
BULGARIAN ACADEMY OF SCIENCES

INSTITUTE OF MATHEMATICS AND INFORMATICS

METRIC METHODS FOR ANALYZING AND
MODELING RANK DATA

NIKOLAY IVANCHEV NIKOLOV

THESIS

FOR CONFERRING OF ACADEMIC AND SCIENTIFIC DEGREE

DOCTOR

IN PROFESSIONAL FIELD 4.5 MATHEMATICS

(PROBABILITY THEORY AND MATHEMATICAL STATISTICS)

SUPERVISOR:
PROF. EUGENIA STOIMENOVA

Sofia, 2020

http://www.bas.bg
http://www.math.bas.bg


i

Acknowledgements
I wish to express my sincerely gratitude to my supervisor Professor Eugenia Stoimenova for
her valuable help, motivation and support. I would also like to thank all the staff members of
“Operations Research, Probability and Statistics” department for their generous attitude and
friendly behaviour.

The research was supported by the Bulgarian Ministry of Education and Science under
the National Research Programme “Young scientists and postdoctoral students” approved by
DCM #577/17.08.2018.



ii

Introduction

Rank data commonly arise from situations where it is desired to rank a set of individuals
or objects in accordance with some criterion. Such data may be observed directly or it may
come from a ranking of a set or subset of assigned scores. Alternatively, rank data may
arise when transforming continuous or discrete data in a nonparametric analysis. Examples
of rank data may be found in politics (Inglehart [35], Moors and Vermunt [53]), voting and
elections (Diaconis [17], Koop and Poirier [40], Gormley and Murphy [29]), market research
(Beggs et al. [4], Chapman and Staelin [8]), food preference (Kamishima and Akaho [38],
Nombekela et al. [63]), phycology (Maydeu-Olivares and Böckenholt [50], Regenwetter et
al. [70]), health economics (Salomon [71]) and medical treatments (Plumb et al. [69]). In
general there are two types of rankings: complete and partial, depending on whether it is
required to rank all of the objects or not. In this thesis, we will restrict our attention to the
case where all objects are ranked, i.e. when the complete rankings are observed.

A complete ranking of N items simply assigns a full ordering to the items. Any such
ranking vector can be viewed as an element π of the permutation group SN generated by
the first N positive integers. A permutation π ∈ SN is a function from {1, . . . ,N} onto itself,
whose arguments are the items, and whose values are the ranks. If the items are labeled with
the numbers {1, . . . ,N}, then π(i) is the rank given to item i and π−1(i) is the item assigned
the rank i. Thus

π
−1 = 〈π−1(1),π−1(2), . . . ,π−1(N)〉

is the permutation in SN which corresponds to listing the objects in their ranked order. For a
sample of n complete rankings we will use the notation π1,π2, . . . ,πn ∈ SN .

Rank data have a natural structure that presents challenges and opportunities that are
unavailable in typical multivariate samples. There is a rich body of work on analyzing rank
data that includes the classical probabilistic models proposed by Thurstone [74], Bradley and
Terry [5], Luce [44], Plackett [68] and Mallows [45]. Mallows’ models are often convenient
initial tool for analyzing a set of rank data. They capture the main structure of the data
with only one parameter and could be the basis for further research. However, it is usually
unrealistic to expect a one-parameter model to reveal all features of the data. One possible
generalization of these models could be made by assuming that there are several latent groups
in the population. The problem of finding the “consensus” ranking and clustering rankings
has been widely studied by many authors, see Busse et al. [6], Klementiev et al. [39] and
Murphy and Martin [55]. Most of these methods can be described in a form that involves
distances on permutations, which are powerful tool for uncovering the hidden features of
the rank data. Numerical characteristics, exact distributions, asymptotic approximations and
statistical applications of the random variables based on the most commonly used distances
on SN can be found in Diaconis [17] and Marden [47]. An example of a more exotic distance
is the Lee distance, which has been developed by Lee [42] as a generalization of the Hamming
distance for error correcting coding in modulation. An application of Lee distance in a visual
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recognition problem is given in Chan et al. [7]. However, the statistical properties of the
Lee distance are not well-studied. In this thesis, certain asymptotic approximations for the
random variable based on Lee distance are derived and applied to several probabilistic models
for rank data and to other statistical problems involving rankings.

There are various applications of rankings in many applied scientific areas. One example
can be found in the imperfect ranking analysis of the ranked set sampling (RSS) procedure.
RSS can be used for creating more efficient methods for large range of statistical problems.
McIntyre [51] first proposed the mean of a RSS as an estimator of the population mean.
Later, Dell and Clutter [14] showed that the RSS mean is an unbiased estimator and is at
least as precise as the simple random sample mean based on the same number of observa-
tions. Moreover, this remarkable fact is true regardless if the judgment ranking is perfect
or not. However, the effectiveness of RSS mean depends directly on how well the judg-
ment orderings within each set are obtained. More statistical developments based on RSS,
such as variance estimation, quantiles estimation, density function estimation, M-estimates
and distribution-free tests, are described in Chen et al. [9]. The benefit of using these RSS
procedures is most significant when we have perfect ranking, but this is not always feasi-
ble. Hence, it is desirable to construct statistical models that capture the uncertainty of the
judgment ordering process and test whether the rankings are perfect or not. These models
can be defined by the ranking error probability matrix, which can be used to study the ef-
fect of imperfect ranking on the performance of the statistical procedures based on RSS, see
Aragon et al. [2] and Section 3.1.2 in Chen et al. [9]. Nonparametric tests for null hypothesis
of perfect rankings against a general alternative of imperfect ranking have been developed
by Frey et al. [24], Li and Balakrishnan [43], Vock and Balakrishnan [79] and Zamanzade
et al. [82]. Zamanzade and Vock [83] developed nonparametric tests of perfect ranking for
judgment post stratification sampling scheme. In the case when the hypothesis of perfect
ranking is rejected, the process of judgment ranking within the sets should be analyzed. Frey
and Wang [25] considered four models for imperfect ranking: Bivariate normal model pro-
posed by Dell and Clutter [14], Fraction of random rankings by Frey et al. [24], Fraction of
inverse rankings by Frey et al. [24] and Fraction of neighbor rankings by Vock and Balakr-
ishnan [79]. More models for imperfect ranking are presented in Frey [26] and Ozturk [65].
Furthermore, these models can be used to compare the ranking abilities of two judges or
two ranking methods in order to increase the effectiveness of the RSS procedures for future
observation measurements.

Rankings and distances on permutations find another application in one of the most im-
portant statistical problems: the comparison of two samples. If we assume that parent popu-
lation distributions may differ only in location, there are many parametric and nonparametric
tests at our disposal. The nonparametric approach requires few assumptions about the un-
derlying distribution generating the data and gives us the ability to choose the test statistic
that is best suited for the task at hand. Nonparametric tests have been applied in a variety of
statistical procedures, for example in cluster analysis (Hubert and Levin [34]) and in Fourier
analysis (Friedman and Lane [22]), and in a wide range of scientific areas: from anthropol-
ogy (Fisher [20]) to atmospheric science (Tukey et al. [76]). Numerous statistical tools for
nonparametric analysis are exhaustively described in Hollander and Wolfe [33] and Gibbons
and Chakraborti [27]. There are various of techniques for constructing rank tests for hy-
pothesis testing of two samples, see Hájek and Šidák [30] and Good [28]. Critchlow [11]
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proposed a unified approach based on the minimum distance between two separate permuta-
tion sets corresponding to the null and the alternative hypothesis. By using different distances
on permutations in Critchlow’s method we obtain different test statistics. Some of the most
popular rank statistics: Kolmogorov-Smirnov, Wilcoxon and Mann-Whitney statistics, can
be derived by Ulam distance, Spearman’s footrule and Kendall’s tau, respectively. One of
the benefits of having several test statistics is that they can be combined in order to produce
more powerful procedures. Pesarin [67] developed an interesting theory, the Nonparametric
Combination of Dependent Tests, which yields good results for many complex multivariate
problems, including problems that have not yet been solved within a parametric setting.

The main objective of the thesis is to study the statistical properties of Lee distance and
to explore its applications in several rank data models based on distances. In particular, our
goals are to:

• Obtain an asymptotic result for the distribution of the random variable induced by Lee
distance under uniformity of the rankings.

• Compare the Mallows’ model based on Lee distance to other probability models for
rank data.

• Propose an Expectation-Maximization algorithm for estimating the unknown parame-
ters in Distance-based models for rank data with several latent groups.

• Give an approximation of the measure of “tightness” in the “K-means” clustering pro-
cedure for rank data based on Lee distance.

• Find an asymptotic approximation of the ranking error probability matrix based on
Lee distance, Spearman’s footrule and Spearman’s rho in the framework of ranked set
sampling.

• Present a procedure for estimating the unknown parameters in the Mallows’ model for
imperfect ranking by making use of the Expectation-Maximization technique.

• Derive a rank test statistic based on Critchlow’s method and Lee distance for the two-
sample location problem and study its distribution under the null hypothesis.

In Chapter 1, we present some properties of distances on permutations and the Lee dis-
tance in particular. In Section 1.1, we define eight commonly used distances and apply them
to an illustrative example. Section 1.2 deals with the mean, variance and asymptotic distri-
bution of the random variable induced by Lee distance. The results in Chapter 1 are based on
Nikolov and Stoimenova [58, 59].

Chapter 2 is devoted to probabilistic models for rank data. In Sections 2.1 and 2.2,
Distance-based models and their relation to Marginals models are studied. A description of
some statistical tools for estimating the unknown parameters and testing the goodness-of-fit
of the presented models are given in Section 2.3. For the case when there are latent groups
in the population and the central rankings are unknown, an EM algorithm is proposed in
Section 2.4. As an application of the obtained results, three illustrative examples are provided
in Section 2.5. The study presented in Chapter 2 is based on Nikolov and Stoimenova [59,
60].
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In Chapter 3, we consider the “K-means” clustering based on Lee distance. In Sec-
tion 3.1, the “K-means” clustering procedure for complete rankings and its relation to dis-
tances on permutations are presented. Some properties and asymptotic results for Lee dis-
tance are given in Section 3.2. In Section 3.3, the presented clustering method is applied to
the well-studied American Psychological Association election dataset. The results presented
in Chapter 3 are based on Nikolov and Stoimenova [62].

In Chapter 4, we use the Distance-based models to describe the imperfect ranking in
the framework of n-cycle balanced RSS. In Section 4.2, we discuss nonparametric methods
for perfect rankings, present some of the existing test statistics and introduce new similar
statistics. Distance-based models in the framework of RSS are studied in Section 4.3. In Sec-
tion 4.4, we propose an EM algorithm for estimating the unknown parameter in the Mallows’
model for imperfect ranking. In Section 4.5, models based on different distances are con-
sidered and some asymptotic results for the corresponding error matrix are derived. Power
comparisons of the described tests for one-cycle RSS are provided in Section 4.6. An illus-
trative example and some concluding remarks are given in Section 4.7. The exposition of
Chapter 4 is based on Nikolov and Stoimenova [61].

In Chapter 5, we study a rank test statistic induced by Lee distance. In Section 5.1, the
Critchlow’s approach is described and applied for the two-sample location problem. The test
statistic obtained by the Critchlow’s method and the Lee distance is derived in Section 5.2.
The joint distribution of the statistics based on Hamming distance and Lee distance and its
asymptotic properties under the null hypothesis are given in Section 5.3. In Section 5.4, the
test statistic induced by Lee distance is compared to others through a simulation study for
samples generated by t-distributions. The results in Chapter 5 are based on Nikolov [57].

The main contributions and accomplishments in the thesis due to the author are listed in
Appendix A.



vi

Contents

Acknowledgements i

Introduction ii

1 Preliminaries 1
1.1 Distances on permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Properties of Lee distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Mean and variance of DL under uniformity of π . . . . . . . . . . . . 6
1.2.2 Asymptotic distribution of DL under uniformity of π . . . . . . . . . 8

2 Probability models for rank data 10
2.1 Distance-based models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Marginals model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Statistical inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 EM Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Classical EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Generalized EM algorithm . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.1 Pictures of dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.2 Courses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.3 APA election . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Rank data clustering 24
3.1 “K-means” clustering for rank data . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Measure of “tightness” based on Lee distance . . . . . . . . . . . . . . . . . 25
3.3 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Imperfect ranking in ranked set sampling 30
4.1 Ranked set sampling scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Hypotheses testing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Mallows’ models for imperfect ranking . . . . . . . . . . . . . . . . . . . . 33
4.4 Maximum likelihood estimation of the parameter θ . . . . . . . . . . . . . . 35
4.5 Error probability matrix based on different distances . . . . . . . . . . . . . 37
4.6 Power comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.7 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



vii

5 Lee distance in two-sample rank tests 44
5.1 Critchlow’s method for two-sample location problem . . . . . . . . . . . . . 44
5.2 Rank test statistic based on Lee distance . . . . . . . . . . . . . . . . . . . . 45
5.3 Properties of Lm,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A Main contributions 53

B Publications related to the thesis 55

C Approbation of the thesis 56

D Declaration of originality 57

E Proofs 58
E.1 Proofs – Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
E.2 Proofs – Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
E.3 Proofs – Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 71



1

Chapter 1

Preliminaries

Ranking usually occurs when several raters determine the order of N items based on their
preference on the items. Rank data commonly arises in a variety of areas ranging from
preference rankings in psychology and social choice theory, to more modern learning tasks in
online web search, crowd-sourcing and recommendation systems. Distances on permutations
are often convenient tools for analyzing and modeling rank data. They measure the closeness
between two rankings and can be very useful and informative for revealing the main structure
and features of the data. In this chapter, distances on permutations are defined and several
examples are considered. Some important statistical properties of Lee distance, which will
be used in the next chapters, are derived.

1.1 Distances on permutations

A common goal with rank data is to obtain a central ranking and to study how close the
observations are clustered around it. Although the componentwise average is a fine candidate
for describing the center, it is not an actual rank vector unless all observed rankings are
the same. Since the average minimizes the sum of squared Euclidian distances, a natural
modification for obtaining a central ranking is to minimize the sum of the distances between
the center and the observed rankings, which are elements of SN . In order to find the optimal
central ranking first we need to define a distance between two rankings. The definitions and
the exposition of this section are based on Chapters 2 and 3 of Marden [47].

Definition 1.1 (Distance on SN). A function d : SN×SN→R is a distance on SN if it satisfies:

(i) d(π ,σ) > 0, for π 6= σ and π ,σ ∈ SN;

(ii) d(π ,π) = 0 for every π ∈ SN;

(iii) d(π ,σ) = d(σ ,π) for every π ,σ ∈ SN .

Then for a sample of n complete rankings π1,π2, . . . ,πn ∈ SN , one possible measure of
cental location for a fixed distance d(·, ·) is the ranking σ̂ that minimizes

d̄(σ) =
1
n

n

∑
i=1

d
(
π

i,σ
)

, for σ ∈ SN .

Measures other than average, such as median, can be used. Notice that in general the mini-
mizer σ̂ is not unique. The spread of the data around the center σ̂ is naturally measured by the
quantity d̄(σ̂). However, this value highly depends on the choice of the distance d(·, ·). More
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properties of the central ranking estimate and a normalization of the spread measurement are
considered in details for more general settings in Chapter 3.

Let us focus on some properties of distances on the permutation group SN . Deza and
Huang[16] considered some distances on SN which are widely used in applied scientific and
statistical problems.

dF (π ,σ) =
N

∑
i=1
| π(i)−σ(i) | Spearman’s footrule

dR (π ,σ) =

√
N

∑
i=1

(
π(i)−σ(i)

)2 Spearman’s rho

dM (π ,σ) = max
1≤i≤N

| π(i)−σ(i) | Chebyshev distance

dK (π ,σ) = #{(i, j) : 1≤ i, j ≤ N,π(i) < π( j),σ(i) > σ( j)} Kendall’s tau

dC (π ,σ) = k minus number of cycles in σ ◦π−1 Cayley distance

dU (π ,σ) = N minus the length of longest increasing
subsequence in σ ◦π−1

Ulam distance

dH (π ,σ) = #{i ∈ {1,2, . . . ,N} : π(i) 6= σ(i)} Hamming distance

dL (π ,σ) =
N

∑
i=1

min
(
| π(i)−σ(i) |,N− | π(i)−σ(i) |

)
Lee distance

Notice that the Spearman’s footrule and the Spearman’s rho are special cases (for p = 1
and p = 2) of the natural set of p-distances defined by

d (π ,σ) =

(
N

∑
i=1
| π(i)−σ(i) |p

) 1
p

for 0 < p < ∞. (1.1)

The Spearman’s rho (dR) is the Euclidian distance and is commonly used in nonparametric
statistics. Further, the standard normalization of dR can be written as the average product-
moment correlation coefficient between π and σ . The Chebyshev distance and the Hamming
distance can be considered as limits of p-distances when p→∞ and p→ 0 respectively. It is
not hard to see that the Hamming and Lee distances coincide when N ≤ 3. The Kendall’s tau,
Cayley and Ulam distances find application in various ranking problems. In order to illustrate
some differences between the listed distances, we will consider the canonical example of
arranging books on a shelf into alphabetic order. Let us start with five books in order BECAD,
which corresponds to the ranking 〈4,1,3,5,2〉. The steps that are required to order the books
to ABCDE for six of the listed distances are given in Table 1.1. The distance between the
rankings 〈4,1,3,5,2〉 and 〈1,2,3,4,5〉 is presented in each column as the number of steps
needed to arrange BECAD to ABCDE.

From the definitions of the eight distances above we see that Kendall’ tau is the number of
discordant pairs, which for 〈1,2,3,4,5〉 and 〈4,1,3,5,2〉 are five: (1,2); (1,3); (1,4); (3,2)
and (4,5). Equivalently, Kendall’ tau is the minimum number of simple transpositions that
are needed to order BECAD to ABCDE. Instead of restricting to adjacent pairs, the Cayley
distance counts the minimum number of arbitrary pairwise interchanges that are required to
bring BECAD to ABCDE. That decreases the number of steps to 4. To describe the Ulam
distance, suppose that the books can slide along the shelf. The “deletion-insertion” method
of arranging chooses books one at a time, removing them and reinserting at a better place,
while the remaining books are possibly slightly shifted to accommodate the insertion. The
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Steps ↓ dK dC dU dH dL dF

0 BECAD BECAD BECAD ttCtt B E C A D B E C A D

1 BEACD AECBD ABECD AtCtt A E C A D A E C A D

2 BAECD ABCED ABCDE ABCtt A A C A D A D C A D

3 ABECD ABCDE ABCDt A B C A D A C C A D

4 ABCED ABCDE A B C E D A B C A D

5 ABCDE A B C D D A B C B D
6 A B C D E A B C C D
7 A B C D D
8 A B C D E

TABLE 1.1: Steps of arranging the books from BECAD to ABCDE

Ulam distance is the minimum number of such operations and equals 2 for the example in
Table 1.1. The Hamming distance corresponds of the process of removing all books that are
not on the “correct” position and then inserting them one at a time.

Since dK , dC, dU and dH measure the disorder between two rankings, they can be catego-
rized as distances of disorder. Another type of distances are spatial distances, which measure
the minimum distance between the pairwise elements of rankings on some geometric struc-
ture. For the example of arranging the books from BECAD to ABCDE, Spearman’s footrule
is the total sum of minimum distances between the pairs (B,A); (E,B); (A,D) and (D,E) if
the books are connected on a straight line from A to E with a unit distance between them.
For Lee distance, we can think that the books are connected not on a line, but on a simple
cyclic graph with unit arcs. The two connection structures for dL and dF are illustrated on
Figure 1.1.

A

B
C

D
E

A B C D E

FIGURE 1.1: Connection structures of the books for Lee distance (on left) and Spearman’s
footrule (on right)

Distances between rankings which can be expressed as a total sum of componentwise
distances are examples of one rich class of distances called Hoeffding distances.

Definition 1.2 (Hoeffding distance). A distance d(·, ·) on SN is called Hoeffding distance, if

d(π ,σ) =
N

∑
i=1

a
(
π(i),σ(i)

)
,
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where a(·, ·) is a function on {1,2, . . . ,N}×{1,2, . . . ,N} that satisfies a(i, j) = a( j, i) and
a(i, i) = 0.

From the eight distances listed in this section dF , dH and dL can be rewritten in the form
of Hoeffding distances. We can obtain a Hoeffding distance if we take the square of dR:

(dR (π ,σ))2 = dR2 (π ,σ) =
N

∑
i=1

(
π(i)−σ(i)

)2.

In a similar way all p-distances in (1.1) can be transformed as Hoeffding distances. However,
with this method the transformed p-distances lose the following property.

Definition 1.3 (Metric on SN). A distance d(·, ·) is a metric on SN if it satisfies the triangle
inequality:

d(π ,σ) ≤ d(π ,τ)+ d(τ ,σ), for every π ,σ ,τ ∈ SN .

It is not hard to show that all eight listed distances in this section are metrics on SN . The
following are two other important properties of distances on SN .

Definition 1.4 (Right-invariance). A distance d(·, ·) on SN is called right-invariant (label-
invariant), if and only if d (π ,σ) = d (π ◦ τ ,σ ◦ τ) for every π ,σ ,τ ∈ SN .

Definition 1.5 (Left-invariance). A distance d(·, ·) on SN is called left-invariant (rank-invariant),
if and only if d (π ,σ) = d (τ ◦π ,τ ◦σ) for every π ,σ ,τ ∈ SN .

As remarked in Critchlow [10]: the right-invariance of a distance is necessary require-
ment since it ensures that the distance between rankings does not depend on the labelling of
the objects. Deza and Huang [16] pointed that all eight listed distances are right-invariant.
For example, if we change the labels of books A and E in Table 1.1, then we need to ar-
range the books from BACED to EBCDA. However, this will not affect the number of steps
required and therefore will not change the distances between the two orderings.

The left-invariance of a distance means that the distance between two rankings does not
use the numerical values (from 1 to N) of the rankings but only the way they are ordered. For
example, the Hamming distance compares the elements of two rankings componentwise and
does not depend on the integers from 1 to N. From the listed distances only dC, dU and dH are
left-invariant. If a distance is both right-invariant and left-invariant, it is called bi-invariant.
More properties of distances on SN can be found in Critchlow [10, 12], Deza and Huang [16],
Diaconis [17], Diaconis and Graham [19], Kruskal [41] and Marden [47].

Let us consider again the problem of finding central ranking, which can be also called
modal ranking. Assume that π0 ∈ SN is fixed modal ranking. If π is randomly selected from
SN (i.e. π ∼ Uni f orm(SN)), then D = d(π ,π0) is a random variable. When the distance
d(·, ·) is right-invariant

D = d(π ,π0) = d(π ◦π
−1
0 ,eN),

where eN is the identity permutation (eN = 〈1,2, . . . ,N〉), and the distribution of D does not
depend on π0. In Chapter 2 we will consider probability models which are significantly
simplified if the distribution of D is known. In the next section, we will study in more details
the random variable D based on Lee distance.
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FIGURE 1.2: Graph G when N is even (on left) and when N is odd (on right)

1.2 Properties of Lee distance

Let us use the notation DL for the random variable induced by Lee distance under uniformity
of π . Notice that DL(π) can be decomposed linearly:

DL(π) = dL(π ,eN) =
N

∑
i=1

min (| π(i)− i |,N− | π(i)− i |) =
N

∑
i=1

cN(π(i), i) . (1.2)

There is an interpretation of cN(i, j) := min (| i− j |,N− | i− j |) in terms of graph theory.

