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Introduction
Rank data commonly arise from situations where it is desired to rank a

set of individuals or objects in accordance with some criterion. Such data
may be observed directly or it may come from a ranking of a set or subset
of assigned scores. In general there are two types of rankings: complete and
partial, depending on whether it is required to rank all of the objects or not. In
this thesis, we restrict our attention to the case where all objects are ranked,
i.e. when the complete rankings are observed.

A complete ranking of N items simply assigns a full ordering to the items.
Any such ranking vector can be viewed as an element π of the permuta-
tion group SN generated by the first N positive integers. A permutation π ∈
SN is a function from {1, . . . ,N} onto itself, whose arguments are the items,
and whose values are the ranks. If the items are labeled with the numbers
{1, . . . ,N}, then π(i) is the rank given to item i and π−1(i) is the item as-
signed the rank i. Thus

π
−1 = 〈π−1(1),π−1(2), . . . ,π−1(N)〉

is the permutation in SN which corresponds to listing the objects in their
ranked order. For a sample of n complete rankings we will use the notation
π1,π2, . . . ,πn ∈ SN .

Rank data have a natural structure that presents challenges and opportuni-
ties that are unavailable in typical multivariate samples. There is a rich body
of work on analyzing rank data that includes the classical probabilistic models
proposed by Thurstone [23], Bradley and Terry [2], Luce [16], Plackett [22]
and Mallows [17]. Mallows’ models are often convenient initial tool for an-
alyzing a set of rank data. They capture the main structure of the data with
only one parameter and could be the basis for further research. However, it
is usually unrealistic to expect a one-parameter model to reveal all features
of the data. One possible generalization of these models could be made by
assuming that there are several latent groups in the population. The problem
of finding the “consensus” ranking and clustering rankings has been widely
studied by many authors, see Busse et al. [3], Klementiev et al. [13] and Mur-
phy and Martin [19]. Most of these methods can be described in a form that
involves distances on permutations, which are powerful tool for uncovering
the hidden features of the rank data. Numerical characteristics, exact distri-
butions, asymptotic approximations and statistical applications of the random
variables based on the most commonly used distances on SN can be found in
Diaconis [8] and Marden [18]. An example of a more exotic distance is the
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Lee distance, which has been developed by Lee [14] as a generalization of
the Hamming distance. However, the statistical properties of the Lee distance
are not well-studied. In this thesis, certain asymptotic approximations for the
random variable based on Lee distance are derived and applied to several prob-
abilistic models for rank data and to other statistical problems involving rank-
ings.

There are various applications of rankings in many applied scientific areas.
One example can be found in the imperfect ranking analysis of the ranked set
sampling (RSS) procedure. RSS can be used for creating more efficient meth-
ods for large range of statistical problems. The benefit of using these RSS
procedures is most significant when we have perfect ranking, but this is not al-
ways feasible. Hence, it is desirable to construct statistical models that capture
the uncertainty of the judgment ordering process and test whether the rankings
are perfect or not. These models can be defined by the ranking error probabil-
ity matrix, which can be used to study the effect of imperfect ranking on the
performance of the statistical procedures based on RSS, see Aragon et al. [1]
and Section 3.1.2 in Chen et al. [4]. Nonparametric tests for null hypothesis of
perfect rankings against a general alternative of imperfect ranking have been
developed by Frey et al. [9], Li and Balakrishnan [15], Vock and Balakrish-
nan [24] and Zamanzade et al. [25]. In the case when the hypothesis of perfect
ranking is rejected, the process of judgment ranking within the sets should be
analyzed. Frey and Wang [10] considered four models for imperfect ranking:
Bivariate normal model proposed by Dell and Clutter [6], Fraction of random
rankings by Frey et al. [9], Fraction of inverse rankings by Frey et al. [9] and
Fraction of neighbor rankings by Vock and Balakrishnan [24]. Furthermore,
these models can be used to compare the ranking abilities of two judges or two
ranking methods in order to increase the effectiveness of the RSS procedures
for future observation measurements.

