\
L =Q, /Q =Mg ,

“here 6 = (54 yoe 5?\. ) \'-'DB\ Sh— T 8 5 3 Mis = positive cen-

L | ]
w L

Stant, Then if we choose

E>\sB /(¥ -x-1 ) ,thus the deg-

(A9

ree of q in f ) is atriectly pcsitive, That is why
1 =N+x

o« P > 00 es §——300 “orXMe (N-k-1)
it Q, is fixed , (< §y <O°

&

Let now 3(%,3.5) Axit 8 =

=T L -Nee 5 N-% S~
A “OLSOLS PS — tD\f%@»i—ﬂ Z SQL Du: %g

le:l‘.kszx{ l‘-*-

Y. ;()i-t,-ﬂ-"-"z’\ lsl+es hex
o Q¢ S D /D o\g

Bya ey =

-t iy

N-% S § #HN-L,-2)~158 |

Z% QLSI "3“\’D DW%Q 1slrt =\ g 3

EPT R
0,
| -2 S
| @ Y_——— ""S&l |
‘QS,DS Ds Y L g %S/DV Du %g
w Vv Lg A= S,
4
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The derivatives Di gg(u,v) ’ D& gs(u,?) are bounded when is fixed

8 § 300 » ¥ —=>00y where 1 and s are such that the correspon-
ding coefficients of the operator A , a_ # 0 , b, # O . This follows fror

from “ g fu,v)" , Since

; PR o r
%&OLLL’E’A s\+ L, - : rD“/D" '(as)rue.\w. @5

S x Nt ¥ S
a*ef ‘D\T_L‘Du,%g‘r

for anya,. (31 ,...,a Yo laye
let now 1" be the least of 1 such that " as, Du Dvs gg“ # 0, for

5]

Some fixed s* withl'l'*l =N.Sincetg>-l 6 (Q)/J'i*#
follows that we can evidently chroose 2 (Q e b SUCh thet to hold si-

multaneously i), - iii). ¢

8). "‘DL&}_ -l&'l ’Dr%qLLC ._.is. ;15\< e

1614,

i [
ii), ll ‘86‘ /‘Di:D'V—P éC for# s with |s +1, =N, C is a

constant
-3 vo‘ : 4" P,' | ISSl
111), L o , gr(Drﬁvs‘b“‘?g“%ma —ag—'D,;D,%S “

Let ¥ > ‘% o) /(N-k=1,) and ¥ = 1 for V s with |s| + 1, = N, Then it fpl-

lows that R( S ¥ )—>00 as @—-—)00 in the indicated choice
ta he =
°f 6 8 (g) cnd ¥ =¥ (Q) Therefore we obtain the wanted contradic

¥
tion from (20) as g__yw for 0(; -go/‘g ’ (h'go/q s J=14000y

%y when Cgo is fixed . Thus Theorem 4 is true . m

Theorem 4 permits to investigate some inclusions ameng functional spa-

L Y
1! L ~
%8 with streng generalized derivatives. o s w!"im
4re characteristically different for elliptic and parabolic operators,
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Let the space of complex-valued functions in-z (I);I"l - L1(K)
be the completion of C*¥|K in & fzmily of seminorms {;’A.}. T N T
Which induces a loczlly convex topology in g* « Let thiadtolaology be
Stronger than the weak convergence in the distribution space 81‘ (and
as x, f_—;Lf , then the topology in Qa* is stronger even than +he L, -
topology.) Here again C%® is the space of all complex-vzlued infinitely
differentiable functions on RN - ¥C—R" with ‘I% -TZ‘; 08( is the dual of
( o@ is the spsce of all complex-valued infinitely differentiable
functions on R™ with compact supports),i.e., 50 ' is the space of all 1i-
Near continuous functionals on oD ; LP y P=1,2,..., is the space of all

complex-vzlued messurable functions f on X , for w-hich HP is inte-

grable on ¥ I‘p = ‘L (x) is examined with its usual norm. Iet the space
= Lo(X) bte here with the norm sup f(x)| (see ¥.de Ieeuw, H.Mirkil
xgK

LT]) We heves

Lemma 5''',For the function heq let there exist such a sequence {%}
30 € C“I K, that{lq“k———*—-—*h and ?_Mg“k X »H , Here

{am}-J_..g denotes that ‘éj(gm -g )——>0 as m——300 fgr’q’ §s A

is a linear constant-coefficient differential operator. If for snother

*
Sequence {\ym} L \Vhe CO‘\K , we have &YM} -» h and iAW»&
~—%_, M, then ¥ = N inely. (Temma 5" 15 a little stronger than lemma

5 and will be proved non using results on @

Proof of Lemma 5". The properties of the space &‘. assure that

-

{‘Q m ‘Vm}——?'O ind’ . Therefore U(L?m‘q’“)} s win

So we have

§A (8, o) o= § (@40 A'g (wrdo
for # L@Eo% , where A -; (-1)kak oE LS ngk])k

Thus HeM in Ly o Eowever H , M 6@..;- Ly« That is why HeM 1112*.&

Definition 4', For the fimction h_&* let there exist such a sequen-

i} Qe €0 hroanes g}
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m
'hen the “unction H will be called & generalized streng A, derivative A,h
°f tre function h =nd will bte denoted bty A,h (=Ah) . According to Tomma 5®
If *here exists such = derivative s, for tre function Fegéze* it srould

h .
“€¢ unigue,

M

B bl E A4S
Lefinition. Th ’

rcmpl@tion cf ?”‘ K bty the family of seminorms iﬁT ;k.

'“hg ‘-“‘ﬁ "'T.Z‘ 6[\ A‘\'g

are linesr constint-cceffieient differential cperators, wil:

4

= 1.9 .
L("":'loa’ \.rhg'r'

4]

“nd :
""-tljllo,-‘-m

- 1:\'- “« * 8 A e 1.1:311.,A
te dencted by V“ 12 '“m =Q\\‘ m (E) and will be called a Spé=

%@ of funmetions with Aypeesyh, strong generalized derivative.low it is evi-

A
‘®nt the following: ; 2 “Am
+ It 35 < . i st
QV_ L T 53 +re

“Fecrem, The completicn 8pice of @11 complex-va-

-2ed ‘unc*ions C@?ézf' with strong generalized derivatives nqh in %0 G=

’.'.’m .
‘loreover, ezch solution b 5321 of the system i A = Uy Q=1,---,mi

1 £A1,QOQ’AT“. . 3
€longs to the space w if uq € x 10=Tye00,m,

$ 2
D - - = @] a \
*-emﬂrk. ‘[n -t}-e case r = ho(n ) ﬂnd- .A.I'cio' -Aq’tto’Am Jith A..?’..,’Aq-
omogenecus constant-coefficient linear differentizl orerators of order N

. , s (sl s
‘N two variztles and ALgqreesrfip equal to D =3 18 %" 3-(51.32} J:ﬂ‘
e |

J:’ A1'OCO’AQ'OOCAN
aces 'y 2 completion in +he

’ X:(xq’xz} A such sy¢ « ’
"Upnorm, are rreposed by F.de Teeuw, H.dirkil [22].
Froof of Theorem 6, It is well known (see L.de Leeuw, H.Mirkil [ "-!\
i)

"P2t @an elliptie Yinear constant-coefficient differential operator i of

“Mder N and +ke identity operator I Jointly cominate in the l'p q R

o
Cr'v v with 1 L &0 any linear constant-coefficient differentiz] ope-

Y8tor B of srder no*t larger than I . Inversely, if the letter is tirue

“®n 4 is ellintie.
N thas & generalized strong A: derivative in L_ , +hat

iny function h € W P

s A.'t
v w’; c::a\A[;, :

Now it 1 €W ;‘)’I then there exists a sequence tLQ,,,:" O € C"\K
*ter Definition 4 , for which Ekghk . B &Akg'-& ot
*ra




It follows from the cited result that

| T @l £ 22 (Gt N9l ) o5 0 prenel -

A\
the norm in L. o foF V s € ;+ with \sléii y 21is 2 constent, L= ()

Thiea $oon s s , : ' ST s
‘his implies that D° h exists for s witk \s\& N . Thus

NE 4T N T e, N PTLR g
rurttrermore, lect us have
- -:X I "I' ™ 4 '
Q\NP .s 2 "I; for some fixed p , 1 p<Loe . e

¢&én imply tre Closed Greph Theorem to the imbedding w '::'I: K

<« A N . -
Where thre spaces V ;'I #nd .«a; 2re studied with *heir naturzl topolo-

gies, The continuity of the imbedding meppingeignifies that

D0, £ 2en el WASLE Y Ty (e

Stant, “-'_wrv' s’\sléN ;o 14, D&l adils Q\\F ;’I' Wg imrlies. that the

Operator A is elliptic.

We have fer L1 znd for L, with the supremum nerm the following :

Theorem (K. de Leeuw, F.Mirkil [11], D.Crnstein [_2':: ). Tet A be a 1i-
Near constant-coefficientdifferertial orerstor in n 233 variables n® o»-
der N > 2 , Tren z necessary &nd sufficient condition *hat A be elliptic
18 that . znd T 3cintly dominate a1l linear constiant-coefficient ¢1ifferen
RIS operetors cf order not larger than N, Tf ne=2, the condi*icn is enly
Necessary,

how let b EWj’I , A he elliptiec, n 2 2. Then the strong generzlized

~z s

¥ . - n r
derivative Agh exists. Tet the sequence i‘g’ﬁ\k' QM\G C \I-. s te such

that

r T

g k Te

&b e A S . -
5% } = iy 5&Lg »Ah . (Such 2 seguence ax-

ists af*er Definition 4., we have according to the previous Theorem *hat

\\’DSLg,m\\Lw 43&,{“#\@%\\,@ +“£§m“ Lo § g ¥,

to affirm thet the derivative D°h BXiStS in Ly, V 8 , \B\"-(N 1). So

¥e obtain V Al (:W
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Further, let n >3 and let we havew A c—— WN ! , where the {epa-

oo
ing the Closed Graph Theorem to the corresponding imbedding map, we re-

cesv 89T sna W' are studied with their natural torologies, Imply-
o™

Ceive that

“®SS‘|Ld ég“_“A(’“Lm +“S“'w for ¥ £ € C“\K ,aeJ is a

Constant,According to the previous cited Theorem , we obtain that the

OCperator A is elliptic.

We prove with similar reasonning that the assertion about w’f “and

Q\J, AZI'I glso is true . =

Froof of Theorem 7, The assertion is a consequence from Thecremd : is
A is 2 parztolic constaznt-coefficient linear differential operator of or-
der N in n > 2 variables, then there exists & linear real nondegenersted

& 0 such that the operator A is transformed in LA in the

reansform L of R ,
form (2) in variables (Xyy.ee9X, 4st) o If we assume that

o LA -
th LA : w£1 (where spaces o and wi‘ are studied

With their natural topologies)’ then applying the Closed Graph Theorem
to the corresponding imbedding map, we shall receive that thre opersztor
I dominates the operator D]f'k yk> 0, in the surremum norm, But this con-

tradicts with +re assertion of Theorem 4. That is why we have

V 1A i wh' . Fence we obtain
HN 1

also.,

ur /
Purthermore, it is evident that any

in the transformation I cannot dominate the ope-

operator derivative (Ia)® , seg”
%

°f the operater ILA
*ator DN-' | That is why we have

.t -
\Jg L Ayeeay (u)(s)'“"l W§-1 .Hence we also get
o
V A,.c_{l,A(S) i";’I Wﬁ-1 . W
o
The proof of Theorem & is ¢ tained in [;'Ola although Theorem & is con-
- ”
‘ - il = W
ﬂoct,d with 1;;;1. article. ‘That iéﬁhy we ﬁmll only remind the subject of



this Teorem: So we have the following:
Jefinition (-3.£.s:cizov|"2z'-'}). An #lgetra R of type C of complex-velued
Rk

functions on a compact ¥ , '§ = ¥, 1s a Zénach =lgebra of complex-valued
functions on ¥ for which 1). The norm “ 52 “ in R of £ € R is equivslent
to tre norm

Sur inf { g , with g=f in some neighbtourhood of wk >
“6K  peR &

2). R is without rrdical s i.e. the intersection of all meximal idesls
Of R consists of the zero element of % only. £

Since o # ¢ is differential-invarient set of linear differentiz] ope-
T@tor, then the identity cperator I €ol . Hence the topology in \J::'
is s*ronger than tne pointwise ccnvergence. Tris permits to apply tre
Closed Graph Theorem *c the inclusions c¢f the kind

Q\If.nt M

Froof of Theorem ‘F..I.-OW let o€ = (AQ)G ,q-rh...,m, be & generalized Lo
Tekolic system of order N 22 of linear ccnstant-ccefficient differential
°Peraters in n > 2 variatles.There exists such a variabhle X, after

J
°
Theorem ¢ thut 211 operstors Ajyeseyh, 40 Mot dominate jodntly ‘e e T

tor N-4 ; N-4
D2 (’B/Jx,éo)

4P S \
a of Theorem C,i.el, o d yoli= 1

iet us "ssure *'e contrary

l

q A ¢
Wb $ |<‘"_1 : ' i ) .
“"€re the sp=ces \\rm ‘nd VW' “re studied with *leiy natyrps 1 topolopde:

€les, The Closed Grs—h "heorem _l zpplyable te the litter inelusfon, zir-

:3"‘1

Ce +he watural tarolegizs in @ nd n,’ are strongsr than +he point

¥ise convergence.It follows ‘he continui®y of *he corresponding inbedding

T@n nfter the "osed Graph Theorem. The continuity of +he irtedding mar

Y

ih‘rli"s 2 f ‘.'_."e OI'E‘_‘”."*L’TS -I‘.l,. ..’IL"." 3 ﬂi?""]y Jﬁm1na+9 P"c}'\ r\-\neﬁ-‘; 1-”1,‘ -‘-!-. 1 :
| Y “?4

., i‘“(b/'})lxﬁ’-‘ %_‘Ltw-ﬂé P UA4%\\ L.¢+ 2 + m %\\Lw/‘k Jo

£
f‘ﬁrv ¢ e -;w\ ¥  where 26 is a constant, So constructed cortr: icticn

’
oL o
=

Ivolves that



i i L]
Froof of Theorem 1C.Now, let us have W , W, » where the

A " ; : -
“ifferentizl-irv-ri-=nt spece oL = (A ;40094 ) In n > 2 varizhles 1z % re-

¢ond order, I+ follows “ro'nq\h/l:: g woi that we alsc have
¥ W,
0

0

+ - 1 - . - | .
°r eack linear rz2) ncndegenerated *trinsformetion I c# RM y “here T o =

an,,.,,,:g”), Now, let the second-order operator A telong to the linear

tull of the system oL . We must prove thst 4 is 2 generalized Zetreveky's
1A

Q;;E:; We and from +ke cle-

-

L Together with its

PEretolic operators It follows Promq\f

Sed Graph Theorem thet tre operator 1A for each fixed

-
]

Crerztor derivatives jointly do not dominate all oreraztors 3 /9 Haoy =T
J

'0o,n, ‘."'h’:""vre (T.Rn)(u.’o--’uﬂ)'

let E\?] “e $he homoreneous rart of seccnd order of the operztcr =,

Where T is 2 linezr differentizl orverztor.

let I e a. real linear nondegenerated trensformstion of Rn,which

transforrs atz] into

(22)

v p 2] » (2] L ! ; g
L™ A =(L A) » Ly 56’3/3&54-
% ‘ZA,Q %d’ f\z/’m o\

1, G, end the constants F)ﬁl ER . Sueh & +*ransforms-
L E)

Wrere 8 .= +

Yion 1LY exists since we heve

2 S . 2 A 1

¥ 0 . Therefore 1" is & canonical Iagrange transformetion for *he real

E al
jl x: Xl .

%
Sincevo}d (£") %WAK*) and since k* is a conract with }e."g £
fience there exists a function cg 6w df\f)md“? % Weo (K*), without

%11 cohtinuous rartial derivatives of first order on g evident,

Quadratic form

that we can suppose, thrat Lei is a real function and that does not exist



+ _ X ¢
‘he continuous (% /D*un )Q? on K*, where ¥*= IF .
Some »f the coefficients E , in (22) are zero , since we have +that
V) ¢ Vil
e e -
e funeticns of reve 211 strong generzlized derivativee for +he

urremum norm - I A_ , (I "p\ s P=lyeee,my, V s € 31: ;\S\éz . Moreover,

c«) (L A) '3//BLL. * \Ze Phe /3/3“@3)

“here ‘3 2(CyosoyCslslselens0) with lienly onithe J=th rlece, =nd

)LJ)

18 the corresronding operator derivative of the operator I*i « Let us re

-l

1ind that +re operator x helongs fto the linear hull of qqs--¢iﬂ .That is
m e-nat i

Why +here oxist =nd =re centinuous 211 strong generaligzed dPri""tives
.- : - N\ f
(E.- (a/au_:) £ ) .V 3, +nd cor fré \,f‘ » ~ Since «* ew LR

s _ : a ;
nd since LQ dces not r:ive the continuous ? /¢ u, derivetive, hence E‘
n

0
=0 ,

Iet r te the number of £ , # C . We proved that r < n , Furtkermore
J SR LTy
Sincelg‘ is real, then (22) #nd (23) imply the existence =nd the conti-

Nuity of all strong generalized derivatives

Lk, Pée(%/ 3%3} 8

STtreng generslizes ceriveotives :
iZ [’3&2(9/’0%)15‘@*
(7]

ut the f‘uncfim\Q haye ﬂotvccn?inuﬂns a/«')u derivative on ¥© ,after

its choice, Therefore
T P LM™-T,
T | /e ‘
h=t is why = part of the derivatives ¢ /¢ u, with £ y =0, ineluding

sye linear rezl combination of tre cther derivatives g /3 u,

0 /Q u,

With EL_ C . Therefore we have
&)

A (L‘A)“-—-—Za i +i Qi

Whe ye Q is a quedratic _f_‘om in less than n variablea and Q does not de-
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pend on /0 u, « After Definition 2 we must find a linear real nondege-
nerated transfermation, which transforms the operator A(in the studied

case N=2) in the kind either

Z&:Ds + Q:/D?.*TE('D) if k=1 or in the kind

ls\=1)

~:ﬁ G,:.Db tZE;;DS*'PCD) $Fknd .

|5|=2 TAP |

where P is a polynomial of D of degree not l_arger than 1 ,But such is
the transformation L* (D, = N /° u, here), i.e. the operator A is = gene-

ralized parabolic operator. ms
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A NOTE ON.fHE AUTOMORPHISMS OF MHE‘TORI .
g 1.8.*Hu!;uuma :

This note tramsforms the necessary and sufficieat conditioms for aute-
Rorphisms among algebraic elliptic curves and gives to these comditioms a
Wore constructive equivalent form,althought not a concise ome.The compa-
Tison of the twe forms of these cogditionl gives some results om integers,

Let the Riemamm surface of genius I be with periods O, and wl_ ;’C b
©,/w, , TaT> 0 .Then this torus will be demoted by T = (2 ) ,

Theorem 1, The torus T(C ) evemtually has momtrivial automorphisms ;;g!
When O II(L))_/CJ,‘ - a + ib , a,bER ,is with a and b? rationals and iff 01; ;
ther 1), Cw ( 8 +1 )/r , where ';:‘!’_>°‘s ( 8% + 1 )/r are lntoger.,orl

Y. 0 = (28 +¥E + 1Y3 )/2r with 8), 250 , ( 8% 4XEs + 1 )/x ave

integers, ¥ = + 1 ,5 = + 1 , The automorphisms are realized im the ca-
8¢ 1) by the tramsformatioms

rp=6 SXA - nt(s%ﬂ/t - Qﬂé‘m’/ -£ 5\25.