Let G be a simple cycle graph with nodes {i}N
i=1 and edges

N−1⋃
i=1

{i, i+ 1} and {N,1}. Then

cN(i, j) is the minimum distance over G between the nodes i and j. On Figure 1.2, the graph
G is illustrated separately when N is odd and when N is even. The quantities c(i, j) for fixed
node i are presented in red color.

Obviously, 0≤ cN(i, j) ≤ N/2 for even N and 0≤ cN(i, j) ≤ (N−1)/2 for odd N, i.e.

0≤ cN(i, j) ≤
[

N
2

]
, for all i, j = 1,2, . . . ,N , (1.3)

where [x] is the greatest integer less than or equal to x. From (1.2) and (1.3) it follows that

0≤ DL(π) ≤ N
[

N
2

]
, for all π ∈ SN . (1.4)

The lower limit in (1.4) is reached only for π = eN . When N is even the upper limit is
reached only for π equals to

e∗N :=
〈

N
2
+ 1,

N
2
+ 2, . . . ,N−1,N,1,2, . . . ,

N
2
−1,

N
2

〉
,

and in the case of odd integers N the maximum value of DL is reached when

π = e′N :=
〈

N + 1
2

,
N + 1

2
+ 1, . . . ,N−1,N,1, . . . ,

N + 1
2
−2,

N + 1
2
−1
〉

or

π = e′′N :=
〈

N + 1
2

+ 1,
N + 1

2
+ 2, . . . ,N−1,N,1, . . . ,

N + 1
2
−1,

N + 1
2

〉
.
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More properties of the permutations e∗N ,e′N and e′′N along with their interpretation are dis-
cussed at the end of Chapter 2.

Let N be an even positive integer. Then

cN(π(i),eN(i))+ cN(π(i),e∗N(i)) = min (| π(i)− i |,N− | π(i)− i |)+

min
(
| π(i)− N

2
− i |,N− | π(i)− N

2
− i |

)
=

N
2

, for i = 1,2, . . . ,
N
2

,

and

cN(π(i),eN(i))+ cN(π(i),e∗N(i)) = min (| π(i)− i |,N− | π(i)− i |)+

min
(
| π(i)− i+

N
2
|,N− | π(i)− i+

N
2
|
)
=

N
2

, for i =
N
2
+ 1, . . . ,N .

Thus,

dL(π ,eN)+ dL(π ,e∗N) =
N

∑
i=1

cN(π(i),eN(i))+ cN(π(i),e∗N(i)) =
N

∑
i=1

N
2
=

N2

2
, (1.5)

for all π ∈ SN . The right-invariant property of dL implies that dL(π ,eN) and dL(π ,e∗N) have
the same distribution when π ∼Uni f orm(SN). From this fact and (1.5), it follows that

P(DL = k) = P
(

DL =
N2

2
− k
)

, for k = 0,1, . . . ,
N2

2
, i.e. (1.6)

the distribution of DL is symmetric when N is even. Furthermore, DL can take only even
values since for even integers N

DL(π) ≡
N

∑
i=1

min (| π(i)− i |,N− | π(i)− i |) ≡
N

∑
i=1
| π(i)− i | (mod 2) ,

where “≡” is mod equality with modulus 2. Hence

DL(π) ≡
N

∑
i=1

(π(i)− i) ≡ 0 (mod 2) .

1.2.1 Mean and variance of DL under uniformity of π

The mean, variance and asymptotic distribution of DL can be derived from the combinatorial
central limit theorem (CCLT), formulated and proved by Hoeffding [32].

Theorem 1.1 (Hoeffding’s CCLT). Let π ∼Uni f orm(SN) and D(π) =
N
∑

i=1
aN(π(i), i), where

aN(i, j) ∈ R for i, j = 1,2, . . . ,N. Then the mean and variance of D are

E (D) =
1
N

N

∑
i=1

N

∑
j=1

aN(i, j) (1.7)

Var (D) =
1

N−1

N

∑
i=1

N

∑
j=1

b2
N(i, j) , (1.8)
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where

bN(i, j) = aN(i, j)− 1
N

N

∑
g=1

aN(g, j)− 1
N

N

∑
h=1

aN(i,h)+
1

N2

N

∑
g=1

N

∑
h=1

aN(g,h)

for i, j = 1,2, . . . ,N. Furthermore, the distribution of D is asymptotically normal if

lim
N→∞

max
1≤i, j≤N

b2
N(i, j)

1
N

N

∑
i=1

N

∑
j=1

b2
N(i, j)

= 0 . (1.9)

For the random variable DL induced by Lee distance

aN(i, j) = cN(i, j) := min (| i− j |,N− | i− j |) and

bN(i, j) = cN(i, j)− 1
N

N

∑
g=1

cN(g, j)− 1
N

N

∑
h=1

cN(i,h)+
1

N2

N

∑
g=1

N

∑
h=1

cN(g,h) . (1.10)

Let i be an arbitrary integer from 1 to N. When N is even, the quantity cN(i, j) takes on the

values 0,1, . . . ,
N
2
− 1,

N
2

,
N
2
− 1, . . . ,2,1 as j runs from 1 to N. In the case of odd number

N, cN(i, j) takes on the values 0,1, . . . ,
N−1

2
,
N−1

2
, . . . ,2,1 as j runs from 1 to N. Thus the

sum over j of cN(i, j) is the same for each i. By using this fact, the expression (1.7) can be
simplified to

E (DL) =
1
N

N

∑
i=1

N

∑
j=1

cN(i, j) =
1
N

N

∑
i=1

0+ 2

N
2 −1

∑
k=1

k

+
N
2

=
1
N

N

∑
i=1

N2

4
=

N2

4
,

for even integers N and

E (DL) =
1
N

N

∑
i=1

N

∑
j=1

cN(i, j) =
1
N

N

∑
i=1

0+ 2

N−1
2

∑
k=1

k

=
1
N

N

∑
i=1

N2−1
4

=
N2−1

4
,

when N is odd. Hence, the mean of DL is given by

E (DL) =

[
N + 1

2

][
N
2

]
. (1.11)

From (1.10) and (1.11) it follows that

bN(i, j) = cN(i, j)− 1
N

[
N + 1

2

][
N
2

]
. (1.12)
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Simplifying (1.8) for even N gives

Var (DL) =
1

N−1

N

∑
i=1

N

∑
j=1

b2
N(i, j) =

1
N−1

N

∑
i=1

N

∑
j=1

(
cN(i, j)− N

4

)2

=
1

N−1

N

∑
i=1

(0−N/4)2 + 2

N
2 −1

∑
k=1

(k−N/4)2 +(N/2−N/4)2


=

1
N−1

N

∑
i=1

N3 + 8N
48

=
N4 + 8N2

48(N−1)
,

and

Var (DL) =
1

N−1

N

∑
i=1

N

∑
j=1

b2
N(i, j) =

1
N−1

N

∑
i=1

N

∑
j=1

(
cN(i, j)− (N + 1)(N−1)

4N

)2

=
1

N−1

N

∑
i=1

(0− (N + 1)(N−1)
4N

)2

+ 2

N−1
2

∑
k=1

(
k− (N + 1)(N−1)

4N

)2


=
1

N−1

N

∑
i=1

N4 + 2N2−3
48N

=
N4 + 2N2−3

48(N−1)
,

for odd integers N. Thus,

Var (DL) =


N4 + 8N2

48(N−1)
, for N even

N4 + 2N2−3
48(N−1)

, for N odd.
(1.13)

1.2.2 Asymptotic distribution of DL under uniformity of π

The asymptotic distribution of DL can be obtained from Theorem 1.1 by checking condition
(1.9) for the Lee distance.

Theorem 1.2. The distribution of the random variable DL is asymptotically normal for
N→ ∞ with mean and variance given by (1.11) and (1.13).

Proof. Using (1.12), the numerator of (1.9) takes the form

max
1≤i, j≤N

b2
N(i, j) =

(
0− 1

N

[
N + 1

2

][
N
2

])2

= N2
(

1
16

+O
(

1
N

))
,

where lim
N→∞

O
(

1
N

)
= 0. From (1.13) it follows that

1
N

N

∑
i=1

N

∑
j=1

b2
N(i, j) =

N−1
N

Var (DL) = N3
(

1
48

+O
(

1
N

))
.
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Therefore, the condition (1.9) of Theorem 1.1 is fulfilled,

lim
N→∞

max
1≤i, j≤N

b2
N(i, j)

1
N

N

∑
i=1

N

∑
j=1

b2
N(i, j)

= lim
N→∞

N2
( 1

16 +O
( 1

N

))
N3
( 1

48 +O
( 1

N

)) = 0,

and the distribution of DL is asymptotically normal.

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

N=7
0 1 3 5 7 9 11 13 15 17

0

0.05

0.1

0.15

0.2

N=8

0 4 9 14 19
0

0.05

0.1

0.15

0.2

N=9
0 4 9 14 19 24

0

0.05

0.1

0.15

N=10

FIGURE 1.3: Probability mass function of
[

DL

2

]
for N = 7,8,9,10

When using the result of Theorem 1.2, it is important to keep in mind that DL takes only
even values for even numbers N. Hence, it is better to use normal approximation for the

distribution of
[

DL

2

]
instead of DL itself. Plots of the exact probability mass function of[

DL

2

]
and the fitted normal curves are given on Figure 1.3 for N = 7,8,9,10.
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Chapter 2

Probability models for rank data

One approach to analyze rank data is to construct a probability distribution P over the per-
mutations in SN . A probability model is a family of probability distributions P, i.e. a subset
of the (N!)-dimensional simplex. Usually, this subset depends on some parameter vector ~θ ,
i.e. P = P~θ . The exponential family is among one of the most widely used sets of probability
models for rankings and is defined by

P~θ (π) = exp

(
r

∑
i=1

θiSi(π)−ψ(θ )

)
for π ∈ SN , (2.1)

where ~θ = (θ1,θ2, . . . ,θr) is a vector of r real parameters, {S1(·),S2(·), . . . ,Sr(·)} are real
functions and ψ(·) is a normalizing function. Diaconis [17, p. 175] motivates the useful-
ness and the flexibility of this rich family. Two special cases of (2.1) are considered in the
next subsections. More probability models for rankings can be found in Diaconis [17], Mar-
den [47] and Alvo and Yu [1].

In this chapter, we compare the Distance-based probability model and the Marginals
model for complete rankings. We propose an algorithm to find maximum likelihood estimates
of the unknown parameters of the Latent-class Distance-based models by making use of the
EM algorithm. Three rank datasets are analyzed as an illustration.

2.1 Distance-based models

In some situations, it is reasonable to assume that there is a fixed modal (or antimodal)
ranking. An appropriate probability model, which assign larger (smaller) probabilities for
rankings that are close to a modal (antimodal) ranking, can be defined as

Pθ ,π0(π) = exp (θd(π ,π0)−ψN(θ )) for π ∈ SN , (2.2)

where θ is a real parameter (θ ∈ R), d(·, ·) is a distance on SN , π0 is a fixed ranking and
ψN(θ ) is a normalizing constant. When θ < 0, π0 is a modal ranking, for θ > 0, π0 is an
antimode, and for θ = 0, Pθ ,π0 is the uniform distribution. Typically, the distance d(·, ·) is
chosen in advance and the parameters θ and π0 are to be estimated. The special cases of (2.2),
when d(·, ·) is Kendall’s tau and Spearman’s rho, are first proposed by Mallows [45]. The
case when the Hamming distance is being used is suggested by Fligner and Verducci [21] and
more recently studied by Irurozki et al. [36]. Models based on Lee ditance are considered by
Nikolov and Stoimenova [58].
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The constant ψN(·) in (2.2) could be found by using the distribution of the random vari-
able D(π) = d(π ,π0) under uniformity of π . Let gN(t) be the moment generating function
of D. Then, as shown by Fligner and Verducci [21],

exp (ψN(θ )) = ∑
π∈SN

exp (θD(π)) = N!∑
di

P(D = di)exp (θdi) = N!gN(θ ) (2.3)

and
ψN(θ ) = log(N!gN(θ )) .

This relation can be very useful for finding estimations of the unknown parameters θ and π0.
Theorem 1.2 and similar approximations for other distances can be applied in cases when N
is too large and the exact computation of gN(t) is time-consuming.

By using the result of Theorem 1.2, the moment generating function gN(t) of the random
variable DL, induced by Lee distance, can be approximated with

ĝN(t) = exp
(

tµ +
t2ν2

2

)
,

where µ = E (DL) and ν2 = Var (DL) are given in (1.11) and (1.13), respectively. Thus,
for large values of N, the normalizing constant ψN(θ ) in model (2.2) with d = dL can be
approximated by

ψ̂N(θ ) = log(N! ĝN(θ )) = log(N!)+θ µ +
θ 2ν2

2
. (2.4)

The values of ψN(θ ) and ψ̂N(θ ) are given in Table 2.1 for N ∈ {4,5,6,7,8,9} and θ ∈{
−1,−3

4
,−1

2
,
1
2

,
3
4

,1
}

. It can be noticed that the percentage error, given in the last column,

tends to zero as N increases or θ goes to zero. Even though the values of N in Table 2.1 are
not too large, it looks reasonable to use ψ̂N(θ ) as an approximation of ψN(θ ) when N ≥ 8

and −3
4
≤ θ ≤ 3

4
.

The approximation ψ̂N(θ ) can be useful in other applications of model (2.2). For exam-
ple, Yu and Xu [81] propose a method for estimating the unknown parameters in a Latent-
scale Distance-based model for the problem of rank aggregation. In one of the steps of their
algorithm, it is required to find the value of the normalizing constant ψN(θ ) for given value
of θ . Since evaluating ψN(θ ) by summing over all possible N! rankings becomes computa-
tionally demanding for N ≥ 10, the approximation (2.4) can be very helpful when the model
is based on Lee distance.

One effective approach to extend the classical Distance-based model (2.2) is to assume
that there are K latent groups (classes), G1,G2, . . . ,GK , in the population and that the distri-
butions of the rankings within each group can be described by (2.2), i.e.

Pθ j ,π0, j(π) = exp (θ jd(π ,π0, j)−ψN(θ j)) , π ∈ SN ,

where θ j is a real parameter and π0, j is the modal ranking in group G j, for j = 1,2, . . . ,K.
Then the overall density for this Latent-class Distance-based model is

P~θ ,~p,~π0
(π) =

K

∑
j=1

p j exp (θ jd(π ,π0, j)−ψN(θ j)) , π ∈ SN , (2.5)
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N θ ψN(θ ) ψ̂N(θ ) % error
4 −1.00 0.592 0.511 13.65%
4 −0.75 0.969 0.928 4.27%
4 −0.50 1.523 1.511 0.73%
4 0.50 5.523 5.511 0.20%
4 0.75 6.969 6.928 0.59%
4 1.00 8.592 8.511 0.94%
5 −1.00 0.823 0.538 34.71%
5 −0.75 1.402 1.272 9.25%
5 −0.50 2.262 2.225 1.63%
5 0.50 8.192 8.225 0.41%
5 0.75 10.152 10.272 1.19%
5 1.00 12.237 12.538 2.46%
6 −1.00 0.991 0.879 11.27%
6 −0.75 1.740 1.686 3.13%
6 −0.50 2.915 2.904 0.38%
6 0.50 11.915 11.904 0.09%
6 0.75 15.240 15.186 0.36%
6 1.00 18.991 18.879 0.59%

N θ ψN(θ ) ψ̂N(θ ) % error
7 −1.00 1.175 0.859 26.95%
7 −0.75 2.120 1.963 7.42%
7 −0.50 3.654 3.609 1.25%
7 0.50 15.544 15.609 0.42%
7 0.75 19.709 19.963 1.29%
7 1.00 24.178 24.859 2.81%
8 −1.00 1.333 1.462 9.65%
8 −0.75 2.437 2.462 1.01%
8 −0.50 4.310 4.319 0.20%
8 0.50 20.310 20.319 0.04%
8 0.75 26.437 26.462 0.09%
8 1.00 33.333 33.462 0.39%
9 −1.00 1.498 1.552 3.60%
9 −0.75 2.773 2.724 1.79%
9 −0.50 5.016 4.989 0.53%
9 0.50 24.856 24.989 0.54%
9 0.75 32.168 32.724 1.73%
9 1.00 40.025 41.552 3.82%

TABLE 2.1: Values of ψN(θ ) and ψ̂N(θ ), induced by Lee distance

where ~θ = (θ1,θ2, . . . ,θK), ~π0 = (π0,1,π0,2, . . . ,π0,K) and ~p = (p1, p2, . . . , pK) are vectors of
unknown parameters. Since the probability p j represents the proportion of the population in

group G j, for j = 1,2, . . . ,K, the elements of ~p sum up to 1, i.e.
K

∑
j=1

p j = 1. More detailed

description of model (2.5) can be found in Chapter 10 of Marden [47].

2.2 Marginals model

For some rank datasets, models (2.2) and (2.5) are not rich enough to capture the full structure
in the data. A submodel of (2.1), that includes the Lee distance model (2.2) with d = dL, is
the Marginals model,

P~λ (π) = exp

(
N

∑
i=1

N

∑
j=1

λ
( j)
i I [π(i) = j]−ψ(~λ )

)
for π ∈ SN , (2.6)

where~λ =
{

λ
( j)
i

}N

i, j=1
are N2 real parameters, I [·] is the indicator function and ψ(~λ ) is a

normalizing constant. In contrast of models (2.2), the approach of constructing the Marginals
model is more data-analytical in the sense that the aim of formula (2.6) is to explain the
quantities

mi j = ∑
π(i)= j

P~λ (π) , for i, j = 1,2, . . . ,N,

where the summation is over every permutation π = (π(1),π(2), . . . ,π(N)) in SN such that
π(i) = j. The matrix M =

{
mi j
}N

i, j=1 is called Marginals matrix since the i-th row gives the
theoretical marginal distribution of the ranks assigned to object i, and the j-th column gives
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the theoretical marginal distribution of the objects given rank j. From

∑
π∈SN

P~λ (π) = 1

it follows that
N

∑
i=1

mi j = 1 and
N

∑
j=1

mi j = 1.

Thus, there are only (N−1)2 free parameters
{

λ
( j)
i

}N

i, j=1
of the Marginals model. An exten-

sion of model (2.6) with more free parameters is proposed by Diaconis [18] as an application
of spectral analysis to permutation data.

The Marginals model is first proposed by Verducci [77] under the name quasi-independence
model. Distance-based models (2.2) with Hoeffding distances (that include Spearman’s
footrule, Spearman’s rho, Hamming distance and Lee distance) are also Marginals models
(2.6). For example, model (2.2) induced by the Hamming distance coincides with (2.6) when

λ
( j)
i = θI [ j = π0(i)] , for i, j = 1,2, . . . ,N.

If the model is based on Lee distance, then

λ
( j)
i = θ min (| j−π0(i) |,N− | j−π0(i) |) , for i, j = 1,2, . . . ,N.

Let us denote the Marginals matrix under the models (2.2) by M(θ ,N). If the used
distance is right-invariant, then without loss of generality it can be assumed that π0 = eN .
Varying the permutation π0 is equivalent to reordering the rows of the matrix. The elements
of M(θ ,N) can be expressed as

mi j(θ ,N) = ∑
π(i)= j

Pθ ,eN (π), for i, j = 1,2, . . . ,N, (2.7)

where Pθ ,eN (π) is defined in (2.2) for π0 = eN . For θ = 0 the matrix M(θ ,N) has equal
elements, i.e. mi j(0,N) = 1/N for i, j = 1,2, . . . ,N, and is associated with the uniform model.
When θ→−∞, the matrix M(θ ,N) converges to the identity matrix IN×N , which corresponds
to the identity ranking, i.e. Pθ ,eN (eN) = 1.

Notice from (2.7) that for Lee distance mi j(θ ,N) does not depend on both i and j, but

only on the value of cN (i, j) := min (| i− j |,N− | i− j |). Thus, there are only
[

N + 2
2

]
different elements of the Marginals matrix M(θ ,N). For large values of N, we can use the
following asymptotic approximation.

Theorem 2.1. Let M(θ ,N) =
{

mi j(θ ,N)
}N

i, j=1 be the Marginals matrix, based on Lee dis-
tance. Then

mi j(θ ,N)
N

exp
(

θ µ +
θ 2ν2

2

) −−−→
N→∞

1, f or i, j = 1,2, . . . ,N,

where

µ =
NcN(i, j)

N−1
− 1

N−1

[
N + 1

2

][
N
2

]
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and

ν
2 =


2N2 (cN (i, j))2−N3cN (i, j)

2 (N−2) (N−1)2 −
N2
(
N2−2N + 4

)
48(N−1)2 , for N even

2N2 (cN (i, j))2−N
(
N2−1

)
cN (i, j)

2 (N−2) (N−1)2 − N (N + 1) (N−3)
48(N−2)

, for N odd.

The proof of Theorem 2.1 is given in Appendix E. More properties of M(θ ,N) based on
other distances are studied in Chapter 4, where the Marginals matrix is called error probability
matrix and denoted by Q.

2.3 Statistical inference

Let π∗ =
(
π1,π2, . . . ,π n

)
be a sample of n complete rankings and `(θ ,π0,π∗) be the loglike-

lihood function of model (2.2),

`(θ ,π0,π∗) = θS (π0,π∗)−nψN(θ ),

where S (π0,π∗) =
n

∑
k=1

d
(

π
k,π0

)
. Then for testing the hypothesis of uniform model (θ = 0)

against the alternative that θ 6= 0, Marden [47, p. 144] suggested the likelihood ratio statistic,

LRSd = 2
[
`(θ̂ , π̂0,π∗)− `(0, π̂0,π∗)

]
,

where
(
θ̂ , π̂0

)
are the maximum likelihood estimates (MLE’s) of (θ ,π0). Various techniques

for finding the MLE’s
(
θ̂ , π̂0

)
are given in Marden [47, Chapter 6]. The likelihood function

in the case of Latent-class model (2.5) is more complicated and it is not possible to find
estimates of the unknown parameters ~θ , ~π0 and ~p in a similar way. However, an algorithm
for finding MLE’s of the parameters in model (2.5) is proposed in Section 2.4.

Notice that S (π0,π∗) is sufficient statistic for the Distance-based models (2.2) and gives
a great reduction of the data. For the Marginals model (2.6) a sufficient statistic is the sample
Marginals matrix M̂ =

{
m̂i j
}N

i, j=1 defined by

m̂i j =
1
n

n

∑
k=1

I
[
π

k(i) = j
]

, for i, j = 1,2, . . . ,N.

Thus, the loglikelihood function of model (2.6) is

`(λ ,π∗) =
N

∑
i=1

N

∑
j=1

λ
( j)
i m̂i j−nψ(λ ),

and
LRSm = 2

[
`(λ̂ ,π∗)− `(~0,π∗)

]
can be used for testing the hypothesis of uniform model (λ =~0). The MLE’s λ̂ =

{
λ̂
( j)
i

}N

i, j=1
can be found by using the Newton-Raphson method or an algorithm based on minimum ma-
jorization decomposition and proposed by Verducci [78]. A general method for estimating
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the unknown parameters of the exponential family models (2.1) is considered by Mukher-
jee [54].