Rankings and distances on permutations find another application in one of
the most important statistical problems: the comparison of two samples. If we
assume that parent population distributions may differ only in location, there
are many parametric and nonparametric tests at our disposal. The nonparamet-
ric approach requires few assumptions about the underlying distribution gen-
erating the data and gives us the ability to choose the test statistic that is best
suited for the task at hand. There are various of techniques for constructing
nonparametric rank tests for hypothesis testing of two samples, see Hájek and
Šidák [12] and Good [11]. Critchlow [5] proposed a unified approach based on
the minimum distance between two separate permutation sets corresponding



3

to the null and the alternative hypothesis. By using different distances on per-
mutations in Critchlow’s method we obtain different test statistics. Some of
the most popular rank statistics: Kolmogorov-Smirnov, Wilcoxon and Mann-
Whitney statistics, can be derived by Ulam distance, Spearman’s footrule and
Kendall’s tau, respectively. One of the benefits of having several test statistics
is that they can be combined in order to produce more powerful procedures.
Pesarin [21] developed an interesting theory, the Nonparametric Combination
of Dependent Tests, which yields good results for many complex multivariate
problems, including problems that have not yet been solved within a paramet-
ric setting.

The main objective of the thesis is to study the statistical properties of Lee
distance and to explore its applications in several rank data models based on
distances. In particular, our goals are to:

• Obtain an asymptotic result for the distribution of the random variable
induced by Lee distance under uniformity of the rankings.

• Compare the Mallows’ model based on Lee distance to other probability
models for rank data.

• Propose an Expectation-Maximization algorithm for estimating the un-
known parameters in Distance-based models for rank data with several
latent groups.

• Give an approximation of the measure of “tightness” in the “K-means”
clustering procedure for rank data based on Lee distance.

• Find an asymptotic approximation of the ranking error probability ma-
trix based on Lee distance, Spearman’s footrule and Spearman’s rho in
the framework of ranked set sampling.

• Present a procedure for estimating the unknown parameters in the Mal-
lows’ model for imperfect ranking by making use of the Expectation-
Maximization technique.

• Derive a rank test statistic based on Critchlow’s method and Lee dis-
tance for the two-sample location problem and study its distribution un-
der the null hypothesis.

The thesis is structured in five chapters.

Chapter 1. Preliminaries
In this chapter, distances on permutations are defined and several examples

are considered. Some important statistical properties of Lee distance, which
are used in the next chapters, are derived.
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The structural nature of rankings suggests more special approach in rank
data analysis. Distances on permutations are often convenient tools for mod-
eling rank data. They measure the closeness between two rankings and can be
very useful and informative for revealing the main features of the data.

In Section 1.1, we give a definition of a distance on SN and use it to ob-
tain a measure of cental location in a sample of n complete rankings. Since
the empirical central ranking depends on the choice of the distance on SN ,
we present eight of the most widely used distances in applied scientific and
statistical problems. In order to illustrate some differences between the listed
distances, we consider the canonical example of arranging books on a shelf
into alphabetic order. The spatial characteristics of Lee distance and Spear-
man’s footrule are given in more details. Additionally, we describe two rich
classes of distances on SN : p-distances and Hoeffding’s distances, and give
definitions of the left-invariance, right-invariance and metric properties.

In Section 1.2, we study the properties of the random variable DL(π) in-
duced by Lee distance under uniformity of π ∈ SN . By using a representation
of DL(π) with a simple cycle graph, we give an interpretation of the quantities
cN(i, j) := min (| i− j |,N− | i− j |) in the linear decomposition

DL(π) = dL(π ,eN) =
N

∑
i=1

min (| π(i)− i |,N− | π(i)− i |) =
N

∑
i=1

cN(π(i), i) ,

where eN = 〈1,2, . . . ,N〉 ∈ SN is the identity permutation. We also show that
when N is even the “opposite” ranking of eN for Lee distance is

e∗N :=
〈

N
2
+ 1,

N
2
+ 2, . . . ,N−1,N,1,2, . . . ,

N
2
−1,

N
2

〉
and when N is odd there are two the “opposite” rankings

e′N :=
〈

N + 1
2

,
N + 1

2
+ 1, . . . ,N−1,N,1, . . . ,

N + 1
2
−2,

N + 1
2
−1
〉

and

e′′N :=
〈

N + 1
2

+ 1,
N + 1

2
+ 2, . . . ,N−1,N,1, . . . ,

N + 1
2
−1,

N + 1
2

〉
.

By making use of the right-invariant property of Lee distance, we prove that
when N is even the distribution of DL is symmetric and DL can take only even
values.

In Subsections 1.2.1 and 1.2.2, we apply Hoeffding’s combinatorial central
limit theorem (CCLT) to the random variable DL and derive the mean and
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variance of DL:

E (DL) =

[
N + 1

2

][
N
2

]
, (1.11)

Var (DL) =


N4 + 8N2

48(N−1)
, for N even

N4 + 2N2−3
48(N−1)

, for N odd,
(1.13)

where [x] is the greatest integer less than or equal to x. Furthermore, from the
CCLT we prove the following theorem.