The womtrivial automerphisms are rtaliznd“tnftho~cllivz)~b,.th'_tr".r‘!;
maty x Yoz - A
.“(P-.-. St —\b(s’ﬂs&sﬂ)/evc 0 O.: EZ‘:L-‘A(&_S 1—2&'} ;

Corollary ([1 ,2]).‘.&- tort T(1) and T( (£ + 1\5 )/2), & =+ 1 ,have
Rontrivial automorphisms (which evidently feoll l"’&‘!huul 1 1if sa0,

T 1 (for the both cases 1) and 2) ) )e
Theorem 2. 1. The mumber ( s° + 1)/r is integer (where r,s are imte-

Eers, r 4 0 ) if and only if r = llz_ +22 , 8 = (kren )/m toxr some inme

j...“,';“:l' ‘ 40 " amd 1 = (kn = 1 )/m .-Hll'ﬂ'.r,th.l'(lz + 1)/» .;2...12-,
2, The mumber (s° + £ 5 + 1)/r 18 #Hteger (vhere m,r are integers > B

20), 1f and only if r = n’ + m+n’ , 5= Gren-n(E + 1)/2D/m , ¢ -

% 1, for some integers m ¢ O, k , n and:1 = (kn '~ 1)/m , Morewver,then we

h 2

ave (52*851‘4)/'2-* '*0_21-‘?_61'@'_

; Proof of Theerem 1. It 18 well kuows ?l at th "”“ﬁ‘ "ﬁ.tion -

| Cai=4A
e . -._% h.n.'..-.'- 4
i X 2

¥ v f,. g B ¥

AT £ o Yo gt B YA " % 2 Sk
ol 'I . '-“",_g >o 7., AR ERRIRARN L vy S SULT e 2 el
I_Et YW O 1 N LR AR SR 2 i 3 S S SN R




=2+ ro 54,
| trrxmmryuﬁ n:trremt conditIgws for "ar'autnu-ptm between twe -
algebrate e¥itptic urves T(D) and T S) correspondingly witk Tu C > 0,
Ilc$> 0 (see T-‘l 2]). !t‘r! Z is the set of 2all integers.We receive from
(1Y that the necessary and sufficient conditioms for am automerphism of

the torus T(C ) are (.o. [1]) the following
(2) Q, Q Z
((.M.+€)/(wau-m) ._'C N W - 'W\-A N, A W € Lm?>0
(T.e. m2+ (m-2)2-=0) .
LetC = a + ib, &, DER ,Thew b>0 , since Im? S0 . I,

I. If e assune 'm = 0 in the 1mtt flh thew we recetve T (n Tk).:[ s
Simce In D > 0  hemce 1 = 0 and = k , !‘ht! 18, there only exist the

trivial autemorphisms P = x , Q = y and Pe . “X , Q° = =y ,
II. Now let m * 0 . I.0,

:(3) Cyp= (oM mj [2om = (- £ V{eewy? oy ] /2.

The conditioms (2) are also equivalent to the conditiens.

(4) 62-8%) +o(m-v) - €= 0,
2ma@+(mf,\g 0 ""?e"‘““"}ezn€>0.'M$O,
N -Q,'m,—.:{ -

Therefore we obtaim the equivalent system

(
? A= (w-n)/2m

s o - 2] fid

Lmn e 2, mb0 (wn-1)/m eZ, 6>0,

Remark, The system - (5’ yields a?e '2 -l/m ,
It follews frem(5)" (-Il well as M“”"} that a ut*ia are ratieo~

halg,
The- system:(5) mm- Ik . -\42 ,uinee ben JThis ia, n. s e

T
'qualnl’t.-1,9,1. 1.Ifk+t-0tht¢-k/.,§ 1/. 2

Q= k/l X 1/‘ ey 1 -up( k + 1 )/l . ﬂc% a’.tn‘:? au
g o s -;\-" kg

Jpj. .

i8S are




= =

2. 1et k+n ==1 ,Then 1 = -—(k2 +k+1)/m€ 2, a= (2k + 1)/2m , b =
T?‘/zxm\,‘a = (2k + 1 + iV§1)/2n « The transformations

’p: NN —(fﬂl+’ﬂ.+ﬂk3/'m ) Q = WM X -(ﬁ‘?“)‘%

realize nontrivial automorphisms, Whem 8 = £k , r =fm , £ =sign m, we
et the assertion of Theorem 1,2 with ¥ = 1 ,

3. If k+n = 1 , then we have 1 = -(k2 ~-k+1)/m€EZ, a= (2k - 1)/2m,
m.v31/2lml’ 2= (2k -1+ iw; )/2m . The nontrivial automorphisms zre

realized by the transformations:
P- fﬁm-%[’az—'\v.u)/fm ; Q= fmac-»(ﬂbﬂ% :

Thus we get the zssertion of Theorem 1.2 with ¥ = = 1 , when s =£K , ra=

~

Cfn,g-signm-:‘l o

Proof of Theorem 2,1, I. At first letT = 8/r + i/r ,where 230, 8 ,
(82 + 1)/r are integers, In the case r = 1 , we receive the assertion of
the theorem with n = O ,m=1, 8=k, 1==1, Further on,let r 4 1 .
Then there exist nontrivizl automorphisms of the Riemann surface T(s/r +
i/r) of genius I after Theorem 1., Therefore the torus T(s/r + i/r) must
be isomorphous either to the torus T( i ) or to the torus T( 1/2 + 1(3' /2)
ifter [j,é]. Let us assume that the torus T(s/r + 1/r) is isomerphous with
the torus 7( 1/2 + 1|3 /2 ). Them we have
©) (V2 +iB/2)+ 0] /P (1/2%1E/2)+m ] = 5/ ¢ U/

N~ Q"W\:-.’l
for some integers k , 1 , m and m, in accordance with (1). The sgstem (6)

5o LR -\—Q,Qm TN A ‘(331 /2(""\1**““*“}"> =5/T+ i/

Thus &n isomorphism between T(s/r + i/r) and T( 1/2 + 1V51/2) involves
that \(; = 2(m2 + mn + n2 )/r with m, n , r integers,which is impossible,
Theretore the torus T(s/r + i/r) is isomorphous to the torus T(i) .This
13, we have (fv_i +@)/(fwxi+”\) = oft +ify

0 %%—Q"m-—"

for some integers k , 1 , m , n (eventually depending on s ), The system

F PR ’
Comparing the real and imaginar parts of the latter equatiom amg again
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using (7), we receive an equivalent system -

(8) |

M—Q’\N’\. = /1 '
The system (8) implies (32 +1)/r = k% + ¥y «Llet us assume m=0 , Then

the system (8) can be trensformed in the system
\ t-.:. "Y\,z ‘5 —— Q'YL " M’-’4

in the case me0, Therefore k =n = 1 and r = 1, But we have ré 1 ., That
is why (8) involves m # O and 8 = (km + 1n ) = (kr - n )/m, k y 1 ,m n
EZ2.,.840. .

Inversely,let the integers r = m® + n® y T¥ 0,1 , m4 0, s =
(kr = n)/m , k, m 2,1 =(kn=1)/m 2 . Then we have km - 1m = 1 apd
8= (k - n)/m + km +n( kn - 1)/m = km + 1ln ,Therefore we obtain that the
number (s° + 1)/r -E”“LW\J" EM)Z +&1 /('W\l* '“L) " '\0,"%62
is integer . The case r=1 is evident withm = 1 , n = 0 vy 1= =1, 8 =k ,
This complete the proof of Theorem 2,Point 1 ,

Proof of Point 2. The case r = 1 is evident with w = +1, n = O Yia
1 ,8=k=- (& +1)/2,( = signm , Further on let r 4 1 ,

I. At first let the number (s + € s+ 1)/r ve integer,where r> 0 ,
T#1, rand s are integers, £ = 41 . Let us choose C = (28 + & + :LB),
(UR,t) . Then the torus T(T) has nomtrivial autemerphisms after Theorem
1« Therefore the torus T(( ) must be isomorphous either to the torus
T( 1 ) or to the torus T( 1/2 + 1‘(3—\/2 ), according to [_1.2]. Let us as-
Sume that T(Q ) is isomorphous with the torus T( i ) , Then there exist

integers k , 1 , m , n with
(®) ('Q.f-t-e)/(m'{,«-m):'-c-»*-(2-5*6&-1@)/25?

(ﬁ_fy\-Q’W\:fl

Nl o o mef

The system (S) involves

@m+ @vui)/(mzw\z) =20+ +1\3) [2e,
Comparing the ;.naxtlar parts of the latter equatiom, we receive

2r/( u® + 2l ) -r;'with the igtegers r , m , x, which is impessible,
"hat s why the torus (0 ) is isomerpheus with the torus T( 1/2 43" /2)
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Such an isomorphism implies the existence of the system

O (rertBl) + B] [ Dm(eiB) 240w 222 (2600 i B) 28
'\Qm-—o.rm-;i\, m,‘lmmeZ ;

for some integers k, 1 , m, m ., The system (10) is equivalent with the
System \ (2 ?_f\f\, +%~L+QM 2 M *’i@)/(“\'\z *-’Y\'\W\H%):(Q.Sfevlﬁ)/z

(101) |
\ '\‘Lm-QJW\,':.‘i : ‘\'l.g-,’W\.'?\GZ-

cﬁl&paring the real and imaginar parts of the first equation of (10'),we

Teceive the following equivalemt systed 2 %
(11) \(2€w4— e Qo + R ) /fw ’v’\’“"‘\*"‘\)=(25*&)/&,

2z
2
U o= s N, o -Low = 4 , '\Q..E,’\m ,%eZ
This is, we obtain the equivalent system

(111) o= Al 4+ o -\:-"(3j o +£=2Q'\\+@V\+QJM+2/P_M

%-Q/m-_-.d y I‘Q,,P.,N\'\| N\G-Z.
Thus we have enly the following two cases ,depending én E
a ).&:4 ) Qsl*./l:: Q_EN\ 2N + NN+
b). E=-4, 28'-A= 2 fw #Rewrwm Lo

a), We receive in the case § = 1 that s' = In + km + 1m and

(S2.48' +) /2 ~‘-U€"‘“’w AN *(@“*WVQW3+W(%Z+MM+M2§

‘Q21— fﬂ,?,i— Ez.
b), We obtain in the case& = -1 tgat s" = 1n + kmtkn and
(S"QPS\‘+\) /'LT-'-[( P”‘_*_QM\-\—/\UV\.) = (‘Q.M-U’Q.M\,i-&m\ ;41)@\2*!'““1_“25:

11+KQ+?,2'
let us assume m = O . Then we receive from (11') that
2’5+£ =2?J¥\+"I?JY\ ‘W\‘:‘A \ | \ Z.
s res 1328 +€ =»21n + 13 1¢3,

The latter system involves k = m = 1 ;
But gimeg¢ r 4 1, hemce we have m # O . Therefore 1 = (kn = 1)/m, This

avolves im the case a) that 8' = lm + km +lm = (kr = m = n)/m and in

—
—_—

the cage b) that s" = 1n + km + kn = (kr = n)/m . Thus we get
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II. Imversely, let us have the integers e 12—"--, r#é 1, r>0
8 -[1;, -n - (§ + 1)./2}/:.- , where m # 0, k , n , 1 = (kn - 1)/m 2alse
are integers. Then we shall prove that the number (82 +EB-» 1)/r is an
integer too, £ = +1 .

Let at first £ = 1 . Then 8 = (kr - m - »)/m and (s'+5+4) /v =
r\;(fa‘tmw-mf“ + o (T ) +Nv3‘]/'m‘)"z = (T - RT W -

"2%‘6'*\)/'0’\“1 - 0t f(’(-‘ﬁm-lf—* ﬂ’f'."m('\lm-\)]':- it 'v_@,i- QZ.

Let now £ = =1 . Then we have- s = (kr - n)/m and them (52.-5.‘.\)/'; =
K_('\u,- 'Ml— (RT-M) +i]/ﬁ~3'L;L&ZL—Q&m~W\+Q/'m2' =

<
2ty [(an s /e =t enle 0w
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ON A MODEL OF THE REAL NUMBERS
Andreana S. Madguerova

This article exposes a new model of the real numbers, constructed by the
*ational numbers analogously of the well known models of Cantor-Méray,Dede-

kind, Bachmann and others X}—i}. The model,proposed here, is more natural
from gnosiological (i.e. epistemological) and ontological points of view [4-

iLThe problem to construct the real numbers by the intervals of the real lie-
¢ in the senge of the method, built heke, has been proposed by Vhitehead

“td Russell in the begin&ing of this century, The idea of Whitehead for such
‘nstruetions by psychologically more primary objects (for instance by the
®Yents for the instants, or by the intervals for the real numbers) does not
®oncern the instants only. This idea also includes the real numbers. This
ldea nag found a general recognitiom since the events, or the intervals are
8ychologically more primary conceptions, while the instants or the real num-
berg are intuitive-mental constructions. That is why it is worth-while the
°0negption3 of the instants or of the real numbers to be built by logico-ma=~

ummatical ways from the more primary psychologically objects, as the events

* the intervals correspondingly.
The exposed here model of the real numbers hes = resemblances with the

"thep models of the real numbers,as well as the other models of the real num-

h‘I‘a have resemblances, although each of these models has its importance, The

Vde) of Cantor-Méray and the Dedekind's model of the real numbers are consi-
“ed a5 the most different {j-f].But each of these constructions camn evident
1”be reduced to the other., Although each of them is independently and tho-

3
o“lhly exposed in the literature. Here we shall show how easy and clearly

t of the real numbers by fundamental sequences

h
® construction of Cantor-Méray

0
“n be reduced to the Dedekind's construction of the real numbers by sections

let us remind the basic definitions.
{?hl is called fundamental if for every natural

, such that

Definition. A sequence
4
e m there exists a natural number N,

ll'n - :n,\4_ i zor. Y. andfn' with n>2n ,n'2n
oy Wout
D‘rinition. The nonempty subsets A and B of the set of the rational num-

"' Q form-a seetion A I'B of Q if they have the follewing preperties:
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L 6QC.,

I.Ifpec Aand p'& p, thenp'€ A ,p , P' €Q ;
II, If g € B and g' >q , theng'€ B, g9, q" €Q ;

III, The set Q - ( 1UB ) does not contain more than one rational number.
Now we shall easily reduce the construction of Cantor-Méray of the real
Tumbe rg by fundamental sequences to the construction of the real numbers by
Sections, I.,e. we must show how does any fixed fundamental sequence {rn-k of 1

"ational numbers determine a corresponding Dedekind's section.A I B of Q ,
yith

let 4 -i.p : peEQ, P&y, - 1/m for#‘n &nn:_’_.nm » My N, € z;k
|
; and R .{_q : QEQ , @ =T, + 1/m ror&m ,&1 with n ?nm, m’n’n-E 1;} .
Evidently, A I B is 2 Dedekind's section by the construction: Clearly AIB

%8 the properties I and II of a Dedekind's section. III, If « € AUE , a€
Y, then we have £ = 1/m La T, + 1/m for’d m, \'fn » n Zn. . But this

annot, be satisfied from more than one rational number, since the sequence

il"n} is fundamental. =
Although each of these two constructions of the real numbers is indepen-

dently exposed and has its advantages. Therefore the proposed here model of
the real numbers has its rights to be exposed also,

Let Q be the set of the rational numbers with their natural order " £ ",tr

the addition "+" and the multiplication "," ,Let p and q be arbitrarily fixec
r‘tiona]_ numbers p é q .We shall denote the set of all rational numbers r wit
{th P& 4q by dp,a> znd we shall call it a rational segment,We shall say
*hat two rational segments £p,q> and {r,s> are interseeting if they have at

{eagy one common element,i.e.lp.Q>n<r,a> $ @ . Let Q* denete the set of all
°1a““ of mutually intersectimg rational segments, i.e.,%pi,qi:.kiﬁém.* if
W oonly 12, pinqm(\@in yGyn> ¢ @ for any twe elements i' , i" € I.Here
D1 'qy € Q, Py £ 9y T is a complex of indexes, We introduee a partial irder
,Ml" by inclusiomns (in the sense of the Set Theery),of the classes of@y :

'Let‘"a and T, belong to@j .We shall deem that “-.1 follows M, , M o T, iff W‘gn‘z_

!
e Complex

A _
1 elements of Q," real classes or Teal numbers,Coarsely,these are the classe
A

0 15 partially ordered by this relatiom.We shall call the maxi-

" op all mutually intersecting ratienal segments,We shall preve the existes:
¢

‘ot such maximal elements nW. Further we shall denote these maximal elas-
La!. of t‘of antusly interseeting rational segments (i.e, the real classes)
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by small Greek letters.The complex of all real classes,i.e, of all real

Numbers, we shall denote byﬂ
I.Existence. It is evident by Proposition 1 that% is not empty,i.

€. has at least one element.This article.proves the following results
On the existence of real classes.

Proposition 1. Let p be an arbitrarily fixed rational number.The com=
Plex of all rational segments containing the rational segment {p,p, is8
@ maximal element oi‘% y,which is denoted by T = iﬁp p>} i.e. T e,Pir =

T will be called generated by pé&Q , i

Let us scrutinize the subcomplex @;J of ,{P)} sconsisting of all maximal
elements of ‘P{:any of which is generated by some rational segment <PIPD s
P€ Q. Evidently, the set@ is isomorphous to the set Q of all rational
Oumbers,.We shall call the classes of@, rational classes or rational
Qumbers,

II. Order. The natural order "< " in Q induces an order in the come
Plex,.{fr,_s‘ : Let the real classes (numbers) L and V € ﬁ .We shall say

that |\ is less than the real number V (or that V is larger than L),
M<V, if there exist rational segments{ p, q>6}*_ 1<Xy8> | ,such that

9@ < r.We shall use the notation | =V if the maximal class of J coinci-
des with the maximal class V of rational segments,

Proposition 2. If the real class (i.e. real number)./ is less than

the real class F, y AL p) ythen it is not true neither P4 ol s nor
S = Fg .
Proposition 3. The order Ofﬁ is transitive,

Theorem 4, The order of(JBJ is a linear order,
Theorem 5. For any arbitrarily fixed different real classes T and 2

of ) with T < © , there exists a rational class £ é@ such that
T< 2 T

Theorem 6, The complex (Jﬂ'or the real classes is a continuum sl.o,,
8atisfies Dedekind's Postulate.This is: let% md% be two nonempty
d48j0int parts ofﬁ (ﬁ) C% :ﬁ’ - ;% ﬂ ﬂ% = @ ) such that
fach real class of;ﬁ bolonn either tofpf, or to {.PL( :ﬁ: U’% j{‘ )3 4

®ach element 01% is less than any real class of .J-B;Z.!'hen there exists
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at least one real class such that every real class,less than
T ,belongs to %4 and any real class,larger than © ,belongs to ‘Iﬁ'z.

III.The addition and multiplication in the complex S

Addition, Let o ,p be arbitrarily fixed real numbers of j’{: Let
the rational segments of o and [> be denoted by <p,q> and <r,s> corres-
pondingly.The real class,containing all rational segments of the kind
ZPp+r,q+8 > for some < P,d>E ol § LTS8 >é[.’3 yWill be denoted by & +p and
will be called a sum of o« and 5 . The real class O = i;o,o>_i , 0€Q ,
will be called the zero of,‘ipz'j «The real class 1} -{41,1)} y1€ Q, will
be called the unity Ofﬁ\' .

Theorem 7.The addition inﬂ{; is uniquely defined. Moreover,it is
true that (L)ecl +p =P +ol3 (1il). X + C =it 3

(1) (ol +B ) +T =L+ (P +¥8 ) ;
(1v). The equation ot +Z = ¢ has a solution.The solution of o + £ =Q
(which is uniquely determined) will be denoted by = .Here ol ' o X
¢ ¥ .

Multiplication., Let &« , p e% be arbitrarily fixed.The product
o/, {5 is the unique real class,containing all rational segments <y,v>,
U< v, such that for a fixed u there are rational segments /p,q>coc,
<r,g> £ with u less or equal of the product of any rationals ke¢p,
O l¢ 4£,s>, uckl, Let v, <p,g>€el ,<ry8>€p be arbitrarily fixed.
Then' there are rationals k°€ <p,q>, 1° «<r,s> with k°1°é v.