For Distance-based models (2.2) that are submodels of the Marginals model (2.6), we
have that LRSd ≤ LRSm . The statistic

LRSdi f f = LRSm−LRSd

can be used to test if LRSm is significantly improved compared to LRSd . If the modal ranking
π0 in model (2.2) is known and not estimated in LRSd , then LRSdi f f has chi-square distri-
bution with (N−1)2− 1 degrees of freedom. This result is an implication of more general
theorem for nested models, the proof of which is given in Section 5.14.3 of Marden [47].
Another possibility to compare models (2.2) and (2.6) is to study the difference between M̂,
the sample Marginals matrix, and the matrix M

(
θ̂ ,N

)
, based on the distribution of model

(2.2). Comparisons between the two models are presented in Section 2.5.
Let f (π) be the frequency of a given permutation π ∈ SN , i.e. f (π) is the number of

observations that are equal to π . Then the empirical probability for π is
f (π)

n
and a quantity,

that measures the total nonuniformity of the data, could be defined as

T NU = 2 ∑
π∈SN

f (π)
[

log
(

f (π)
n

)
− log

(
1

N!

)]
.

One can use T NU together with LRS of a fitted model in order to test the goodness-of-fit of
the model. Similarly to the multiple correlation coefficient in linear regression, Marden [47,
p. 144] considered the coefficient

R2 =
LRS
T NU

, (2.8)

which measures the percentage of nonuniformity in the data that is explained by the fitted
model. When R2 = 1 the model exactly fits the data, and R2 = 0 if it performs no better than
the uniform model.

2.4 EM Estimation

It is not possible to estimate the unknown parameters ~θ , ~p and ~π0 in model (2.5) directly.
However, the Expectation-Maximization (EM) algorithm proposed by Dempster et al. [15]
can be applied. A complete description of the concept of the EM iteration procedure is given
in [52]. Croon and Luijkx [13] considered similar algorithm in the case of Latent Models
when ~π0 is known or can be approximated by other methods, for example the “K-means”
clustering presented in Chapter 3.

2.4.1 Classical EM algorithm

The aim of the algorithm is to find the expected value of the group loglikelihood function
`(~θ ,~p, ~π0, ~π∗,G) for given initial approximations of ~θ , ~p and ~π0 (E-step). This expectation is
usually denoted by

Q(t)
(
~θ ,~p, ~π0, ~π∗

)
= EG|~θ (t),~p (t),~π0

(t),~π∗

[
`(~θ ,~p, ~π0, ~π∗,G)

]



Chapter 2. Probability models for rank data 16

for some initial values ~θ (t),~p(t) and ~π0
(t). From (2.5) it follows that

Q(t)
(
~θ ,~p, ~π0, ~π∗

)
=

n

∑
i=1

K

∑
j=1

p (t)
j P

θ
(t)
j ,π(t)

0, j

(
π i
)

K

∑
s=1

p (t)
s P

θ
(t)
s ,π(t)

0,s

(
π

i)
[
log(p j)+θ jd

(
π

i,π0, j
)
−ψ(θ j)

]
.

The next step is to maximize Q(t)
(
~θ ,~p, ~π0, ~π∗

)
with respect to ~θ , ~p and ~π0 (M-step), i.e.

(
~θ (t+1),~p(t+1), ~π0

(t+1)
)
= argmax

(~θ ,~p,~π0)

{
Q(t)

(
~θ ,~p, ~π0, ~π∗

)}
. (2.9)

The optimal solution of (2.9) with respect to ~p is

p (t+1)
j =

1
n

n

∑
i=1

p (t)
j P

θ
(t)
j ,π(t)

0, j

(
π i
)

K

∑
s=1

p (t)
s P

θ
(t)
s ,π(t)

0,s

(
π

i) , for j = 1,2, . . . ,K, (2.10)

which is independent of the values of ~θ and ~π0.
The optimal value θ j, for j = 1,2, . . . ,K, is the solution of the equation

n

∑
i=1

p (t)
j P

θ
(t)
j ,π(t)

0, j

(
π i
)

K

∑
s=1

p (t)
s P

θ
(t)
s ,π(t)

0,s

(
π

i)
[
d
(
π

i,π0, j
)
−ψ

′
N(θ j)

]
= 0, (2.11)

which depends on π0, j. Therefore, the values of ~θ = (θ1,θ2, . . . ,θK) should be calculated
from (2.11) for every possible choice of ~π0 = (π0,1,π0,2, . . . ,π0,K), where π0, j ∈ SN for j =

1,2, . . . ,K and π0, j 6= π0,s for j 6= s. Then the optimal solution
(
~θ (t+1), ~π0

(t+1)
)

is the pair(
~θ , ~π0

)
that maximizes Q(t)

(
~θ ,~p(t+1), ~π0, ~π∗

)
.

After ~θ (t+1),~p(t+1) and ~π0
(t+1) are obtained, they are substituted as initial approxima-

tions in the E-step for calculating the new values of Q(t+1)
(
~θ ,~p, ~π0, ~π∗

)
and so on. This

procedure continues until some optimal criteria are met, for example the change of the like-
lihood function is relatively small or a prefixed number of iterations is reached.

The monotonicity and convergence of the described EM algorithm follows directly from
Theorem 3.2 in Chapter 3 of McLachlan and Krishnan [52]. However, the convergence rate
strongly depends on the initial values ~θ (0),~p(0) and ~π0

(0). It looks reasonable to assume that
all elements of ~p are equal, i.e. p (0)

j = 1
K for j = 1,2, . . . ,K. The initial point ~π0

(0) could
be taken as a combination of permutations in SN for which the empirical probability is large
(modal rankings) or close to zero (antimodes). From the empirical experience it seems that
θ
(0)
j = 1

2 is a good initial approximation, when the corresponding ranking π
(0)
0, j is modal, and

θ
(0)
j = −1

2 when π
(0)
0, j is an antimode.
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2.4.2 Generalized EM algorithm

Since there are N!
(N−K)! possible choices for the values of ~π0 and it is necessary to use some

numerical method, for example Newton-Raphson method, to find the corresponding values
of ~θ (t+1) = (θ

(t+1)
1 ,θ (t+1)

2 , . . . ,θ (t+1)
K ), the algorithm described in the previous subsection

requires solving K(N!)
(N−K)! equations of the form (2.11) at each iteration. To simplify the com-

plexity of the procedure, a generalized version of the EM algorithm can be applied. Condition
(2.9) for

(
~θ (t+1),~p(t+1), ~π0

(t+1)
)

could be relaxed and replaced by

Q(t)
(
~θ (t+1),~p(t+1), ~π0

(t+1), ~π∗
)
≥ Q(t)

(
~θ (t),~p(t), ~π0

(t), ~π∗
)

. (2.12)

It can be shown, see McLachlan and Krishnan [52, p. 78], that (2.12) is sufficient to
ensure the monotonicity of the algorithm, i.e. the likelihood is not decreased after an EM
iteration. Thus ~π0

(t+1) = (π
(t+1)
0,1 ,π (t+1)

0,2 , . . . ,π (t+1)
0,K ) can be defined as

π
(t+1)
0, j = argmax

π∈SN


n

∑
i=1

p (t)
j P

θ
(t)
j ,π(t)

0, j

(
π i
)

K

∑
s=1

p (t)
s P

θ
(t)
s ,π(t)

0,s

(
π

i)θ
(t)
j d
(
π

i,π
)
 , for j = 1,2, . . . ,K, (2.13)

where if π
(t+1)
0, j is in

{
π
(t)
0, j+1,π (t)

0, j+2, . . . ,π (t)
0,K

}
or
{

π
(t+1)
0,1 ,π (t+1)

0,2 , . . . ,π (t+1)
0, j−1

}
, then π

(t+1)
0, j =

π
(t)
0, j . The corresponding value of θ

(t+1)
j can be found as the solution of

n

∑
i=1

p (t)
j P

θ
(t)
j ,π(t)

0, j

(
π i
)

K

∑
s=1

p (t)
s P

θ
(t)
s ,π(t)

0,s

(
π

i)
[
d
(

π
i,π (t+1)

0, j

)
−ψ

′
N(θ

(t+1)
j )

]
= 0, for j = 1,2, . . . ,K. (2.14)

Proposition 2.1. Let ~p(t+1), ~π0
(t+1) and ~θ (t+1) are given by (2.10), (2.13) and (2.14) respec-

tively. Then condition (2.12) holds.

Proof. Since ~p(t+1) is the solution of (2.9) and is independent of
(
~θ , ~π0

)
,

Q(t)
(
~θ (t),~p(t+1), ~π0

(t), ~π∗
)
≥ Q(t)

(
~θ (t),~p(t), ~π0

(t), ~π∗
)

.

From (2.13) and the definition of Q(t) it follows that

~π0
(t+1) = argmax

~π0

{
Q(t)

(
~θ (t),~p, ~π0, ~π∗

)}
,

for every vector ~p. Thus,

Q(t)
(
~θ (t),~p(t+1), ~π0

(t+1), ~π∗
)
≥ Q(t)

(
~θ (t),~p(t+1), ~π0

(t), ~π∗
)

.

Finally,
Q(t)

(
~θ (t+1),~p(t+1), ~π0

(t+1), ~π∗
)
≥ Q(t)

(
~θ (t),~p(t+1), ~π0

(t+1), ~π∗
)

,

since from (2.14) we have that ~θ (t+1) is the local maximum of Q(t) when ~π0 = ~π0
(t+1).
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Since condition (2.12) is sufficient only for convergence of the algorithm to a local max-
imum of the likelihood function, the resulting points ~̂θ ,~̂p and ~̂π0 could differ from the actual
MLE’s. When the parameter ~π0 is fixed there is a convergence of the EM sequence to a
stationary point, see [13]. Therefore, it is recommended to run the generalized EM proce-
dures several times with different initial approximations of ~π0. One possibility is to simulate
various values from the set of initial points ~π0

(0) as described in Subsection 2.4.1.

2.4.3 Simulation study

In this study, a comparison between Latent-class models based on different distances is made.
The comparison is constructed from 800 Monte Carlo simulations of data samples with size
n = 1000 from model (2.5) for N = 4, i.e. 100 data samples for each of the listed eight
distances in Section 1.1. The used theoretical parameters are: K = 3, ~p =

(1
3 , 1

3 , 1
3

)
, π0,1 =

〈1,2,3,4〉, π0,2 = 〈4,3,2,1〉, π0,3 = 〈3,1,4,2〉 and ~θ =
(
−1,−1

2 , 1
4

)
.
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FIGURE 2.1: The average percentage of nonuniformity R2 for models based on different
distances

By applying the proposed EM algorithm in Subsection 2.4.2, the values of the percentage
of nonuniformity R2, defined by (2.8), are estimated for every sample and in cases when
the number of the underlying groups K is from 1 to 5. The average values of R2 for each
metric and for each K are presented on Figure 2.1. As it is expected, there is a significant
improvement in the goodness of fit of the models when K ≥ 2. Models base on dR, dF and
dL explain most of the nonuniformity of the data for K ≥ 3. Even when K = 1, models based
on dH and dL perform well for the chosen theoretical parameters ~p, ~π0 and ~θ .

2.5 Illustrative examples

The goal of Subsection 2.5.1 is to compare the classical Distance-based models (2.2) induced
by Hamming distance, Lee distance and Kendall’s tau to the Marginals model (2.6). In Sub-
section 2.5.2 it is illustrated how the contrast between the model (2.2) based on Lee distance
and the Marginals model (2.6) can be explored only through analyzing the sample Marginals
matrix and the Marginals matrix induced by Lee distance. An application of models (2.2)
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and (2.5) to the popular APA election data are given in Subsection 2.5.3. The section ends
with a short discussion about the situations, where the Lee distance is most appropriate. The
datasets given in Subsection 2.5.1 and Subsection 2.5.2 are available at PrefLib [49], an on-
line library of datasets concerning preferences. The APA election data in Subsection 2.5.3
can be found in Diaconis [17, p. 96].

2.5.1 Pictures of dots

Mao et al. [46] consider the human computation problem of counting pseudo-randomly dis-
tributed dots in images as a proxy for noisy comparisons of items in ranking tasks. Each
voting task in their study involve sorting four pictures from fewest dots to most dots. One of
the used datasets consists of n = 794 complete rankings of N = 4 types of pictures with 200,
205, 210 and 215 dots. In this subsection, models (2.2) and (2.6) are fitted to the data and
compared in regard to their explanatory power.

The settings of the problem suggest that the modal ranking in model (2.2) is known and
equals the identity permutation, i.e. π0 = 〈1,2,3,4〉. The total nonuniformity of the data
is T NU = 248.55. The MLE of the unknown parameter θ in (2.2) for the Distance-based
models induced by Hamming distance, Lee distance and Kendall’s tau are θ̂H = −0.3475,
θ̂L = −0.2654 and θ̂K = −0.3549, respectively. The corresponding values of LRSd are
LRSH = 120.75, LRSL = 153.89 and LRSK = 207.92, which explain R2

H = 0.4859, R2
L =

0.6192 and R2
K = 0.8366 of the T NU . These results imply that the fitted models perform

much better than the uniform model. However, the obtained statistics can be improved by
fitting the Marginals model (2.6) to the sample Marginals matrix M̂. The next equation gives
the values of M̂ in percentages, i.e. 100× M̂.

M̂ =


42.57 26.45 14.86 16.12

27.08 28.97 25.06 18.89

16.50 25.69 31.36 26.45

13.85 18.89 28.72 38.54


The Marginals model fits fairly well with LRSm = 235.31 and R2

m = 0.9468. All differences
LRSm−LRSH = 114.56, LRSm−LRSL = 81.42 and LRSm−LRSK = 27.39 are significant,
since the gain in the explanatory power is based on (N−1)2−1 = 8 degrees of freedom with
critical value 20.09 at significance level of 0.01.

Another way to compare the Distance-based models and the Marginals model is to inves-
tigate the differences between M̂ and the Marginals matrices induced by the distances. The
values of MH , ML and MK , based on θ̂H , θ̂L and θ̂K respectively, are given in percentages.
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MH =


35.36 21.55 21.55 21.55

21.55 35.36 21.55 21.55

21.55 21.55 35.36 21.55

21.55 21.55 21.55 35.36

 , ML =


35.21 23.83 17.14 23.83

23.83 35.21 23.83 17.14

17.14 23.83 35.21 23.83

23.83 17.14 23.83 35.21

 ,

MK =


39.40 27.63 19.38 13.59

27.63 28.51 24.48 19.38

19.38 24.48 28.51 27.63

13.59 19.38 27.63 39.40

 , Z =


2.02 −0.85 −3.98 2.17

−0.39 0.32 0.42 −0.39

−2.44 0.87 1.92 −0.85

0.24 −0.39 0.76 −0.56

 .

The matrix Z is the difference between M̂ and MK , divided by the standard error of MK

under model (2.2) based on Kendall’s tau. There are significant elements in the first and the
third rows of Z, meaning that the images with 200 dots are ranked higher and the images with
215 dots are ranked lower than the expected by the Distance-based model. Nevertheless, the
model based on Kendall’s tau fits well and the Marginals model is not overwhelmingly better.

Notice that the variety of elements in M̂ can’t be explained by the two-element matrix
MH and the three-element matrix ML. This is the reason for the lack of explanatory power of
the models based on Hamming distance and Lee distance in this example. As illustrated in
the next subsection, the number of elements in ML increases with N and the model induced
by Lee distance becomes more flexible.

2.5.2 Courses

Skowron et al. [72] study the course preferences of n = 146 students at AGU University of
Science and Technology, Krakow, in 2003. Each student provided a complete rank ordering
over 9 courses. Since Course 9 has rank 1 in every observation, only the preferences over the
remaining N = 8 courses are considered in this subsection.

The values of LRSd for the models based on Hamming distance, Lee distance and Kendall’s
tau are LRSH = 124.11, LRSL = 285.01 and LRSK = 118.65, respectively. The corresponding
R2 coefficients are R2

H = 0.0725, R2
L = 0.1665 and R2

K = 0.0693. These results show that the
one-parameter distance models fits better than the uniform model, but are not rich enough to
capture the structure in the data.

The sample Marginals matrix, given in percentages, is

M̂ =



11.64 2.05 3.42 0.68 17.12 9.59 19.86 35.62

28.77 5.48 3.42 3.42 13.70 17.81 17.81 9.59

31.51 30.14 4.79 6.85 8.90 6.16 7.53 4.11

11.64 28.77 19.86 5.48 8.90 10.96 7.53 6.85

2.05 20.55 24.66 13.01 15.07 10.96 9.59 4.11

12.33 9.59 30.82 31.51 6.85 6.16 2.05 0.68

1.37 2.05 8.90 21.23 11.64 17.12 13.01 24.66

0.68 1.37 4.11 17.81 17.81 21.23 22.60 14.38


.
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The goodness-of-fit statistics for the Marginals model are LRSm = 554.46 and R2
m =

0.3239 obtained by estimating (N−1)2 = 49 free parameters. Thus, there are significant
differences between LRSm and the LRSH , LRSL and LRSK , based on the three distances. In
this case, the critical difference value at level 0.01 is 73.68 on (N−1)2− 1 = 48 degrees
of freedom. Even though, model (2.6) performs considerably better than model (2.2), the
most part of T NU = 1711.69 is still not explained. As in the example in the next sec-
tion, when the classical Distance-based model (2.2) induced by Lee distance has larger R2

coefficient compared to the models induced by other distances, it is worth to consider the
Latent-class model (2.5). In the case when it is assumed that there are K = 2 latent groups
in model (2.5), the R2 coefficient of the fitted models based on Hamming distance, Lee dis-
tance and Kendall’s tau are R2

H,2 = 0.1396, R2
L,2 = 0.2036 and R2

K,2 = 0.1013, respectively.
Thus, the explanatory power of model (2.2) can be significantly improved by modifying it to
model (2.5) with only 3 additional unknown parameters (for K = 2).

For large values of N, the calculation of LRSm could require a lot of time and computer
resources, since there are (N−1)2 unknown parameters in model (2.6) that have to be esti-
mated. In these cases, the Marginals matrices can reveal some differences between models
(2.2) and (2.6) more efficiently. The values of ML, induced by the Lee distance model with
parameters π0 = 〈8,5,1,2,3,4,6,7〉 and θ̂L = −0.3790, are given below. Just by comparing
the matrices M̂ and ML, it can be concluded that the Marginals model fits significantly better
than the model based on Lee distance.

ML =



10.57 6.93 4.64 6.93 16.52 10.57 16.52 27.33

16.52 10.57 6.93 4.64 27.33 6.93 10.57 16.52

27.33 16.52 10.57 6.93 16.52 4.64 6.93 10.57

16.52 27.33 16.52 10.57 10.57 6.93 4.64 6.93

10.57 16.52 27.33 16.52 6.93 10.57 6.93 4.64

6.93 10.57 16.52 27.33 4.64 16.52 10.57 6.93

4.64 6.93 10.57 16.52 6.93 27.33 16.52 10.57

6.93 4.64 6.93 10.57 10.57 16.52 27.33 16.52


The computation of the matrix ML itself could be time-consuming for large values of N.

However, ML can be approximated by using the asymptotic result from Theorem 2.1. The
elements of M̃L are the approximated values of ML, divided by the sum of the first row in the
approximation, i.e. M̃L is normalized by keeping the proportions of its elements.

M̃L =



10.61 6.99 4.75 6.99 16.61 10.61 16.61 26.85

16.61 10.61 6.99 4.75 26.85 6.99 10.61 16.61

26.85 16.61 10.61 6.99 16.61 4.75 6.99 10.61

16.61 26.85 16.61 10.61 10.61 6.99 4.75 6.99

10.61 16.61 26.85 16.61 6.99 10.61 6.99 4.75

6.99 10.61 16.61 26.85 4.75 16.61 10.61 6.99

4.75 6.99 10.61 16.61 6.99 26.85 16.61 10.61

6.99 4.75 6.99 10.61 10.61 16.61 26.85 16.61


Similarly to the results for ψ̂N(θ ) in Table 2.1, even when N is not too large (N = 8) the

approximation matrix M̃L looks reasonably close to ML and could be used to compare the
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Marginals model and the Lee distance model.

2.5.3 APA election

In 1980, the American Psychological Association (APA) conducted an election in which
N = 5 candidates were running for president and voters were asked to rank order all of the
candidates. The complete rankings of n = 5738 voters are listed in Diaconis [17, p. 96].
The average ranks received by the five candidates A, B, C, D and E are 2.84, 3.16, 2.92,
3.09, and 2.99, respectively, and the total nonuniformity of the data is T NU = 1717.51. The
results obtained by fitting models (2.2) based on eight commonly used distances are given in
Table 2.2.

Distance name Notation θ̂ π̂0 Ordering LRS R2

Spearman’s footrule dF 0.0828 〈5,1,3,2,4〉 BDCEA 282.26 0.1643
Spearman’s rho dR −0.0163 〈1,5,2,4,3〉 ACEDB 150.78 0.0878
Kendall’s tau dK −0.0722 〈1,5,2,4,3〉 ACEDB 124.28 0.0723
Chebyshev metric dM −0.2639 〈1,5,2,4,3〉 ACEDB 379.54 0.2210
Cayley distance dC −0.2483 〈2,3,1,5,4〉 CABED 304.21 0.1771
Ulam distance dU −0.2505 〈2,3,1,5,4〉 CABED 181.52 0.1057
Hamming distance dH 0.2437 〈5,1,3,2,4〉 BDCEA 290.16 0.1689
Lee distance dL 0.1656 〈5,1,3,2,4〉 BDCEA 524.39 0.3053

TABLE 2.2: Results of fitting model (2.2) to the APA data

All models explain less than a third of the nonuniformity, where the model based on dL

(Lee distance) has the highest R2
L = 0.3053, and the lowest R2

K = 0.0723 is obtained when
using dK (Kendall’s tau). The estimated modal rankings (antimodes for θ̂ > 0) are given in
the forth column, while the corresponding orderings are in the fifth. The orderings of dR,
dM and dK coincide with the modal ordering based on the average ranks. There are definite
camps within APA: candidates A and C are research psychologists, D and E are clinical
psychologists, and B is a community psychologist. These groups can also be noticed in the
orderings of dR, dM and dK , where the group {A,C} is ranked lower than {D,E}, which are
followed by candidate B. In the orderings of dC and dU , candidate B separates {A,C} and
{D,E}. Since θ̂ > 0 for dF , dH and dL, their orderings corresponds to antimodal rankings.
Some properties of dL can be helpful to interpret the ordering BDCEA. Since N = 5 is odd,
from Section 1.2 it follows that there are two “opposite” (modal) orderings – EABDC and
CEABD. In the first one, candidates {D,E} have lower ranks compared to {A,C}, while in
the second one it is quite the opposite. Moreover, the corresponding rankings 〈2,3,5,4,1〉
and 〈3,4,1,5,2〉 are not close in dL sense. Hence, the model (2.2) based on Lee distance
gives larger probability to orderings that are close to either EABDC or CEABD, i.e. the
model describes two groups – one that favors candidates {D,E} and one that supports {A,C}.
The fact that the model, which most clearly distinguishes the groups {A,C} and {D,E}, has
the greatest explanatory power

(
R2

L = 0.3053
)

indicates that the Latent-class models (2.5)
with two classes (K = 2) might fit the data better than models (2.2). From the definitions of
models (2.2) and (2.5), it is easy to see that they coincide when K = 1. The values of R2 for
models (2.5) based on the eight considered distances are given in Table 2.3 in the case when
there are one, two or there latent classes (K = 1,2,3).
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dF dR dK dM dC dU dH dL

K = 1 0.164 0.088 0.072 0.221 0.177 0.106 0.169 0.305
K = 2 0.609 0.669 0.657 0.499 0.387 0.190 0.357 0.419
K = 3 0.682 0.716 0.676 0.551 0.447 0.191 0.384 0.556

TABLE 2.3: Values of R2 for models (2.5) for K = 1,2,3

It can be noticed that even for K = 2 there is a significant increase of R2 for all mod-
els (2.2) based on the eight distances. As it was expected, the model (2.5) based on Lee
distance has one of the least improvements from K = 1 to K = 2 since even when K = 1
there are two groups that can be distinguished in the model. For K = 2, the model that fits
the data best is based on Spearman’s rho (dR) with R2 = 0.669 on 3 unknown parameters and
performs even better than the fitted Marginals model (2.6) with R2 = 0.567 on 16 unknown
parameters. For most of models (2.5) the improvement from K = 2 to K = 3 is not as drastic
as from K = 1 to K = 2 and the estimated proportion coefficients p̂3 for the third group in
(2.5) are close to zero. This shows that most likely there are only two major classes in the
observed rankings and they are related to the groups {A,C} and {D,E}. The influence of
candidate B over the complete rankings is studied in Nikolov and Stoimenova [58].