Theorem 1.2. The distribution of the random variable DL is asymptotically
normal for N→ ∞ with mean and variance given by (1.11) and (1.13).

The presented properties of DL play an important role for the research in
the next chapters.

Chapter 2. Probability models for rank data
This chapter is devoted to probabilistic models for rank data, which are

determined by a family of probability distributions P. In Sections 2.1 and
2.2, we study the Distance-based models and their relation to the Marginals
models.

Distance-based models are part of the exponential family and are defined
by

Pθ ,π0(π) = exp (θd(π ,π0)−ψN(θ )) for π ∈ SN , (2.2)

where θ is a real parameter (θ ∈ R), d(·, ·) is a distance on SN , π0 is a fixed
modal (or antimodal) ranking and ψN(θ ) is a normalizing constant. Finding
the value of ψN(θ ) for fixed θ and chosen distance d(·, ·) is a difficult task,
since evaluating ψN(θ ) by summing over all possible N! rankings becomes
computationally demanding for N ≥ 10. Thus, for the models based on Lee
distance we propose the following approximation of ψN(θ )

ψ̂N(θ ) = log(N! ĝN(θ )) = log(N!)+θ µ +
θ 2ν2

2
, (2.4)

where µ = E (DL) and ν2 = Var (DL) are given in (1.11) and (1.13), respec-
tively. In Section 2.1, we describe more applications of the approximation
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(2.4) in other problems for rank data and compare ψN(θ ) and ψ̂N(θ ) for vari-
ous values of θ and N. In order to extend model (2.2), we consider the Latent-
class Distance-based model, which assumes that there are K latent groups
(classes) in the population and that the distributions of the rankings within
each group are modeled by (2.2).

In Section 2.2, we present the Marginals model by the probability distri-
bution

P~λ (π) = exp

(
N

∑
i=1

N

∑
j=1

λ
( j)
i I [π(i) = j]−ψ(~λ )

)
for π ∈ SN , (2.6)

where~λ =
{

λ
( j)
i

}N

i, j=1
are N2 real parameters, I [·] is the indicator function

and ψ(~λ ) is a normalizing constant. We point out that (2.2) based on Lee
distance corresponds to (2.6) with

λ
( j)
i = θ min (| j−π0(i) |,N− | j−π0(i) |) , for i, j = 1,2, . . . ,N.

Since finding the values of the Marginals matrix for large values of N requires
a lot of time and computational resources, we propose the following asymp-
totic approximation for the model (2.2) based on Lee distance.

Theorem 2.2. Let M(θ ,N) =
{

mi j(θ ,N)
}N

i, j=1 be the Marginals matrix, based
on Lee distance. Then

mi j(θ ,N)
N

exp
(

θ µ +
θ 2ν2

2

) −−−→
N→∞

1, f or i, j = 1,2, . . . ,N,

where

µ =
NcN(i, j)

N−1
− 1

N−1

[
N + 1

2

][
N
2

]
and

ν
2 =


2N2 (cN (i, j))2−N3cN (i, j)

2 (N−2) (N−1)2 −
N2
(
N2−2N + 4

)
48(N−1)2 , for N even

2N2 (cN (i, j))2−N
(
N2−1

)
cN (i, j)

2 (N−2) (N−1)2 − N (N + 1) (N−3)
48(N−2)

, for N odd.
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In Section 2.3, we give a description of some statistical tools for estimat-
ing the unknown parameters and testing the goodness-of-fit of models (2.2)
and (2.6). However, for the Latent-class Distance-based model it is not pos-
sible to estimate the unknown parameters directly. Therefore, we make use
of the Expectation-Maximization (EM) algorithm suggested by Dempster et
al. [7] and propose an estimation procedure in the case when there are K
groups in the population with unknown modal rankings. The aim of the algo-
rithm is to find maximize the expected value of the group loglikelihood func-
tion `(~θ ,~p, ~π0, ~π∗,G) for given initial approximations of ~θ , ~p and ~π0, where
~θ = (θ1,θ2, . . . ,θK), ~π0 = (π0,1,π0,2, . . . ,π0,K) and ~p = (p1, p2, . . . , pK) are
vectors of unknown parameters, π∗ =

(
π1,π2, . . . ,π n

)
is a sample of n com-

plete rankings and G denotes the group index, i.e. G ∈ {G1,G2, . . . ,GK}. By
applying the generalized version of the EM algorithm for