Theorem 8. The multiplicétion in %18 uniquely defined and has the
following properties: (1)eol « = Poob §  (11).( B )X = ol B )
(1) LA P+ B )=l +oleF 5 (AV)eal o Bm o ;

(v)., &¢. ¢ ;C ; (vi).The equation ¢ é = % withol ¢ O has at least
one solution. The solution (which is unique) of the equation o . £ =1
¥ill be denoted by 1/oC o

IV. Positive real numbers. A real class (number)y( is positive iff

. It is almost evident that we have:

& >0 °
Proposition 9, (1).The gero'is not positive 3
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(11), Ifo¢ #O one and only one of the real classes ol and ~o/ is positive.

(1i1), If o/ and p are positive then ol 1(5 and o , F) are also positive,
nu

continuously
Theorems 4-9 imply that ﬂf is a“Yordered body It is well kfwn that

the on1§$%§é%§2‘é ]B%dy up to isomorphism is the body of the real numbers,

This article is on grant NI-1033, 1988 with the Ministry of Science
and Education.

Proofs, The proof of Proposition 1 is almost evident,

Proof of Proposition 2.Since a(,-(P hence there exist segments<¢ p,
9> € of <Ty8>€ P with q< r. Then we have ol » A .Let us assume that it
holds p =< oC also, and 1let< p°®,q°>€ol , (T°,8° € > be with 8° < p° .,
After the definition of the reél classes, there exist rationals a, be Q,

acg( 4p.q>ﬂ 4p°,q°;), bé ( 4r,s>n4r°,a°> ). Since Q<& rand a £q, r
< b, then we receive a< b . Since s°<« p° and p°< a, b < s°, then we

Obtain b< a., The obtained contradiction proves that the assumption P

<L ol 18 not true. m

Proof of Proposition 3. Let o <p and P < ¥ ,where o , p 26 s
Therefore there exist rational segments ¢p,q> ¢ol , 4T)826 P, < 1°,8%¢
b ,¢t°,u®> ¢¥ such that ¢ < r and 8°L t°. We have <r,s;n<r°,a°> ¥
¥ after the definition of the real classes. Thus r < 8° ,We receive q .
T, r< 8° 8°< t° .Hence q< t° , which signifies that o« — ¥ . m

Proof of Theorem 4., Now it is sufficient to show that if i andp are
Teal classes with OL # F) then we have either ol < p or p Lo .Let us
fix arbitrarily two different real classes ol and > «Then there exists
3t least one rational segment<r.a>ép ,4r,s:-¢o¢ .4r,s>¢o¢ involves
the existence of a rational segment<p,g>€ol with< p,q>n {rye>= @ ,
(Since if any rational degment of U hasvnonompty intersection with¢r,
8> hence <r,s> must belong to O-after the maximality ofol ).The follow-
ing two relations between the rationals q and r are possible- either q
< ror r< q. We have oL < /3 in the case q < r.The case r. q implies
S < p, since <p,q>n <r,s>= $. Then P“O(r - m

Proof of Theorem 5. There exist rational segments <p,q> T , (r,s> -
€T with q £ r after the relationT £T .Let u be a rational number
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With qecucr . et € @ be the rational class, generated by Zu,u).
It ig evident that we have T2 £ O »T ¥ L ¥X . =

Proof of Theorem 6. % is a continuum: Let T ¢ ﬁﬁ,q,@ € J,?ﬂ;z . As
(JHI{ deB)'z are nonempty we can choose and fix such real classes. Let
<Pr@> €T 4r,a>eg be arbitraryl Let us study the class ﬁ, of all ra-
tional segments ¢ p,s> whenT and Q range :K:,‘ and ~¢, correspondingly,i.e.
(1)&_ £ p,8>: we have either({zp,p:»} éﬂ{, &:a.s:{}e ﬁz] or[{(,s,s?}é
iﬁ‘and {4’11,11)} é,’_ﬁlfpr any rational u > B_] or pr.p%&f?i}_and Sj.v,
V>} 4 ﬁq for any rational*v P ‘
We shall prove that L& R Jet <P1sﬂ1>.<1>2,62>&& be arbitrarily fixed
®d.Then p, é‘sz and p, < 84 after all posaibie cases of (1).Therefore
we have <p1,81>n <Pyy85> ¢ ¢ This iB.‘H‘« e® .Moreover, . is a meximal
element of B since: et vB et the class 'E,o GTP:, H.o Dﬁ« and let
the rational segment <p°,s8°> 6&: .There are only .the following possibi-
litges (i)-(iii) for< p°,s8°>: (1).2_4 p°.1=°>3(tE ':H’ Ay {£s°,a°_>leﬂ .
That is why ¢£p°,8° e'ﬂj in this case. (ii). {4 ’°"°’}6%1 .Since‘&o
2 H; ,hence <p°,s8° has a nonempty intersection with any segment <p,s>
(:'E . Then p < 8° for any rational p with <p,s> e'E: .Therefore %fp,p,s}
6%1 for any rationa;p with <p,s> eﬂ; in this case, Let u be a ratio-
hal, u > s¢We have eigher{a’ u,u >} € :%1 or L(u,u{} € :BJZ_ gince %4 U
ﬂ&-{ﬁu .But the case {f u.u>} éfﬁw,‘ is impossible since then su,t >¢&
{/ for any rational t with {41:,1::»& éﬂz.(Such t exists after ,).Kz £ 9.

But we have < pgs°licu,t> = @ .We have proved that p < s° for any ratiowal
lal p with ¢<p,8> eﬁ for some s. Thus u < s8° whereas we have chosen u>
8°, Therefore it remains only 4u,u>& eﬁvlfor any u > 8°, Then £p°,s°
et a1s0 in the case (1i) after (1). (iii).££p°.p°>} e%z. since £
D'& ,hence <p°,s°> has a nonempty intersection with any segment <p,s>
¢t .Then p® < s for any rational s with ép,8>é'H'f for some p . Now let
the rational v « p°. We have either %v,v>k € ﬂi or Lz.v,v:'k éﬂé.rhe
Cage Ev’v)j 4 ,J.er is impossible since then LB.V>6'E for any rational

q with{ca.wv} eﬂd atter (1). (Such rationals a exist after Zﬁq o
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We have proved that<a,v)> é& implies p° & V. But we chose v< p°.Thus
it remains only <v,v> 6%4 for any rational v £ p° .Therefore <p»°,s8°>
et also, after (1). That is why &o-‘ﬂ: for anyﬁo o ,ﬁ,a ER* . Thus
'& is a maximal element of ‘R.* ,i.e.ﬁ is a real class of% Jet us de=-
note this real class by C . We shall prove that the real number C' sepa-
rates the complexes }{ﬁ',land J-Kfz .This is, if ol = ,then 0(,6%1 and
i2T <L (> them [ E'ﬂ?b'z: Let o £ C .Then &re exist rational segments
ca,c> ek, <py8>€ 8-% ,8uch that ¢ £ p .Therefore{t c,C >} Eﬁ/t_aﬁ:er
(1). That is why o eﬁq too. Let now C &5 . Then there exist ratio-
nal segments <b,d> € ‘5 F .Ap,a>e’@ -ﬂ: with 8 € b, We have i/.h,b)} €
‘{K’z after (1). That is why we receive pe 2also. m

Lemma 10, The segments <&,b> and £ ¢c,d> have nonempty intersection iff
it simultaneously holds a < d and ¢ <D .

This Lemma is almost evident.
Lemma 11. I. If K is a real class, then for any fixed integer n >

0,there exists a rational segment< p,q>€oC with q-p<£Li/n ,
I1,If ol and p are real classes,such that for any fixed integer n > 0

there exist rational segments (eventually depending on the choice of n)
sG> €O 5 < Ppedp>E P WitH | ap -Pd,\ < 1/n, \qd, - pp\évn. then

we have oL = [ . positive
Proof, I. Let us assume the contrary.let n°® > O be the leastVinteger

With q-p =1/n°® for any £P,q> &0l .Then either n°® = 1 or n®> 1 and q°

< p° <« 1/(n°-1) for some £P°,q°>€cl + 8). Let n®> 1 and r® = (p°+
q°)/2 , The assumptioncr‘.r°>n <p'yq'>= @ for some rational segment
4p',q's ¢ o, is impossible since then either r°< p' or q' Z r°. But r®
Z p' involves ¢p',q°>E X (after the maximality of o¢ in {R.*) vhereas
we have q° - p' < (q°-p°)/2< 1/(n°=1) < 1/n° . The case q'< r° involves
<p°,q'> Q) whereas we have q' = p° £ 1/n°® .Therefore the obtained con-
tradiction proves 4r°,r°>n 4p,q> # @ for any segment <p,q> € 00 .This
implieg<r°,r'>eda éfter the maximality of ol in fR«* But O = r® -« p°

| or
and thus cmota%ﬂr than 1/“'_' * D). Let n°=1 and n* be the lar~
ger integer with q-p> n* for any<p,q> ¢ ol .Then we have q*-p* < (n*
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+ 1) for some <p~,q"> ol .let r*=(p®+q*)/2. The assumption< r",r“;.ﬂ(_p",
Q"> = @ for some ¢ p",q">¢&ol is impossible since then either r*< p" or
Q" & r*. The case r*< p" involves <p",q">€(C (after the maximality of
o in R and < p",q"s eol +<P"»a"> €cl ).But we have q*-p" £ (q"-p*)/2 <
(n*+1)/2 ¢ n*.The case q" £ r* involves {p*,q"> ¢l (after the maximality
of o/ in R ).But we have q"-p*< (q*=p*)/2 < (n*+1)/2 & n? The obtained
contradiction proves that(r“,r")n <Pyq> # @ for any {p,q>Epl Thus we
receive ¢ r*,r*>€ ol +But 0 = r* = r* is not larger or equal of n*>1, The
obtained contradictions in the cases a) and b) prove Lemma 11.I,

II.let us assume the contrary,i.e. that ol ¢ (b «Then either oL A or

[540{, after Theorem 4,In the case o p there exist segments (,p;' 'q°
€ oL s <P Hap>€ P vith g < Py oThen we have p, < qf <P < qp for

Jet a = 0 - ° - =
cach segments £P 14 > € oL » L Ppr9y> EP Py = a3, -Thus | 9 P,,L'
> a > 0 , which contradicts the condition of Lemma 11,II, In the case A

—

< oL we have g £ p,, for some segments Ap:,q;>6d, > (p;,q;>e F’ .Then
pP < q‘P' < p; Z 9, for each segnents<p¢oqw>e ol .zpp .qp> ep «This con
tradicts again the condition of Lemma 11.II, Thus it remains only d,-ﬁ ol
Proof of Theorem 7.We shall prove that the addition in2Rs 18 uniquely
defined,I.Let us denote by Lou- (b] the set of all rational segmente of the
kind < psr,q+s> for some <Pya>Ecl » LT»8>€[ .We shall show that [oe4p)
ER" .Let<p,,q4>and<py , 9p> belong tool 347ry,8,> , < 1y,8,> belong
to (> .Then we *have Py <y Ppg Uy 3 Ty &8y, Ty < 8, after Lemma 10
and o, (5 E/P\/ .Therefore we receive Py + T, 4__q2 + 8y 4 Pytr, X qq+8 4

Then the intersection ef the segments <p1+r1,q1+|1> and<p2+r2.q2+,2>1a
Nonempty after Lemma 10.Thus we obtain [oL+ a) ¢ R0 « II. We shall now

scrutinize whether [oL ) eﬂﬁ; LetLe,f> be a rational segment with
Nonempty intersectiom with any segment of oL+ (5] .There are only the
following cases: a).For any fixed such segment (e,f> we can choose a seg-
ment £ p+r,q+8 >, 4 DA€ o 1 ST8>EPS with e L per , qes 4‘5‘ Let g =
Peree 2.0 , h = f - (q+8) =0 . 1ot pl=p=g , q'=q+h -wa <p''> e
8ince< p',q'> )<p,e> and & im & maximal element ™ ~«We have p'imesy
Q'4s = £ .Thus <e,f> = <p'+r.ql+|->,e[d/+ P] .Therefore [d. + P] isa :
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maximal element of(pv in this case and [_oLQ- P—_] 'O(’*F’ also. b).The-

re exists a rational segment {e°,f°> with a nonempty intersection with

any segment of LO(,-*F:} but p+r £ e° for any{ p,q>€0L , <r,s8> 6@ .

Moreover, we have e® £ q+s after Lemma 10.Therefore the segment <e®,e®>

has a nonempty intersection with any segment of Lo{,-l- (b] .Then 0[,+€) -
{ce°,e°>}. Since we can choose <p,q> ,4r,s>such that 0 < q+8=-(p+r) =
(q=p)+(s-r) ¢ 1/n for any natural n after Lemma 11,I,, hence o{_q-{{) -
i<e°,e°>_k is unigely defined. c).There existe a rational segment
<e®,f°) with a nonempty intersection with any segment of E:b‘t‘ F)] but

f° £ q+8 for any <p,q> €l ér,a)»ép) .Moreover we have p+r £ f° after
Lemma 10.Therefore the segment 4f°,f°> has a nonempty intersection with

any segment of Lob -t'(b:] . Then cL+[b -BP,I’.}}. Since we can choose

<p,q> , &<r,8> such that 0 £ q+s=(p+r) = (q-p)+(s=r) £ 1/n for any na-
tural n after Lemma 11.I., hence ot.+[5 - £r°,r°>.} is uniquely defined
in this case,Thus the addition o +(5 in is uniquely defined in all

possible cases.
Further on, (i). & + F - F;-HJ(, as the addition of the rational num-

bers of Q is commutative., (ii). (L + P ) +¥ = ol+ (P +% ) as the

addition in Q is associative. (iii).The zero & is generated by <0,0),

l.e. 4= 40,07}.That is why if4p,q> ¢l »then {p,q> = <p+0,q+05 ¢ ( &
+¢ ). This is, the class of the rational segments ol C— ol +< .Then
it follows by the maximality of & in 'RT that oL = oL+ O, (iv). Let

us choose & = i&-q.-p).vlm‘bétﬂl .We have X° E:R* since o €R",Mo-
reover, g"e‘:Pi, since OLefﬁ_‘ .Further on, o(,-r‘g.{? after Lemma 11.I.

é&nd II. . @
Proof of Theorem 8, Let us denote all described segments <u,v> in

the definition of cl.fs by [o p] .We shall show that [tpTleR* .
Let the rational segments < U,,V.>,<Uy,V,> € Lob p] with their corres-

Ponding segments (Pyydy>s<Pzrp>€ECL 8N L{Ty,845,4T5,8,> 6[5 such that
Uy & kyly o, Uy & Kol for each rationals k,€{p,,q,>, Li€dry,8, k,

¢ 4-2'3Q12), 126 (ré.jz). There exist rationals kK$ELP12Tq> » k3 €< Py,
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Up>y 19€<Ty,84>, 15€<T),8,> with k913 < \C k; 15 < v, after the
construction of the multiplication in ﬁ; « Thus we receive uy < k‘{ 1‘1'
b v, and uzé kE 15 < Vy oo T*he Lemma 10 involves that <u1,v1>ﬂ <.u2,
Vo # @ .Therefore [oip] € R .Now we want to show that the real
class,containing [0(. [5] is uniquely defined.lLet <e,f> be a rational se-

gment with nonempty intersection with any of the segments of [o(. {SJ i
There are the following cases only: a).For any fixed such segment

<e,f> there exists a segment<u,v> € [_dp] with e < u, v< f .Let the
segments <pyq'> Eol , .;'_1‘,3',56@ correspond to u .This is, u < k1 for
any rationals ke<p,q'», 1€<r,8"».Since e ¢ u,then e <L k1 for any ratio-
nals k€<pyq's, 1€<r,8'>.,We have also the existence of rationals k°c¢
<p",q%>, 1°€ < r",8"> with k°1° < v for any fixed £p",q">ée¢ ,¢T",8">
€ p -Thus we receive k°1°< v < f. Therefore<e,f> ¢ [&¢ ] according
to the con.sr!:ructi<:n!1qlr of [o(, F)] .Therefore I:O(,P] is the unique maximal
element o ,r_l, of in this case. b).There exists a rational segment
ce®,1°> with®honempty intersection with any segment of [e(_ (5_] but we
have u < e° for any <WU,v> & [o(, {5] .Moreover,it holds e® < v after
Lemma 10. Then the segment <e®,e°> has a nonempty intersection with
any segment of [.o(. (‘BJ .That is whyol . b = {.<e°,a°>}.smc. we can
choose < p,q>€ o and(T,8>¢fp with 0< g=p < 1/n, 0< s-r < 1/n for
any fixed natural n, hence ol f -{m".e’)j is uniquely defined in
this case ¢). There exists a rational segment <e®,f°> with a non-
empty intersection with any segment of [d- {~‘>J but f°, v for each<u,
v> € [né (5] .Moreover, we have u < f° after Lemma 10, Then the seg-
ment £ £°,£°> has a nonempty intersection with any segment of [_d. [5] 3
That is whyof . = 4f°,f°-:_} .Since we can choose<p,q>€ed , <Tr,8>

€ with 04 g-p < 1/n , 0£ s=r £ 1/n for any fixed natural integer
ni(after Lemma 11.I.), hence o(,-FB -£< f°,f°>¢ is uniquely defined.
Therefore the product oC . [b is well and uniquely defined in all pos-

sible cases.
Further on, (i).The product o& .P is uniquely determined by the

class [o{, [‘:] .But we have [& b] '[[5 of«] by the commutativity of the
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multiplication of the rational numbers of Q..Thuso(/ P =N.¥ also.
(i1} .We receive (ol . {b )oB = ol @-5) Since[o(,( P-5 )J and [:(0('. F)) .?f‘]
define the szme real class. (iii).We have of.( Fﬁ-lf) =L )+ P X sinece
E’L (P.”{ )] and E(_, F, + OL .251 define the same real class. (iv).ol.[L
{s & real class,defined by [oL. 4] Dol .But Cis a maximal element or TR
and o, LT D) E)L.ﬂ].'rhat is why ol =0l . (v).We have [d. .Q]Dm,m,
Therefore oL , O -’I(.’O,O:v}- Q . (vi).We have oL ¢ < ,Then it holds either
A>Q or oo £ O after Theorem 4. In the case o > < there is a segment
<p,q§/€1&1th p~>0. In th/o\caae ™ £ <O there is a segment < p,qQ> € ol ;j.th- q
<0°.Let us denote by[ob] all such segments < p,q> col /W&th PqQ >0 in the
both case. Let [?fﬂbe the °1353\Pf rtfional seg|onta{5§ﬁ]- {(1/q » 1/p>,
Pyq> € o , PQ>01 .Evidently [ £*] Xzt ¥ be the real class,containing
@ .Then oL ,\é'.il after Lemma 11.I., and II. am
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TWO MODELS OF TIME WITH WAL¥ZR'S LEFINITICN CF INSTAKTS FY EVENTS
Andreana Stefancva ¥adguerova
Tvig article congtructs two models of Time,using walker's definition of
instants ty events, It Tollows from either of the provosed systems of “xioF
on +he events, that the instants, constructed ty events =zfter Walker's de-
®inition, compose &n cren-ended linear continuum with & "dense" sequerce of

instants. I.B. Time continuum has the rroperties, charccterizing the resl

line. Zere the exposition is bhzsed only on Walker's definition of instants
Without mix up Russell's definition of instants, The used here systemgof

“Xioms ape simplier than yrevious in the literature nd treat only events,
The :ttempts of mathematical consgructions of the instants of Time ty

Svents derived fromm Russell and Whitehead Lj,g]. Such constructions of Ti-
me =re elaborated also ty Fobbs [?J, N.wiener [4], walker {5], Whitrow[él,
Tomason [7]_ “he =rticles 1?71QJconstructed two models of Time, based on
“ussell's definition of the instants by events, The rhrysiologists, psicho-
logists and philosophers are in accord that the conception of the events
is more primary and fundamental whereas the instants are intuitive-=mental
Constructions. Ruseell and Whitehead have posed the problem to obtain the

construction of the instants from the events by a logico-mathematicel way

D,z.é})_ The rrorosed here *wo different models, hased on Walker's defini-
Yion, nave more simple requirements =bout the events (cf.[p,T]). (For ins#
tince vere only thre relations e< &énd O #re required smong the events, whe-
AT [F] needs thre relations «l , < _, << , (O among the eventi
tere the constructions and proofs use only the Wwalker's definition of the
instants (without a mixing of Russell's definition of the instants (cf{?]).
‘he constructed two models of Time with the walker's definition of inse
‘ants (see [?_7]) are based on two different systems of exioms on the
®vents. It follows from either of these systeds, that the instants, cons-
Btict b by events after walker's definition[?—?],have the discussed in the

Uteratupe [és?] properties of the continuum of Time of Mathematical rhy-

%es, "his is the instants compose an open-ended linear continuum with a

"dense" sequence of instsnts, which are characterizing properties of the



".?1.