As shown in this subsection and Subsection 2.5.2, there are examples where the Distance-
based model (2.2) induced by Lee distance fits better than the models based on other dis-
tances. One possible explanation for this can be found in the structure of the random variable
induced by Lee distance and more specifically in the quantities cN(i, j) in (1.2). As described
in Section 1.2, cN(i, j) is the minimum distance between i and j on a simple cyclic graph and
cN(i, j) is not nondecreasing as j moves away from i, i.e. it is tent-shaped. Thus the “op-
posite” ordering is not close to the inverse ordering in the case of Lee distance. Therefore,
using Lee distance in model (2.2) is appropriate in situations where there are multiple groups
in the observed rankings and the modal ordering of one group is not the inverse ordering of
another. Furthermore, models based on Lee distance can be used to detect if there are more
than one groups or clusters in the data.
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Chapter 3

Rank data clustering

Clustering of rank data aims to identify groups of rankers with a common or typical prefer-
ence behavior. Marden [47, p. 33] considered unsupervised clustering for complete rankings
based on “K-means” procedure and distances on permutations. Among recent work, Busse
et al. [6] presented a method for clustering heterogeneous rank data based on the standard
Mallows’ model. In this chapter, the “K-means” procedure based on Lee distance is studied
in details and several asymptotical results for large values of N are derived. An algorithm
for approximating the normalizing constant in the clustering procedure is proposed by using
some properties of Lee distance. In order to compare the clustering method based on Lee dis-
tance to those based on other distances on permutations, we apply the presented procedure to
the APA dataset.

3.1 “K-means” clustering for rank data

Hartigan [31] presents clustering method for continuous data based on “K-means” procedure
such that observations are grouped into K clusters by finding K means and assigning each
observation to the group indexed by the closest mean. Marden [47, p. 33] considered a
similar clustering procedure for rank data that aims to find K centers (rankings) about which
the observations are clustered in K groups.

Suppose that there are n observations of complete rankings π1,π2, . . . ,πn ∈ SN . For fixed
number of groups K, Marden [47, p. 33] suggests the cluster centers σ̂ (1), σ̂ (2), . . . , σ̂ (K) ∈ SN

to be those rankings that minimize the mean distance between the observations and the closest
corresponding group center, i.e.(

σ̂
(1), σ̂ (2), . . . , σ̂ (K)

)
= argmin

σ (1),σ (2),...,σ (K)

CK

(
σ
(1),σ (2), . . . ,σ (K)

)
, (3.1)

where

CK

(
σ
(1),σ (2), . . . ,σ (K)

)
=

1
n

n

∑
i=1

min
1≤ j≤K

d
(

π
i,σ ( j)

)
, (3.2)

for some distance d(·, ·) on SN . Usually, the number of clusters K and the distance d(·, ·)
are chosen in advance and only the cluster centers in (3.1) are to be estimated by (3.2).
The quantity CK

(
σ̂ (1), σ̂ (2), . . . , σ̂ (K)

)
indicates how tightly the data are clustered about the

estimated centers. When the data size n, the number of ranked items N and the number of
clusters K are small the rankings given in (3.1) can be found by exhaustive search. However,
the estimated cluster centers (3.1) are highly dependent on the used distance d(·, ·) and their
interpretation may vary based on the properties of d(·, ·). Therefore, the cluster analysis is
very sensitive to the used distance on permutations.
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From (3.2) it follows that the value of CK for the estimated cluster centers decreases when
the number of groups K increases, i.e. CK

(
σ̂ (1), σ̂ (2), . . . , σ̂ (K)

)
is decreasing in K. Thus,

the quantity CK is not appropriate for comparing the results obtained from several clustering
analysis based on different values of K. In order to adjust CK to account the number of
clusters K, Marden [47, p. 34] considered the coefficient

TK = 1−
CK

(
σ̂ (1), σ̂ (2), . . . , σ̂ (K)

)
C0

K
, (3.3)

where K = 1,2, . . . and

C0
K = min

σ (1),σ (2),...,σ (K)

1
N! ∑

π∈SN

min
1≤ j≤K

d
(

π ,σ ( j)
)

(3.4)

is the value of CK under uniform distribution over all possible N! rankings. It is not difficult to
see that TK ≤ 1, TK = 0 when the observations are uniformly distributed over the N! rankings,
i.e. there are no groups in the data, and TK = 1 when the observations coincide with the
cluster centers, i.e. the cluster centers are sufficient to describe the variety in the data. Thus,
the coefficient TK indicates how tightly the observations are clustered and can be considered
as a measure of “tightness”. Since the normalizing constant C0

K in (3.4) depends on the
distance d(·, ·), it is not reasonable to compare the values of TK which are based on different
distances on SN . However, it is useful to study TK for fixed distance and different values of
K.

The value of C0
K does not depend on the observations and can be computed for fixed

distance d(·, ·) and value K. Since there are (N!
K ) possible choices for cluster centers, the

complete search in (3.4) becomes computationally demanding for N ≥ 10. Therefore, it is
helpful to approximate C0

K by using some properties of d(·, ·). For instance, when K = 2 and
d(·, ·) is Kendall’s tau, the value of C0

K can be calculated by an iterative procedure described
in [47]. In the next section we make use of the properties of Lee distance and drive some
approximations for the value of C0

K .

3.2 Measure of “tightness” based on Lee distance

The asymptotic result in Theorem 1.2 can be used to find an approximation of the normalizing
constant C0

K in the “K-means” clustering procedure based on Lee distance.

Corollary 3.1. Define the constant C0
2 by (3.4) for K = 2 and by using Lee distance dL(·, ·).

Then for large and even values of N the constant C0
2 is approximated by

Ĉ0
2 =

N2

4
−

√
N4 + 8N2

24π(N−1)
. (3.5)

Proof. Since Lee distance is right-invariant, without loss of generality we can assume that
σ (1) = eN in (3.4). From (1.5) we know that when N is even

dL(π ,eN)+ dL(π ,e∗N) =
N2

2
,
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for all π ∈ SN . We will prove that σ (2) = e∗N is an optimal solution of (3.4), i.e.

C0
2 =

1
N! ∑

π∈SN

min (dL (π ,eN) ,dL (π ,e∗N)) = E (D∗L) ,

where the random variable D∗L is defined as D∗L = min
(

DL,
N2

2
−DL

)
and the random vari-

able DL = dL(π ,eN) is defined in Section 1.2.
Let us consider the set S(σ)

N = {π ∈ SN : dL (π ,eN) ≤ dL (π ,σ)} for fixed σ ∈ SN . Then,

C0
2 = min

σ∈SN

[
1

N! ∑
π∈SN

min (dL (π ,eN) ,dL (π ,σ))

]
(3.6)

=
1

N!
min
σ∈SN

 ∑
π∈SN

dL (π ,σ)+ ∑
π∈S(σ)

N

(dL (π ,eN)−dL (π ,σ))


=

1
N! ∑

π∈SN

dL (π ,e∗N)+
1

N!
min
σ∈SN

 ∑
π∈S(σ)

N

(dL (π ,eN)−dL (π ,σ))

 .

From the triangular inequality for dL(·, ·) and the definition of S(σ)
N it follows that for π ∈ S(σ)

N

dL (π ,eN)≤ dL (π ,σ)≤ dL (π ,e∗N)+dL (e∗N ,σ) =
N2

2
−dL (π ,eN)+

N2

2
−dL (eN ,σ) , i.e.

0≤ dL (π ,eN) ≤
N2

2
− dL (σ ,eN)

2
and

dL (π ,eN) ≤ dL (π ,σ) ≤ N2−dL (σ ,eN)−dL (π ,eN) .

Therefore,

C0
2 =

1
N! ∑

π∈SN

dL (π ,e∗N)+
1

N!
min
σ∈SN

[
s1

∑
s=0

t1

∑
t=t0

(s− t)g(s, t,σ)

]
, (3.7)

where s1 =
N2

2
− dL (σ ,eN)

2
, t0 =max (s,dL (σ ,eN)− s), t1 =min

(
N2

2
,N2−dL (σ ,eN)− s

)
and g(s, t,σ) is the number of permutations π ∈ SN such that dL (π ,eN) = s and dL (π ,σ) = t.

Let hN :
{

0,1, . . . , N2

2

}
→ [0,1] be the probability mass function (pmf) of the random

variable DL = dL(π ,eN) and HN be the set of all joint probability mass functions over{
0,1, . . . , N2

2

}
×
{

0,1, . . . , N2

2

}
with marginal pmf hN(·) for both variables. The right-invariant

property of dL(·, ·) implies that the random variables dL(π ,eN) and dL(π ,σ) have the same

distribution when π ∼ Uni f orm(SN). Thus,
g(·, ·,σ)

N!
is the joint pmf of dL(π ,eN) and

dL(π ,σ) for every permutation σ ∈ SN and
g(·, ·,σ)

N!
∈ HN , i.e. in (3.7) we are looking

for optimal joint distribution
g(·, ·,σ)

N!
∈ HN such that

C0
2 = min

σ∈SN

{
E
[

min
(
dL (π ,eN) ,dL (π ,σ)

)]}
, for π ∼Uni f orm(SN).
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From (3.7) it follows that

C0
2 ≥

1
N! ∑

π∈SN

dL (π ,e∗N)+ min
σ∈SN

 N2
2

∑
s=0

N2
2

∑
t=s

(s− t)
g(s, t,σ)

N!


≥ 1

N! ∑
π∈SN

dL (π ,e∗N)+ min
f∈HN

 N2
2

∑
s=0

N2
2

∑
t=s

(s− t) f (s, t)

 . (3.8)

Since hN(·) is symmetric about N2

4 when N is even (see the properties of DL studied in
Section 1.2), the chain of inequalities (3.8) can be continued by

C0
2 ≥

1
N! ∑

π∈SN

dL (π ,e∗N)−
N2

2
hN(0)+ min

f∈H∗N

N2
2 −1

∑
s=1

N2
2 −1

∑
t=s

(s− t) f (s, t)


≥ 1

N! ∑
π∈SN

dL (π ,e∗N)+
1

∑
s=0

(
2s− N2

2

)
hN(s)+ min

f∈H∗∗N

N2
2 −2

∑
s=2

N2
2 −2

∑
t=s

(s− t) f (s, t)


≥ . . .≥ 1

N! ∑
π∈SN

dL (π ,e∗N)+

N2
4

∑
s=0

(
2s− N2

2

)
hN(s), (3.9)

where

H∗N =

 f ∈ HN :
f
(

0,
N2

2

)
= hN(0) and

f (0, t) = f
(

s,
N2

2

)
= 0 for s 6= 0, t 6= N2

2

 ,

H∗∗N =

 f ∈ H∗N :
f
(

1,
N2

2
−1
)
= hN(1) and

f (1, t) = f
(

s,
N2

2
−1
)
= 0 for s 6= 1, t 6= N2

2
−1

 , etc.

Thus, one possible optimal joint pmf
g(s, t,σ)

N!
in (3.7) takes non-zero values only on the

diagonal s+ t = N2

2 . The solution of the problem of finding optimal rankings in (3.6) may
not be unique. However, by combining (3.9) with

N2
4

∑
s=0

(
2s− N2

2

)
hN(s) =

1
N! ∑

π∈S
(e∗N )

N

(dL (π ,eN)−dL (π ,e∗N)) ,

we conclude that

C0
2 ≥

1
N! ∑

π∈SN

min (dL (π ,eN) ,dL (π ,e∗N)) = E (D∗L) ,

i.e. C0
2 = E (D∗L) and one possible solution for σ in (3.6) is e∗N .

The random variable D∗L = min
(

DL,
N2

2
−DL

)
is obtained by bounding DL from above

by N2

4 . Theorem 1.2 states that the distribution of DL is asymptotically normal with mean and
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variance

E (DL) =
N2

4
and Var (DL) =

N4 + 8N2

48(N−1)
. (3.10)

Therefore, the asymptotic distribution of D∗L is truncated normal that is obtained from normal
distribution with mean and variance given in (3.10) with upper bound N2

4 . The approximation
Ĉ0

2 in (3.5) is derived by using C0
2 = E (D∗L) and formula (13.134) for the expectation of

truncated normal random variable in Johnson et al. [37, p. 156].

The distribution of the random variable DL = dL(π ,eN), where π ∼Uni f orm(SN), is not
symmetric when N is odd. However, from Theorem 1.2 it follows that this distribution is
asymptotically normal for large values of N. Thus, (3.5) can be used as an approximation of
C0

K for the case when K = 2 and N is odd. The values of C0
2 and Ĉ0

2 induced by Lee distance
are given in Table 3.1 for 4 ≤ N ≤ 10. From the relative errors in percentage, presented in
the last row, we can notice that the approximation Ĉ0

2 looks reasonable for N ≥ 7.

N 4 5 6 7 8 9 10
C0

2 3.000 4.667 6.883 9.758 13.128 16.737 20.973
Ĉ0

2 2.697 4.596 6.950 9.765 13.045 16.793 21.011
% error 10.097 1.513 0.972 0.072 0.632 0.335 0.181

TABLE 3.1: Values of C0
2 and Ĉ0

2 based on Lee distance

The proof of Corollary 3.1 suggests that the values of C0
K , induced by Lee distance and

for 2≤ K ≤ N, could be approximated by

C̃0
K =

1
N! ∑

π∈SN

min
1≤ j≤K

d
(

π ,σ ( j)
)

,

where

σ
(1) = 〈1,2, . . . ,N−1,N〉 ,

σ
(2) =

〈
1+

[
N
K

]
,2+

[
N
K

]
, . . . ,N,1, . . . ,

[
N
K

]〉
,

. . .

σ
( j) =

〈
1+

[
( j−1)N

K

]
,2+

[
( j−1)N

K

]
, . . . ,N,1,2, . . . ,

[
( j−1)N

K

]〉
,

. . .

σ
(K) =

〈
1+

[
(K−1)N

K

]
,2+

[
(K−1)N

K

]
, . . . ,N,1,2, . . . ,

[
(K−1)N

K

]〉
,

and [x] is the integer part of x. The values of C0
K and this approximation are given in Table 3.2

for 4≤N ≤ 6 and 2≤K ≤ 4. In this case however, we can see that the relative error, given in
the last column, increases when the values N and K increase. Thus, C̃0

K doesn’t approximate
very well the values of C0

K for large number of items N and large number of groups K.
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N K C0
K C̃0

K % error
4 2 3.000 3.000 0.000
4 3 2.500 2.500 0.000
4 4 2.000 2.000 0.000
5 2 4.667 4.667 0.000
5 3 4.133 4.250 2.823
5 4 3.817 3.958 3.710
6 2 6.883 6.883 0.000
6 3 6.400 6.500 1.562
6 4 5.944 6.267 5.422

TABLE 3.2: Values of C0
K and C̃0

K based on Lee distance

3.3 Illustrative example

Let us consider again the American Psychological Association (APA) election data used in
Subsection 2.5.3. The values of the coefficient TK , defined in (3.3) and based on the eight
distances from Section 1.2, are given in Table 3.3 for 1≤ K ≤ 4.

Distance name Notation K = 1 K = 2 K = 3 K = 4
Spearman’s footrule dF 0.0693 0.1469 0.1149 0.1004
Spearman’s rho dR 0.0810 0.1958 0.1776 0.1324
Chebyshev metric dM 0.0809 0.1318 0.1260 0.0945
Kendall’s tau dK 0.0601 0.1573 0.1405 0.1165
Cayley distance dC 0.0777 0.1158 0.1119 0.1178
Ulam distance dU 0.0490 0.0524 0.0570 0.0812
Hamming distance dH 0.0556 0.0958 0.0920 0.0893
Lee distance dL 0.0827 0.0938 0.1000 0.1113

TABLE 3.3: Values of TK for the APA data

It can be noticed that there is a significant increase of the values of TK from the clustering
procedures with K = 1 group to the clustering with K = 2 groups. The reason for this is that
there are definite camps within APA: candidates A and C are research psychologists, D and
E are clinical psychologists, and B is a community psychologist. The “K-means” clustering
based on most of the distances does not improve TK when K increases to 3 and 4. This
shows that most likely there are only two major classes in the observed rankings. The same
dichotomy is revealed by the probabilistic models (2.5) and in Diaconis [18] by using models
based on the distributions of pairs of candidates.

The measure of “tightness” TK for the clustering procedure based on Lee distance does
not change significantly for different values of K. That can be explained by the fact that when
K = 1 the clustering based on Lee distance performs relatively better than the procedures
based on other distances. This phenomenon is caused by the structure of dL(·, ·) and can
be useful in situations where it is desirable to construct models with less number of groups
K and respectively with fewer unknown parameters. An example of such models are the
Latent-class Distance-based models presented in Section 2.1.
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Chapter 4

Imperfect ranking in ranked set
sampling

Ranked set sampling (RSS) is a scheme which was first proposed by McIntyre [51] and can be
useful in settings where small sets of observations can be accurately or approximately ranked
at a cost that is negligible compared to the cost of making formal measurements. By using
the additional information from the units that are ranked, but not actually measured, RSS
typically outperforms simple random sampling for a wide variety of testing and estimation
problems. An elaborate review and various applications of RSS can be found in Chen et
al. [9] and Wolfe [80].

In this chapter, we consider some statistical measures of deviation from the perfect rank-
ing in the framework of ranked set sampling. We use nonparametric approach for testing
the null hypothesis for perfect ranking. The Distance-based Mallows’ models (2.2) with ap-
propriate distance on permutations are suggested in the case of imperfect ranking. Some
asymptotic results for the corresponding error probability matrix are derived for the models
based on Spearman’s footrule and Spearman’s rho. We propose an EM algorithm for esti-
mating the unknown parameter in the Mallows’ models in order to compare the power of the
presented test statistics. Since in the literature for RSS the sample size is commonly denoted
by k, we will consider rankings of k items, which are elements of Sk.

4.1 Ranked set sampling scheme

There are two types of RSS: balanced and unbalanced. To obtain a balanced ranked set sam-
ple, first it is necessary to draw a random sample (set) of size k and order the observations
from smallest to largest. The ranking can be done by judgment and without actual measure-
ment. Then, only the observation with the smallest rank is selected for measurement. Next,
another random sample (set) of size k is drawn and ordered, but only the second smallest
observation is measured and the rest are not measured. The procedure is continued until the
largest observation of the k-th random sample of size k is measured. This process yields
a sample of k independent values and is referred as a one-cycle ranked set sample. Let us
denote the measured quantities by XRSS =

{
X[1],X[2], . . . ,X[k]

}
. The steps of obtaining XRSS

are illustrated on the following scheme, where the measured observation in each set (row) is
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underlined and is chosen in accordance with the judgment order.

X1:k X2:k . . . Xk:k → X[1]

X1:k X2:k . . . Xk:k → X[2]

. . . . . . . . . . . . → . . .

X1:k X2:k . . . Xk:k → X[k]

To obtain a n-cycle ranked set sample, this procedure is repeated n times and the observed
data is denoted by XRSS =

{
X1[1],X1[2], . . . ,X1[k],X2[1], . . . ,Xn[1], . . . ,Xn[k]

}
. To draw an unbal-

anced ranked set sample, we remove the constraint that the number of measured observations
with in-set rank i must be the same for i = 1,2, . . . ,k. Instead, we determine a set size k and
a vector n = (n1,n2, . . . ,nm) such that ni is the number of measured observations with in-set
rank i, for i = 1,2, . . . ,k. Then the total measured sample size is N = ∑

k
i=1 ni.

In this study, we focus on analyzing n-cycle balanced RSS and assume that the random
variable of interest X has a continuous distribution. This assures that there are no ties of the
measured observations in each cycle. Since we consider models based on orderings of the
measurements, the requirement that X has a continuous distribution is a necessary assumption
that plays a key role in our analysis. For applications in which ties are inevitable, Ozturk [66]
and Frey [23] proposed two modifications of RSS that allow the judge to declare ties in the
ranking process.

Consider a n-cycle balanced RSS based on random samples (sets) of size k, XRSS ={
X1[1],X1[2], . . . ,X1[k],X2[1], . . . ,Xn[1], . . . ,Xn[k]

}
. In the case when the judgment ranking within

each set is correct and the ranks of the measured observations coincide with their true ranks,
we say that perfect ranking is obtained. However, since the ordering within a set is not based
on actual measurement, but on some judgment criteria, it may contain errors and the judg-
ment ranking could be inaccurate. Thus, it is possible that the judgment rank of a measured
observation differs from its actual rank within the set. In this case we have imperfect ranking.
For example, imperfect ranking could be obtained if X1[1] is not the smallest observation in
the first random set of the first cycle.

4.2 Hypotheses testing problem

Let
{

X[1],X[2], . . . ,X[k]

}
be a one-cycle balanced ranked set sample of size k from a continu-

ous population. By arranging the X[i]’s in an increasing order, we obtain the ordered ranked
set sample (ORSS) XORSS

1:k ≤ XORSS
2:k ≤ . . .XORSS

k:k introduced by Balakrishnan and Li [3]. Sup-
pose that the observed r-th ORSS comes from the ir-th ordered set, i.e. XORSS

r:k = X[ir ] for
r = 1,2, . . . ,k. Let denote by p(i1, i2, . . . , ik) the probability that X[i1] ≤ X[i2] ≤ ·· · ≤ X[ik ]

under the assumption of perfect ranking. Li and Balakrishnan [43] proved that under the
hypothesis of perfect ranking

p(i1, i2, . . . , ik) = P
(

X[i1] ≤ X[i2] ≤ . . .≤ X[ik ] | Perfect ranking
)

=
k−1

∏
l=1

lk

∑
jl= jl−1+il

(
lk
jl

)(
k

il+1

)
(
(l + 1)k
jl + il+1

) ( il+1

jl + il+1

)
, (4.1)
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where j0 ≡ 0. Let assume that there is a judgement error in ranking and denote by pi j

the probability of the event that the j-th order statistic is judged as having rank i for i, j =
1,2, . . . ,k. Notice that ∑

k
j=1 pi j = ∑

k
i=1 pi j = 1. More details about the probabilities pi j can

be found in Aragon et al. [2]. Li and Balakrishnan [43] showed that

P
(

X[i1] ≤ X[i2] ≤ . . . ≤ X[ik ] | Judgement error
)

=
k

∑
l1=1

k

∑
l2=1

. . .
k

∑
lk=1

{(
k

∏
r=1

pirlr

)
p (l1, l2, . . . , lk)

}
, (4.2)

where j0 ≡ 0 and the probabilities p (l1, l2, . . . , lk) are given in (4.1). In order to test the hy-
pothesis of perfect ranking, Li and Balakrishnan [43] suggested to use test statistics based on
distance measures between the observed rank vector of ORSS 〈i1, i2, . . . , ik〉 and the identity
ek = 〈1,2, . . . ,k〉, which is associated with perfect ranking. Since we assume that there are no
ties, both vectors are elements of the permutation group Sk, generated by the first k natural
integers. The test statistics proposed by Li and Balakrishnan [43] are

Nk =
k

∑
r=1

r−1

∑
s=1

I (ir < is) , Sk =
k

∑
r=1

(ir− r)2 and Ak =
k

∑
r=1
| ir− r |, (4.3)

where I (·) is an indicator function. The hypothesis of perfect ranking is rejected when these
nonparametric test statistics are too large. Their exact null distributions can be derived from
(4.1) by computing the probabilities for all possible k! rankings 〈i1, i2, . . . , ik〉. Similarly,
formula (4.2) can be used to calculate their power for given alternative model for imperfect
ranking.