Q(t)
(
~θ ,~p, ~π0, ~π∗

)
= E

G|~θ (t) ,~p (t) ,~π0
(t) ,~π∗

[
`(~θ ,~p, ~π0, ~π∗,G)

]
with some initial values ~θ (t),~p(t) and ~π0

(t), we show that the sufficient condi-
tion for convergence to local maximum

Q(t)
(
~θ (t+1),~p(t+1), ~π0

(t+1), ~π∗
)
≥ Q(t)

(
~θ (t),~p(t), ~π0

(t), ~π∗
)

(2.12)

holds for

p (t+1)
j =

1
n

n

∑
i=1

p (t)
j P

θ
(t)
j ,π(t)

0, j

(
π i
)

K

∑
s=1

p (t)
s P

θ
(t)
s ,π(t)

0,s

(
π

i) , (2.10)

π
(t+1)
0, j = argmax

π∈SN


n

∑
i=1

p (t)
j P

θ
(t)
j ,π(t)

0, j

(
π i
)

K

∑
s=1

p (t)
s P

θ
(t)
s ,π(t)

0,s

(
π

i)θ
(t)
j d

(
π

i,π
)
 (2.13)

and
{

θ
(t+1)
j

}K

j=1
which are the solutions of

n

∑
i=1

p (t)
j P

θ
(t)
j ,π(t)

0, j

(
π i
)

K

∑
s=1

p (t)
s P

θ
(t)
s ,π(t)

0,s

(
π

i)
[
d
(

π
i,π (t+1)

0, j

)
−ψ

′
N(θ

(t+1)
j )

]
= 0. (2.14)
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This result is formulated and proved in Section 2.4 as:

Proposition 2.1. Let ~p(t+1), ~π0
(t+1) and ~θ (t+1) are given by (2.10), (2.13)

and (2.14) respectively. Then condition (2.12) holds.

The proposed algorithm is used to perform a simulation study of the ex-
planatory abilities of the Latent-class models for several values of K.

We compare the models (2.2) based on Lee distance, Hamming distance
and Kendall’s tau to the Marginals model (2.6) by providing three illustrative
examples in Section 2.5. It is shown that the contrast between the model (2.2)
based on Lee distance and the model (2.6) can be explored only through ana-
lyzing the sample Marginals matrix and the Marginals matrix induced by Lee
distance. We concluded that choosing Lee distance in model (2.2) is appro-
priate in situations where there are multiple groups in the observed rankings
and the modal ordering of one group is not the inverse ordering of another.
Furthermore, models based on Lee distance are useful to detect if there are
more than one groups or clusters in the data.

Chapter 3. Rank data clustering
In this chapter, we present an unsupervised “K-means” clustering proce-

dure based on Lee distance.
For n observations of complete rankings π1,π2, . . . ,πn ∈ SN and fixed

number of groups K, we determine the cluster centers σ̂ (1), σ̂ (2), . . . , σ̂ (K) ∈
SN as the solution of(

σ̂
(1), σ̂ (2), . . . , σ̂ (K)

)
= argmin

σ (1) ,σ (2) ,...,σ (K)

CK

(
σ
(1),σ (2), . . . ,σ (K)

)
, (3.1)

where

CK

(
σ
(1),σ (2), . . . ,σ (K)

)
=

1
n

n

∑
i=1

min
1≤ j≤K

d
(

π
i,σ ( j)

)
, (3.2)

for some distance d(·, ·) on SN . In order to compare the results obtained from
several clustering analysis based on different values of K, we consider the
measure of “tightness” TK defined by

TK = 1−
CK

(
σ̂ (1), σ̂ (2), . . . , σ̂ (K)

)
C0

K
, (3.3)
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where K = 1,2, . . . and

C0
K = min

σ (1) ,σ (2) ,...,σ (K)

1
N! ∑

π∈SN

min
1≤ j≤K

d
(

π ,σ ( j)
)

(3.4)

is the value of CK under uniform distribution over all possible N! rankings.
Since there are (N!

K ) possible choices for cluster centers and the complete
search in (3.4) becomes computationally demanding for N≥ 10, in Section 3.2
we propose the following asymptotic approximation which is based on Theo-
rem 1.2.

Corollary 3.1. Define the constant C0
2 by (3.4) for K = 2 and by using Lee

distance dL(·, ·). Then for large and even values of N the constant C0
2 is ap-

proximated by

Ĉ0
2 =

N2

4
−

√
N4 + 8N2

24π(N−1)
. (3.5)

We show that this result is useful for approximating the values of C0
K for

K = 2, but it is not easy to be generalized for K > 2.
In Section 3.3, the presented clustering method is applied to the well-

studied American Psychological Association (APA) election dataset. The ob-
tained results illustrate that Lee distance performs well in situations where it is
desirable to construct models with less number of groups K and respectively
with fewer unknown parameters.