Teal line, The second model here is introduced not only to show a rew POS=
8itility of the construction of Time. The second model of Time avoids the
Conceptual imperfection of the first simpler model of Time Fere, All events
“re finite in the first model, whereas the second model =dmits unbounded
€vents also, The first system of exioms on the eyents is satisfied for in-
Stance by all nonempty compact segments of the real line. The second cystem
of axioms on the events is satisfied for instance by =11 nonempty open in-
fervals of the rezl line. The axiom Jb'is from [?,4,51.

let us denote bydjp’the whole complex of zll events,

The firet model of Time with walker's definition of instants by events.
The first model of Time here consists of Walker's definition[?-f] of ins-
Yants by events and by the following axioms on the events,

Axiom 3%'(E.Russell Lé]). T.E;/>ﬁ @ . For any *wo events either one of
them is "vefore" ("earlier than"), (< ), the other or in tfe oposite cese
they are "simultaneous" (at least rartially) (i.e. they "overlap", i.,e.are

Contemporary" ), (@). This i¢, for any two events a,b 630ne and only one
of the following statements is true: either a b or bLa, or aOb s We
have 2 © a forvaéy .
2, I a <D, b@c , col d , then aLd for any events Ry by ey debp.
It follows from Axiom‘l)tf‘ that tre relation <« is transitive, i.e, if a

Yand vo£d , then ae<L d ,where z,b,d 68’. It also follows *“hat if a(®b,
then b@a. Thus the sety of all events is partially orcered by the rela-

on o ,
AXiom& . There exists a sequence X of events from o(_f,such that for
%y arbitrarily fixed events a, bév with a<{b there is an event k&K

"Ith aC keLb .

Axiom For any arbitrarily fixed event aey there are events b , o

Ey such that b a3l C »

Axiom . Whenever c<La«beld (a, b, ¢, d 689)’ then there is an event

¥ a simultsneous with a and b, a@s ’ b@s yfor which c L geLd ,
Remark. There exist complexee 3 ,eatisfying Axioms 7)'6': ’ .@ .Such

I8 1 et of all compacts (i.e. closed and finite) nonempty segments of

$
‘he real line.

fe shall formalize the ‘lalker's construction of the instants by events :



."d.
Tefiniticn of the instants (after Walker LS]). let (P,Q,R) be a trirple
of subsets P, Q, R ofy,such that (i). P,Q,R are nonempty, P # @, Q #
P ,R¢ Q. (ii). Each event of P is before any event of R .

(1iii). Any event of @ is simultaneous with an event of P and with zn

¢vent of R . ‘0{5 ( @ D
There exist such triples after Axioms V) , & .

16tw be the complex of 211 such triples (?,Q,R). we introduce a partial
crder in\W vy inclusions (in the sense of the Set Theory) of the triples of
W : LEtw‘ lw‘z’ Ew !w.‘ b (P,‘ ! Q‘-! R,t) !%' ( st Qz_’ Rz) . We shall
f%eem thatW, follows (oL )W\.V4 ,W‘ Aw& , 1fe P‘:Pz , Q,‘C:Q‘z ,

P‘l: Ra . )

The meximal elements ofw will be called instants (moments) (after wal-
ker) and will be denoted by small Greek letters. The class of all instants
%ill ve denoted byq\l\]l ‘

Theorem 15\(\[2 is not empty, i.e. has at least one elament.

Remark. Ifol = (P,Q,R) és‘\lﬁ and the event & is simultaneous with any
‘vent q€Q , q@ a , then we shall say that f*re instantOoC belongs to the

*Vent a , oL € Q.
Theorem 2. For any fixed event a eythere exists an instant o, belong-

lng toa ,LE a.
Theorem 3., Let a and b be arbitrarily fixed simultaneous events, a,b &

QLJO .Then there exists at least one instantx with ¥ € a ,'6' Ex .

Theorems 1-3 ere formulated and proved separately because these results

have been widely discussed in the literature (see [2, 3,7]). In some artie-

tles these results are axioms (Cf-YZP -6])-
The order inw . We shall say that the instant O is before (earlier

than),(_< ), the instant ‘b ,if there are events qeLé Qob > q‘s & Q(& y,with qd’

o INY where oL = (B, 9y R) » P = ( PP, st Rp,) . If any two events (]ué

W and gy € T simultaneous, 4, © 4 then we shall say that °"'P-

(It 15 not necessary to have E = ¥p QL™ QP wlge= R{h )

3 1 n 2 3 : 2
Frovosition 4. The relation "e" among instants is transitive,i.e. if o

x [5 ' P =¥ with oL, [5 ;‘ 6W ,then d,-‘é . Horeover, X = ol for &ny in-
R " a
‘tant of W' ,this is eny two events Qi ., 4y €9, serealnvdienseuts gy Ba] |

‘bere Ol = ( Pu. 2 QOL’ Rct.,) igs an arbitrarily fixed instant of =

Proposition 5.‘ Let ol = (P&’Hd_:ﬁg,) be an arbitrary fixed instant orw -



Then we have a). I;LU Qd‘UR(L- (‘b,;
b). P,Lde__- ;i QuUlRy =90 ; Pd_m Ry=9
c). Any two events qi and ql of QnL are simultaneous |, q;'(D qcl;b S
Froposition 6. If the instant ol is before the instant rb, ol *4{35 ythen
it is not true that ‘5“-< ol.

Proposition 7. Time order of the instants oz‘S\N ig 2 Tinear order,
Moreover, the axioms !ﬁf- ensure all desired LZ.G.?] properties of
Time continuum for the clasag\N of all instants, This is,"\\:z is an open-en.
ded linear continuum with a "dense" sequence of instants, which are charac.
‘nerizing.. properties of the real line, Thus, the rroperties of Time conti-

Duum T, used in Mathematical Physics, are the following after LG,TJ;

1. T is linearly ordered ;

2, T is a "dense" set, i.e. if the instant W 1is earlier than the ing-
tant & , then there exists #t least one instant ? betweenT and € ,—r ,cg s
240,

3. T satisfies Dedekind's postulate, this is: If T, and T2 are two non-
®mpty disjoint parts of T, such that each instant of T belongs either to
T,‘ or to Tz and each instant of T“ is before any instant of 'J.‘z y then the.
re exists at least one instant C € T , such that every instant before ¢ be.
longs to T, and every instant after € velongs to Ta

4, T contains a countable subset G, such that for any two different

1na+.ants1'r snd & of T there exists at least one instant g of G , which is
Yetween | and , W # Q ,?&fg .

The prorerty 4 immediately implies the property 2 of T, These four
Properties of T are satisfied also by a model of Time, which has an earli-

®St and = last moments, 1.e. by a model of Time with a begining and an end

?herefore one ~ore property must be added B,B-"O]:

)
5. For any arbitrarily fixed moment C of T there exist instants a{ and

D R
such that @ i:c btetween 84 and (’2. , O # 21 P - ,l’az L
-@ ensure the following theorem .

of all instants is an open-ended linear con-

w has the properties 1-5

& 5

Axioms
Theorem ¢, The complex W
tinuum with a dense sequence of instants, i.e
T Time continuuﬁ ﬁf‘f Mathematical Physics, which properties are charac-
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terizing for the real line.

The second model of Time with Walker's definition of instants by events,

The second model of Time, based on Walker's definition of the instants,
Prorosed here, permits a more free interpretation of the events, which mo-
re completely corresponds to our conception of the events, It permits non-
bounded events, while in the first, more simple model, all events are boun-
ded, This second model has the following axioms L)%Sﬁ,ﬁ*and;@* on the com-
Plex of all events éf .

Axiomv&? . Point 1 and Poind 2 of the Axiomﬂ% of the first model (i.e.
Axiom ‘Jﬁ* consists of Points 1 and 2 of the Axiom v‘ﬁ' and the following
requirements 3 and 4).

Foint 3, If a is an arbitrarily fixed event of vﬂ ythen there exist
events b , ¢ , d , simultaneous with a, for which cu< beld . (We shall
use the notation bcl a in tre cese of Point 3 of Axiom Ub*.)

Foint 4, If m and n &re arbitrarily fixed simultaneous events ofobp :
nO n , then there exists an event p € g » such that pClm , pCn .

Proposition 1', If the events a , b are in the relation b 'a and if

the event m is simulteneous with b , then we have a() m also.,

Froposition 2', If the events a and b are in the relation b (C} a , then

it is not true a C) b .

Froposition 3', If we have a' < b' , acCa', b b' , then ael b
also,wherea,a‘,b.b'ey .5

Axiom g? . There exists a sequence K of events from y, such that if
the events aca, bC_I" b' are arbitrarily fixed with a'e< b' , then
there exists an event k € K , for which a k(b ,

Axiom©*. Whenever we have cLa.LboLd (a , b, ¢, d are events

,
°fQ&ﬂ), then there exists an event s , simultaneous with a and b , a(® s,

b@S , and with ce< 8Ld .

L 4
“"r(i) are satisfied for instance by the

+
Remark, Axioms JJ‘ ’
COmplex of all nonempty open intervals of the real line,
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CONSTRUCTION OF THE INSTANTS (received, formalizing appropriately Wale
ker's definition’. I.e'tq\/\yl be the complex of all triples (P,Q,R) of sets
of events with the properties: (1'). P ¥ 8 , Q#¢ , R ¥4 ¢ ;
(11'). Each event of P is before any event of R ;
(11i'), Each event of Q is simultaneous with an event of P and with an

event of R ;
(iv'), For any event q of Q there exists an event q° € Q with °< 4
0L * v

-
There exist such triples (P,Q,R) after Axioms L&/
!
We introduce a partial order inw by inclusiomns of its triples, This
/
|
is, 1let '\\N?‘ EW ,WR’EW ’ w‘ '(P1 ’ Qi' R,‘) ,Wz- (Pa, Qi' RZ )
We shall say thatW/ fonowsw; W, oW, » £ PR, Qg ,
R]C:Rz’ ,and we shall’ denote it byW"A% +The relation..g introduces
a4 partizl order mw.
\WV&
The maximal elements of will be called instants (mo mnts)9 and

Will be denoted by small Greek letters, The class of all instants will be
/
denoted by 2 S\)\F"
Theorem 4',The class of all instants is nonempty, i.,e. there e

W’
exists at least one instant of .
Proposition 5'.let oo = (B, Q » R, ) be an arbitrarily fixed ins-

tant ofw’. Then we have a). P%U Qd_U Rm"'%&;
b). Py_l/-\ Q= g, q‘_lq R =§ ; Pd_f'{ﬂRd_- g
c). Any two events %_. lof Qo arf simultaneous, 9‘;5‘) G/:, :
Definition, Let the instant ol WZ beol = (P,Q,R). If a'is an event
for which exists an event a® C_ a, such that a® is simultaneous with any
®vent q ¢ Q , then we shall say that the instant OC belongs to a , o/ ¢ a,
If any instant of the event a is before (resp.after) an instant A, tn
then we shall say that the event a is before (resp.after) the 1nat5nt b,

8= > (resp. Poéa )o
Theorem 6', If a is an arbitrarily fixed event, then there is at least

°ne instant o/ , belonging to a .
Theorem 7'. If m and n are simultaneous events, m (Dn , them there is
%t least one instant }{ with Y em, ¥€En,

TIME m HW'- Let the instants }L- (P" Q‘, R")ew. s Y =



-
(PIL " Qz » R, ) é\sﬁ . We shall say that }L is before (earlier tham)V , ,
lL—< V , if there exist events %16 Q1 g O\MC‘ QZ, with %‘o‘:q"h

shall deem that W = V) , if each event of Qq is simultaneous with anyﬁevent
of Oz,i.e. %‘OC\L for any two events %e Q‘ ,G\_,_eQz » Thus it is
not necessary for ',l-\) to have P'i - P& » Q= Q, R=R, !

Proposition 8', The relation "+" is transitive and reflexive,i.e, if

}L- V and V = C, then ]A.S\Jlffc ; P,L-rb, where P\,,U - ew :

Theorem 9', Time order in is a linear order,

Proposition 10'. Let ol be an instant. Then thefe exist instants P and
¥ with Pc-é-df L B

Theorem 117, is an open-ended linear continuum with a dense se-
quence of instants. This j.a.$‘~[z has the properties 1-5 of Time continuum
T of Mathematical Physics, which properties are characterizing for the
real line,
PROOFS FOR THE FIRST MODEL OF TIME (WITH WALKER'S DEFINITION OF INSTANTS)

We shall use Zorn's Lemma in the proofs of Theorems 1-3 , let us re=-

mind it:
Lemma of Zorn (Zorn ]:?] )oLet X be a partially ordered nonempty set, If

any linearly ordered subset A of X is upper bounded in X, then X contains

at least one maximal element.

Proof of Theorem 1. Evidently;w is a partially ordered complex., We
Shall prove that W is not empty. There exists at least one event a after
Axiom U%‘ . There is an event b with a .<b after Axiom « Applying Axiom

D , we get an event 8 with a®s , b(Ds. We have that the triple

(jar ,{® .-‘bb eW .
S il %\ ve a linearly ordered subset otW , A '%Pi' Y » Ry )y

Now, let
l¢ I} , where I is a complex of indexes., Let us scrutinize the triple

W‘:(’P,Q:D\,), ,qutelﬂp‘ ' QzLJ""IQ.‘ ’/R'zk‘)?eI/D\“‘ ”

We shall prove thatW? &W ,i.e. are satisfied the requirements (1)=-(i!

(111), (1). 12A 4¢ ,then2$ 08, Q60 , RAG;

(11), Let p EP, TE R . We shall prove that p-<r Evidently, p =Py '
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and r = r,, for some i', i"¢ I , Since A is linearly ordered, then one

iﬂ
of the triplewi, = (Pi' 3 Qi' ] Ril ) !w in = (Pi" ’ Qi" ’ Ri" ) fol=

lows the other, If Wi“ a_sfw g+ » then we have p,, € Piv oy riw€Ry,y

i

which implies p~<Lr , IfW,, = W;n , t<hen we have P41 EPyn 5 T 4ER

1 ill

Which implies pe<.r again,

(iii), Now , let €Q . Thus g = gy for some i°€ I , Since w® = (Pi“’
Qi“ 5 Ri" )6W , then there exist events pi"EPi" 5 ri"ERi‘ with
Pio©q , rjo®q .But we have 2180 p;0EP , Ty €R, by the construction
of W*, Therefore the triple W* EW.

Evidently, this tripleW " upper bounds A » Therefore 'fklre exists at
least one maximgl element o ofw after Zorn's Lemma, We haveoc.éw
ty the definition of . M

Proof of Theorem 2.let us fix an event bo< a. Such an event b exists
after Axiomﬁ%f’ .let s be an event, simultaneous with a and b , Such an
33 .Then the triplew®= (a, s, b )

€vent existe after Axioms and
EW 5 LetV be the subset oowhich contains all triples WEW with

W o= (P’Q’R,s w°= (a , B, b ) and such that any event of P is not
ifter the event a, i.e. either P@a or p< a for any event p¢épP ,
Evidenjly,v is not empty partially ordered subset ofw with the ga-
me relation of order _< . We shall see thatV satisfies the requirement
°f Zorn's Lemma. LetA-&(Pi,Qi » By )y 151} be nonempty linearly or-

dered subset ofv , where I 18 a complex of indexes. lLet us scrutinize

the triple W' ( P, Q , R ) with

p=U1;I?11 Q?—U‘L&IQ: ;/R,""U‘.gfy_(p“t ‘

We have w* €W since the requirements (i)-(iii) are satisfied:We have
(1),p,¢¢’Q;¢,R{¢asA is not empty;

(11), 1¢ peP , r€R , then pEP;y » TER;y for some i' , i" € I A is
linearly ordered. This is, we have either %,eé\\ﬂ-t..and PEPin 4 TERy ,
% pr , orWpis<, W and p€ Pyg, TERy, , thus pe<r also.

(111). Let q€Q be arbitrarily fixed. Then q belongs to some Qi‘ s 1°€1, L

wv = (Pgp ,Q10 7/1'1') W .
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That is why there exist events pEPjo , TE€Rjo , simultaneous with q ,
P®q , rOq . This complete the proof of W*ew 5

Moreover, W*Ev since we have: 1).It is true that W' S>=\?° , as
W, >>W?° for Y 1€I ; 2). Let the event p€ P be arbitrarily fixed,
Then pe,‘Pi° for some i°e I . Since (Pio » Qo ,Rio )QQMV , hence the
e¥ent p cannot be after the event a , i.e., either p(da or pc< a.

Evidently, the triplew™ upper bounds #% . ThenV contains at least
One maximal element of after Zorn's Lemma, Obviously, o is a maximal ele-
ment ofw also. This is, o is an instant oé\hfz « Moreover, we haveo ¢ a
after the construction ofV . W

Proof of Theorem 3. Let us denote by D, (resp. by D, ) all events d,
(resp. dy ) which are after the event a (resp. b ). There exist the fol-
lowing three cases only: I. We have a-<dy , be<.d, for any d_ ¢ D, ,
Y d, € D, . Let us denote a = ¢ , d, = d for some arbitrarily fixed
event daff Da , and let s be an event simultaneous with a and d ., We have
Cold , c®s8 , d®8 &

II, There is an event dj € D, with b(d} . then we have ao atd,
POV, b< dy . It follows applying uiomu% +Point 2, that a-< dy for
V db € Db . Let us denote a by ¢ , b by s and d; = d , We have c.d o
tDg , dDs .

III. There is an event dj € Dy with a(:)dﬁ « Then we have beLd} ,
d{)@a ; a..(da . Thus we obtain b d  for ’VL d.€ D, , applying inomzf([ .
Point 2. Let us denote b by ¢ , a by 8 and d} by d . We have co< d ,
¢®s , d®s . Thus we receive in each of the cases I-IIT that the triple
Wo _ ( P°, Q° , R® ) with pe -{9} y Q° = i'a} s R® 'g_d} belongs to\hy R

Let us scrutinize the partially ordered CONPRIVI W= (P,Q,R) E
W LW E-:w"_ and any event of P is not after the event c} with the
Order, indmced by the order of\bﬁ .

‘%V satisfies the requirement of Zorn's Lemma since the following holds
Let A - {wi} €1 ve a nonempty linearly ordered subset orV , Where

W= Pyy Qs R, ) and I is a complex of indexes,
Let us denote by W " the triple\w*= (P,Q,R) with
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F = P ;Q.U

1el i

, R =

We shall prove that the triple wV* eW y8ince the requirements (1)=
(1i1) hold for W*: (1). Since A is not empty we have P # @ ,Qff, Réd.
(ii). If pgP , r¢R , then p€P;, , T€R;y for some i' , i" ¢ I , In

fer Y4 ieT Ry o

|
the caseW i = Win » we receive p&Pyw » TE€R;n ,and therefore po< r.