From the definitions of distances on rankings in Section 1.1, it is clear that the test statis-
tics Nk, Sk and Ak measure the distance between 〈i1, i2, . . . , ik〉 and 〈1,2, . . . ,k〉 by Kendall’s
tau, Spearman’s rho and Spearman’s footrule, respectively. In a similar way we can define
more test statistics by using other distances on Sk. In the next sections, we will consider the
test statistics

Mk = max
1≤r≤k

| ir− r | and Lk =
k

∑
r=1

min
(
| ir− r |,k− | ir− r |

)
, (4.4)

based on Chebyshev’s distance and Lee’s distance, respectively. Power comparisons show
that the test statistics constructed by using other distances listed in Section 1.1 are less pow-
erful than Nk, Sk, Ak, Mk and Lk. Thus, in Section 4.6 are presented results only for the test
statistics defined in (4.3) and (4.4).

Notice that the distributions of test statistics based on distances on Sk depend not only on
the probabilities p(i1, i2, . . . , ik) in (4.1) under the null hypothesis, but also on the properties
of the used distance. For some distances in Section 1.1, there are exact or approximate results
for the distributions of the corresponding statistics under uniformly distributed permutations
〈i1, i2, . . . , ik〉. For example, Ak is approximately normally distributed with expectation k2−1

3

and variance (k+1)(2k2+7)
45 , when 〈i1, i2, . . . , ik〉 is uniformly chosen from Sk. However, since

the probabilities p(i1, i2, . . . , ik) in (4.1) are not in closed form and cannot be expressed as
a function of the distance between 〈i1, i2, . . . , ik〉 and 〈1,2, . . . ,k〉, the distributions under the
null hypothesis for these statistics cannot be given explicitly. The same problem occurs for
the distributions under the alternative probabilities, given in (4.2).
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The test statistics for the one-cycle RSS given in (4.3) and (4.4) can be extended to the
case of multi-cycle balanced RSS. Let XRSS =

{
Xi[ j], i = 1,2, . . . ,n; j = 1,2, . . . ,k

}
be a n-

cycle balanced RSS of size k, where Xi[ j] is the j-th observation in the i-th cycle. Li and
Balakrishnan [43] considered the test statistics

Nk,n =
n

∑
i=1

N(i)
k , N∗k,n = max

(
N(1)

k ,N(2)
k , . . . ,N(n)

k

)
,

Sk,n =
n

∑
i=1

S(i)k , S∗k,n = max
(

S(1)k ,S(2)k , . . . ,S(n)k

)
,

Ak,n =
n

∑
i=1

A(i)
k , A∗k,n = max

(
A(1)

k ,A(2)
k , . . . ,A(n)

k

)
,

where N(i)
k , S(i)k and A(i)

k are the values the test statistics in (4.3) for the i-th cycle of RSS, for
i = 1,2, . . . ,n. Simulation results in Li and Balakrishnan [43] indicate that the tests based on
Nk,n, Sk,n and Ak,n are more powerful than the tests based on N∗k,n, S∗k,n and A∗k,n, respectively.
Pesarin and Salmaso [67, p.128] presented several functions for combining nonparametric
tests and also suggested the direct method (sum of the one-cycle test statistics) in the case
when all partial test statistics are homogeneous. Therefore, in this study only Nk,n, Sk,n and
Ak,n are considered. Similarly,

Mk,n =
n

∑
i=1

M(i)
k and Lk,n =

n

∑
i=1

L(i)
k

can be defined as an extension of (4.4) for testing the hypothesis of perfect ranking for a
n-cycle balanced RSS. Since all cycles are independent of each other, the null distributions
of the test statistics Nk,n, Sk,n, Ak,n, Mk,n and Lk,n can be obtained from the null distributions
of the statistics defined in (4.3) and (4.4).

4.3 Mallows’ models for imperfect ranking

In order to compare the test statistics described in the previous section, it is necessary to fix an
alternative model for the imperfect judgment ranking. Since the probability in (4.2) depends
on pi j, we need to specify the probability with which the event that the j-th order statistic is
judged as having rank i or to specify the probability of ranking the observations within each
random sample (set) with a permutation π = 〈π(1),π(2), . . . ,π(k)〉 ∈ Sk, where π( j) is the
rank of the j-th order statistic, for j = 1,2, . . . ,k. In this case the identity ek = 〈1,2, . . . ,k〉
corresponds to the perfect ranking.

Distance-based models, defined in Chapter 2, are appropriate probability models that
assign larger probabilities for rankings that are close to a modal ranking. Since the judgment
ranking is expected to be close to the perfect ranking, in model (2.2) we can assume that π0

is the identity ek ∈ Sk and θ ≤ 0. Then, we can define a model for imperfect ranking by

P (π | θ ) = exp
(
θd(π ,ek)−ψk(θ )

)
for π ∈ Sk, (4.5)

where θ ≤ 0 is a real parameter, d(·, ·) is a distance on Sk and ψk(θ ) is a normalizing
constant. For a chosen distance d(·, ·), the value of ψk(θ ) can be found by using (2.3).
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To distinguish models (4.5) from models (2.2) we will refer to (4.5) as Mallows’ models for
imperfect ranking.

By using the probabilities P (π | θ ) in (4.5) for all permutations π ∈ Sk, we can derive
the probability pi j of the event that the j-th order statistic is judged as having rank i, for
i, j = 1,2, . . . ,k. Since pi j depends on k and θ , let us denote the ranking error probability
matrix by Q(k,θ ) = {q(i, j,k,θ )}k

i, j=1. Notice that in Chapter 2 the matrix Q(k,θ ) is referred
as the Marginals matrix. Similar to formula (2.7), the elements of Q(k,θ ) can be expressed
as

q(i, j,k,θ ) = ∑
π∈Sk , π( j)=i

P (π | θ ) , for i, j = 1,2, . . . ,k, (4.6)

where the summation is over all permutations π = 〈π(1),π(2), . . . ,π(k)〉 such that π( j) = i.
From (4.5), (2.3) and (4.6) it is easy to see that {q(i, j,k,θ )}k

i, j=1 are continuous with respect
to θ . For θ = 0 the matrix Q(k,θ ) has equal elements, i.e. q(i, j,k,0) = 1/k for i, j =
1,2, . . . ,k, and is associated with the uniform model. When θ → −∞ the matrix Q(k,θ )
converges to the identity matrix Ik×k, which corresponds to the perfect ranking. An example
of Q(k,θ ) based on Kendall’s tau for k = 5 and θ = −0.5 is given below.

Q
(

5,−1
2

)
=


0.4287 0.2600 0.1577 0.0956 0.0580

0.2600 0.2810 0.2158 0.1476 0.0956

0.1577 0.2158 0.2530 0.2158 0.1577

0.0956 0.1476 0.2158 0.2810 0.2600

0.0580 0.0956 0.1577 0.2600 0.4287

 .

From (4.2) it follows that the alternative model for imperfect judgment ranking is com-
pletely specified by the matrix Q(k,θ ). The most common models for imperfect ranking,
used in the literature, are: Bivariate normal model proposed by Dell and Clutter [14], Frac-
tion of random rankings by Frey et al. [24], Fraction of inverse rankings by Frey et al. [24]
and Fraction of neighbor rankings by Vock and Balakrishnan [79]. All of these four models
depend on a parameter, corresponding to the magnitude of the judgment ranking error. How-
ever, it is not clear how to specify the parameters in these models. For the imperfect ranking
model based on Mallows’ models the unknown parameter θ can be estimated by maximizing
the probability of observing XRSS =

{
Xi[ j], i = 1,2, . . . ,n; j = 1,2, . . . ,k

}
under the hypothe-

sis of judgment error. Moreover, the Mallows’ models (4.5) give the probability of the event
that the judge orders the observations within each random sample (set) to a given permutation
π ∈ Sk, i.e. the probability P

(
π | θ̂

)
, where θ̂ is the maximum likelihood estimation of θ .

The probability for the perfect ranking that corresponds to π = ek is then presented by

P
(
ek | θ̂

)
= exp

(
−ψk

(
θ̂
))

.

Therefore, similarly to the interpretation of the correlation coefficient ρ in the bivariate nor-
mal model, the parameter θ can be considered as a measure of the accuracy of the judgment
ranking. In addition, the error probability matrix for the bivariate normal model with ρ = 0.5
in Li and Balakrishnan [43] has a similar structure and is “close” to the matrix Q

(
5,−1

2

)
in

the example above.
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4.4 Maximum likelihood estimation of the parameter θ

Suppose that XRSS =
{

Xi[ j], i = 1,2, . . . ,n; j = 1,2, . . . ,k
}

is an n-cycle balanced RSS and
Ri[ j] is the number of the set in the i-th cycle from which comes the j-th ordered statistic, i.e.
XORSS

i[ j:k] = Xi[Ri[ j]]
for i = 1,2, . . . ,n and j = 1,2, . . . ,k. Let consider Mallows’ model for im-

perfect ranking associated with ranking error probability matrix Q(k,θ ) and free parameter
θ ≤ 0. For each cycle i = 1,2, . . . ,n, the probability of observing Ri =

〈
Ri[1],Ri[2], . . . ,Ri[k]

〉
under judgment error can be calculated from formula (4.2). By using the independence of
the measurements, the likelihood function can be expressed as

L (R | θ ) =
n

∏
i=1

{
∑

l

[(
k

∏
j=1

q
(

Ri[ j], l[ j],k,θ
))

p
(

l[1], l[2], . . . , l[k]
)]}

, (4.7)

where ∑
l

denotes a summation over all possible vectors l =
(

l[1], l[2], . . . , l[k]
)

such that

l[ j] ∈ {1,2, . . . ,k} for j = 1,2, . . . ,k. Here R = (R1,R2, . . . ,Rn) is the vector of the observed

ORSS, q
(

Ri[ j], l[ j],k,θ
)

are elements of Q(k,θ ) and the probabilities p
(

l[1], l[2], . . . , l[k]
)

are
calculated from (4.1).

In order to find the maximum likelihood estimate (MLE) it is required to maximize (4.7)
with respect to θ . In general, there is no closed expression for the elements of the matrix
Q(k,θ ) and it is not possible to estimate θ directly. However, the Expectation-Maximization
(EM) algorithm proposed by Dempster et al. [15] can be applied. Similar to the EM algo-
rithms in Section 2.4, we need to maximize the complete likelihood function on the value of
an unknown latent random variable as well as on the unknown parameter. The latent variable
of the model for imperfect ranking is the vector Z =

{
Zi[ j], i = 1,2, . . . ,n; j = 1,2, . . . ,k

}
,

where the element Zi[ j] is the true rank of Xi[ j] in the j-th random sample (set) of the i-th
cycle. Then from (4.7) it follows that the joint likelihood function has the form

L (R,Z | θ ) =
n

∏
i=1

[(
k

∏
j=1

q
(

Ri[ j],Zi[ j],k,θ
))

p
(

Zi[1],Zi[2], . . . ,Zi[k]

)]

and the loglikelihood is

log
(
L (R,Z | θ )

)
=

n

∑
i=1

log
(

p
(

Zi[1],Zi[2], . . . ,Zi[k]

))
+

n

∑
i=1

k

∑
j=1

log
(

q
(

Ri[ j],Zi[ j],k,θ
))

.

E-step. The first step of the algorithm is to find the expected value of the loglikeli-
hood function for a given initial approximation of θ . This expectation is usually denoted by
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Q
(

θ | θ (t)
)

for a given initial value θ (t). Then, for the imperfect ranking model

Q
(

θ | θ (t)
)
= EZ|R,θ (t)

[
log
(
L (R,Z | θ )

)]

= ∑
z

n

∏
i=1

[(
k

∏
j=1

q
(

Ri[ j],zi[ j],k,θ (t)
))

p
(

zi[1],zi[2], . . . ,zi[k]

)]

∑
l

{
n

∏
i=1

[(
k

∏
j=1

q
(

Ri[ j], li[ j],k,θ (t)
))

p
(

li[1], li[2], . . . , li[k]
)]}×

×

[
n

∑
i=1

log
(

p
(

zi[1],zi[2], . . . ,zi[k]

))
+

n

∑
i=1

k

∑
j=1

log
(

q
(

Ri[ j],zi[ j],k,θ
))]

, (4.8)

where the summation ∑
z

is over all vectors z=
(

z1[1],z1[2], . . . ,zn[k]

)
and ∑

l
is over all vectors

l =
(

l1[1], l1[2], . . . , ln[k]
)

such that zi[ j] ∈ {1,2, . . . ,k} and li[ j] ∈ {1,2, . . . ,k} for i = 1,2, . . . ,k
and j = 1,2, . . . ,k.

M-step. The next step is to maximize Q
(

θ | θ (t)
)

with respect to θ , i.e.

θ
(t+1) = argmax

θ≤0
Q
(

θ | θ (t)
)

.

From (4.8) it follows that θ (t+1) is the solution of the equation

∑
z

n

∏
i=1

[(
k

∏
j=1

q
(

Ri[ j],zi[ j],k,θ (t)
))

p
(

zi[1],zi[2], . . . ,zi[k]

)]

∑
l

{
n

∏
i=1

[(
k

∏
j=1

q
(

Ri[ j], li[ j],k,θ (t)
))

p
(

li[1], li[2], . . . , li[k]
)]}×

×
n

∑
i=1

k

∑
j=1

q′
(

Ri[ j],zi[ j],k,θ
)

q
(

Ri[ j],zi[ j],k,θ
) = 0, (4.9)

where q′(r,z,k,θ ) is the derivative of q(r,z,k,θ ) with respect to θ and can be expressed from
(4.6) as

q′(r,z,k,θ ) = ∑
π∈Sk , π(z)=r

[d(π ,ek)−ψ
′
k(θ )]exp

(
θd(π ,ek)−ψk(θ )

)
,

for r,z = 1,2, . . . ,k. The obtained maximum likelihood estimator θ (t+1) is then substituted
in the E-step for calculating the new values of Q(θ | θ (t+1)) and so on. This procedure
continues until some optimal criteria is reached, for example if the change of the likelihood
function is relatively small.

From (4.8) and the fact that {q(i, j,k,θ )}k
i, j=1 are continuous in θ it follows that Q

(
θ | θ (t)

)
is continuous in both θ and θ (t). Thus, by using Theorem 3.2 in McLachlan and Krishnan [52,
p. 82] we have that the proposed EM algorithm converges monotonically to some stationary
point of L (R | θ ). If L (R | θ ) is unimodal, i.e. L (R | θ ) has only one stationary point, then
the EM algorithm converges to the unique MLE of θ , see the Corollary of Theorem 3.5 in
McLachlan and Krishnan [52, p. 84]. However, the rate of convergence and the resulting
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stationary point depend on the initial value θ (0). Therefore, in order to find the MLE of θ

one has to take θ (0) to be close to the global maximum of L (R | θ ). From our practical ex-
perience we noticed that it is very rare for L (R | θ ) to has more than one stationary point.
Nevertheless, we recommend to apply the EM algorithm for several initial values θ (0) from
−10 to 0 and take the result that maximizes L (R | θ ).

4.5 Error probability matrix based on different distances

Even though, the elements of the error probability matrix Q(k,θ ) can be calculated from
(4.6), this may take a lot of computational time and resources when k is too large, for example
k ≥ 10. In this section, some properties of Q(k,θ ) based on the eight distances listed in
Section 1.1 are discussed.

Let us consider the matrix Q(k,θ ) for Cayley and Hammning distances. From the eight
distances in Section 1.1, they are the only ones that possess the bi-invariant property. Mar-
den [47] showed that for models based on a bi-invariant distance there exists a constant a
such that

q(i, j,k,θ ) =

a, for i = j
1−a
k−1

, for i 6= j,
(4.10)

i.e. Q(k,θ ) has equal diagonal values and equal off-diagonal values. Since dC(π ,σ) is the
minimum number of transpositions needed to obtain π from σ , it follows from (4.6) that

q(i, j,k,θ ) =

exp
(
ψk−1(θ )−ψk(θ )

)
, for i = j

exp
(
θ +ψk−1(θ )−ψk(θ )

)
, for i 6= j.

Combining the last expression with (4.10) gives

q(i, j,k,θ ) =


1

1+(k−1)exp (θ )
, for i = j

exp (θ )
1+(k−1)exp (θ )

, for i 6= j.

For Hamming distance, formula (4.6) can be represented by the recursive equation

q(i, j,k,θ ) =


exp
(
ψk−1(θ )−ψk(θ )

)
, for i = j

exp (θ )+ (k−2)q(i, j,k−2,θ )
exp
(
ψk(θ )−ψk−2(θ )−θ

) , for i 6= j.
(4.11)

It follows from (4.10) and (4.11) that

q(i, j,k,θ ) =


exp
(
ψk−1(θ )−ψk(θ )

)
, for i = j

1− exp
(
ψk−1(θ )−ψk(θ )

)
k−1

, for i 6= j.

Alternative proofs of these results for Q(k,θ ) based on Cayley and Hamming distances and
an efficient algorithm for computing Q(k,θ ) based on Kendall’s tau are given in Marden [47,
p.165].
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In Section 2.2 we have already considered the probability error matrix based on Lee dis-
tance. The asymptotic approximation in Theorem 2.1 is very helpful, since the exact calcula-
tion of Q(k,θ ) from (4.6) by summing over all possible k! rankings becomes computationally
demanding for large values of k. Similar asymptotic results for the ranking error probabil-
ity matrix based on Spearman’s footrule and Spearman’s rho are given in Theorem 4.1 and
Theorem 4.2, which are proved in Appendix E.

Theorem 4.1. Let Q(k,θ ) be the ranking error probability matrix based on the Spearman’s
footrule. Then

q(i, j,k,θ )
k

exp
(

θ µ + θ 2ν2

2

) −−−→
k→∞

1,

where

µ =
k+ 1

3
− f (i)+ f ( j)− | i− j |

k−1
+ | i− j |,

ν
2 =

1
k−2


k

∑
r=1
r 6=i

k

∑
s=1
s 6= j

[
| r− s |+k(k+ 1)

3(k−1)
− f (r)+ f (s)− | i− s | − | r− j |

k−1

− f (i)+ f ( j)− | i− j |
(k−1)2

]2
}
− (k+ 1)(2k2 + 7)

45

and

f (x) =
x(x−1)+ (k− x)(k− x+ 1)

2
.

Theorem 4.2. Let Q(k,θ ) be the ranking error probability matrix based on the Spearman’s
rho. Then

q(i, j,k,θ )
k

exp
(

θ µ + θ 2ν2

2

) −−−→
k→∞

1,

where

µ =
k(k+ 1)

6
− h(i)+ h( j)− (i− j)2

k−1
+(i− j)2,

ν
2 =

1
k−2


k

∑
r=1
r 6=i

k

∑
s=1
s6= j

[
(r− s)2 +

k2(k+ 1)
6(k−1)

− h(r)+ h(s)− (i− s)2− (r− j)2

k−1

−h(i)+ h( j)− (i− j)2

(k−1)2

]2
}
− k2(k−1)(k+ 1)2

36

and

h(x) =
x(x−1)(2x−1)+ (k− x)(k− x+ 1)(2k−2x+ 1)

6
.

As we showed in Section 2.1, the asymptotic result of Theorem 1.2 can be applied even
for relatively small values of k. The approximations in Theorem 2.1, Theorem 4.1 and Theo-
rem 4.2 have similar accuracy and look reasonably close to the exact values of q(i, j,k,θ ) for
k ≥ 8. Thus, these results can be used for computing (4.9) in the EM algorithm when k ≥ 8.
As an illustration, consider the matrix Q(k,θ ) based on Spearman’s footrule for k = 8 and
θ = −1/3 and its asymptotic approximation Q̂(k,θ ) presented in Theorem 4.1:
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Q
(

8,−1
3

)
=



0.415 0.213 0.132 0.087 0.059 0.042 0.030 0.023

0.213 0.298 0.175 0.114 0.077 0.054 0.039 0.030

0.132 0.175 0.256 0.160 0.107 0.075 0.054 0.042

0.087 0.114 0.160 0.241 0.156 0.107 0.077 0.059

0.059 0.077 0.107 0.156 0.241 0.160 0.114 0.087

0.042 0.054 0.075 0.107 0.160 0.256 0.175 0.132

0.030 0.039 0.054 0.077 0.114 0.175 0.298 0.213

0.023 0.030 0.042 0.059 0.087 0.132 0.213 0.415


,

Q̂
(

8,−1
3

)
=



0.410 0.210 0.131 0.089 0.062 0.043 0.031 0.025

0.210 0.273 0.169 0.114 0.079 0.054 0.039 0.031

0.131 0.169 0.247 0.164 0.112 0.077 0.054 0.043

0.089 0.114 0.164 0.247 0.165 0.112 0.079 0.062

0.062 0.079 0.112 0.165 0.247 0.164 0.114 0.089

0.043 0.054 0.077 0.112 0.164 0.247 0.169 0.131

0.031 0.039 0.054 0.079 0.114 0.169 0.273 0.210

0.025 0.031 0.043 0.062 0.089 0.131 0.210 0.410


.

Since the differences between the corresponding elements of the two matrices are relatively
small, the matrix Q̂

(
8,−1

3

)
can be used as an approximation of Q

(
8,−1

3

)
.