Chapter 4. Imperfect ranking in ranked set sampling
In this chapter, we consider some statistical measures of deviation from

the perfect ranking in the framework of ranked set sampling (RSS).
The procedure for obtaining n-cycle balanced RSS of size k and the con-

cept of perfect ranking are described in Section 4.1. In Section 4.2, we preset
the nonparametric approach for testing the null hypothesis for perfect ranking
proposed by Li and Balakrishnan [15]. By applying their method for con-
structing test statistic for one-cycle sample through measuring the distance
between the ordered RSS 〈i1, i2, . . . , ik〉 and the identity ek = 〈1,2, . . . ,k〉, we
define two new test statistics

Mk = max
1≤r≤k

| ir− r | and Lk =
k

∑
r=1

min
(
| ir− r |,k− | ir− r |

)
, (4.4)
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based on Chebyshev’s distance and Lee’s distance, respectively. By combin-
ing the statistics in each cycle, we define two test statistics for n-cycle sample

Mk,n =
n

∑
i=1

M(i)
k and Lk,n =

n

∑
i=1

L(i)
k

where M(i)
k and L(i)

k are the values the test statistics in (4.4) for the i-th cycle
of RSS, for i = 1,2, . . . ,n.

In order to compare the test statistics described in Section 4.2, it is neces-
sary to fix an alternative model for the imperfect judgment ranking. In Sec-
tion 4.3, we propose the Distance-based models (2.2) as an imperfect ranking
alternative and study the their properties in the framework of RSS. We show
that the described alternative model is completely specified by the ranking er-
ror probability matrix Q(k,θ ), which is referred as the Marginals matrix in
Chapter 2.

One of the benefits of considering the Mallows’ model as an alternative
of the perfect ranking is that the unknown parameter of the model can be
estimated. Suppose that XRSS =

{
Xi[ j], i = 1,2, . . . ,n; j = 1,2, . . . ,k

}
is an

n-cycle balanced RSS, Ri[ j] is the number of the set in the i-th cycle from
which comes the j-th ordered statistic for i = 1,2, . . . ,n and j = 1,2, . . . ,k,
and Ri =

〈
Ri[1],Ri[2], . . . ,Ri[k]

〉
for i = 1,2, . . . ,n. By using Mallows’ model

for imperfect ranking associated with error matrix Q(k,θ ) and free parameter
θ ≤ 0, we expressed the likelihood function as

L (R | θ ) =
n

∏
i=1

{
∑

l

[(
k

∏
j=1

q
(

Ri[ j], l[ j],k,θ
))

p
(

l[1], l[2], . . . , l[k]
)]}

, (4.7)

where ∑
l

denotes a summation over all possible vectors l =
(

l[1], l[2], . . . , l[k]
)

such that l[ j] ∈ {1,2, . . . ,k} for j = 1,2, . . . ,k. Here R = (R1,R2, . . . ,Rn) is the

vector of the observed ordered RSS, q
(

Ri[ j], l[ j],k,θ
)

are elements of Q(k,θ )

and p
(

l[1], l[2], . . . , l[k]
)

are the probabilities of observing 〈l[1], l[2], . . . , l[k]〉 un-
der the assumption of perfect ranking. Since there is no closed expression for
the elements of the matrix Q(k,θ ) and it is not possible to estimate θ directly,
we make use of the EM algorithm to find the maximum likelihood estimate
(MLE) of θ . In Section 4.4, we show that the value θ (t+1) in each iteration,
which maximizes the expected value of the complete loglikelihood function
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for the value θ (t) of the previous iteration, is the solution of the equation

∑
z

n

∏
i=1

[(
k

∏
j=1

q
(

Ri[ j],zi[ j],k,θ (t)
))

p
(

zi[1],zi[2], . . . ,zi[k]

)]

∑
l

{
n

∏
i=1

[(
k

∏
j=1

q
(

Ri[ j], li[ j],k,θ (t)
))

p
(

li[1], li[2], . . . , li[k]
)]}×

×
n

∑
i=1

k

∑
j=1

q′
(

Ri[ j],zi[ j],k,θ
)

q
(

Ri[ j],zi[ j],k,θ
) = 0, (4.9)

where q′(r,z,k,θ ) is the derivative of q(r,z,k,θ ) with respect to θ and is ex-
pressed as

q′(r,z,k,θ ) = ∑
π∈Sk , π(z)=r

[d(π ,ek)−ψ
′
k(θ )]exp

(
θd(π ,ek)−ψk(θ )

)
,

for r,z = 1,2, . . . ,k. We prove that the proposed EM algorithm converges
monotonically to some stationary point of L (R | θ ) and if L (R | θ ) is uni-
modal, i.e. L (R | θ ) has only one stationary point, then the algorithm con-
verges to the unique MLE of θ .