In the caseWw .y =<W,, , we obtain p€P;, , T€R;, and thus p<r ,

(111). Let q&Q , then g€ Qo for some 1°€I ., That is why there exist
events p€ P,, , T€R;o , such that q®Op , @ r . It follows by the con-
Struction of W*that p €P , réR . Thus we obtain W* éw g

Moreover, W* éV since the following holds: 1. We have ce?P ,
S€EQ, deR as cePy , 8 €Q; , dERy for Vi €I . Thus we receive\w ' >aw?

2. Any event pe P cannot be after the event c since pe Pi" for some i°
€I and WEO QV ., Thus we obtain W’EV e

Applying Zorn's Lemma tov » we receive that there exists a maximal
¢lement ¥ or'V , Evidently ¥ is a maximal element ofw also, Thus ¥ 1is
an instant, for which ¥ € a , ¥ € b, after the construction oi’V . -

Proof of Proposition 5. Point a).let a be an arbitrarily fixed event
ot @i At first we sghall scrutinize the following cases I-III : There
®xists an event p, € Py » such that a=<p, ¢ Then a¢€ P, 1in this case, af-
fer the maximality of the instants inW,

II. There exists an event r, € R ~with r .l a . Then a¢ R, ,after
the maximality of the instant oC ot W .

III. There exist events p} € B, , T€R withp Oa, r,(Da .In
this case aE:Qob’again after the maximality of the instant ol inw 3

Let a be an event, for which are not satisfied the requitement of any
Of the cages I-III. Then we have either p°(Da or p°« a for each event
iR < P, + If a(® p° for some p°€P ,then a <r for‘v. ré R ,since the
®Vent a does not satisfy the requirements of the cases II and III, There-

fore acpP , after the construction of o4 .
oL

Now let us eliminate the previous case also. This is, now the event a

8 not gj_.ﬂtgm{;u. with any of the events of P . Since the case I also
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is eliminated for the event a , then a>wp for T{ P E Pw « Therefore a€ Roc
in this case, after the construction of o and after the maximality of ol
inw . Thus we receive P&u Q&UR‘,L 'cf o

The assertion of Point b) is evident after the construction ofw "

Point c¢). Let the events q' , q;'bé Q.+ Then there exist events p',p"e
P Ty T"ERg with p'ag) , T'Oq) , P"Oqf , (D g , after the
construction OIWG

Let us assume that qi_(\q':b. Then we have q;._(ql : q:bo ", P,
V rER, .Applying Axiomﬁolf .Point 2, we obtain that qé.(r tor V ngOU
which contradicts oc,éw .Thus the assumption q&..(q:’ is not true.

Now, let us assume q::.éql . Since we have qlo<(q! , qol:@pv y Plol_r,
39‘ rep&u hence qi"{ r for ‘f b ol A Rw . This contradictadM again,

Thug it remains poseible only the relation q;(.G) q:L . =

Froof of Proposition 4. We have o = o zfter the definition of the re-
lation "=" and after the already proved Point c) of Proposition 5.

Also, if ¢ = F’ , then p-o& , after the definition,

Now letx = ( P, Qu Ry) » p= ( By, Qs Rp) » ¥=( 2., Q5 R,
=, [b =% . Let us assume o/ ¥ ¥ . Then there exist events q;eQd_ ,
q-:ré Qg which are not simultaneous.Then we have either q:._é_q; or q}_‘_ g
Since if W= V for some instants | »V , then also y = Ik, hence it is
sufficient to reject the possibility qf.< Q";, o 4T q:‘__< q; ythen there
eXists an event d with ¢} —<de<qy , after Axiom ) .,

We shall prove that dEQP . Let us assume Pp—<d for\'d ppe P‘s « Then
We have d é;pﬂ, & éQP and d(—.Rp yafter the maximality of the instant
[b inw . Therefore there exists an event s with s©d , EI@p; for so=-
" fixed p) ¢ P, and s-<Qy , after Axiom)) . The maximality of b in
W implies s€ Qp « But p = ¥ , which yields s(g¥,The obtained contra-
Uction proves that d é RF‘ and d ® P?a for some event p;E_-,PP -

Now, let us assume that d<T, for v To€R g « Then déPF, ,after the
"‘axmality ofP inV. and there exists an event v with q;_4 v, vEod ,

»
"@r; for some arbitrarily fixed event r of R, .The last two relation

L d

lavolve vERQ after the maximality of [’5 uW. Therefore we must have

(b ’
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VQq;v , 8ince f)l.-(h , whereas it holds q"&__év .The obtained contradice
tion proves that d é{ P, and d@r;‘ for some rEERP,.

Thus we have d@p; : d@rz ' p;EPP ’ I‘?Z, ERF, o Therefore de'QP ;
after the maximality of > in .

Then the relations dé QF’ andu.-fb prove that d@ql , while we have
ql-(d . The obtained conti'adiction implies the impossibility of q:‘_,‘: q;.
After the symmetricity of "=", this is sufficient to assert =¥ , m

Froof of Proposition 6. Letol= ( B, Q4 R , (5- ( Pyy QP, RP) be
instants, d.s-(fh , with q;_c:-(q(g » 9y € Qv 41 € Qp o Let us assume
that simultaneously we have P ~<ol with a1 <97 » q] €Q , Q} € Qy .
Therefore we have qﬁ(‘lﬁéqf'h ’ O_I,;(Dq; ) q;_z_ Q. -AXiom\jb[PGint 2 in-
volves q!.<qf , whereas we have q'®q, , after Proposition 5.Foint ¢),

The obtained contradiction proves that the assumption b~ ol is not
4

true.
Troof of Proposition 7. Let us haveol ~< (b , p o< ¥ fpr some ins-

tants o = ( Py, Qus Ry) » F' ( Pp' Qps Rp) » ¥ = ( Fes Q.‘. Ry) ,belong_
ing tN , with gy =< qg . qgo< Qg for some events qxeqd', q; ,qge%’
q %,e Qy .We have q{; Oq;;, after Proposition 5, Point c¢),Therefore Axiom
z)*_( . Point 2 implies q o< Q4 - This signifies that Xk . m

Troof of Theorem 8, It is sufficient to show after the proofs of Pro-
positions 6 and 7, that if \Land V are arbitrarily fixed instants with
W # V then we have either W~ A R oo Let = ( Pus Qu Ry
V= ( By, Qs R,) . Since },\,,i\) » then there exists at least one pair
of events g¥, € Qs gy € Q; ,» which are not simultaneous, Then we have
only two possibilities: 1, Either Q< qQy s or 2, q:aé ‘1’:\,l + In the
first case we have LL“'< V after the definiticn of the order o PM- In
tte second case we Ihave V< . =

Lemma 10, Let the instant® = ( B, Q , R ) belongs to the event q .,
If the event b is before q , b=<q , then BEP ., If c is an event af-
ter q , q< c , then cERy o

Proof., Since & € q , hence b*%{ rag é QU » @8 g must be simultaneous
With any event of Q, « ¥e shall prove that b ¢ Ry « Let us assume the i
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contrary. Then p.<Zb for ‘i]l PéPab . Let us fix one event p'e}:-‘dd. Since we

have p'~<C be< q, hence there is an event s with s@p' , s@b , s—<.q . Bu
® is an instant, i.e, oL is a maximal element ofw . Hence seQ"&, as
s@p' , s®Ob ,p'E Pa{, , PER, . Moreover, oLl £€9q , thus q must be simul-
taneous with any element of Q, . So q@®s and s«<q . The obtained contra-
diction proves that b 4{ R, + Since we have also b¢ Q.+ then bEP , ac-
cording to the maximality of L inw °

we shall prove now, that c ¢Pob . Let us assume the contrary, Thus
el T , Vré R, . Let us fix one event r'€ R, + There exists an event s
with s'@Or', 8'Oc , 8' >eq , since < el r' and Axiom(;} holds, We
get s'€ Q. according to the maximality of & inV and s'®Wc , ¢ éPob "
s'Or! , r'ER . Therefore we receive q(¥)s' and g 8' . The obtained
contradicticn proves that ¢ &P&, « But ¢ é(- Qe+ Then ¢ €R,, after the
maximality oi'bLinw . =

Lemma 11. Let the instant ol belongs to the event q ., If p is an ins-
tantﬁ’belonging to the event b before q , b~<q , then 1'6.4 ol o

If ¥ is an instant,belonging to the event c after q , qu<e, then o LY

Proof. Let b= (B, Qs R) » P = (Bps Qus Ry) , ¥ = ( Per Qo Ry) &
Applying the axiom ,we get the existence of events a' , a" , b' , pn
,e" , k, 1 with b'e<b<L"eC kL'l gLl 1 'L Cul 0"
We have b'¢ E, , D"ERg , at€P , a"€Ry, c'€Py, c"CRy after Lemma

cl

10, Therefore there exist events s' , 8" , s8"' with

s'Qb! s"(a' 8'' (et
st " s"(Da" st D"
8'<l k Kel 8" 1 1.8

Thus we receive s' EQP » 8"€Q_» 8''! € Qg , 8'<T8".8''" , Hence

bl . ®
Temma 12, Let ol i (’5, B’ be instants with ol o< !’5-( ¥ . Then there

¢xist events a , b' , b" , c withoL € a , F)Eb' » FED" , WE e and
Qb , B C We have for any such events a akd ¢ that a<le .

Proof, Letol = (B, Qs Ry) » p= ( By, QP' RP) » W= ( By Qq Ry).
It follows by the definition of the relation "o ™ , the existemce of
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events agQ by b"EQP ’ CEQxWith a.b' , " Zc ., Now, let a , b!

!
b" , ¢ be arbitrarily fixed events, satisfying the requirements of Lemma
12, We must prove ae<{c . It is sufficient to prove the impossibility of
the cases ce<.a and a(®c . Let us assume coa . Then we geat XL & , ac-
cording Lemma 11 , But ¥ o/ contradicts the conditions of Lemma 12 ,
Thus the assumption ce< & is not true. Now, let us assume a ()c . Then
Theorem 3 involves the existence of an instantge a and \ée ¢ . Since
aelb! , g ca , P € b' , hence ‘%-‘-Eb arte? Lemma 11, As P" ¢ 'F’e\b")
‘%6 c , then F)_-:..‘é . Therefore &-& ‘b"é \é « The obtained contradice
tion proves that the case a(®c is not possible. Thus it remains only a<c,

Proof of Theorem 9. IS\?«F is linearly ordered after Theorem 8,

II.S"\'\F' has the property 4 of T ;3 Let K be a fixed swquénce of events
from uiom(b . Bach arbitrarily fixed event k€ K defines at least one
instant#® € k , according to Theorem 2. Let us fix arbitrarily such an

instant£ ¢ k . Let% be the sequence of these instants ® , ( kr—>22 ),

when k ranges K . w
Letol and ) be instants of with ols< b, = (B, Q, R.) , b=

( P[b’ Qp’ RP) and let q&_.i qf‘ for some events q‘ﬁqd_ . qpe QP . Axiom
;\E) implies the existence of an event k°E K with q < k®~<qq . Let A
k°® be the chosem instant of , cortesponding to k° ., Further on, we ha-
ve €q, , [5 e q{b,y_" £ k° , Lemma 11 implies O Aol p . Thus the
Bequencc% ig a dense sequence of instants,

III.ML has the property 5 of T, i.e.w is open-ended: Let'.{,f. an ar
bitrarily fixed instant ofw yoL= ( Pyy Qy R ) . Let g be an arbitra-
rily fixed event of Q . There exist events m and n with m<q n , af-
ter Axiom . Theorem 2 implies the existence of instants jfem,VeEn
Then we have < oL< V after Lemma 11 asd-€ q .T.'herefc:res\\(z has the

property 5 of T .
IV, We shall prove that is a continuum: I.m:Q\”re1 a.n&% be two dis-

Joint (9\:‘124 ﬂwz’ = ¢ ) nonempty parts Ofg\‘/( , whose union is\\{z g
(\(& wa WP ), end each instant ofg\)\jf is before any instant OMZ,

Ve must prove the existence of an instant X y 8uch that each instant bee

fore ¥ to belong tM,‘ and each instant after ¥ to belong towz .
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W, e AL oo N
let £ € y s € EW, , Since Iy and N, are nonempty, we can choo-
and fix such instants, let (< ¢ 2nd 2£.-<8 » Such instants Q , S iy
ist after the proved property 5 of%\JZ e letr ,e,m, k ,n, d be
events with ge‘r ,E Ee ,mek, negk s €k , Sed and r<m—<e ,
kel n<d ., Here K is the sequence from Axiom% . Let p. , V be arbitra-
rily fixed instants of m and n correspondingly, p,é m,VEé n.

Further on, the events m and n have the following properties:

1°, negn (after Lemma 12).
°, Each instant of m belongs tog\bj?‘ (since we have m<e , £ €e,

2
coW ).

°, Each instant of n belongs towa (since we have Ke<n, 2 ¢ k ,

3
e ).

Any such a pair of events a and b , having the properties 1°-3° wjill
be denoted by @ & b . Let us fix such a pair a&b . Then there exists =t

least one event s , simultaneous with a end b , a@s , bOs , according

"
to AXiom/D .

Let us construct the following class of events

@.Ls:_ﬂa,bey ,a&b,s@a,s@b} .

Let @ be the set of all events a , corresponding to events s or@ s
1etﬁp\_ be the set of all events b , corresponding to events s of@ . We
want to prove that the triple I' = (P ,Q ,R )GW yi.e. has the pro-
perties (i)-(1ii): (i).we have shown the existence of events m » N,8
withmé&n , s@Om , s@n . Therefore [ # ¢ .@v‘ﬁ ,E’ £9;

(i1). let the events ptp ’ rER be arbitrarily fixed, We must
prove that p~( r . There exist events m° , i with p & A , m® & r y by
the construction of P ,@ ’R Now we shall prove that the cases T~ D
and p(y)r are impossible., Let us assume re<Zp ., Let g ’ 2 be instants
with g €p, /Z) ¢ r (cf. Theorem 2), Since we have assumed T-<p , then
/}6 < § after Lemma 11 . But p & A 1mplies g E““fi after the proper-
ty 2° of p & f# . The relation m® & r involves (- ‘\\{:’ s@ccording to the
property 3° of m® & r Thlr'fori‘é -(3 after the choiwe c::fe’\l\fi2 and\\(; .
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The obtained contradiction proves that the relation r<p is not possible,
Now, let us assume p()r ., Let the instant % €D, ¥ €r , according to
Theorem 3, As we have p & fi, then ‘gés\\ﬁ . But sincgtn‘ & t‘tﬂ éEr,
then }g e%\,& by the property 3° of " & " , This contradicts {%\\& =0 .
Thus the assumption p(D r is not true., Then it remains only p< r .

(11i1). This requirement is satisfged evidently by the construction of
p ’ @ ,’@ . Thus we obtain [ eW -

Letv be the subset of.w of all triples Wew with W f'?_fg-. .

V satisfies the requirement of Zorn's lemmas lLet A = i W i - ( Pi ,
QG » Ry ), i€ IE be a linearly ordered nonempty subset of v o Then the
triple yt= ( P, Q, R ) with

P'Uiel P, ,Q.UiGI Q ’R'Uiel R, belongs toV,

Moreover, W™ upper bounds A . itter zoren's Lemma'V hée at least one
Maximal element ¥ . It is evident that ¥ is a maximal element ofw alsow,
Thus ¥ 1is an instaht, ¥ E .

We shall prove that any instant g with ‘Se'-( ¥  belongs tos\ﬁ and that
eny instant % with ¥ < 7 belongs tog\«\fz « Now, let o< ¥ | Let us as-
Sume the contrary, i.e.,that a € W, ., Then we must have ¥ eW, by the
Choice ofc\’\g/ ands\‘f; « Since %.4% yhence there are events r ’ § E T,
"eK,g, b8, for whichr<n<<g . Let Y be some fixed instant of
1 , Let m be an event OfNL , this is, if L € m , then }L&WA . We have
Shown that such events exist. We shall prove that the pair of events m and
N has the properties 1°- 3° , l.e., m & n :

Let us scrutinize the order between m and n . If we assume n—<m ,8ince
lém,Ven, then Vo< | . But this is impossible because \ ewa ’
V eq\\ﬂ'& . Thus the assumption neCm is not true, Now, let us assume m(n,
Then there exists an instant W*€ m , P'. € n, after Theorem 3 , p' ¢ n

involves rﬁ 6\\{1{ ;l;,' € n 1mpliesw?_3 P-* . But we h&weq\:xffl mwz ? .

The contradiction proves that the assumption m@n is not true, Thus, it

Temains m-< n .
Moreover, since any instant of m belongs to' W and any instant of n be-

101135 toN{i , hence we have m & n ,
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Let s be an event, simultaneous withmandn , s@m , sOn , and let
se< g . Such an event s exists after Axiom@ . Since s ¢ @ , then ¥ € s.
By the other hand we have se<g and ¥ € g . This is, we must have ¥~< ¥
after Lemma 11 , since ¥€ s and ¥ & g€ . This contradiction proves that
the assumption ‘éeg\'\%_ is not true., Therefore ge\\fﬁ for any instant ‘S"

with ‘é.(?f .
Now, let g be an instant after ¥ . We must prove that Zéwi . let 1

us
agssume the contrary, i.e., that gég\l\{i . Then B’é\l\}’i ag ¥ o< ? and

after the choice ofwand“&f;: . Therefore there exist events u , v with

~

¥€ u, 1l€EK, /Z € v and u<1L v ,Let w be an event oi'g\‘[: y 1.e.any
instant © € W belongs tow,_ . We have shown that such events w exist.

Let us scrutinize the pair 1 , w of events. We shall show that 1 & w 3

Let us investigate the order between the events 1 and w , We shall pro-
ve that 1< w .Let us assume that wel1l , and let 5 , ¥ be instants with
%€ 1,8 €w . The assumption wel 1 involves § «< A , But we have 1
v, hE1 ’Zév , »€ Yy , whereas wcwz » and therefore 5ol ¥ ,7The
obtained contradiction proves the impossibility of the assumption w1l ,
Now, let us assume 1O w .Then there exists an instant WG 1 ,w ¢ w,af-
ter Theorem 3 .Since W € 1 and 1L v , hence g\d\‘\ﬁw .But as )& w and
wC 29 then Q)ec'\\f;_ + This contradictam ﬂ 2 =@ . Thus the assum-
ption 1 ®w is not true. Therefore, it remains l.<w .lloreover, we have
1c§\oﬁ” ,,.,CN’. Thus 1 & w

let t be an event,simultaneous with 1 and w , t©1 , t® w , and Vel t
Sueh an event t exists after Axiom@ « Since t EQ , hence ¥ ¢ t .
Therefore ¥e< ¥,a8 uLt , ¥ € u .The obtained contradiction proves thast
the assumption 2 M is not true. Therefore 2"5\@ 3

Thus Theorem ¢ is true, =

Proposition 13, The instant ¥ ,separatingg\(& anNL » determined by

¥ Ry, ique,
: (P ’ @'% ) he wane different

Proof, Let us assume that there are at least two such instants, we
#hall denote the earlier of them by ¥ and the other by X, » 1,,_31_4 > S

Then there exists an instant ¢ with a’{.< T~ 53 » after the proved al-
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ready properties of\f'{ It follows from 25 £ C that ’QEV . But sine
ga O ‘52 , hence we have ?M& . This ccmtrao:l:l.ctsg\i"«jZ ﬂw . The
obtained contradiction proves the uniqueness of ¥ « m
PRCCPS FOR T:E SECOND MODEL OF TIME (WITH WALKER'S DEFINITION OF INSTANTS)
Proof of Proposition 1'. The relation bC:a implies the existence of
eventsTc and d with c(Ja , d(Va , caLbald. We want to prove that a(O)m .
We sha?Ll eliminate the possibilities m.<a and a<<m . Let us assume at
first that mala . S“irnce we have m~(a , a(l)c , c-<b , hence we get
Mol b after Axiom JJU . Point 2 . This contradicts b@m . Thus we proved
that the assumption me«l a is not true, Let us assume now that am .
Since we have ae<m , m(PDb , bl d , we receive aol d , which contradées:
dicts a ©d . Thus , the zssumption a~<{m is not true also. Therefore it
holds a()m .