4.6 Power comparisons

Let us consider again the problem of testing the hypothesis of perfect ranking versus the
general alternative of imperfect ranking. For a given nominal level, the critical values for the
nonparametric test statistics for one-cycle RSS, defined in (4.3) and (4.4), does not depend
on the model for imperfect ranking and can be calculated by using (4.1). For example, when
k = 5 and the nominal level is 0.05, the critical values of Nk, Sk, Ak, Mk and Lk are 4, 12, 8,
3 and 7, respectively. Since the test statistics have discrete distributions, it is clear that the
nominal level 0.05 cannot be achieved exactly. Thus, we can use a standard randomization
in order to fix the significance to be exactly 0.05. For example, when k = 5 and significance
level is 0.05, the two possible critical values of Nk are 4 with exact level of 0.03345 and 3
with exact level of 0.12687. When the observed value of Nk is 4, the hypothesis of perfect
ranking is rejected. If the observed value of Nk is 3, then the hypothesis of perfect ranking is
rejected with probability 0.05−0.03345

0.12687−0.03345 ≈ 0.17716.
The powers of the presented tests depend on the alternative model for imperfect ranking

and can be expressed as a sum of the probabilities (4.2) for all permutations 〈i1, i2, . . . , ik〉 in
the critical region. Power comparisons between Nk, Sk and Ak under bivariate normal models
are presented in Li and Balakrishnan [43]. Similar results for the powers of Nk, Sk, Ak, Mk and
Lk are given in Table 4.1. The powers are determined from 100 000 Monte Carlo simulations
based on an bivariate normal alternative with correlation coefficient ρ varying from 0.50 to
1.00. The significance is fixed to be exactly 0.05 by using a standard randomization. Hence,
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the powers under perfect ranking (ρ = 1) coincide with the nominal level and are presented
in the last column of Table 4.1.

k Test ρ

0.50 0.60 0.70 0.80 0.90 1.00

4 N4 0.4024 0.3523 0.2934 0.2310 0.1615 0.0500
S4 0.4035 0.3534 0.2943 0.2317 0.1620 0.0500
A4 0.3728 0.3259 0.2709 0.2139 0.1508 0.0500
M4 0.3315 0.2913 0.2444 0.1955 0.1410 0.0500
L4 0.2471 0.2234 0.1945 0.1621 0.1237 0.0500

5 N5 0.5310 0.4642 0.3879 0.3033 0.2029 0.0500
S5 0.5529 0.4859 0.4079 0.3208 0.2152 0.0500
A5 0.5100 0.4458 0.3732 0.2930 0.1978 0.0500
M5 0.5029 0.4385 0.3656 0.2861 0.1927 0.0500
L5 0.3854 0.3419 0.2924 0.2370 0.1680 0.0500

6 N6 0.6526 0.5787 0.4900 0.3848 0.2530 0.0500
S6 0.6674 0.5939 0.5049 0.3984 0.2626 0.0500
A6 0.6622 0.5899 0.5021 0.3966 0.2624 0.0500
M6 0.5724 0.5035 0.4246 0.3347 0.2243 0.0500
L6 0.5781 0.5183 0.4452 0.3565 0.2413 0.0500

TABLE 4.1: Simulated powers under bivariate normal model with ρ from 0.50 to 1.00 and
nominal level 0.05

From the results in Table 4.1, it can be concluded that Sk is more powerful than the other
test statistics, whereas Mk and Lk are less powerful when k≤ 6. However, it is worth compar-
ing the powers under the Mallows’ models based on the eight distances listed in Section 1.1
for all test statistics defined in (4.3) and (4.4). The alternative model in this case is specified
by the parameter θ and the MLE θ̂ depends on the observed ORSS permutation 〈i1, i2, . . . , ik〉.
Therefore, the power of the tests Nk, Sk, Ak, Mk and Lk depends on 〈i1, i2, . . . , ik〉 and can be
computed by using the EM algorithm in Section 4.4. The randomized powers of the consid-
ered test statistics when k = 5 and the nominal level is 0.05 are given in Table 4.2 for some
key permutations 〈i1, i2, . . . , i5〉 ∈ S5. The last section of Table 4.2 prints the powers under the
perfect ranking 〈1,2,3,4,5〉.

Similar to the powers under bivariate normal model, S5 is most powerful under all Mal-
lows’ models for the presented ORSS permutations in Table 4.2. However, under Mallows’
alternative, the power of the test statistic L5 is much closer to the power of N5 and A5, and it
is not clear which one of those three is more powerful. The results in Table 4.2 show that M5

is much less powerful in this case.

4.7 Illustrative example

To illustrate the use of Mallows’ alternative for imperfect ranking in n-cycle RSS, the models
in Section 4.5 are applied here to an example. Murrary et al. [56] compared the effect of
four different sprayer settings on the amount of spray deposit on the leaves of apple trees.
In order to estimate the mean amount of spray deposit, which is measured by the percentage
of the upper leaf surface covered with deposit, Murrary et al. [56] collected a RSS by first
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ORSS Test Distance

dF dR dM dK dC dU dH dL

〈5,4,3,2,1〉 N5 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780
S5 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798
A5 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756
M5 0.419 0.419 0.419 0.419 0.419 0.419 0.419 0.419
L5 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755

〈4,1,2,3,5〉 N5 0.451 0.494 0.494 0.468 0.448 0.659 0.448 0.571
S5 0.473 0.512 0.513 0.488 0.479 0.677 0.479 0.596
A5 0.433 0.476 0.474 0.450 0.425 0.636 0.425 0.548
M5 0.241 0.273 0.269 0.256 0.215 0.345 0.215 0.282
L5 0.432 0.462 0.465 0.441 0.451 0.633 0.451 0.564

〈3,2,1,5,4〉 N5 0.478 0.387 0.427 0.454 0.643 0.533 0.643 0.629
S5 0.500 0.401 0.445 0.473 0.669 0.551 0.669 0.652
A5 0.459 0.375 0.411 0.437 0.616 0.514 0.616 0.605
M5 0.254 0.228 0.240 0.250 0.320 0.281 0.320 0.314
L5 0.458 0.357 0.401 0.427 0.629 0.514 0.629 0.616

〈2,3,1,4,5〉 N5 0.183 0.176 0.179 0.182 0.212 0.217 0.212 0.253
S5 0.194 0.179 0.186 0.191 0.235 0.219 0.235 0.275
A5 0.178 0.176 0.177 0.179 0.202 0.205 0.202 0.245
M5 0.121 0.136 0.130 0.127 0.114 0.128 0.114 0.138
L5 0.177 0.159 0.168 0.172 0.224 0.213 0.224 0.265

〈1,2,3,4,5〉 N5 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
S5 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
A5 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
M5 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
L5 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050

TABLE 4.2: Powers under the Mallows’ models for k = 5 and nominal level 0.05

spraying the leaves with a fluorescent tracer dye and then visually ranking them under ultra-
violet light. Perfect ranking in this experiment would be obtained if the ordering based
on the visual ranking of the leaves coincide with the true ordering based on the amount
of spray deposit on the leaves. In this section, we use and compare the RSS for the first low-
volume sprayer settings and for the second high-volume sprayer settings which are given
as an example in Ozturk [64]. The data consists of measurements of the percentage of leaf
surface covered with deposit. The observations for each settings are obtained from five-cycle
RSS with each cycle being of size 5, i.e. k = 5 and n = 5. The measured percentages of
cover

{
X[1],X[2],X[3],X[4],X[5]

}
, the corresponding ORSS and the observed values of the test

statistics (4.3) and (4.4) for the low-volume settings are presented in Table 4.3 for each of the
five cycles.

For testing the hypothesis of perfect ranking, we use the statistics Nk,n, Sk,n, Ak,n, Mk,n and
Lk,n, defined in Section 4.2. Their values from the observed data in Table 4.3 are as follows:

N5,5 = 8, S5,5 = 22, A5,5 = 16, M5,5 = 7, L5,5 = 16.

The critical values of N5,5, S5,5, A5,5, M5,5 and L5,5 at 0.05 significance level are 12, 34, 22, 9
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Cycle X[1] X[2] X[3] X[4] X[5] ORSS N5 S5 A5 M5 L5

1 0.3 2.8 24.4 5.7 14.3 〈1,2,4,5,3〉 2 6 4 2 4
2 3.9 11.9 12.6 10.5 56.5 〈1,4,2,3,5〉 2 6 4 2 4
3 3.4 11.8 13.0 21.8 29.6 〈1,2,3,4,5〉 0 0 0 0 0
4 5.1 10.4 19.3 21.0 15.0 〈1,2,5,3,4〉 2 6 4 2 4
5 3.2 14.1 13.0 25.0 22.9 〈1,3,2,5,4〉 2 4 4 1 4

TABLE 4.3: RSS of the percentage of leaf surface covered with deposit for the low-volume
settings

and 20, respectively. Hence, there is not enough evidence to conclude that the ranking in the
RSS data in Table 4.3 is not perfect. The powers of the considered tests under the Mallows’
alternative for imperfect ranking, calculated by the MLE of the unknown parameter θ , are
presented in Table 4.4. The interpretation of the powers based on the low-volume settings
example are similar to the ones obtained from the results in Table 4.2. As in the one-cycle
example, S5,5 is more powerful than the other test statistics, whereas M5,5 and L5,5 are less
powerful. The test statistics N5,5 and A5,5 have similar powers under all eight Mallows’
models.

Test statistic Distance

dF dR dM dK dC dU dH dL

N5,5 0.818 0.760 0.809 0.784 0.963 0.926 0.963 0.950
S5,5 0.830 0.760 0.814 0.791 0.970 0.934 0.970 0.959
A5,5 0.807 0.758 0.801 0.776 0.956 0.917 0.955 0.940
M5,5 0.775 0.698 0.755 0.732 0.949 0.900 0.948 0.933
L5,5 0.748 0.721 0.755 0.728 0.904 0.850 0.902 0.866

TABLE 4.4: Estimated powers under the Mallows’ alternative for imperfect ranking

The main advantage of using Mallows’ models as an alternative for imperfect ranking
is that it is possible to estimate the unknown parameter θ by applying the EM algorithm in
Section 4.4. The estimated value of θ can be used not only for comparing the powers of the
presented nonparametric statistics, but is helpful for measuring the judgment ranking ability.
For the example in Table 4.3 and Mallows’ alternative model based on Spearman’s footrule
dF , the estimated parameter is θ̂ low

F = −0.494, which is not close to 0 and indicates that
the observations in each set of the RSS are not randomly ranked. The corresponding error
probability matrix is

Q
(

5, θ̂ low
F

)
=


0.577 0.215 0.110 0.061 0.037

0.215 0.431 0.190 0.103 0.061

0.110 0.190 0.400 0.190 0.110

0.061 0.103 0.190 0.431 0.215

0.037 0.061 0.110 0.215 0.577

 (4.12)

and can be used for further investigation of the effect of imperfect ranking on the performance
of some statistical procedures based on RSS, see Aragon et al. [2] and Section 3.1.2 in Chen
et al. [9]. Furthermore, the ranking abilities of two judges (or ranking methods) can be
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compared just by considering their MLEs of θ in the Mallows’ model. For example, we can
check if the ranking procedure based on the fluorescent tracer method orders the leaves in the
same way for the low-volume and the high-volume settings.

Cycle X[1] X[2] X[3] X[4] X[5] ORSS N5 S5 A5 M5 L5

1 4.2 8.9 19.9 26.9 39.5 〈1,2,3,4,5〉 0 0 0 0 0
2 4.4 8.3 22.7 17.7 74.4 〈1,2,4,3,5〉 1 2 2 1 2
3 4.4 17.1 6.7 19.2 33.6 〈1,3,2,4,5〉 1 2 2 1 2
4 0.9 1.7 21.7 43.8 54.4 〈1,2,3,4,5〉 0 0 0 0 0
5 7.1 13.2 31.0 34.3 37.9 〈1,2,3,4,5〉 0 0 0 0 0

TABLE 4.5: RSS of the percentage of leaf surface covered with deposit for the
high-volume settings

The measured observations of percentages of cover for the high-volume settings are pre-
sented in Table 4.5 for each of the five cycles. From the corresponding ORSS and the ob-
served values of N5, S5, A5, M5 and L5, given in Table 4.5, it seems that the ranking of the
leaves for the high-volume settings is closer to the perfect ranking compared to the ranking
in the low-volume case. Similar results are obtained by comparing the MLEs of the unknown
parameter in the Mallows’ models for imperfect ranking. For the example in Table 4.5 and
model based on Spearman’s footrule dF , the estimated parameter is θ̂

high
F = −0.696, which

is smaller than the corresponding estimation θ̂ low
F = −0.494 for the RSS in the low-volume

settings. Since the perfect ranking is associated with θ →−∞, we conclude that the ranking
of the leaves based on the fluorescent tracer method is better in the high-volume case. In
order to study in more details the differences between the ranking abilities of the method in
the two settings, we can use the error probability matrix, which for the example in Table 4.5
is

Q
(

5, θ̂ high
F

)
=


0.714 0.178 0.068 0.028 0.012

0.178 0.565 0.164 0.065 0.028

0.068 0.164 0.536 0.164 0.068

0.028 0.065 0.164 0.565 0.178

0.012 0.028 0.068 0.178 0.714

 , (4.13)

when the used distance is Spearman’s footrule dF . From (4.12) and (4.13) we see that
Q
(

5, θ̂ high
F

)
is closer to the identity matrix compared to Q

(
5, θ̂ low

F

)
. For example, the prob-

ability that rank 1 is correctly assigned to the smallest observation is 0.577 in Q
(
5, θ̂ low

F

)
and

0.714 in Q
(

5, θ̂ high
F

)
. Therefore, the ranking based on fluorescent tracer method is better in

the high-volume settings and the performance of the mean estimator based on RSS is more
efficient for the data in Table 4.5.
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Chapter 5

Lee distance in two-sample rank tests

Nonparametric rank tests have proved their useful in a wide range of applications, including
many which are beyond the reach of conventional parametric statistics. For example, they can
be applied to continuous, ordered and categorical data, and to values that are normal, almost
normal, and non-normally distributed. Flexible, robust in the face of missing data and viola-
tions of assumptions, the rank tests are among the most powerful statistical procedures. They
have been developed for a multitude of hypothesis testing situations, such as the two-sample
and multi-sample location problems, the two-sample dispersion problem with equal medians
and problems of testing for trend and for independence, see Hollander and Wolfe [33] and
Gibbons and Chakraborti [27].

In this chapter, we apply Critchlow’s [11] unified approach to the two-sample location
problem. The test statistic induced by Lee distance is studied in details. The distribution
of the test statistic under the null hypothesis is derived and an asymptotic approximation is
proposed for large sample sizes. A comparison between the considered test statistic and other
statistics for two samples is made via simulation study.

5.1 Critchlow’s method for two-sample location problem

Let X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn be two independent random samples with continuous dis-
tribution functions F (x) and G (x), respectively. We consider rank tests for the two-sample
location problem of testing the null hypothesis H0 against the alternative H1

H0 :F (x) ≡ G (x) (5.1)

H1 :F (x) ≥ G (x) , (5.2)

with strict inequality for some x. Let α(i) be the rank of Xi for i = 1,2, . . . ,m and α(m+ j)
be the rank of Yj for j = 1,2, . . . ,n among X1,X2, . . . ,Xm,Y1,Y2, . . . ,Yn. Then, the rank vec-
tor of all observations is α = 〈α(1),α(2), . . . ,α(m+ n)〉 and α ∈ Sm+n, where Sm+n is the
permutation group generated by the first m+ n natural integers. The class of permutations,
which are most in agreement with the alternative H1 is E = Sm×Sn = {π ∈ Sm+n : π(i) ≤
m,∀i≤ m}. The left coset [α ] = α (Sm×Sn) = {α ◦π : π ∈ Sm×Sn} consists of all permu-
tations in Sm+n which are equivalent to α . Many rank statistics could be obtained by using
distances between sets of permutation. Critchlow [11] proposed a unified approach to con-
structing nonparametric tests which produces many well-known rank statistics. The method
is based on finding the minimum interpoint distance between the class of equivalence [α ] and
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the extremal set E
d ([α ] ,E) = min

π∈[α ]
σ∈E

d(π ,σ) (5.3)

where d is an arbitrary distance on Sm+n. The proposed test rejects the null hypothesis H0 for
small values of the statistic d ([α ] ,E). This contrasts with the structure of some parametric
test, where H0 is rejected if the distance from H0 is large. Since the minimal value of the
proposed test statistic is zero and d ([α ] ,E) = 0 if and only if d (α ,σ) = 0 for some σ ∈ E,
the strongest evidence for rejecting H0 occurs if and only if the observed permutation α is
equivalent to some extremal permutation σ ∈ E.

Critchlow[11] obtained the minimal value defined by (5.3) for four of the eight listed
distances in Section 1.1 and proved that the induced test statistics are equivalent to some fa-
miliar rank test statistics: dF ([α ] ,E)↔Wilcoxon test statistic; dU ([α ] ,E)↔ Kolmogorov-
Smirnov test statistic; dK ([α ] ,E)↔Mann-Whitney test statistic; dH ([α ] ,E)↔Mood “me-
dian test” statistic for equal sample sizes (m = n). For the Chebyshev distance Stoimen-
ova [73] derived dM ([α ] ,E) = max{am−m,m+ 1−am+1}, where am is the maximal rank
in {α(1),α(2), . . . ,α(m)} and am+1 is the minimal rank in {α(m+1),α(m+2), . . . ,α(m+

n)}.

5.2 Rank test statistic based on Lee distance

The goal of this section is to derive and study the rank test statistic in (5.3) induced by the
Lee distance. Since dL (·, ·) is right-invariant, it follows that

dL ([α ] ,E) = min
π∈[α ]
σ∈E

dL(π ,σ) = min
π∈[α ]

dL(π ,e)

= min
π∈[α ]

{
m+n

∑
i=1

min (| a(i)− i |,m+ n− | a(i)− i |)

}
, (5.4)

where e = 〈1,2, . . . ,m+ n〉 is the identity permutation. After solving the optimal problem
(5.4), dL ([α ] ,E) can be expressed as

dL ([α ] ,E) =

∑
i∈Km

min
(
| α(i)− γ

−1
n (k+ 1− γm (α(i))) |,m+ n− | α(i)− γ

−1
n (k+ 1− γm (α(i))) |

)
+ ∑

i∈Kn

min
(
| α(i)− γ

−1
m (k+ 1− γn (α(i))) |,

m+ n− | α(i)− γ
−1
m (k+ 1− γn (α(i))) |

)
= 2 ∑

i∈Km

min
(
| α(i)− γ

−1
n (k+ 1− γm (α(i))) |,

m+ n− | α(i)− γ
−1
n (k+ 1− γm (α(i))) |

)
(5.5)

where

Km = {i ∈ {1,2, . . . ,m} : α(i) > m} , (5.6)

Kn = {i ∈ {m+ 1,m+ 2, . . . ,m+ n} : α(i) ≤ m} ,
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k is the number of elements of Km (k =| Km |=| Kn |), γm (α(i)) is the rank of α(i) among
{α(i) : i ∈ Km}, γn (α(i)) is the rank of α(i) among {α(i) : i ∈ Kn} and γ−1 is the inverse of
γ , i.e. γ−1 (γ (α (i))) = α (i). Since dL ([α ] ,E) is equivalent to the rank statistic

Lm,n :=
dL ([α ] ,E)

2
, (5.7)

Lm,n can be used for testing H0 against the alternative H1.

5.3 Properties of Lm,n

There is an interpretation of the test statistic Lm,n in terms of graph theory. Let C be a simple
cycle graph with vertices {i}m+n

i=1 and edges
⋃m+n−1

i=1 {i, i+ 1} and {m+ n,1}. Then Lm,n is
the minimum sum of distances over C between the elements of Km and the elements of Kn.
An example when m = 6, n = 4, Km = {3,5} and Kn = {8,9} is illustrated on Figure 5.1. In
this case Lm,n = (10− | 3−9 |)+ | 5−8 |= 4+ 3 = 7.

1

2

3

4

5

6

7

8

9

10

FIGURE 5.1: Cyclic graph and Lee distance

The value of Lm,n depends not only on the elements in Km and Kn, but also on the way
in which their elements are paired. Formula (5.5) gives that the minimal sum of distances
between pairwise elements of Km and Kn is obtained when the smallest element of Km is
combined with the largest element of Kn, the second smallest element of Km is combined with
the second largest element of Kn, . . . , the largest element of Km is combined with the smallest
element of Kn. Using this fact the distribution of the test statistic could be calculated for fixed
number k of elements in Km and Kn, k =| Km |=| Kn |. Let [Km×Kn]

∗ be the described above
set of pairs and s− 1 be the number of pairs (x,y) ∈ [Km×Kn]

∗ for which the shortest path
on C goes over the edge {m,m+ 1}. Obviously, s is between 1 and k+ 1. If for some pair
(x,y) ∈ [Km×Kn]

∗ the paths over {m,m+ 1} and over {m+ n,1} are with the same length,
then the path over {m+n,1} is considered to be the shortest. For i = 0,1, . . . ,s−1 let a(m)

i be
the number of elements in {1,2, . . . ,m}\Km which are in the shortest path of exactly i pairs
(x,y) ∈ [Km×Kn]

∗ connected by the edge {m,m+ 1}. For j = 1,2, . . . ,k− s+ 1 let b(m)
j be

the number of elements in {1,2, . . . ,m}\Km which are in the shortest path of exactly j pairs
(x,y) ∈ [Km×Kn]

∗ connected by the edge {m+ n,1}. Similarly the numbers {a(n)i }
s−1
i=0 and
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{b(n)j }
k−s+1
j=1 are defined for the set {m+ 1,m+ 2, . . . ,m+ n}\Kn. An illustration of the used

notation is shown on Figure 5.2. For the considered example on Figure 5.1, m = 6, n = 4,
[Km×Kn]

∗= {(3,9) , (5,8)}, s= 2, a(m)
0 = 1=| {4} |, a(m)

1 = 1=| {6} |, b(m)
1 = 2=| {1,2} |,

a(n)0 = 0, a(n)1 = 1 =| {7} | and b(n)1 = 1 =| {10} |.

FIGURE 5.2: An illustration of the notations

The following proposition shows that Lm,n can be determined by counting all possible
values of s, {a(m)

i }
s−1
i=0 , {a(n)i }

s−1
i=0 , {b(m)

j }
k−s+1
j=1 and {b(n)j }

k−s+1
j=1 .

Proposition 5.1. Let Lm,n be defined by (5.7) and Hm,n =| Km |=| Kn | be the number of
elements of the set Km, defined by (5.6). Then the joint distribution of Lm,n and Hm,n under
the null hypothesis is given by

P (Lm,n = l,Hm,n = k) =


m!n!

(m+ n)!
, for l = 0 and k = 0

∑
s

∑
a,b

m!n!
(m+ n)!

, for 1≤ k ≤min(m,n) and
(5.8)

[
k2 + 1

2

]
≤ l ≤

[
(m+ n− k)k+ 1

2

]
, where [x] is the integer part of x. The first summation

in (5.8) is taken over all s such that 1 ≤ s ≤ k + 1 and (s−1)2 + (k− s+ 1)2 ≤ l. The
second summation is over all nonnegative integers {a(m)

i }
s−1
i=0 , {a(n)i }

s−1
i=0 , {b(m)

j }
k−s+1
j=1 and

{b(n)j }
k−s+1
j=1 that satisfy:

(i)
s−1

∑
i=0

a(m)
i +

k−s+1

∑
j=0

b(m)
j = m− k (ii)

s−1

∑
i=0

a(n)i +
k−s+1

∑
j=0

b(n)j = n− k

(iii) l = (s−1)2 +(k− s+ 1)2 +
s−1

∑
i=0

i
(

a(m)
i + a(n)i

)
+

k−s+1

∑
j=0

j
(

b(m)
j + b(n)j

)
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(iv) 2 (s−1)+
s−1

∑
i=0

(
a(m)

i + a(n)i

)
≥ 2 (k− s)+

k−s+1

∑
j=0

(
b(m)

j + b(n)j

)
, if s ∈ {1,2, . . . ,k}

(v) 2 (s−2)+
s−1

∑
i=1

(
a(m)

i + a(n)i

)
< 2 (k− s+ 1)+ a(m)

0 + a(n)0 +
k−s+1

∑
j=0

(
b(m)

j + b(n)j

)
,

if s∈ {2,3, . . . ,k+1}. The integers b(m)
0 and b(n)0 are defined to be zeros, b(m)

0 := 0, b(n)0 := 0,
for completeness in conditions (i)-(v).

Although the joint distribution of Lm,n and Hm,n is given in Proposition 5.1, for large val-
ues of m and n the computational process of checking conditions (i)-(v) for all possible non-
negative integers {a(m)

i }
s−1
i=0 , {a(n)i }

s−1
i=0 , {b(m)

j }
k−s+1
j=1 and {b(n)j }

k−s+1
j=1 is time-consuming and

requires a large amount of computational resources. Next proposition gives recursive relation
of the number of terms in (5.8) which significantly decreases the computational complexity
of formula (5.8).