Since in each step of the presented EM algorithm it is required to calculate
the error matrix Q(k,θ ), the application of this method takes a lot of compu-
tational resources for large values of k. In Section 4.5, we give an alternative
way to find the matrix Q(k,θ ) for Cayley and Hammning distances that de-
creases the computational operations in (4.9). Similar to the asymptotic result
in Theorem 2.1 for the probability error matrix based on Lee distance, we pro-
vide two approximations for the error matrices based on Spearman’s footrule
and Spearman’s rho.

Theorem 4.1. Let Q(k,θ ) be the ranking error probability matrix based on
the Spearman’s footrule. Then

q(i, j,k,θ )
k

exp
(

θ µ + θ 2ν2

2

) −−−→
k→∞

1,

where

µ =
k+ 1

3
− f (i)+ f ( j)− | i− j |

k−1
+ | i− j |,
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ν
2 =

1
k−2


k

∑
r=1
r 6=i

k

∑
s=1
s 6= j

[
| r− s |+k(k+ 1)

3(k−1)
− f (r)+ f (s)− | i− s | − | r− j |

k−1

− f (i)+ f ( j)− | i− j |
(k−1)2

]2
}
− (k+ 1)(2k2 + 7)

45

and

f (x) =
x(x−1)+ (k− x)(k− x+ 1)

2
.

Theorem 4.2. Let Q(k,θ ) be the ranking error probability matrix based on
the Spearman’s rho. Then

q(i, j,k,θ )
k

exp
(

θ µ + θ 2ν2

2

) −−−→
k→∞

1,

where

µ =
k(k+ 1)

6
− h(i)+ h( j)− (i− j)2

k−1
+(i− j)2,

ν
2 =

1
k−2


k

∑
r=1
r 6=i

k

∑
s=1
s6= j

[
(r− s)2 +

k2(k+ 1)
6(k−1)

− h(r)+ h(s)− (i− s)2− (r− j)2

k−1

−h(i)+ h( j)− (i− j)2

(k−1)2

]2
}
− k2(k−1)(k+ 1)2

36

and

h(x) =
x(x−1)(2x−1)+ (k− x)(k− x+ 1)(2k−2x+ 1)

6
.

In Section 4.6, we apply the Mallows’ model as an imperfect ranking al-
ternative and compare the described test statistics for one-cycle RSS. In Sec-
tion 4.7, we illustrate the use of Mallows’ alternative for n-cycle RSS by ana-
lyzing an example dataset given in Murrary et al. [20].

Chapter 5. Lee distance in two-sample rank tests
In this chapter, we study a rank test statistic induced by Lee distance and

Critchlow’s [5] unified approach for the two-sample location problem. For two
independent random samples X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn with continuous
distribution functions F (x) and G (x) respectively, we consider the problem
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of testing the null hypothesis H0 against H1

H0 :F (x) ≡ G (x) (5.1)

H1 :F (x) ≥ G (x) , (5.2)

with strict inequality for some x. If α(i) is the rank of Xi for i = 1,2, . . . ,m and
α(m+ j) is the rank of Yj for j = 1,2, . . . ,n among X1,X2, . . . ,Xm,Y1,Y2, . . . ,Yn,
then the rank vector of all observations is α = 〈α(1),α(2), . . . ,α(m+n)〉 and
α ∈ Sm+n.

In Section 5.1, we present the Critchlow’s [5] method for construction of
test statistics that is based on finding the minimum interpoint distance between
the class of equivalence [α ] = α (Sm×Sn) = {α ◦π : π ∈ Sm×Sn} and the
extremal set E = Sm×Sn = {π ∈ Sm+n : π(i) ≤ m,∀i≤ m}

d ([α ] ,E) = min
π∈[α ]
σ∈E

d(π ,σ) (5.3)

where d is an arbitrary distance on Sm+n.
In Section 5.2, we show that the rank test statistic in (5.3) induced by the

Lee distance is the solution of the problem

dL ([α ] ,E) = min
π∈[α ]
σ∈E

dL(π ,σ) = min
π∈[α ]

dL(π ,e)