Proof of Proposition 2', Let us assume the contrary, i.e. that we have
&5t %l seme ime bCa and aCb for some events a and b ., inomj_ﬁ?.
Foint 3 implies the existence of events ¢ , c¢' witha®c , cud b, bDe’
c'«Z a , Thus we receive ¢'<a , a@c , ¢ b . Therefore we have el d
which contradicts the condition c'@ b . The obtained contradiction pPro=-

ves Proposition 2', =
Froof of Proposition 3'.We shall eliminate the other possibilities -

a®b or b=<{a ,Let us assume a@®b . Since ac a' , bC'b' , hence we
have b(Da' , a@b' , after Proposition 1', As b C b and bQa' , then
Proposition 1' yields b' ® a' , which contradicts the condition of Pro-
position 3',Thus the assumption a@®b is not true,
Now, let us assume b-< a . Since we have also a(Da' , a'<{b' , hence
Axiom zﬂ; .Point 2 implies b b' , whereas b b gives bOb' ., Thus
the assumption b—~a is not true. Therefore it only remains as{b . m
Proof of Theorem 4',Evidently, the relation "follow" -< partially
orders the claanw of the triples. Now, we shall prove thatw,ia not
empty .There exists at least one event a, after Axiom Uttf Point 1, The-

re are events a, , Cqy » d, with a1d 8y 2 S By<d, , COQ 8, »

¢ +
4 Da o » after Axiom ﬁ%‘ . Point 3 .Applying again Axiom ?ﬁ/ .Poin{b, we



we.
we get events a, , ¢, , d, with azd 8y » Syl oLd,y , 01@31 ; d1®a1

Inductively, if we have chosen the events a s C y d y then there

n-1
Rt an+1d %n » Cn~< 8pyqe<dy anOcn d

n-1
e
xist events an+1 s Cp o

an@d . Let us scrutinize the triplew'- O LA Q' s R' ) with
P = U ey, Q= U oy, - SLo“g

The triplew’' satisfies the rejuirements (i') - (iv!')
=

(1*). P' #98 , Q" # 0 , R' § @ after Axioml]% .Points 1 and 3,
(1i'). Let peP' , r€R' . Then p=c , , r =d , for some integers
n' and n" ., That is why we have
Q‘( 0’\\-'4-4 0 % QI,“*_“@ Ii+_‘ b] _“_\\ °< "\“.

This is p=c < dw =T after Axiom o Point 2 ,
(111'), Iet g € Q' . Then q = a_, for some integer &° , We have

Since c o € P' , d o € R' , then the requirement (i1ii') is satisfied.

(iv').Let qe Q' . Then q = a o, for some integer n® , We have °

{
Q,“,H C"Ckw by construction and Q'w’ﬂ EQ also.

\
Thus W'GW
In the proof of the property (ii') of W', we used a1® an . Mbre=

over, all events of Q' are simultaneous. This may be proved by induction:

We have a v a, and a,®a 4 as well for any nonnegative integer n .,

Let us fix arbitrary such an integer n , We shall prove at first that
anG) a ., » Let us assume that a -~ a ., . Then we have

CL“ << v nep Am+a © Rt ) Q’\H ~< A"\

i xiom 'Jk'. Poin
We receive a . d, after A t 2 , whereas we have an@dn
by construction, Therefore the assumption d&y—<_a, ., 1is not true,
Now, let us assume an+2-48n o This implies

Ca< Qan Q’mu © Qma, )Q' e < 0"«. ’



0e.

Thus we get cp—< &, » contradicting angcn « This is why the assumption

4,42 =< 2, is not true also. Therefore & (O a 42 for any integer n>0 ,
Let us suppose that we have already proved
Q’mOQnﬂ }C\"n.@a‘n&-z )i ) CL“ GQ"V\+'!,°

for ¥ n , ko€ 2, be fixed .We shall prove that a, © 8, e atso. Lot us

assume & o &, .po0.q Then we have
Q’m°< 0-“+1°+4 3 O\/“+.i_o+4® CLM') Q“*}‘%Okm'.

This is 8 ol dn , which contradicts the construction of \w/’'. Thus the

assumption a o< a

ke is not true.Now, let us assume an+k°+1"<an 1

This implies @
L™ Q'“*“ ) L Q""—"%"*"‘ ’Q'-n+-\e,°1-4 ‘<&~\ '
Therefore we get cﬂ.('an y contradicting the construction of \W'. Thus

for

the assumption a 41 8y 1s not true.This is why anQ T

n+k° 1

¥n 5 % ko . Hence we receive by induction a® an for ¥ n',\f n"ez,.

Now, we shall verify that satisfies the re,uirement of Zorn's lLem=
ma. LetA ,i-w ik teT be an arbitrarily fixed nonempty linearly or-
!
dered subset of W ', where W 1= (P ,Q , R ), Iisa complex of in-

dexes, Let us scrutinize the triple

W = ( P,Q, R ) with P -U:bl ’DT. \ QzU;bIO: 1,R'=U.-EI/R/="

The triple w°eW ' since’w® has the properties (i')-(iv'):

(i') P¢@, QpP,R¥EP as Aisnonempty .

(i1'). Let pcP , r€R be arbitrarily fixed events , Then PeP;, ,
réﬂj_n for some i' , 1" €1 . Ifwt' :éwt“ » hence péPi"‘DPi, and it
holds p<r . Ifwlu:_dwt" then r€ R{y_DRiy and then p<r as well,

(1ii'). Let qeQ . Then g€ Q;o for some 1°€ I . That is why there are
events pEPioCP ’ rERiOC R 4 such that qOp , qOr .

(iv'). Let qeQ « Then g€ Qo for some 1°€ I , Hence there is an event

"€ Qo Q with " CL 3 -



-

Evidently the triple W° upper bounds the set A .Then Zorn's Lemma im-
’
Plies the existence of a maximal element EW y» L.e. Oof an instant o&
[}
éw . =
Tésme 12'. Let us have pY. r¥, s‘@p*, s’@r‘ for some events p", r‘,
?‘)E,Sja . Then there exist the following sequences of events
1
4 | :
pDa- 8,1': 32: 33*’,00. ;D% an+1D cee
1
4
Db by T b, T by Deee [ OB OB 4D v
|
s IS.I )32D83D‘..D3n; )Bn_‘_-l ) seo

with sn@ a , s,(®b ., 1n=1,2,... . Moreover, if ¢ R, s Me R, for
an instant o = ( P Qa(,’ Rd‘) , then always when are satisfied the relz-
tions (1) for events a, » b, , 8, it follows that a, € E_» b E R&’
s, € Q'L,n- 1 32 pees o

Lemma,13', If we have t (C, u and u« Vv, then t<v also,
If it holds t C u and wl u , then we<t as well , Here t, u , v 2nd w
are events ,

Proof. Since t C3 u , hence there are events k , 1 with k< t <1
k®Ou, 1Qu .

Let us establish the order between t and v , elliminating the possibi-

lities tO v , or valt . Let us*asaume t@v . Therefore we have u—<v 5
v ¢ y <1 . Applying Axiom J*J .Foint 2 we get u.l1l , whereas it is
true u®1 . Thus the assumption t@v is not truf. Now , let us assume
V<t . Then vt , tOu , uVv and Axiom ?ﬁf. Foint 2 involve W v ,
That is why the assumption vel t is not true also . Therefore it remains
t<Lv only .

Now, we shall prove w-<t , elliminating the cases t(?w and t w ,If
we assume w()t , then Kk -4"»' ’ tOw y W< u and Axiom lﬂ.l' «Foint 2 yield
k< u , while we have k Ou . Thus the assumption t©w is not true. Now , 1
let us assume t—<w . Then w-<u, u@®t , t<L w involve W< W .The ob-
tained contradiction proves w1t . m

Proof of Lemma 12'.Since p*(©8*, then there exists an evenw 84y £, with
a, =, Ko a1c:p*' f1.<a1 8 f1® 8y . The redation s* Or" implies '
the existence of events b, , 8y Wwith b, r?, b.C L b1_<g1, 8103"



Moreover, we have a, oL b1 after Proposition 3' and a1c p* , b1cr*'
P r". Thus we get f,<C a,e< by~ g . Then there exists an event Sy

~
With 526)81 : 32©b1 y £l 8, &g » after AxiomD .We shall prove
that szc: s, Since we have f1®s1 ’ 81681 » 4K 55« g4 , hence it suf-
fices to show s1® 8y If we assume s, s, , then f,<< ay a1®32 ;
szu( 8, give f1.<s1 , whereas we have f1®s1 « Thus the assumption
84308, is not true. Now, let us assume s, ~< 8,, then 848, , az@b1 5
b1.< gy imply 84-< &g » while we have s1®g1 . Thus it remains .-;@:2 L

Moreover, then we get szc;‘ 8y o

Let us suppose that we have already construced the sequences of events
F 8D D DAy | 2 b2 B D e b,
811D 85 ...Dan_1 with an_1C: 85tq iy Py ) By q s

g'n-a <4, < %mt'< %“ﬂ--i b ey OS'\\.; s Sy G)%m—t

for some events f 4 , 8,1 ° Then there exists an event 8, with
gw\-\ "< Sm."'{' O&.“_,‘ ) Sv\. @ Q’w-x ) %,\@ %v\-a v

Therefore we have s (| 8, 4 Since

St O Sty 5.0 Ot (s £ 8nt 00y SO S,

Now , there exist events a  , b , f , g, with
Q«m: (lm-:‘ 3 &d\.c‘ 5-“.) Q'_)“C“ %\-&)%wd S‘\ ) 'S‘h."( Q"\'é %‘KL%}&“OS&,%“%\
Thus we inductively get the sequences (1),

Further on , when p' €E , then p’<T for \ r€R .Lemma 13' implies
IS ror ¥ r &R, 2lso, Thus a, 6 €P, according to the maximality of oL
in\W ', Since r’ER& and an r* , hence b € R, also by the meximality
of & 1n\hﬂ '. Then the conditions (1) involves s n€ Qd’ after the maxima-

!
1ity Ord;inw ’ n = 1' 2’ see @ .
Froof of Proposition 5'. Foint a). At first we shall investigate the

following cases I - III for an event a , I.There exists an event poep

with a-(po . Then we have aEPd’ after the maximality of ol mV".
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II. There exists an event rOE R, With r < a ., Then we have a€R, ,
after the maximality of % in W',

III. There exist events p*e Bisia r'e R with a@Qp~ , a@rk « Then we
have aéQw after Lemma 12' and the construction of o .

Now let the event a do not satisfy any of the cases I-III.Then we have
p®a or p a for any fixed event p€ P, . If we have a(®p* for some P €
P:&.' since zf the conditions of the cases I-III are not satisféed for
the event a, hence a<r forv réRw. Therefore aéPdJ after the conse

truction of oL . -
Now let us exclude the precedent case together the cases I-III for the

event a , This is, the event is not simultaneous with any event of Pd, -
Since the case I is already eliminated for the event a , hence a >ep for
¥ pPEP . Therefore a€R in this case after the construction of and
after the maximality of &« inW‘ .That is why we get Pu.,u Q“_U R, =b0.

The assertion of Foint b) is evident by the construction ofwi.

Point c¢). We shall show that it is not possible one event of Q. to
be before some other event of Q o Let us assume the contrary. Let us de-
note the earlier event of two arbitrarily fixed different events of QoL by
q' and the other - by q" . I.e. 9'Z q" . Then there are events p"€P¢ ,
r'€R, :11;}1 Q'©r' , ¢"@p" . Thus we receive q''<z q" , "®P" , plac r!
Axiom z)'[r .Point 2 yields q'<Jr' . The obtained contradiction proves Foi-

nt c). =
Proof of Theorem 6', There exist events ay , C, s do with

0, 0=, ColBncdy , 0,08 Q. 0d,

*
after uioml}o . Point 3 . Let us have chosen events 3h+1 9 Cp » 4 with

the corresponding properties. Then we can choose events a_, , Beivis

d with

n+1

Q"v\-\-z C:: 0.M4 ) (w\,ﬁ“{ Qm+a < ol"vu-« 7C“+,OC\,\H 5 CL“H@Q“H:
b
applying inonﬂh .Point e Let the triplew = (P' ’ QY . R? ) be with

b0, Q- e U=

'
We have proved in Theorem 4' that au::h a triple W' eW . LatV be the
| -
subset ot W of all triples™W ot W with Wi . The relation-<



I ’3'
of\'\ﬂ induces a semiorder " " *.n\\ﬁ . LetA -%’W 1& ier Wy =

( Py Q » Ry ) , be a linearly ordered nonempty subset ofv . LetWoa
(P, Q, R ) be with

’D:—U;exfpi 1Q=U:eIQ; ‘Q;uié'i /\2."

We have shown in the proof of ?heorem 4' that such a trpple W ° ewlr.
It remains to prove thatWwW? € V . This is we must show that W° =\,
We have W ° E‘W’L andW;‘,?_'W' ’ v ieI , thus W° W' also .,

.Evidently, W ° upper bounds [A . Therefore Zorn's Lemma is applyable
to WV . 1t yields the existence of a maximal element ‘l.orw, Obviously
o, is a maximal element ofw'also . Thus oL is an in;tant o

Moreover, since oA~ >W' » hence oL € a after Proposition 5', ug

Troof of Theorem 7'. We have m(Dn . Axiom J(s* +Point 4 yields the exi-
stence of an event q with g m , ¢ C3n . LetW'be the triple from the
proof of Theorem 4' for which a = q . The Setv of all triplesWwW Ew’
such that w >\ '.is nonempty and satisfies the requirement of Zorn's
Lemma, Then we receive the existence of an instant X é—_ewr = (P',Q',R")
with q = a_€ Q' . Let ¥ = (P, Q Ry) . Therefore each svent 1y € 3,
D@ is simultaneous with q after Proposition 5'.Foint c), 4,®q . Sin-
ce g2 m , an , hence we receive , applying Proposition 1', that
QHOm and qs@n for ¥ Qg EQﬁ. Therefore we have ¥ € m and ¥ € n . -

Proof of Froposition 8'. We have o, = &L after Proposition 5',.Foint c).

Let ws have ol = f and p=¥ witheCa( B, Qi 'R )", p = ( py Qs Rp).
X = { Py Qu RX).‘-Let us assume oL # ¥ , this is , that there exist event:
q:,GQ.Land q}é Qy which are not simultaneous. Then we have either q::.<; q";
or q",__{.qz. Since if & =W for some instants G ,L,!.l » then also W) =&"
hence it is sufficient to reject the possibility q1-<q’:, « It q;_< q: 3
then there exist events g7 , ‘1; » 4 with q? Q:La q:'eQ¢ ’ q;c::q;,
9 € Qb’ ) q:__<;‘de-<q‘;, .

We shall prove thet deqp « Let us assume P,~<<d for V ppé‘ PP . Then
we have d 4:‘ B, s d ¢QP and therefore d€Ry , after the maximality of
the instant (b in W'. Therefore there exists an event s with s®d



sl

|
s@p*P for some fixed event p;e be and sn<q;, y after inomg + The

maximality of p and Lemma 12' imply BEQF,. But {5-2{ which yields JOLWE

The obtained contradiction proves that d¢ Rﬁ' and d@pr’; for some event
*
ppe PF‘ ° \'f ‘
Now, let us assume that d.,‘(rn for rhe B.(5 « Then d€ Pb ,after the
I
maximality of P inw , and there exists an event v with q; AL

vod , v@rg for some arbitrarily fixed event r,;, of R/b . The last two
relations and Iemma 12' involve vE Qf.‘) , after the maximelity of A 1nw‘.
Therefore we must have v(dqS , since o = b » vhereas it holds q°-<v ,
The obtained contradiction proves that d ¢ Pj‘b and d@r; for some r;eR )

Thus we have d@p; ’ d@r; » p; 6P.b' r!‘;eﬂh. Therefore d¢€ QL'S after
Lemma 12' 2nd the ma;cimality Of['b inW'[

Then the relations d€Qp and o =p prove that d®q° , while we have
q;-c..z d ., The obtained contradiction implies the impossibilgty of q;"(q:'
After the symmetricity of "=", this is sufficient to assertoc =3 . ™

Proof of Theorem 9'.We shall prove that if we have for some instants
ol & ‘5 , then it cannot be true p << o . Let us assume +he contrary,

i.e. that we have at the same time oL °<[> and f‘:w( ol for some instants

> p
< q" , for some events q! , Qi €Qy s dp s ¢ € Qp.Thus we obtain

gl a} a5 Oy 4 a4 susing Proposition 5'.Foint c). Therefore
4 v !

-
Q<< q:., , according Axiom JJD «Foint 2 , But Proposition 5',Foint c)

implies q;,(—:)q';, . The obtained contradiction proves trat we cannot have

at the same time ch-f.Fb and {b°<d-« for any two instants .
I
II, We shall show that the order insl\[z is transitive, Let us have o<

P and A< ¥ for some instants <, A,% . We want to prove thatol o< ¥
Let L= (B, Q, B » (= ( Fas Qus Ro) , % = (P, Qp Ry) .Then the-
re exist events q €G, s 9% » 95 € Qs » Q4 €Q, with 9, <9 o< a0
Therefore q < 4q, » q{qu}‘h » 93 =< 9., using Proposition 5'.Point c),
That is why we obtain q ~<"Q, which signifies that ~¢ < ¥

III. Let P' ,VE ' be arbitrarily fixed instants. We must prove that
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it holds one and only one of the relations - either }La--’-'- Voor V< !.A. or
=V . Iet }L- ( By Qo Rr_) » Ve (B Q5 'Ry,

1, If any two events of QJ‘" and Q) are simultaneous, then }.\,-V .

2. Let now there exist events q}ké Q}L ' q € Q, » which are not si=-
multaneous. Then P""v . Moreover, Axiom Uﬂv .Point 1 involves that it is
possible one and only one of the relations - either q}L..( q, or g, qp.‘
In the case q><'q, 5 ve have l,\-é. V by the definition . We have V Mf}u,
after the definition in the case q')"’< qf"'. »

Lemma 14', Let the instant ol belong to the event q « If b is an event
before q , be<q , then bEP  , where o = ( P Qo R,) « If c is an
event after q , g<c , then céR

Froof. Since oL € q , b~<q , then b%Q& . We shall prove that béR",
Let us assume the contrary. Then pa.b foerEPd‘ . Let us fix an event
p* €I, . Let a , m be events with aGp" , m<<a , nQp*, a()p*(cf. Axien
Axiom Jf/*.roint 3). We have a-<b after Lemma 15', Therefore m<<a o bl
q and there is an event s with s(Ja , s®b , m—< s < q according to Axiom
D*. Proposition 1' implies 8(Vp* . o is an instant y 16,00 is 2 maxi-
mal element ofwf. Hence s €Q , since s@r*, s@b , bvE RO( and after
Lemma 12°',

Moreover, we have s«<q « But oL € q . Thus the event q must be simule-
taneous with any element of Qd’ « So s@q and s=<q , The obtained fON=
tradiction proves that b R«. . Since 'we have also b 4; QU then b€ Poc :
according to the maximality of o in .