Proposition 5.2. Let N(m,n,k, l) := (m+n)!
m!n! P (Lm,n = l,Hm,n = k), i.e. N(m,n,k, l) is the

number of terms of the summations in (5.8). Then for m,n≥ 2

N(m,n,k, l) =



N (m−1,n,k, l) + N (m,n−1,k, l)

+N
(
m−1,n−1,k−1, l− m+n−1

2
)
− N (m−1,n−1,k, l)

, if m+ n is odd

N (m−1,n,k, l) + N (m,n−1,k, l)

+N (m−1,n−1,k, l−1) − N (m−1,n−1,k, l)

−N (m−2,n−1,k, l−1) − N (m−1,n−2,k, l−1)

+N (m−2,n−2,k, l−1) − N
(
m−2,n−2,k−1, l− m+n−2

2
)

+N
(
m−2,n−1,k−1, l− m+n

2
)
+ N

(
m−1,n−2,k−1, l− m+n

2
)

+N (m−2,n−2,k−2, l−m−n+ 2) + N
(
m−2,n−2,k−1, l− m+n

2
)

, if m+ n is even.

(5.9)

Proof. It is not hard to check that if a(m)
0 6= 0 or a(n)0 6= 0 then the number of terms in (5.8) is

N (m−1,n,k, l) + N (m,n−1,k, l)− N (m−1,n−1,k, l). In the case when m+n is odd, the
number of terms in (5.8) for which a(m)

0 = 0 and a(n)0 = 0 is N
(
m−1,n−1,k−1, l− m+n−1

2

)
.

Thus, the first case of relation (5.9) is proved. Let us consider the case when m+ n is even
and let R (m,n,k, l) be the number of terms in (5.8) for which a(m)

0 = 0, a(n)0 = 0 and

2 (s−1)+
s−1

∑
i=0

(
a(m)

i + a(n)i

)
= 2 (k− s)+

k−s+1

∑
j=0

(
b(m)

j + b(n)j

)
,

i.e. R (m,n,k, l) is the number of all possible combinations for which Lm,n = l, Hm,n = k
and there is a pair (x,y) ∈ [Km×Kn]

∗ such that the distance between x and y on the cycle
graph C is exactly m+n−2

2 . The other possible combinations with a(m)
0 = 0 and a(n)0 = 0 are

obtained when there are two pairs (x1,y1) ∈ [Km×Kn]
∗ and (x2,y2) ∈ [Km×Kn]

∗ such that
the distance between xi and yi on C is exactly m+n−4

2 for i = 1,2. Thus, by using simple
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combinatorial reasoning it follows that when m+ n is even

N (m,n,k, l) = N (m−1,n,k, l) + N (m,n−1,k, l) − N (m−1,n−1,k, l)

+ R (m,n,k, l) + R
(

m−1,n−1,k−1, l− m+ n−2
2

)
− R (m−1,n−1,k, l)

(5.10)

and

N
(

m−1,n−1,k−1, l− m+ n
2

)
−R

(
m−1,n−1,k−1, l− m+ n

2

)
= R (m,n,k, l) − R (m,n,k, l−1) . (5.11)

From (5.10) and (5.11) it follows that

R (m,n,k, l) − R (m,n,k, l + 1) = N (m,n,k, l) − N (m−1,n,k, l) − N (m,n−1,k, l)

+ N (m−1,n−1,k, l) − N
(

m−1,n−1,k−1, l− m+ n−2
2

)
(5.12)

Substituting R (m,n,k, l) from (5.11) to (5.10) gives

N (m,n,k, l) = N (m−1,n,k, l) + N (m,n−1,k, l) − N (m−1,n−1,k, l)

+ R
(

m−1,n−1,k−1, l− m+ n−2
2

)
− R

(
m−1,n−1,k−1, l− m+ n

2

)
+ R (m,n,k, l−1) − R (m−1,n−1,k, l) + N

(
m−1,n−1,k−1, l− m+ n

2

)
(5.13)

The second case of formula (5.9) is obtained by combining (5.12) and (5.13), which com-
pletes the proof.

From Proposition 5.2 it follows that formula (5.9) combined with the initial condition
N(m,n,0,0) = 1 can be used to calculate the joint distribution of Lm,n and Hm,n for large
values of m and n. The statistic Hm,n is equivalent to Mood’s statistic derived by Critchlow’s
method and based on Hamming distance. Since Hm,n is the number of elements of Km, the
marginal distribution Hm,n under the null hypothesis H0 is hypergeometric with parameters
m+ n, m and n, i.e. Hm,n ∼ HG(m+ n,m,n) and

P (Hm,n = k) =

(
m
k

)(
n

n− k

)
(

m+ n
n

) , for k = 0,1, . . . ,min(m,n).
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Given the joint distribution of Lm,n and Hm,n the distribution of Lm,n under the null hy-
pothesis is presented by

P (Lm,n = l) =


m!n!

(m+ n)!
, for l = 0

∑
k

P (L = l,K = k) , for l = 1,2, . . . ,
[

mn+ 1
2

]
,

(5.14)

where the sum is over all k ∈ {1,2, . . . ,min(m,n)} for which[
k2 + 1

2

]
≤ l ≤

[
(m+ n− k)k+ 1

2

]
.

The following proposition can easily be proved by combining (5.14) and Proposition 5.2.

Proposition 5.3. The probability mass function of Lm,n under the null hypothesis H0 is given
by

P (Lm,n = l) =



m
m+n P (Lm−1,n = l) + n

m+n P (Lm,n−1 = l)

+ mn
(m+n)(m+n−1)

[
P
(
Lm−1,n−1 = l− m+n−1

2
)
− P (Lm−1,n−1 = l)

] , if m+ n is odd

m
m+n P (Lm−1,n = l) + n

m+n P (Lm,n−1 = l)

+ mn
(m+n)(m+n−1) [P (Lm−1,n−1 = l−1) − P (Lm−1,n−1 = l)]

+ mn(m−1)
(m+n)(m+n−1)(m+n−2)

[
P
(
Lm−2,n−1 = l− m+n

2
)
− P (Lm−2,n−1 = l−1)

]
+ mn(n−1)

(m+n)(m+n−1)(m+n−2)

[
P
(
Lm−1,n−2 = l− m+n

2
)
− P (Lm−1,n−2 = l−1)

]
+ mn(m−1)(n−1)

(m+n)(m+n−1)(m+n−2)(m+n−3)P (Lm−2,n−2 = l−1)

− mn(m−1)(n−1)
(m+n)(m+n−1)(m+n−2)(m+n−3)P

(
Lm−2,n−2 = l− m+n−2

2
)

− mn(m−1)(n−1)
(m+n)(m+n−1)(m+n−2)(m+n−3)P

(
Lm−2,n−2 = l− m+n

2
)

+ mn(m−1)(n−1)
(m+n)(m+n−1)(m+n−2)(m+n−3)P (Lm−2,n−2 = l−m−n+ 2)

, if m+ n is even.

(5.15)
for l = 0,1, . . . ,

[mn+1
2

]
and m,n≥ 2.

The mean and variance of Lm,n can be derived by using recursive relation (5.15). The
results are presented in Theorem 5.1, which is proved in Appendix E.

Theorem 5.1. Let Lm,n be defined by (5.7). Then the mean and variance of Lm,n under the
null hypothesis H0 are

E (Lm,n) =


mn(m+n+1)

4(m+n) , if m+ n is odd

mn(m+n)
4(m+n−1) , if m+ n is even

(5.16)

Var (Lm,n) =


mn{(m+n)4−(m+n)3+7(m+n)2−15(m+n)−6mn(m+n−1)}

48(m+n)2(m+n−2) , if m+ n is odd

mn{(m+n−1)4+11(m+n−1)2−24(m+n−1)−6mn(m+n−2)}
48(m+n−1)2(m+n−3) , if m+ n is even

, (5.17)

Furthermore, under the null hypothesis H0 the standardized statistic Lm,n−E(Lm,n)√
Var(Lm,n)

has asymp-

totically normal distribution as m,n→ ∞.
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5.4 Simulation study

In this section, we perform an illustrative simulation study in order to compare the power of
the test statistic Lm,n in (5.7) with other statistics for two-samples. The rank test procedure
presented in Section 5.2 is compared to Wilcoxon, Kolmogorov-Smirnov and Mood’s tests.
More details and an elaborate description of these nonparametric rank procedures can be
found in Gibbons and Chakraborti [27]. We also included the t-test in this analysis since it
is the uniformly most powerful unbiased test when the populations are normally distributed.
Many researchers, see e.g. Tiku et al. [75] and Marozzi [48], showed that the t-test maintains
its type-I error rate close to the nominal level α , even for non-normally distributed samples
with moderate sizes, except for samples from very heavy-tailed distributions like the Cauchy,
where the sample mean is not useful to assess the location aspect.

In order to study these tests under diverse hypothesis in terms of the corresponding under-
lying distributions, we used the t-distributions since they have heavy-tails when the degrees
of freedom (DF) are small and converge to the standard normal distribution when DF → ∞

(see Chapter 28 in Johnson et al. [37]). The comparison analysis is constructed from Monte
Carlo simulations of two samples with sizes m = 100 and n = 100 from t-distributions with
different degrees of freedom (DF = 1,1.5,2,5,10,∞). For a given value of DF , we fixed the
distribution of the first sample to have mean 0 and let the mean varies from 0 to 1 (with step
0.01) for the second sample. For each settings, 100 000 trails of two samples are generated
and the power of a given testing procedure is estimated by the ratio of the correctly rejected
null hypothesis H0 in (5.1) to the total number of trails (=100 000). The results obtained for
nominal level α = 0.05 are shown on the figures below.
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Not surprisingly, the power of all tests is close to the nominal level α = 0.05 when the two
samples have equal means and approaches 1 when the difference between the mean values
increases. Notice that when the degrees of freedom (DF) are small the power of the t-test
increases remarkably slower compared to the nonparametric tests and to the cases of large
values of DF . This could be explained by the assumptions of the t-test which is designed to
be most powerful for two normal samples (DF = ∞) and faces problems with heavy-tailed
distributions, for example the Cauchy distribution (DF = 1). In this sense, the power of the
t-test is not very robust for non-normal distributions, especially for very heavy-tailed ones.

Since the nonparametric test methods are prized for their lack of assumptions concerning
the underlying distributions, they are appropriate for situations where outliers or “broad-tails”
could be potentially observed. It is worth mentioning that the test statistics in Wilcoxon,
Kolmogorov-Smirnov and Mood’s tests and Lm,n in (5.7) are based on ranks and are not
computationally or time demanding. The result of Theorem 5.1 gives a normal approximation
of the distribution of Lm,n under the null hypothesis and thus it is not hard to find the critical
region when m and n are large. From our empirical experience we recommend to apply the
normal approximation when m,n≥ 20. Otherwise, formula (5.15) can be used for computing
the critical region.

From the results presented on the figures above, we can notice that the test based on Lee
distance is more powerful than the others when the generating distributions have heavy-tails.
When the degrees of freedom increase to infinity (corresponding to standard normal distri-
bution) we see that the test procedures are ordered with respect to their power in a reverse
manner, i.e. the t-test is the most powerful followed by Wilcoxon test, Komogorov-Smirnov
test (KS-test), Mood’s test and Lee test. Hence, from the simulation study we can conclude
that in the testing procedures for the two-sample location problem there is a trade-off be-
tween the testing power and the robustness with respect to the underlying distributions. In
this regard, the nonparametric rank test based on Lee distance gives a new testing procedure
which inherits the robust properties of Lee distance and is more powerful in the heavy-tailed
case.
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Appendix A

Main contributions

The main accomplishments in the thesis due to the author are listed below.

1. The random variable induced by Lee distance under uniformity of the rankings is stud-
ied in details and some of its characteristics such as mean, variance, range and symme-
try are given for an arbitrary size of the rank vectors (see Section 1.2). An asymptotic
normality for the corresponding distribution is proved and used to approximate the nor-
malizing constant in the Distance-based probability model for rank data. This result
could be also applied to other models for rankings which are based on Lee distance
(see Theorem 1.2 and Section 2.1).

2. The Expectation-Maximization (EM) algorithm for computing the maximum likeli-
hood estimates of the parameters in the Latent-class Distance-based model is gen-
eralized for the case where the modal rankings of the latent classes are unknown (see
Section 2.4). The convergence of the proposed algorithm to a stationary point is proved
and the method is applied to the to the well-studied APA election dataset (see Propo-
sition 2.1 and Subsection 2.5.3). By using the EM algorithm we can fit the model to
the data, make statistical inference and compare models based on different distances
on permutations (see Subsection 2.4.3).

3. An asymptotic approximation of the normalizing constant used in the measure of
“tightness” is given for the “K-means” rank clustering based on Lee distance (see
Corollary 3.1). The obtained result reduces the computational time and resources for
calculating the “tightness” coefficient when there are two clustering groups (K = 2)
and the size of the rank vectors is relatively large (N ≥ 7).

4. The Mallows’ model is proposed as an alternative model for imperfect ranking in the
framework of balanced ranked set sampling (RSS). An EM algorithm for estimating
the unknown parameter in the model is described and its convergence to a stationary
point is shown (see Sections 4.3 and 4.4). Asymptotic results for the corresponding
probability error matrices based on Spearman’s footrule, Spearman’s rho and Lee dis-
tance are derived for the case when the size of each cycle of the RSS is too large (see
Theorems 4.1, 4.2 and 2.1). The proposed alternative model can be used to study the
effect of imperfect ranking on the performance of some statistical procedures based on
RSS and to compare the ranking abilities of two judges or ranking methods.

5. The nonparametric rank statistic based on Critchlow’s method and Lee distance is de-
rived for the two-sample location problem. Asymptotic normality of the obtained test
statistic under the null hypothesis is proved and can be used for finding the critical re-
gions when the samples sizes are too large (see Section 5.2 and Theorem 5.1). The Lee
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test statistic is shown to be more powerful for heavy-tailed underlying distributions via
a simulation study (see Section 5.4).
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Appendix C

Approbation of the thesis

The results from the thesis have been presented in the following talks:

1. “Lee distance in two-sample rank tests”, 11-th International Conference: Computer
Data Analysis and Modeling, Minsk, Belarus (September 7, 2016).

2. “Mallows’ models based on Lee distance”, 20-th European Young Statisticians Meet-
ings, Uppsala, Sweden (August 17, 2017).

3. “Mallows’ models for imperfect rankings in ranked set sampling”, 13-th International
Conference on Ordered Statistical Data Cadiz, Spain (May 22, 2018).

4. “Some properties of Lee distance in two-sample location problem”, 18-th International
Summer Conference on Probability and Statistics, Pomorie, Bulgaria (June 27, 2018).

5. “Rank data models based on Lee distance”, International Conference on Trends and
Perspectives in Linear Statistical Inference, Bedlewo, Poland (August 21, 2018).

6. “Two-sample rank test based on Lee distance”, 15-th Applied Statistics International
Conference, Ribno, Slovenia (September 24, 2018).

7. “Distance-based models for imperfect ranking in ranked set sampling”, XLIV Mathe-
matical Statistics Conference, Bedlewo, Poland (December 3, 2018).

8. “Rank data clustering based on Lee distance”, 13-th Annual Meeting of the Bulgarian
Section of SIAM, Sofia, Bulgaria (December 19, 2018).
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Appendix E

Proofs

E.1 Proofs – Chapter 2

In order to prove Theorem 2.1, let us consider the random variables DN,k = dL (π ,eN),
where k = 1,2, . . . ,N and π is randomly selected from SN,k = {σ ∈ SN : σ(N) = k}, i.e.
π ∼Uni f orm(SN,k). Then, for fixed k,

DN,k(π) =
N

∑
i=1

cN(π(i), i) =
N−1

∑
i=1

cN(π(i), i)+ cN(k,N) =
N−1

∑
i=1

c̃N(σ(i), i)+ cN(k,N) ,

where σ ∈ SN−1 and for i, j = 1,2, . . . ,N−1,

σ(i) =

{
π(i), if π(i) < k

π(i)−1, if π(i) > k,
c̃N( j, i) =

{
cN( j, i), if j < k

cN( j+ 1, i), if j ≥ k.
(E.1)

Lemma E.1. Let D̃N−1 (σ) =
N−1

∑
i=1

c̃N(σ(i), i), where σ ∼Uni f orm(SN−1) and c̃N(·, ·) is as

in (E.1). Then the distribution of D̃N−1 is asymptotically normal and the mean and variance
of D̃N−1 are

E (D̃N−1) =
cN(k,N)

N−1
+

N−2
N−1

[
N + 1

2

][
N
2

]
,

Var (D̃N−1) =

N2 (cN (k,N))2−2N
[

N + 1
2

][
N
2

]
cN (k,N)

(N−2) (N−1)2 +βN−1,

where

βN−1 =


N2
(
N3−2N2 + 10N−12

)
48(N−1)2 , for N even

(N + 1)
(
N3−3N2 + 6N−6

)
48(N−2)

, for N odd.

(E.2)
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Proof. From (1.7) of Theorem 1.1 and formulas (E.1) and (1.11), it follows that

E (D̃N−1)
(1.7)
=

1
N−1

N−1

∑
i=1

N−1

∑
j=1

c̃N(i, j)
(E.1)
=

1
N−1

N

∑
i=1
i6=k

N−1

∑
j=1

cN(i, j)

=
1

N−1

N

∑
i=1

N

∑
j=1

cN(i, j)− 1
N−1

N

∑
i=1

cN(i,N)− 1
N−1

N

∑
j=1

cN(k, j)+
cN(k,N)

N−1

(1.11)
=

N
N−1

[
N + 1

2

][
N
2

]
− 1

N−1

[
N + 1

2

][
N
2

]
− 1

N−1

[
N + 1

2

][
N
2

]
+

cN(k,N)

N−1

=
cN(k,N)

N−1
+

N−2
N−1

[
N + 1

2

][
N
2

]
.

Using (1.8) of Theorem 1.1,

Var (D̃N−1) =
1

N−2

N−1

∑
i=1

N−1

∑
j=1

b̃2
N(i, j) =

1
N−2

N

∑
i=1
i 6=k

N−1

∑
j=1

b2
N(i, j), where

bN(i, j) = cN(i, j)−
N

∑
g=1
g6=k

cN(g, j)
N−1

−
N−1

∑
h=1

cN(i,h)
N−1

+
1

(N−1)2

N

∑
g=1
g6=k

N−1

∑
h=1

cN(g,h), (E.3)

for i, j = 1,2, . . . ,N. Simplifying expression (E.3) gives

bN(i, j) = cN(i, j)+
cN(i,N)+ cN(k, j)

N−1
+

cN(k,N)

(N−1)2 −
N

(N−1)2

[
N + 1

2

][
N
2

]
. (E.4)

When N is even, the variance of D̃N−1 can be calculated by

Var (D̃N−1) =
1

N−2

N

∑
i=1
i6=k


k−N

2

∑
j=1

b2
N(i, j)+

N
2

∑
j=k−N

2 +1

b2
N(i, j)+

k

∑
j= N

2 +1

b2
N(i, j)

+
N−1

∑
j=k+1

b2
N(i, j)

}
=

1
N−2

(Q1 +Q2 +Q3 +Q4) ,

where the summation
l2

∑
j=l1

= 0, if l1 > l2. Since the computations for Q1, Q2, Q3 and Q4 are

similar, only the steps for Q1 are presented herein.

Q1 =
N

∑
i=1
i 6=k

k−N
2

∑
j=1

b2
N(i, j) =

k−N
2

∑
j=1

N

∑
i=1
i 6=k

b2
N(i, j) =

k−N
2

∑
j=1

 j−1

∑
i=1

b2
N(i, j)+

N
2

∑
i= j

b2
N(i, j)

+

N
2 + j−1

∑
i= N

2 +1

b2
N(i, j)+

N

∑
i= N

2 + j

b2
N(i, j)−b2

N(k, j)

= Q(1)
1 +Q(2)

1 +Q(3)
1 +Q(4)

1 −Q(5)
1 ,
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where

Q(1)
1 =

k−N
2

∑
j=1

j−1

∑
i=1

b2
N(i, j) =

k−N
2

∑
j=1

j−1

∑
i=1

(
j− i+

i+(N− k+ j)
N−1

+BN(k)
)2

,

Q(2)
1 =

k−N
2

∑
j=1

N
2

∑
i= j

b2
N(i, j) =

k−N
2

∑
j=1

N
2

∑
i= j

(
i− j+

i+(N− k+ j)
N−1

+BN(k)
)2

,

Q(3)
1 =

k−N
2

∑
j=1

N
2 + j−1

∑
i= N

2 +1

b2
N(i, j) =

k−N
2

∑
j=1

N
2 + j−1

∑
i= N

2 +1

(
i− j+

N− i+(N− k+ j)
N−1

+BN(k)
)2

,

Q(4)
1 =

k−N
2

∑
j=1

N

∑
i= N

2 + j

b2
N(i, j) =

k−N
2

∑
j=1

N

∑
i= N

2 + j

(
N− i+ j+

N− i+(N− k+ j)
N−1

+BN(k)
)2

,

Q(5)
1 =

k−N
2

∑
j=1

b2
N(k, j) =

k−N
2

∑
j=1

(
N− k+ j+

N− k+(N− k+ j)
N−1

+BN(k)
)2

,

for BN(k) =
cN(k,N)

(N−1)2 −
N

(N−1)2

[
N + 1

2

][
N
2

]
=

4(N− k)−N3

4 (N−1)2 and
l2

∑
i=l1

= 0, if l1 > l2.

The calculation of Q1 is completed by repeatedly using the formula

n

∑
i=1

(i−a)2 = na2 +
n(n+ 1)(2n+ 1−6a)

6
(E.5)

for appropriate values of a and n.
The quantities Q2, Q3 and Q4 can be decomposed and calculated in a similar fashion as

shown for Q1. The final result for the variance of D̃N−1, when N is even, is

Var (D̃N−1) =
2N2 (cN (k,N))2−N3cN (k,N)

2 (N−2) (N−1)2 +
N2
(
N3−2N2 + 10N−12

)
48(N−1)2 .

The variance Var (D̃N−1), when N is odd, can be obtained by decomposing it to four decom-
posable double sums and applying formula (E.5), as in the case when N is even.

From (E.4) and (1.3), it follows that

max
1≤i, j≤N

b2
N(i, j) ≤

[N
2

]
+

[
N
2

]
+

[
N
2

]
N−1

+

[
N
2

]
(N−1)2 −

N

(N−1)2

[
N + 1

2

][
N
2

]
2

.

By using (E.2),

1
N−1

N−1

∑
i=1

N−1

∑
j=1

b̃2
N(i, j) =

N−2
N−1

Var (D̃N−1) ≥
N−2
N−1

βN−1 = N3
(

1
48

+O
(

1
N

))
,
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where lim
N→∞

O
(

1
N

)
= 0. Therefore,

lim
N→∞

max
1≤i, j≤N−1

b̃2
N(i, j)

1
N

N−1

∑
i=1

N−1

∑
j=1

b̃2
N(i, j)

≤ lim
N→∞

N2
( 1

16 +O
( 1

N

))
N3
( 1

48 +O
( 1

N

)) = 0,

i.e. the condition (1.9) of Theorem 1.1 is fulfilled and the distribution of D̃N−1 is asymptoti-
cally normal.