= min
π∈[α ]

{
m+n

∑
i=1

min (| a(i)− i |,m+ n− | a(i)− i |)

}
, (5.4)

where e = 〈1,2, . . . ,m+n〉 is the identity permutation. We express dL ([α ] ,E)
as

dL ([α ] ,E) = 2 ∑
i∈Km

min
(
| α(i)− γ

−1
n (k+ 1− γm (α(i))) |,

m+ n− | α(i)− γ
−1
n (k+ 1− γm (α(i))) |

)
(5.5)

where

Km = {i ∈ {1,2, . . . ,m} : α(i) > m} , (5.6)

Kn = {i ∈ {m+ 1,m+ 2, . . . ,m+ n} : α(i) ≤ m} ,

k is the number of elements of Km (k =| Km |=| Kn |), γm (α(i)) is the rank of
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α(i) among {α(i) : i ∈ Km}, γn (α(i)) is the rank of α(i) among {α(i) : i ∈ Kn}
and γ−1 is the inverse of γ , i.e. γ−1 (γ (α (i))) = α (i). Since dL ([α ] ,E) is
equivalent to

Lm,n :=
dL ([α ] ,E)

2
, (5.7)

we use Lm,n for testing H0 against the alternative H1.
In Section 5.3, we prove the following proposition by using the fact that

Lm,n is the minimum sum of distances over C between the elements of Km and
the elements of Kn, where C is a simple cycle graph with vertices {i}m+n

i=1 and
edges

⋃m+n−1
i=1 {i, i+ 1} and {m+ n,1}.

Proposition 5.1. Let Lm,n be defined by (5.7) and Hm,n =| Km |=| Kn | be the
number of elements of the set Km, defined by (5.6). Then the joint distribution
of Lm,n and Hm,n under the null hypothesis is given by

P (Lm,n = l,Hm,n = k) =


m!n!

(m+ n)!
, for l = 0 and k = 0 (5.8)

∑
s

∑
a,b

m!n!
(m+ n)!

, for 1≤ k ≤min(m,n) and

[
k2 + 1

2

]
≤ l ≤

[
(m+ n− k)k+ 1

2

]
, where [x] is the integer part of x. The

first summation in (5.8) is taken over all integer s such that 1≤ s≤ k+ 1 and
(s−1)2 + (k− s+ 1)2 ≤ l. The second summation is over all nonnegative
integers {a(m)

i }
s−1
i=0 , {a(n)i }

s−1
i=0 , {b(m)

j }
k−s+1
j=1 and {b(n)j }

k−s+1
j=1 that satisfy:

(i)
s−1

∑
i=0

a(m)
i +

k−s+1

∑
j=0

b(m)
j = m− k (ii)

s−1

∑
i=0

a(n)i +
k−s+1

∑
j=0

b(n)j = n− k

(iii) l = (s−1)2 +(k− s+ 1)2 +
s−1

∑
i=0

i
(

a(m)
i + a(n)i

)
+

k−s+1

∑
j=0

j
(

b(m)
j + b(n)j

)

(iv) 2 (s−1)+
s−1

∑
i=0

(
a(m)

i + a(n)i

)
≥ 2 (k− s)+

k−s+1

∑
j=0

(
b(m)

j + b(n)j

)

(v) 2 (s−2)+
s−1

∑
i=1

(
a(m)

i + a(n)i

)
< 2 (k− s+ 1)+a(m)

0 +a(n)0 +
k−s+1

∑
j=0

(
b(m)

j + b(n)j

)
,

where s ∈ {1,2, . . . ,k + 1} in conditions (i)-(iii), s ∈ {1,2, . . . ,k} in condi-
tion (iv) and s ∈ {2,3, . . . ,k+ 1} in condition (v). The integers b(m)

0 and b(n)0
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are defined to be zeros, b(m)
0 := 0, b(n)0 := 0, for completeness in conditions

(i)-(v).

Since for large values of m and n the computational process of checking
conditions (i)-(v) for all possible nonnegative integers {a(m)

i }
s−1
i=0 , {a(n)i }

s−1
i=0 ,

{b(m)
j }

k−s+1
j=1 and {b(n)j }

k−s+1
j=1 is time-consuming and computationally demand-

ing, we give recursive relations for the number of terms in the summations
(5.8) (see Proposition 5.2) and the probability mass function of Lm,n under H0
(see Proposition 5.3).

The mean and variance of Lm,n and its asymptotic distribution under H0
are derived in the following theorem.