Now, we shall prove that c¢ Fy « et us assume the contrary, i.e, c€
Py, . Thus c-<r for Y reR, . Let us fix one event r- € R, e« There are
events d , n with dCira , dOT* , n®r* , d<n , after Axiom )if*.
Foint 3 , We shaid show that ¢ d in accord with e T, dct r*, and
Lemma 13',The relations qelc=<d<n and lxiom‘D* imply the existence
of an events 8' with g< 8'e<n , 8'Me , s'Ca . Moreover, we have
8'®r* , according Proposition 1' , Then Lemma 12' and the maximality of
o 1n W 'tnvolve 8'€Qy, 38 8'0Oc , c€P , 8'Or~ , qurs'ecn . But

o €q , them q()s* , since 8'€Q . The contradiction with q—< s’ pro-



.
ves that the assumption cl’:Pw is not true. Thus c¢ P, . We also ha:re”
c& Q°L y since gagc and L€ q , Then CERoL after the maximality of o¢ in
W.m
Lemma 15', Let the instant o, belong to the event a , If {5 is an in-
stant, belonging to the event b before a , BZa , then h Lol ,
If ¥ is an instant, belonging to the event ¢ after a , as<¢ Jiken
el 6
Proof, Let ol= ( P, Q, R) , p= ( Pps Q[b’ RP) e 3si( B30y, Ry).
Let a' , b' , ¢' , m, n, b° , c® be events with a'a , a' be simul-
taneous with any event of Qs mga'<ln, aln , a®n , b'C}b”, b!

be simultaneous with any event of Qp y Db, b°OY , C'C:c , C!

be simultaneous with any event of Qz( y ¢'c® , c°(e. Such events
exist after the definition of "an instant belongs to an event",

®
I, Let at first b<a . uiom% implies the existence of events b1

b, , by with b»'—=<Db -<b2-<:b3.<'a' « Then we have be°E p

2 3 1
]
b36 P&’n ERd,' after analogous proofs as in Lemma 147, Axiom:D involves

pr P1ERp,

the existence of events s, and s, with 5,0b° , 8,0v, , 8,< b, ,

32®b3 y 5,00, b,<s, Thergfiresfemma 12' and the maximality of the
instants. give yi‘:eqb ,'&‘Zegghhua we receive [b o< ol

"
II. Let now 2oc’c . Axionm implies the existence of events c

R g B
Cs with a! u<c1.<c2c.(c3~< ¢' . Then we have meP& : °1E Ru_ 5 c_je PX ,
co¢ RX , according to @nalogous Proofs as in Lemma 14°', inomD* invol-

ves the existence of events s' and s" with &'Om , 3'Oc, , st oy 5
3"603 » 8"(c® , c,< 8" . Therefore s'€Q and s"€Q, after Lemma 12!

and s'-< 8" after the indicated relations. Thus we obtain oL < ¥ |, -
Proof of Proposition 10'. Let ®a ( P , Qo Ry) and the event 1E€Q, .
There exists an event q'C:q ’ Q'GQ&. after the construction of the
/
triples ofw. The definition of the relation C', for events implies the
existence of events b and ¢ with b q'ac , Theorem 6! involves the

existence of instants [5 ' %y (béb » 5 €c . Since be<q'ale » hence
fs o oL o<¥ sfter lemma 15', W
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Lemma 16', Letol , (3 , ¥ be instants with of =< =< ¥ . Then there
exist events a , d' , b" , ¢ , for which oL g a , (beb' 'Peb“ , ¥€ ¢
and a-< ¢ . We have for any such events that a< e , |

Proof. Let ot = ( B, Qu R ) » p = ( F, Q, RP) y 5= ( Py Qu Ry) o
It follows by the definition of the order " o " that there exist events
a€Q, , b'e Qp » Y"EQ, , cEQy with a b' , Y ¢ ,6'9@“,;.@,&~<C'

Now, let a , b' , b" , ¢ be arbitrarily fixed events, Satisfying the
requirements of Lemma 16', We must prove a—<c . It is sufficient to shéw
that it is not possible to have either cw<a or a(l)c . The case CoZa is i
impossible, since then ¥ <ol , according Lemma 15', Eut ¥ o O/, contra-
dicts the conditions of Lemma 16', The case a(c is impossible, since
then there is an instant € € a and ‘g € c , after Theorem 7', As a < b,
\@ € a ,B Eb' , hence %nc fb « Since Y.L e , [bﬁb" ,g &€ ¢, then
{'5 < 'g“ . Therefore ‘€«=-< P a(‘é . The ottained contradiction rejects
the case a)c . Trus it only remains a<c . m

S\
Proof of Theorem 11'., I, \ is linearly ordered (Property 1 of T )

after Theorem 9' ;
\F is open-ended (Property 5 of T) according to Proposition 10',

II. Let us prove thatg\\f&! has a dense sequence of instants (ProPerty 4
of Time continuum T ) : Let K be the sequence of events from Axiom Sb*.
Any erbitrarily fixed event k € X defines at least one instant 2 €k,
after Theorem 6' . We ch86e and fix such an instant &£ ¢ x ., Let%}be

the sequence of the instants 26 , when the event k ranges the sequence

K .
Now, let W <V ve two arbitrarily fixed instants , W= Py Qy, Ry).
Vv = (B, Q, Ry) with q < q, for some events 9, € QPL’ q,€EQ , . There

; ) |
exist events q;c%qay_g%nd qv"qt\”q‘:eQ'after the construction ofw andg\'\ :
Then we get an event k°® € K with Q';L oL k° oL a), » according to Axiom

0
%ﬁ et £° € % be the instant, corresponding to the event k° "1'06
k® , Thus we have P,u( 2° LV after Lemma 15°', This pbves Property 4

ofg\\ﬁ,. !

III. It remains to prove that the complex of all instants is conti-



nuous, i.e.,, satisfies the Ded:ekind's postulate; Letw,‘ am;:’\t\ﬁ2 be two
nonempty disjoint parts ofw, which sum iaV » @and let each instant of
w1 be before any instant on\/J; . We must prove the existence of an ing-
tant ¥ , such that any instant before ¥ belongs to\\ﬁ and any instant afe
ter ¥ belongs to\\ﬁz . We shall use the following Lemma,

Lemma 17'., There exist events a arnd b , such that any instant of a be-
longs fom (we shall denote this hy aC\\ﬁ ) and each instant of b be=
longs toWi ( b(_‘.‘:s\h/;' ). Moreover, there are instants }L,é , Q "
such that a —< }L-—{ ‘é ,\%N4 aHd%b(V'< b, gé\\& . (We shall
use the notation a £ b if the requirements of Lemma 17' are satisfied for
a pair of events a and b ).

Proor?\fz‘ ands\/\{é are nonempty. Let %6\\& and QG\A& . There
exist instants b, J.L' y V .V' with P—l <k < g ’ ga-(\) < V' after
Froposition 10'. Since p.{ < MW, V< V' | hence there are events q,, ¢

( \
Qe 0 9,€Q,, 9,€Q, 5 T, EQ, with q}"éql*" qv..gqvlwhera W= ( p}&,’

Q}g’ R’d) y Vo= ( Pi" Qv:v Ryl) ’ P-" ( P}u Q,u R‘u)s Ve (P, Qy, RV)° Let
uws denote q},.,- = a and qw- b . Then we have aC\ﬂ: - bCS\Aﬁ;_ , 3-4)&.
u-(éﬁ{ce\ﬁq,g-{\’“(b:qes\‘@- . B

Now, let us construct the classes of events/lp 5 @ :@. as it follows:

@_3.8,aey,aaﬁb,sﬁ)a,s@b,a,b&y},

’P coneists of &1l events ac?\\f?; » corresponding to events s of Q,
/R consists of all events bC\\@_ ’ corre!:ponding to events s of@ ‘
The triple ' = (P ,@,R ) belongs tM since the requirements (i')-
(iv') are satisfied: (i').P # 9 ,Q ) ,TR. # ¢ after Lemma 17!,

(ii'). Each event ofP is before any event ofR as asf b for any
events aGP ; bER .This is, let p Elp ’ rGR . The case p@Or is
impossible, since then there exists an instant : &D 4 z € r, after Thec
Theorem 7'. Then t e\fi as p C\“{: and simultaneously g G.S\'Q as
rCS\J\[;. But we haves\t\{: M =0 .

The case r.« p is impossible since then there are ingtants O € p ,6¢€

r , after Theorem 6' ., We have e eN:- as pcw: and we have also
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vg\\f; - C\Ji . We get 8¥o<© after the assumption r-<p and Lem=
ma 15'. But this contradicts the choice ois\\[fand - Thus it only re-
mains po T o

(i1i'). This requirement is satisfied by the cénstruction of I" .

(iv'), It s € @ » then there is a pair of events a®£ b, a¥fs , v@s,
Moreaver yE-have adel D¥; 2fterxthe:cheice of A N:_and a*(_‘_\\fi , ¥
g\\& as a¥ £ b®X . Thus Lemma 12' is applyable with a%* = p*, bt = r*, s =

8, . Therefore we get the sequences of events
(2) =
a‘:p*:a.':azD ooc: Dan e
DY = ¢t by, TOb,D e OB T
I
S = 81 b 82983'3 .OOD SnDoo- with an@Bn ’ bn®sn 'n-']’z’...

Since we have a® £ b° then the sequences (2) and Lemma 13! involve

an £ bn ¥y n = 1,2,000 .

Therefore the requirement (iv') also holds for the triplel® .That is why

reW' ( :

Letv be the subset ofw of all triples W Ew yWith\wW/ _!>__‘;ﬁ" .
V is nonempty and satisfies the requirement of Zorn's Lemma, after a
proof , analogous to the proof of Theorem 6',Zorn's Lemma implies thatv
has at least one maximal element ¥ . It is evident that ¥ is & maximal
element OfW'also ., Thus ¥ is an instant with y '; Q , where ¥ = ( Ph"

Qs R

, Ry) .
B wWe shall prove that ¥ separateﬂm andwi in the sense of Dedekind's
postulate, Let ol be an instant before B . e pust rrove that &L € W,
Let us assume the contrary, i.e. that ol € 2.+ Then we have also Xé\hﬂ' .
let 8 ,E be instants with ol o< 8&45 < ¥ , according to the Froper-
ty 4 ofq\’\F". Let e and g be events with f€ e ,¥ ¢ €, €< g . Since

Se< € , hence there exist events q. and Qg with Ao Q. A € Qg

qE, & Q& , where S. ( Poy QS" Rg) p & = f PE,’ Qes RE)‘ Then there are
- °
events qg , a2 , k with a7 €Q, Q@ra. , Q2 ¢ Q, 14 g kEK
]
and °§°<"‘°<q£= after the construction orwand after Axion/g* « Since
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Seq‘;,ﬁqu’ , hence Soékucéﬁ- Thus RCQ\\@. Let a ep . Then

we have a £ k . Iet s be an event, simultaneous with a and k, s~ g. Such
V. 3

an event s exists after AxiomD » Froposition 1' and Lemma 16', Evident=-

ly, s & Q,Fur‘ther on, since W€ g and se@ with ‘6} T y hence

g ©s , whereas we have s g . The obtained contradiction rroves that

e |
Now , let P be an instant after 1( y B o< ﬁ) . We must prove {52\«/‘;

Let us assume the contrary, i.e. that > ew‘l . Then also we have Z(és\\{l
‘ A°®
wet 5 , T be instants with ¥ <5< Q¢ < B after Property 4 oqu@i.
Let 1 , h be events with ¥ € h , A € 1, h<1 . 3ince A <L C . hence
th . wit - -
ere are events q 6Q, ‘rerz AR q<q, . where ) - ( Por Qs R,
D = ( P@’ Q@, RC‘)° Therefore there also exist events q; A q% , M with
o (-] (<]
5, 69,0 B P e B G 8 LB ey, EE ae
I .
cording to the construction oi‘w and Aliom@ « A8 A ¢ q; , C & q‘;
. ]
then » o< m = C . Thus we get mC_\\ﬁ’ since C o« P pe‘s\\fﬁ . Let n
be an event of R , 0 EQ - Then we have m £ n , We also have h«( 1
]
AELl ,bom, icec hodm . Let 8* be an event, simultaneous with m
=3
and n and he< 8*., Such an event s® exists after AxiomD « Therefore g* ¢

@ , in accord with the construction of I;D « Since 25'%_-; T , then Q
¥

= % . -
— @ . Moreover we have 8 € h and s 6@( _ er . Eence h@s". But
this contradicts the choice of s with h.«s*, Thus the assumption [56
N& is nof true. That is why F,Nz . m
& -~
Remark. The instant ¥ , separa‘l:ing(\\f’t wdﬂ\& is unique. The prowt
coincides with the proof of Froposition 13,
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CN THE MEASUREMENT OF TIME IN MATHEMATICAL TIME'S MODELS
Andreana S, Madguerova

This article proposes & measurement of Time in the mathematical models
of Time, Any measurement consists in an establishment of ¢ corresponden-
ce between the measured object and a number, or a vector, or some other
mathematical quantity. Here we construet an isomorphism between the mo-
ments in any fixed mathematical model of Time and the real numbers,which
isomorrhism preserves the order. This construction includes a one-=to-one
correspondence between all moments of Time and the real numbers.fg? each
fixed mathematical model of Time., Moreover this correspondence preserves
the order,i.e, it maps larger real numbers to the later moments.

The developpement of the axiomatic theories of Time has been begun by
Zertrand Russell, Whitehead, Norbert Wiener, Gerald J,Whitrow, This ar-
ticle on the measurement of Time in the axiomatic theories of Time formu-
lates only exact mathematical results, almost without commentaries, fol=-
lowing Newton's motto "hypotheses non fingo". The present here result is
very small in comparison with the immensity and grandiosity of the
problem of Time,

There exist mathematical models of Time (see Russell L1], Whitrow {?1,
Walker [3]’ Thomason [4], Madguerova L?]) in which theories of Time are
constructed by axioms over the events and by the definitions of Time's
moments. These definitions &re based on the events and are due of Russell
Lj] and Walker I}](see also Whitrow [g]).

The indicated models realized the idea of Whitehead LQ] and Ruaaelli}]
to receive the fundamental properties of Time by axioms on the events,
Really, these models prove [},5] the basic properties of Time -continuum,
used in Mathematical Physics. This is, these models prove that all ins-
tants (i.e. moments) of Time form a linearly ordered open-ended continuum
with everywhere dense sequence of instants, Here we further develop these
models(see [F]) of Time, proposing a measurement of Time in all of them
together. The necessity of a precision of the conception of the measure=-
ment of Time for mathematical models of Time is noticed by Whitrow [ 2),
K.Wiener L¥ , AWtred [7], V.A.Uspensky (on Conference of Logic,Varna,
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1086). Any measurement consists in an establishment of a correspondence
between the measured object and a number, or a vector,or some other ma-
thematical quantity. Here we establish a one-to-one correspondence bet-
ween &1l moments of Time and the real numbers for each of these Time mo-
dels. Moreover, this correspondence preserves the order, i.e, it maps

larger real numbers to the later moments. (This correspondence even is
an isomorphism,)
The constructed correspondence can evidently be changed in many as-

rects. The possibility of meny kind or measurements of Time reflects

the real relativity of the measurement of Time, depending on the choice
of the "clocks", i.e.depending on the choice of the "periodical procesggs
and their comparisomsand confrontations. The choice of the clock would
reflect on the choice of the basic dense sequence 7 of instants of Time,

~/0
The sequencazyb is constructed in any model of Time by a given (from
the axioms) sequence of events K, This is why it is not difficult and is

almost evident to substitute the proposed here construction for = measu=-
rement of Time by such one, based on the sequence X of events, avoiding
the aidding sequence% of instants.

Since we shall mainly use the everywhere dense sequence% of instants
constructed in all mathematical models of Time (see L?’ él)’ PED e )
exposition of the measurement here, that is why we shall nonPEtails
remind the voluminous mathematical models of Time,

The proposed measurement of Time here is for any arbitrarily chosen
coordinate system of account and is based on the events(of X) in this
system., This assures the compatibility of the measurement of Time with
Theory of Relativity, as the existence of the events and their order do
not depend on the choice of tre co-ordinate system of account, although
their perception can, depend.

Coarsely, we can choose a suitable sequence of "periodical"events for
K. As an example, K can consist of the motioms of an eternel clock pendu-
lum, whose motions are reduced to fragments, We can choose for the
instants of the fixed positions of the pendulum., Then the proposed here

construction of ‘a measurement will coincide with the usual measurement
of Tm\e,
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The construction of a measurement in any co-ordinate system of account

is necessary for the comparison of different co-ordinate systems of ac-
count., The different measurement of Time in different co-ordinate systems
of zccount can as usual be assured and obtained, postulating the Lorentz's
formulas (or Newton's formulas). Thus we have :

Zheorem, Wwe shall construct an one-to-one correspondence between all
instants of Time in any fixed mathematical model of Time and the real num-
bers, which maps larger numbers to the later instants, Moreover, this cor-
respondence is an isomorphism between the instants and the real numbers,

preserving the order, %
Frocof., There exists a dense sequence of instants of Time after the

axioms on the events in any of the mathematical models of Ti%ne [2,4,51.11:
first we shall map an instant % of Time from the sequence to each ra-
tional number r ( ¥ ——>r ),(which will be denoted by () = r ) in
such a way that a later moment of Time will correspond to a larger number,
we shall divide the proof of Theorem for the sake of the clearnmess of
the exposition, formulating and proving its parts as Propositions 1 and 23

Proposition 1. We can construct subsequences of instants of
5 onaand :”">. —y"'y
q°°< gl’éql-c”“.(q\;( 90 g‘ g 2 g—“\>" '
such that if X is an arbitrarily fixed instant, then there are instants

q% ! %?. with qt..(:ﬁ L qe’ . 'oreover we can choose two successive
instants of the indicated subsequences ?'c. and g'ﬂ.ﬁ with gt-_g‘dé_’_qlﬂ L
We have the map M( Qk) =k .

Proof of Proposition 1( which is a part of the proof of Theorem),let
us arbitrerily choose and fix a "null" ("zero") moment of Time among the
members of the sequence% (i.e. a moment oL of : to which we shall map
the zero number, M(O4) = O ). For instance, let us choose the first mem-
ber Xc of x-iﬁc 5 ?£+ ""’gef’ ,...} to correspond to real zero, This
correspondence will be denoted by M(Xy) = 0 .

There exist moments ofof\y after the moment &’o = Qa and other moments

of}% before xo , according to the density of the sequence ‘EK’D . For ins-
tance, let us have x“'.. < Xo"( xmt R P 2 EB@ o 4 en%&m s
0 0

+
[ 1\"



relation "the moment M is tefore the moment \) , or V is after " will bYe
&8s usual denoted by }L...é'\} . Among the )instants of% y which are zfter

gc y there exists an instant € » which is with the least number

n
o A

as a member of a% i.e, and if we have

e% then m?* :';'Y\_; .This follows from the properties of the integers,
since the instants 220 ,'£4 ,..-.Be,“_w are a finite number and among

o

them there exist £ ,
u, ey u
Let 10 ' be with the least integer u, for which n! £ 10 ' * The mo-

™)
ments Bﬁo " 351 ganen o 5y of the sequence% again are a finite num-

ber. Let &K ,, =Q, Dbe the last instant among the instants €, X,
A ©

ceey pf,mu . Then we have

geozgo-@a“,& < X . =Q,

0.

We shall map the integer 1 to q1 , M( %1) =1,

Respectively, there exists an instant ‘&.“.1. ofj@ with the least num-

™/’ v
ber among the instants of N@}{g which are before Qo . Let 10 ° be with

v
v, a positive integer for which n'1' é 10 L and moreover, let v, be the

1
least integer of this kind. Let

Xf“l1i = g-‘
te the earliest moment of the instants >£, ’ Xﬁ.... X v, « Then we

101
have _
q_‘-;_c,zem,‘, <A,={, .

1

We shall map the number -1 to g_,‘ s M( g_‘ ) = - 1,
Recursively, let us have chosen analogously the moments 9“ andg
=W\
ofbr}Gand have constructed the map M(q,m) =m , M(? ) = -m together
-

with the sequences
Wy W \J.‘

W, - Vom
10,10 7, .., 00 A= a4 20 A0 L a0 ’AQV‘ILH.NN,

where UygooopUp and Vi, secey V, are integers, Then there exist moments
of Time € ' and ac“.‘ ofm which are with

oty
Ry wLQ 0 <H

n'"
4 g N d

e
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in accord with the properties ofm_’). Moreover, let Xz“‘. and &“‘ be

)
such moments with the least possible numbers as members of% o Then we al.

So have
||

W ¥ea
w o >0, o w, >0 .