Proof of Theorem 2.1. From (2.2), (2.7) and (2.3), it follows that

mi j(θ ,N) = ∑
π(i)= j

exp (θd(π ,eN)−ψN(θ )) =
(N−1)!g̃N−1(θ )

N!gN(θ )
=

1
N

g̃N−1(θ )

gN(θ )
,

where gN(·) and g̃N−1(·) are the moment generating functions of DL(π) and Di, j(σ), for
π ∼ Uni f orm(SN) and σ ∼ Uni f orm(Si, j). Since Di, j depends on i and j only through
cN(i, j), the random variables Di, j and DN,k are identically distributed for k = N− cN(i, j).
From Theorem 1.2 and Lemma E.1, gN(·) and g̃N−1(·) can be approximated, so

mi j(θ ,N)
N

exp
(

θ µ +
θ 2ν2

2

) −−−→
N→∞

1,

where µ = E (Di, j)−E (DL) and ν2 = Var (Di, j)−Var (DL).
According to Lemma E.1,

E (Di, j) =
cN(i, j)
N−1

+
N−2
N−1

[
N + 1

2

][
N
2

]
+ cN(i, j),

Var (Di, j) =

N2 (cN (i, j))2−2N
[

N + 1
2

][
N
2

]
cN (i, j)

(N−2) (N−1)2 +βN−1.

The values of µ and σ are obtained by combining the results above with formulas (1.11) and
(1.13).

E.2 Proofs – Chapter 4

Consider the random variables based on Spearman’s footrule and Spearman’s rho:

DF (π) =
k

∑
s=1
| π(s)− s | and DR (π) =

k

∑
s=1

(π(s)− s)2 ,
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where π ∼Uni f orm(Sk). By applying Theorem 1.1 to DF and DR (see, e.g., Marden [47,
p.83]) it can be shown that DF and DR are asymptotically normal with means and variances:

E (DF) =
1
k

k

∑
r=1

k

∑
s=1
| r− s |= k2−1

3
, Var (DF) =

(k+ 1)
(
2k2 + 7

)
45

, (E.6)

E (DR) =
1
k

k

∑
r=1

k

∑
s=1

(r− s)2 =
k
(
k2−1

)
6

, Var (DR) =
k2(k−1) (k+ 1)2

36
. (E.7)

In order to prove Theorem 4.1, let us define the random variables D(i, j)
F = dF (π ,ek)

for i, j = 1,2, . . . ,k, where dF(·, ·) is Spearman’s footrule, and π is uniformly and randomly
selected from S(i, j)

k = {σ ∈ Sk : σ( j) = i}, i.e. π ∼Uni f orm
(

S(i, j)
k

)
. Then, for a fixed pair

(i, j),

D(i, j)
F =

k

∑
s=1
| π(s)− s |=

k

∑
s=1
s6= j

| π(s)− s |+ | i− j |=
k−1

∑
s=1

ãk(σ(s),s)+ | i− j | ,

where

σ(s) =


π(s), if s < j and π(s) < i,

π(s)−1, if s < j and π(s) > i,

π(s+ 1), if s≥ j and π(s+ 1) < i,

π(s+ 1)−1, if s≥ j and π(s+ 1) > i,

(E.8)

and

ãk(r,s) =


| r− s |, if s < j and r < i,

| r+ 1− s |, if s < j and r ≥ i,

| r− s−1 |, if s≥ j and r < i,

| r+ 1− s−1 |, if s≥ j and r ≥ i,

(E.9)

for r,s = 1,2, . . . ,k−1 and π ∼Uni f orm
(

S(i, j)
k

)
.

Lemma E.2. Let D̃F (σ) =
k−1

∑
s=1

ãk(σ(s),s), where σ(·) and ãk(·, ·) are given in (E.8) and

(E.9), respectively. Then the distribution of D̃F is asymptotically normal with mean and
variance

E (D̃F) =
k(k+ 1)

3
− f (i)+ f ( j)− | i− j |

k−1
, (E.10)

Var (D̃F) =
1

k−2


k

∑
r=1
r 6=i

k

∑
s=1
s6= j

[
| r− s |+k(k+ 1)

3(k−1)
− f (r)+ f (s)− | i− s | − | r− j |

k−1

− f (i)+ f ( j)− | i− j |
(k−1)2

]2
}

, (E.11)

where

f (x) =
x(x−1)+ (k− x)(k− x+ 1)

2
.
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Proof. From the definition of σ in (E.8) it is easy to check that σ ∼ Uni f orm(Sk−1) for
π ∼Uni f orm

(
S(i, j)

k

)
. Therefore, Theorem 1.1 can be applied to the random variable D̃F .

By using (1.7), (E.9) and the expectation in (E.6), it follows that

E (D̃F)
(1.7)
=

1
k−1

k−1

∑
r=1

k−1

∑
s=1

ãk(r,s)
(E.9)
=

1
k−1

k

∑
r=1
r 6=i

k

∑
s=1
s 6= j

| r− s |

=
1

k−1

k

∑
r=1

k

∑
s=1
| r− s | − 1

k−1

k

∑
r=1
| r− j | − 1

k−1

k

∑
s=1
| i− s |+ | i− j |

k−1

(E.6)
=

k(k+ 1)
3

− f (i)+ f ( j)− | i− j |
k−1

,

where

f (x) =
k

∑
r=1
| r− x |= x(x−1)+ (k− x)(k− x+ 1)

2
, (E.12)

for x = 1,2, . . . ,k. Using (1.8) of Theorem 1.1,

Var (D̃F) =
1

k−2

k

∑
r=1
r 6=i

k

∑
s=1
s6= j

b̃2
k(r,s), (E.13)

where

b̃k(r,s) =| r− s | −
k

∑
l=1
l 6=i

| l− s |
k−1

−
k

∑
m=1
m 6= j

| r−m |
k−1

+
1

(k−1)2

k

∑
l=1
l 6=i

k

∑
m=1
m 6= j

| l−m |,

for r,s = 1,2, . . . ,k. Simplifying this expression gives

b̃k(r,s) =| r− s | − f (r)+ f (s)− | i− s | − | r− j |
k−1

+
k(k+ 1)
3(k−1)

− f (i)+ f ( j)− | i− j |
(k−1)2 .

(E.14)
The variance of D̃F given in (E.11) is obtained by substituting (E.14) in formula (E.13).

From (E.12) it is easy to check that

k2−1
4
≤ f (x) ≤ k(k−1)

2
for 1≤ x≤ k. (E.15)

Combining
1≤| x− y |≤ k−1 for 1≤ x,y≤ k,

with (E.14) and (E.15), it follows that

| r− s | −2k
3
+ ε1 ≤ b̃k(r,s) ≤| r− s | −k

6
+ ε2,

where r,s = 1,2, . . . ,k, lim
k→∞

ε1

k
= 0 and lim

k→∞

ε2

k
= 0. Therefore, there exists a constant c1 > 0

such that
max

1≤r,s≤k
b̃2

k(r,s) ≤ c1k2, (E.16)
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and a number N > 0 such that for k ≥ N

| r− s | −k ≤ b̃k(r,s) ≤| r− s | −k
7

.

Suppose that r is a fixed index from the set {1,2, . . . ,k}. Then for k ≥ N

k

∑
s=1
s6= j

b̃2
k(r,s) =

k

∑
s=1

b̃2
k(r,s)− b̃2

k(r, j) ≥
k/7

∑
|r−s|=0

b̃2
k(r,s)− b̃2

k(r, j) ≥
k/7

∑
v=0

(
v− k

7

)2

− b̃2
k(r, j),

where
k/7

∑
|r−s|=0

is a summation over all values of s such that 0 ≤| r− s |≤ k
7

. Thus, for k ≥ N

there exists a constant c2 > 0 such that

k

∑
s=1
s6= j

b̃2
k(r,s) ≥ c2k3 . (E.17)

By using (E.16) and (E.17),

lim
k→∞

max
1≤r,s≤k

b̃2
k(r,s)

1
k−1

k

∑
r=1
r 6=i

k

∑
s=1
s 6= j

b̃2
k(r,s)

≤ lim
k→∞

c1k2

1
k−1

k

∑
r=1
r 6=i

c2k3

= 0,

i.e. the condition (1.9) of Theorem 1.1 is fulfilled and the distribution of D̃F is asymptotically
normal.

Similarly to
{

D(i, j)
F

}k

i, j=1
, consider the random variables D(i, j)

R = dR
(
π ,ek

)
based on

Spearman’s rho. For a fixed pair (i, j),

D(i, j)
R =

k

∑
s=1

(
π(s)− s

)2
=

k

∑
s=1
s6= j

(
π(s)− s

)2
+(i− j)2 =

k−1

∑
s=1

āk(σ(s),s)+ (i− j)2 ,

where

āk(r,s) =


(r− s)2 , if s < j and r < i,

(r+ 1− s)2 , if s < j and r ≥ i,

(r− s−1)2 , if s≥ j and r < i,

(r+ 1− s−1)2 , if s≥ j and r ≥ i,

(E.18)

for r,s = 1,2, . . . ,k−1, π ∼Uni f orm
(

S(i, j)
k

)
and σ(s) is defined as in (E.8).

Lemma E.3. Let D̄R (σ) =
k−1

∑
s=1

āk(σ(s),s), where σ(·) and āk(·, ·) are given in (E.8) and

(E.18), respectively. Then the distribution of D̄R is asymptotically normal with mean and
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variance

E (D̄R) =
k2(k+ 1)

6
− h(i)+ h( j)− (i− j)2

k−1
,

Var (D̄R) =
1

k−2


k

∑
r=1
r 6=i

k

∑
s=1
s6= j

[
(r− s)2 +

k2(k+ 1)
6(k−1)

− h(r)+ h(s)− (i− s)2− (r− j)2

k−1

−h(i)+ h( j)− (i− j)2

(k−1)2

]2
 ,

where

h(x) =
x(x−1)(2x−1)+ (k− x)(k− x+ 1)(2k−2x+ 1)

6
.

Proof. By using (E.7) and the fact that for x ∈ {1,2, . . . ,k}

h(x) =
k

∑
r=1

(r− k)2 =
x(x−1)(2x−1)+ (k− x)(k− x+ 1)(2k−2x+ 1)

6
, (E.19)

E (D̄R) and Var (D̄R) can be evaluated in a similar way as in the proof of Lemma E.2.

Now, consider the quantities

b̄k(r,s) = (r− s)2 +
k2(k+ 1)
6(k−1)

− h(r)+ h(s)− (i− s)2− (r− j)2

k−1
− h(i)+ h( j)− (i− j)2

(k−1)2

for r,s = 1,2, . . . ,k. Since (E.19)

k(k2 + 2)
12

≤ h(x) ≤ k(k−1)(2k−1)
6

for 1≤ x≤ k,

it follows that

(r− s)2− k2

2
+ ε1 ≤ b̄k(r,s) ≤ (r− s)2 + ε2,

where r,s = 1,2, . . . ,k, lim
k→∞

ε1

k2 = 0 and lim
k→∞

ε2

k2 = 0. Hence, there exists a constant c1 > 0

such that
max

1≤r,s≤k
b̄2

k(r,s) ≤ c1k4. (E.20)

Further, fix the indexes 1≤ r,s≤ k
4

. Then, since

k(7k2 + 12k+ 8)
48

≤ h(x) ≤ k(k−1)(2k−1)
6

for 1≤ x≤ k
4

,

it follows that

(r− s)2− k2

2
+ ε3 ≤ b̄k(r,s) ≤ (r− s)2− k2

8
+ ε4,

where lim
k→∞

ε3

k2 = 0 and lim
k→∞

ε4

k2 = 0. Thus, there exists a number N > 0 such that for k ≥ N

(r− s)2− k2 ≤ b̄k(r,s) ≤ (r− s)2− k2

9
.
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Hence, for k ≥ N

k

∑
r=1
r 6=i

k

∑
s=1
s6= j

b̄2
k(r,s) ≥

k/4

∑
r=1
r 6=i

k/4

∑
s=1
s 6= j

b̄2
k(r,s) =

k/4

∑
r=1
r 6=i

{
k/4

∑
s=1

b̄2
k(r,s)− b̄2

k(r, j)

}
≥

≥
k/4

∑
r=1
r 6=i

 k2/9

∑
(r−s)2=0

b̄2
k(r,s)− b̄2

k(r, j)

≥ k/4

∑
r=1
r 6=i

{
k/3

∑
v=0

(
v2− k2

9

)2

− b̄2
k(r, j)

}
,

where
k2/9

∑
(r−s)2=0

is a summation over all values of s, such that 0 ≤ (r− s)2 ≤ k2

9
. Thus, for

k ≥ N there exists a constant c2 > 0, such that

k

∑
r=1
r 6=i

k

∑
s=1
s6= j

b̄2
k(r,s) ≥ c2k6 . (E.21)

From (E.20) and (E.21), it is easy to check that the condition (1.9) of Theorem 1.1 is fulfilled
and the distribution of D̄R is asymptotically normal.

of Theorem 4.1. From (4.5), (2.3) and (4.6), it follows that

q(i, j,k,θ ) = ∑
π( j)=i

exp (θd(π ,ek)−ψk(θ )) =
(k−1)!m̃k−1(θ )

k!mk(θ )
=

1
k

m̃k−1(θ )

mk(θ )
,

where mk(·) and m̃k−1(·) are the moment generating functions of DF(π) and D(i, j)
F (σ) for

π ∼ Uni f orm(Sk) and σ ∼ Uni f orm
(

S(i, j)
k

)
. Since D(i, j)

F = D̃F+ | i− j | and according

to Lemma E.2 D̃F is asymptotically normal, it follows that D(i, j)
F is asymptotically normal.

Therefore, mk(·) and m̃k−1(·) can be approximated with the moment generating function of
the normal distribution and

q(i, j,k,θ )
k

exp
(

θ µ + θ 2ν2

2

) −−−→
k→∞

1,

where µ = E
(

D(i, j)
F

)
−E (DF) and ν2 = Var

(
D(i, j)

F

)
−Var (DF).

The values of µ and ν2 given in Theorem 4.1 are obtained by combining formulas (E.6),
(E.10) and (E.11) with

E
(

D(i, j)
F

)
= E (D̃F)+ | i− j | and Var

(
D(i, j)

F

)
= Var (D̃F) .

Proof of Theorem 4.2. The proof is similar to the proof of Theorem 4.1 using Lemma E.3.
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E.3 Proofs – Chapter 5

Proof of Theorem 5.1. Let us first notice that P (Lm,n = l) = P (Ln,m = l) for all values of m,
n and l. Furthermore, from Proposition 5.1 it follows that P (L0,n = 0) = 1, i.e. L0,n is the
constant 0, and

P (L1,n = l) =


1

n+ 1
, for l = 0,

2
n+ 1

, for l = 1,2, . . . ,
n
2

,
(E.22)

when n is even and

P (L1,n = l) =


1

n+ 1
, for l = 0,

n+ 1
2

2
n+ 1

, for l = 1,2, . . . ,
n−1

2
,

(E.23)

when n is odd.
By multiplying (5.15) by l and summing for l = 0,1, . . . ,

[mn+1
2

]
, we have that

[ mn+1
2 ]

∑
l=0

lP (Lm,n = l) =E (Lm,n)

=
m

m+ n
E (Lm−1,n)+

n
m+ n

E (Lm,n−1)

+
mn

(m+ n)(m+ n−1)

{
E
(

Lm−1,n−1 +
m+ n−1

2

)
−E (Lm−1,n−1)

}
=

m
m+ n

E (Lm−1,n)+
n

m+ n
E (Lm,n−1)+

mn
2(m+ n)

, (E.24)

when m+ n is odd and

E (Lm,n) =
m

m+ n
E (Lm−1,n)+

n
m+ n

E (Lm,n−1)+
mn

2(m+ n−1)
, (E.25)

when m+ n is even. Substituting (E.25) for E (Lm−1,n) and E (Lm,n−1) in (E.24) gives

E (Lm,n) =
m(m−1)

(m+ n)(m+ n−1)
E (Lm−2,n)+

n(n−1)
(m+ n)(m+ n−1)

E (Lm,n−2)

+
2mn

(m+ n)(m+ n−1)
E (Lm−1,n−1)+

mn
(m+ n)

, (E.26)

when m+ n is odd. From Proposition 5.1, (E.22) and (E.23) it follows that

E (L0,1) = E (L1,0) = 0, E (L3,2) = E (L2,3) =
9
5

, E (L1,n) =


n(n+ 2)
4(n+ 1)

, if n is even,

n+ 1
4

, if n is odd.

By using the mean values above and (E.26) it is not hard to prove by induction that

E (Lm,n) =
mn(m+ n+ 1)

4(m+ n)
, (E.27)
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when m+ n is odd. The mean of Lm,n, given in (5.16), is derived from (E.27) and (E.25).
Formula (5.17) can be proved in a similar way. By multiplying (5.15) by l2, summing for

l = 0,1, . . . ,
[mn+1

2

]
and using (5.16), we get

E
(
L2

m,n
)
=

m
m+ n

E
(
L2

m−1,n
)
+

n
m+ n

E
(
L2

m,n−1
)

+
mn

(m+ n)(m+ n−1)

{
E

[(
Lm−1,n−1 +

m+ n−1
2

)2
]
−E

(
L2

m−1,n−1
)}

=
m

m+ n
E
(
L2

m−1,n
)
+

n
m+ n

E
(
L2

m,n−1
)
+

mn(m+ n−1)(mn−1)
4(m+ n)(m+ n−2)

, (E.28)

when m+ n is odd and

E
(
L2

m,n
)
=

m
m+ n

E
(
L2

m−1,n
)
+

n
m+ n

E
(
L2

m,n−1
)

+
mn(m−1)(n−1)

4(m+ n)(m+ n−1)

{
4+

(m+ n−2)(m+ n−4)
(m+ n−3)

+
(m+ n)2

(m−1)(n−1)

}
,

(E.29)

when m+n is even. If we substitute E
(
L2

m−1,n
)

and E
(
L2

m,n−1
)

from (E.28) to (E.29), we get

E
(
L2

m,n
)
=

m(m−1)
(m+ n)(m+ n−1)

E
(
L2

m−2,n
)
+

n(n−1)
(m+ n)(m+ n−1)

E
(
L2

m,n−2
)

+
2mn

(m+ n)(m+ n−1)
E
(
L2

m−1,n−1
)
+

(mn)2

2(m+ n)
− mn{mn−2(m+ n−2)}

2(m+ n)(m+ n−1)(m+ n−3)
,

(E.30)

when m+ n is even. From Proposition 5.1, (E.22) and (E.23) it follows that

E
(
L2

2,0
)
= E

(
L2

0,2
)
= 0, E

(
L2

2,2
)
=

7
3

, E
(
L2

1,n
)
=


n(n+ 2)

12
, if n is even,

n2 + 2n+ 3
12

, if n is odd.

By using the expected values above and (E.30) it can be proved by induction that

E
(
L2

m,n
)
=

mn
{
(m+ n−1)3 + 3mn(m+ n−1)2−15mn+ 11m+ 11n−35

}
48(m+ n−1)(m+ n−3)

, (E.31)

when m+ n is even. From (E.28) and (E.31) it follows that

E
(
L2

m,n
)
=

mn
{
(m+ n)3 +(3mn−1)(m+ n)2−15mn+ 7m+ 7n−15

}
48(m+ n)(m+ n−2)

, (E.32)

when m+ n is odd. Formula (5.17) is obtained by combining (5.16), (E.31) and (E.32).
Let φm,n(t) be the moment generating function of Lm,n, i.e. φm,n(t) = E{exp (tLm,n)}.

We will prove by induction that

φm,n

(
t

σm,n

)
exp
(
−µm,n

t
σm,n

)
= exp

(
t2

2

){
1+O

(
t√

min(m,n)

)}
, (E.33)
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where µm,n = E (Lm,n), σ2
m,n = Var (Lm,n) and O

(
t√

min(m,n)

)
is the class of functions

such that if f ∈ O

(
t√

min(m,n)

)
, then | f (t,m,n) |< A

t√
min(m,n)

for some constant A

and for t < 1.
First, by multiplying (5.15) by exp(lt) and summing for l = 0,1, . . . ,

[mn+1
2

]
, we obtain

that

φm,n(t) =
m

m+ n
φm−1,n(t)+

n
m+ n

φm,n−1(t)

+
mn

(m+ n)(m+ n−1)
φm−1,n−1(t)

{
exp
(

m+ n−1
2

t
)
−1
}

, (E.34)

if m+ n is odd and

φm,n(t) =
m

m+ n
φm−1,n(t)+

n
m+ n

φm,n−1(t)+
mn

(m+ n)(m+ n−1)
φm−1,n−1(t){exp (t)−1}

+
mn(m−1)

(m+ n)(m+ n−1)(m+ n−2)
φm−2,n−1(t)

{
exp
(

m+ n
2

t
)
− exp (t)

}
+

mn(n−1)
(m+ n)(m+ n−1)(m+ n−2)

φm−1,n−2(t)
{

exp
(

m+ n
2

t
)
− exp (t)

}
+

mn(m−1)(n−1)
(m+ n)(m+ n−1)(m+ n−2)(m+ n−3)

φm−2,n−2(t)×

×
{

exp (t)− exp
(

m+ n
2

t
)
− exp

(
m+ n−2

2
t
)
+ exp ((m+ n−2)t)

}
,

(E.35)

if m+ n is even.
From (E.22) and (E.23) we have that

φ1,n(t) =



2exp
(

n+ 2
2

t
)
− exp(t)−1

(n+ 1)(exp(t)−1)
, if n is even,

exp
(

n+ 3
2

t
)
+ exp

(
n+ 1

2
t
)
− exp(t)−1

(n+ 1)(exp(t)−1)
, if n is odd,
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and it is easy to check that (E.33) holds for m = 1. By substituting t with
t

σm,n
in (E.34) and

using the induction assumption, we get

φm,n

(
t

σm,n

)
exp
(
−µm,n

t
σm,n

)
=

=
m

m+ n
exp
(

t2

2
+

(µm−1,n−µm,n) t
σm,n

){
1+O

(
tσm−1,n

σm,n
√

min(m−1,n)

)}

+
n

m+ n
exp
(

t2

2
+

(µm,n−1−µm,n) t
σm,n

){
1+O

(
tσm,n−1

σm,n
√

min(m,n−1)

)}

+
mn

(m+ n)(m+ n−1)
exp
(

t2

2
+

(µm−1,n−1−µm,n) t
σm,n

){
exp
(
(m+ n−1)t

2σm,n

)
−1
}
×

×

{
1+O

(
tσm−1,n−1

σm,n
√

min(m−1,n−1)

)}

= exp
(

t2

2

){
1+

mµm−1,n + nµm,n−1− (m+ n)µm,n +
mn
2

(m+ n)σm,n
t +O

(
tσm−1,n−1

σm,n
√

min(m,n)−1

)}
.

Since

mµm−1,n + nµm,n−1− (m+ n)µm,n +
mn
2

= 0,

µm−1,n−1−µm,n

−m+ n
4

→ 1 and
σm,n√

mn(m+ n)
48

→ 1 as m,n→ ∞,

it follows that

φm,n

(
t

σm,n

)
exp
(
−µm,n

t
σm,n

)
= exp

(
t2

2

){
1+O

(
t√

min(m,n)

)}
,

which proves the induction step when m+n is odd. The induction step for even m+n follows
from (E.35) in a similar way.

The asymptotic normality of
Lm,n−µm,n

σm,n
as m,n→ ∞ is obtained by combining (E.33)

and the fact that the moment generating function of the standard normal distribution is

exp
(

t2

2

)
.
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