Theorem 5.1. Let Lm,n be defined by (5.7). Then the mean and variance of
Lm,n under the null hypothesis H0 are

E (Lm,n) =


mn(m+n+1)

4(m+n) , if m+ n is odd

mn(m+n)
4(m+n−1) , if m+ n is even

(5.16)

Var (Lm,n) =


mn{(m+n)4−(m+n)3+7(m+n)2−15(m+n)−6mn(m+n−1)}

48(m+n)2(m+n−2) ,

mn{(m+n−1)4+11(m+n−1)2−24(m+n−1)−6mn(m+n−2)}
48(m+n−1)2(m+n−3) ,

(5.17)

where m+ n is odd in the first case and m+ n is even in the second. Further-
more, under the null hypothesis H0 the standardized statistic Lm,n−E(Lm,n)√

Var(Lm,n)
has

asymptotically normal distribution as m,n→ ∞.

This result gives a normal approximation of the distribution of Lm,n under
H0 and is useful for finding the critical region when m and n are large.

In Section 5.4, we compare the rank test statistic Lm,n, defined by (5.7),
to t-test, Wilcoxon, Kolmogorov-Smirnov and Mood’s tests statistics for two-
samples. We perform an illustrative simulation study and show that the test
based on Lee distance is more powerful than the others when the generating
distributions have heavy-tails. We conclude that in the testing procedures for
the two-sample location problem there is a trade-off between the testing power
and the robustness with respect to the underlying distributions.

The proofs of Theorems 2.1, 4.1, 4.2 and 5.1 are given in Appendix E.
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Main contributions
The main accomplishments in the thesis due to the author are listed below.

1. The random variable induced by Lee distance under uniformity of the
rankings is studied in details and some of its characteristics such as
mean, variance, range and symmetry are given for an arbitrary size of
the rank vectors. An asymptotic normality for the corresponding distri-
bution is proved and used to approximate the normalizing constant in
the Distance-based probability model for rank data. This result could
be also applied to other models for rankings which are based on Lee
distance.

2. The Expectation-Maximization (EM) algorithm for computing the max-
imum likelihood estimates of the parameters in the Latent-class Distance-
based model is generalized for the case where the modal rankings of the
latent classes are unknown. The convergence of the proposed algorithm
to a stationary point is proved and the method is applied to the to the
well-studied APA election dataset. By using the EM algorithm we can
fit the model to the data, make statistical inference and compare models
based on different distances on permutations.

3. An asymptotic approximation of the normalizing constant used in the
measure of “tightness” is given for the “K-means” rank clustering based
on Lee distance. The obtained result reduces the computational time and
resources for calculating the “tightness” coefficient when there are two
clustering groups (K = 2) and the size of the rank vectors is relatively
large (N ≥ 7).

4. The Mallows’ model is proposed as an alternative model for imperfect
ranking in the framework of balanced ranked set sampling (RSS). An
EM algorithm for estimating the unknown parameter in the model is de-
scribed and its convergence to a stationary point is shown. Asymptotic
results for the corresponding probability error matrices based on Spear-
man’s footrule, Spearman’s rho and Lee distance are derived for the
case when the size of each cycle of the RSS is too large. The proposed
alternative model can be used to study the effect of imperfect ranking
on the performance of some statistical procedures based on RSS and to
compare the ranking abilities of two judges or ranking methods.

5. The nonparametric rank statistic based on Critchlow’s method and Lee
distance is derived for the two-sample location problem. Asymptotic
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normality of the obtained test statistic under the null hypothesis is proved
and can be used for finding the critical regions when the samples sizes
are too large. The Lee test statistic is shown to be more powerful for
heavy-tailed underlying distributions via a simulation study.

Publications related to the thesis

1. N. I. Nikolov (2016) Lee distance in two-sample rank tests. In: Com-
puter Data Analysis and Modeling: Theoretical and Applied Stochas-
tics: Proceedings of the Eleventh International Conference, Minsk: Pub-
lishing Center of BSU, pp. 100–103.

2. N. I. Nikolov and E. Stoimenova (2017) Mallows’ model based on Lee
distance. In: Proceedings of the 20-th European Young Statisticians
Meetings, pp. 59–66.

3. N. I. Nikolov and E. Stoimenova (2019a) Asymptotic properties of Lee
distance.Metrika, Vol. 82(3), 385–408.

4. N. I. Nikolov and E. Stoimenova (2019b) EM estimation of the param-
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gence, Springer Series, Vol. 793, pp. 317–325.
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22, 2018).
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5. “Rank data models based on Lee distance”, International Conference
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