Mt A

Now let Up,q and v, be the least integers with

Ava 4 W Vi

]

<A M £\

L 0 . - 0 _

Then we have U L W ate 0 T & Voeq <o Let Xr“. = gmﬂ; &_“‘, :-,g_“-4
VAW ™

be the members of %which correspondingly are the last moment among the

finite number of moments of%: Eﬁo ) X.‘ seeey A a (i.e., with num-
10 m+1

u
m+ 1
bers in% not larger than 10 ) for ?m+1 and the earliest moment
among the finite number of moments 01‘3@:

’3?_0 ’ '?52,‘ gao s O v (i.e. with numbers inm not larger tha:
10 T+
v
m+1
10 ) for % -m-q + Thus we have
v %
Wam - Womed Wy « & Wt A4
< A 4, 4
0 <m ., A0 , 40 M an AQ :

Let us pose Mgmﬂ ) = m+1, M(e-m-1 ) = =m=1 ., We also have

%_“_404 g-mb‘(-" g"‘\'< 90"(?'\4”"4?““4 %"“'H i

Further on, let ¥ be an arbitrarily fixed instant. There exist instant
wp and 'Eﬁ,; of% with ?ﬂP-ég-é Eﬁ-t » according to the properties

of . We can always choose U and Voan with
V“\Il ‘)’ f
b < A0 , T4 0=

Then we receive g_.mu < “”‘@w in accord with the choice of g_m.. an

g . Voreover ¥ can be bounded among two successive members of the con-

o =< Bl Qo o

Structed sequences,



107

This can be shown in the following way: Let ILO and s, be the least non
negative integers with q'so’é \K ﬁ? 10 o LE 10 # 0 y We have

: -

rlg'-“ ec

If s, # 0 , we have

g—s aé'\éé g'Sﬂ '
0 c

If 1 =s =0, then ¥ = ‘%o . That is why any fixed moment ¥ is betw-

ween two successive mumbers of the indicated subsequences ofv H
go"?fo ’ g“g&w s %m s E%amecend
1

820 18y =Frs eer Qe

This finishes the proof of Proposition 1, which is a part of the proof of

Theorem and will also be used further.we shall use and the following :
Propesition 2, We can map an instant (-)) m/k (= €n+ ) from the sequence

Q(}G to each rational number m/k , which mep is denoted by M(Qm/k ) =m/k
We ‘Bavs (g i < gmszz if and only if m,/k, < :112/k2 - Fere m,k,m,,

Moy Ky k2 are integers, k, k, , k2 # 0 .

Froof of Froposition 2. Iet us fix an integer k., We have the existence

Z

y
of a moment &of%. Then there exists a moment '38,“4. of with the

v ;
least number M and with ?t-éx,‘\, "‘<q wyq o 12t us pose M(E ,) =
\
1
= d ) t =
kK + 1/2 =k » » and let us denote 2£w, gl-\-uz %
Further on, there exist members of ,X’“ and X‘“ with the least

for which s 2.

! O)'u-ua,fé X"‘zhd q'm« '

numbers n, and n,

(<%, =0

L+A/R
We shall pose M(&“‘ ) = k + 1/3 ’ M(Be,nl) =k + 2/3 :Z-“ -g"—i'lf"g ’
A s

w‘“z -Seran
Let us suppose that we have determined g k+1/q for 1 q , where 1,

q were positive integers and ﬂ/q was nonreducible, and have posed

JL(QMMO = ﬂuU% .
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Let us suppose that ? by construct if and o
19 v pry < %"L*‘ﬁ/t‘ ion if and only
it p/r £ s/t , where p, r , s , t are positive integers, r €q, t<£Lq .

Now, let 1/(q+1) ,..., @/(q+1) be nonreducible fractions., iny rational
a=%k+ 1/(q+1) , 041 < (q+1) , is between two successive rationzls of
the kind k + p/r £ a < k + s/t with 0&p&r,04&s &t ;p,r, s,

t - integers, 0<r<£q, 0<t<£q, such that there is not any rational
of that kind between k+p/r and k+ s/t . We have supposed that we had al-

ready determined Q“‘H'Pl‘b and %fﬁﬁr%lt ) g’*-*?/'tphéq'a.*-S/t .There

exist moments X,, members of the sequence % s which are between them:

7
< A =< % +Let 2, be the memb % i
g’l* - Nt S/t n, er of wi

with the least dumber n_ for which gm_ﬂ,/.b—ézﬁm;é Carost

Let us determine M(‘Bn ) =k + 1/(gq+1) and let us denote £,
0 Y

» S e/
Moreover, then we have g%*_u’h’ o< qﬂzr w/z if and only if keu/v «
k+w/z , where u,v, w , z are nonnegative integers, 0 <L v <q+l , 0< 2K
Q+1 , u&v , w42z , By induction this finishes the proof of Proposition
2, which is a part of the proof of Theorem and will be used further,

Let now TS be an arbitrary chosen moment, which does not coincide with
any moment of the kind Q v/ fOr any rational m/k , k ¥ O , What is the
convenient value of M(¥') ?

s Yave q'w\ e Yok §M+4 for some fixed integer m in accord with
Proposition 1 . Let us denote g,h\ 'kg‘l . qﬁm“-\\/‘ . We compare ¥ with

. We have either

B %'wn-&/z . %m-ntg <3 .

In the first cese we shall denote g,“ = ng ’ g,mﬂfz'\'vg « In the secon

cage we shall denote g'\m-l-uz - \9:. ’ q""*"l - WZ .

Moreover, all rational numbers melfg o 1&g 5 1, g -positive integer:

%'M-H/z

between the integers m and m+1 can be ordered in a Sequence as usual b}

the increasing of the dominator q , where 1 and q are nonreducible, T.e. We

have the sequence
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m, m+¢1 , m+1/2 , m+1/3 , m+2/3 , m+1/4 , m+3/4 , m+1/5 , m+2/5 s m+3/5 ,
m+4/5 , m+1/6 ,.e0e
This sequence determine the corresponding sequence of instants

-‘%m , 'q::nn ’ Q’N\M\m ) Qmw-uﬂ_\ ) qm\‘.)_xb )Q"“*'VH"" '

Further on, let us suppose that we have determined the instants k@’ﬂ.‘\
and \Y, ~ with LQ,L__‘ LB LYy

Then we establish the order among the instants

L gm1<§m+ﬁ g'wu-ll‘l i 1%'\“1-1!1"” ! g""wﬁ"'?—-*\/%'

This is, we exactly determine between which two successive instants of the

sequence
Qm’ qfwr«’ gmwz’ ey q'mu/m. ““’qm«-m-«\/v.

is the instant ¥ . The earlier of these two instants we denote by \?‘L and
the later instant by W’L . Thus we have LQ&.A ¥ < G, -

In such a way we receive two sequences of instants

(1)
Lq‘___/_\gz-é..‘-_s-kgtém ond, N 22 W5 i« LD B,

with the rroperties \gd'.. -CX ’4\'\)1 ) \'Q't:Q‘tq_ ) wl:@?t

where p , r, are rational numbers, m £r L m+1 , n £ P € m+1 . More-
over, the sequences of rational numbers {pk‘k ’ g{rk} are monotonous,The

sequence {rkl is increasing, the sequence «kaj is decreasing. These se.

gquences are also bounded by their constructiom: m érk Z. Py £ m+l , It

follows that these sequences are convergent. Since Pe - T K 1/k forv;(

hence the both sequences have a same limit, I,e, there exists
4
i “c,,=%—-h‘m Dt
R ) >0
We shall map the real number g to the moment of Time % ’ M(IS') =g ,
Further on we shall deem that KQ,._- \-\-)," - for \‘k in the case h/ -



gr/s y Wwhere r/s is a rational number.
Thus we have maped a real number g %o any instant X , M(¥) = g .
Moreover, let X and 5 be two different instants with {,{ 8 . We want

to show that M(¥ ) ¢ M(® ) . Let the corresponding monotonous sequences
, ; Ay -
&L@m} s {«W’V-}I according to (1) are iLQ'Ek ’ g'k-\f %]\ for ¥ and

iR Ean
Qo =B LNy Qtﬁgﬁwt

5 ] +
Then we have kgta__/}gq.L(S < \_‘/":" . I.e, we receive M(d)\(‘m(é\)

b JG5)= M) ) b, W47 ) = M (8D

let us assume that M(}{) = M(E) for some different instants ¥ and 8 :

Since

\K"‘- 8 . This signifies that there does not exist any instant of the kinc

%m-k/l (where k , 1 , n are integers, 1# O ) between the instantsx anc

(&2

. It follows that the instents § andg both are between instants of the
kind gh and %‘W\H for some fixed integer m , Moreover, the both\&and 8
are together not of the kind Q'L for some rational number r with “(95) E
r, according to the construction of the map M , Since ¥ 8 ,then there
exist instants £ of the sequence% with ¥ < 04-8 . Moreover, there
there is an instant ?ﬁpo of with ¥« X

is the least, Therefore we have

L?; st a.ePo_< \V;’ for Vk ;

-l S » which numbver P,

Po

Since the both instants ‘b’andg do not simultaneously correspond to ratio-

: ¥ kT
nal numbers, hence either the sequence l\g% } or the sequence {L\J ,tl

has infinitely many different members., These members are also members Eﬂ«w.
) {
of the sequence% (according to the construction of the sequences {Le;.

and {Ly:: ), chosen to correspond to different rational numbers, Moreove-
each such instant Xw- has been chosen with the leasgt number wj in the

~ 4
3equence% and also satisfying the corresponding determinative inequali-

ties, Therefore we receive that 26? must be equal to some of the

0 members
-
either of the sequence {Lg "k or of the sequence {\\) ',:.k » Wherg, .




We hava kg:— .(X?o -L\.\);' for ‘d’k . That is why the obtained contra-
d8ction proves the impossibility of M( ¥ ) = M( S ) « It remains M(¥) <
M(S ). This finishes the construction of the map M , comparing a real
number to each instant and preservirg the crder,

Now we want to show that there exists an instant \5 for any real number
a , such that M(¥) = a . If a is a rational number, we have § = Qa , in
accord with the construction of the map M .

Further, let the number & do not be a rational. The real number a reali-

zes a Dedekind's section Q, I Q, of the rational numbers Q whe
1 2 % 9 re

Q1={QEQ,Q£¢&1 and Q2=£q6Q’Q>al.

Let us scrutinize the corresponding sets of instanfcs
My = ot e My, Lo )eadune W, ={str e bl Mol

wherem}‘ is the linearly ordered coéontinuum of all instants (see [5]), We
shall show that the sets v\r\,\‘ and Mz_realize a2 Dedekind's section
M‘I ZMZ_Of J% . This is true since we evidently have: e m& £ 0,
'!MJ ¥ ¢ , because if the rational number r is with r £La , then ? EZN}
2 "" (A
if the rational number r is with r >a , then Cg'te 47
2. If the instant (o is before an instant o¢ of MJ‘ ,?,' ol O ,oc.EL& s
A
then we have M(QC )L M( & )<L a , i.e. we get O (o LNl(.‘3 If the instant
* , - - «
C* is after an instant o of 'Mz. ol eZ C¥ ; oL® € JY)JZ. then M(T* )>
M(oL*) > a . Therefore % e Ml in accord with the construction of QNL
1

and A,and because the map M preserves the order,

5. We have M‘UML -7N)5 since the map M is defined on)JQf and af-
ter the construction of ZM-T{ and ?J)Ja . Thus we have for any o€ QN)S that
either M(ol ) £ a and then o' € )J’J,‘ y or M(L')> a and then o(,‘é))hlz.

4. We have ‘)M[‘nlma = @ by the construction and by the properties
of the map M ,

Therefore we receive that ﬂ%,‘ I UV, is a Dedekind's section of ZNX .

Butﬂm is a continuum after LS]. Then there exists an instant oC° em_[
dividing ’mjl and ‘)mfz , Lo, if R < oL’ » then & € A, it Y Se e ’
then VE ﬂhjk , where M and V are instants,

Moreover, we have M(o®) = a after (1) and after the construction of



’L»UA,LNkLand the map M . One of the proof is the following: If we assume
that M(ol® ) = £ a , then there exists a rational number r with b ' r £ a.
Then the instant Cg,b E 2)\‘).14 ,Since M(Qz) =rda . Simultaneously we ob-
tain g'b s 7}')}2' y Since Q'C ‘7‘0(,0 because the map M preserves the order
and M(ol%) = b ZLr = M(gz) . But we have 7N)J.‘ nlN)J‘L- @ . The received
contradiction proves the impossibility of M(X®° ) = b £ a .

Let us assume now that M.’ ) = ' >a . Then there exists = rational nu-
mber p with a £ p L b . Therefore the instant QP must belong to )N)n‘, sine
ce M(gp) = p b = M(et?) . Simultaneously we have g? € bw;z , since
ad M(QP ) = p . But we have ZML}I\ 2 =@ . The obtained contradiction
proves the impossibility of a { b = M(eL®) . Thus it remains a = b =M(o(®).

This finishes the proof of Theorem on the measurement of Time,
REFERENCES
1. Russell,Bertrand., Our Knowledge of the External Wworld. London, 19143 The

Principles of Mathematics. London, 1937; On order in Time. Proc. Camb.Phil.

Soc., 32, 1936, 216=-228,.

2. Whitrow, Gerald J, The Natural Philosophy of Time,London, 1567;0xford, 19:
2. Walker,A.G.,Durees et instants.la Revue Scientifique,3266,1947,131-134.
4 .Thomason,S.K.Cn constructing instants from events.J.Phil.Logic, 13,1984,
€5-96.

5. Madguerova,A.S. On the Logic of Time.Bulg.J.Physics,17,1990,N0,6,477-48"

Elaborations of the Whitehead-Russell's model of the Time.Comptes Rendues
de 1'Académie bulgare des Sciences,41,No.1,1988,7-10.Two models of Time

with Walker's definition of instants by events, Serdica.
6. Whitehead,A.N. The Concept of Nature. Cambridge,1920; Modes of Thought,
Cambridge, 1938,

7.Wiener,Norbert, A.Wintner, Random Time.Nature, 181,1958,561_562



ON 1HE DeRIVAYTIVES OF A COMPOSITE rUNCTIION
A. 5. Maaguerova

this article gives the rormula oI tne n=Ir Zerivative o7 composite !unc
ricns,'re previcvus -esuits are well known to be remind.:rofessor v.N.Vra-
gov denoted on the Conference cof /athematics and its Applications, Varna,
169, that the ccefficients in this formula had not been determined yet,

Theorem, lLet £ andl? be definea and infinitely differentiable function:

‘I 1

on tre intervals/\ anaa corresponaingly, A: , AC_R' . Let the vae-
lues of the function kg; on A belong to A 5 kQ (4 ) A .Then the n-th deri-
vative gtn)

(1)
£ = £ e AT (@) ¢ £z, (g g o

fm-s))Pn-E.n(L?' '(?"'L?m'u))(&))*'f(n-d)Pn-d.n((?‘ "”'L?(S))h”*
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n

=Z fl"JE y» where n is a positive integer; =,

1
j=1 us v

of the function g = i‘oug = f(L,?) on A ras the kina

are homogeneous pol
nomials of degree j , lcreover, we have i)e T = (n) | o a
= J ' (1) 1,0 k? and “n,n
( l)n . (i") e =n(n_ 1)( 'Jn—2 " /2 i;- S 4. &
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n= 1,

g | (K g 7 [ . . : 3
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o Q« + f‘?‘zge_ b oimini® '\??QP = n 2nd @1 +Q2+...+QP= s

. |
(lv).fp __( where n > 5. n > K+1 @
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n=t > 0 ;
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>0 3; 0cq&r=-1. If either n=-2k+r<0 or k-2r+’<0, then the corresponding

l\l Ld"b-l\i (gil W(M)] y ‘Yi.l‘vv"“"‘(m)(' WMJ Lg('f.‘i‘l) ,Here n-2k+r >»0; k-=2r+q

item vantshes! As usual we deem O! = 1 ,The integers k,r,q are nonnegative,

Here 13,12’,1

qQ+3 '’
1.);'4- r-q-Wa if s > 4, then 1s < q=-s+4 ; 13 q+3 = r-q }
313 +e0e + (q+3)1q+3 - 3]‘.'-2(; ’ 21-’: p+44 r-p ' 2£ adp +3-a‘(_k-p* .

24 pt*+ 14k - p**; 249 + 24k - D .

For inatance we have if n=2w aﬁ:er this fomula that
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(m -3

|
;“Tm‘_)_'(.gmtg{wm-r m(.e CQ{““) Also we have after (vi) that

( m-ﬂ
it

a, p, p* p*%, P are integers satisfying 15 2 0pnly 320,

i
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" ( i (g(wh) + Ml, Eg“ g LQ(M—S)‘*_ 'v\‘ (n6) nl[(_q”')(_gfm-c\+
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gl \
gD alg [LINV, g, gigie,
, b L SO
t N
+ ﬁ{z ¢ ,_q('“ G 1 4 W[ M-A\((gl )2 Lg(‘\\-ua) the integers u,a, p'+ yZ Sa=-
2+ -2 P) )

tisfy the inequalities: A |
REUALLM-D-L ) R 404 Prd-A&M-D r REZRENDL 1t the written

of some dtrivative is negative,then the corresponding item vanishes,

Proof.of Points (i)-(iv).and the formula (1), If n=1, g'=f"', "9' sif ne2,
g" = ", ((? )2 o kQu acdording to the formula (1) and the points (i)- (iid

If n=3,then g"' = "', (L@ B f"Lg (.9 + f'(@)'”, according to the formula
(1) and the points (i)-(iv). Now let us suppose that the formula (]) togeshe

ther with the points (i)-(iv) are true for an arbitrarily fixed positive
integer n . Then it follawa from (1) and the points (i)-(iv), that
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-5- -.aor.

Thus we receive that the derivative g(n+1) has the kind (1) and the pro-
perties (i)=(iv). Therefore we inductively the proof of formula (1), inclu-
ding the poimts (i)-(iv). Further we shall use the following Propositionm,
pProving the points (v) and (vi)for ke2 and n>: :

Propositiom. We have D n(n-1)(n-2)(n-3)(d< RII)&+“(“"’\(“""}R "3

2 ol
n>3 .

Pnoof of Propositiom.We shall proceed inductively.The assertiom is true

iy i \
ii%)n-df gince we have 5(4) = gh\((%l )Hf Gg (Ggl)lk@lu’ g"t-’)(‘qu)?'a- L{(%‘(%'"]*g Lqu\us wiﬂ %in
Let us suppose that the assertion od Proposition is tue for am arbitrari-
ly fixed integer m> 4. Let us try to involve the corresponding formula for
n+1. We receive that the coefficients before the members with the derivative

f(nd) in the expressiom of 5(n+1) have the following kind after the proved

point (iv) of the Theorem: D N ~A ‘m,‘(u;'L@“"’gm)”‘LN?“(L@‘)“-QL@“]l+€‘P’“—l'\;\:
‘Y\ Q’(%ﬂ)" nm—ﬂ (N-R) . mw -O('vx-d(vx-’bﬂj,_(kg W Lm{m—q\ +mm)(m-z\]

:(Le,)ﬂn- @Hf‘ﬁ: lmzz&;)(m_a ( Y»—Z(Q“‘ Gy,ﬁ\gl\(m_n This is, we get the assertion

. Therefore the Proposition is true by Induc-

of the Propositiomn,for g(n+1)

tionm,
Proof of Points (v) and (vi) of Theorem.These Points are true for k=2, 1

%f n>7,after the Proposition.and the point (ii).Let us suppose that the
pointspoints (v) and (vi) are true for some integer k for amy m> k.We want
to prove (v) amd (vi) for k+1 and'v n > (k+1).Moreover let us suppese that
the points (v),(vi) are true for k+1 for some fixed integer m> k+1 .Them we
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(v) and (vi) for m+1 , Since we have already proved the point (iv), hence

is sufficient to assert by inductiom the formulae (v) and (vi). R



