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ABSTRACT and MAIN PURPOSES

The dissertation deals with some aspects of ring theory and commutative group

theory as, specifically, it will be focussed on some structural and characterization

results concerning the specific ring and group structures. In the machinery that

we will use and develop in order to prove the established results, the following

directions in modern algebra will be implemented in some of the proofs:

(i) matrix theory and computations

(ii) homological algebra

(iii) set theory and formal logic

(iv) graph theory

(v) number theory

A brief outline of some of the main results includes the following:

Result 1. A ring R is invo-clean ⇐⇒ R decomposes as R ∼= R1 × R2, where

either R1 = {0} or R1 is a nil-clean ring of characteristic ≤ 8, and either R2 =

{0} or R2 is embedding in a direct product (i.e., it is a subdirect product) of a

family of copies of the field F3. In particular, if R is strongly invo-clean, then

R1/J(R1) is Boolean with nil J(R1) whenever R1 is non-zero.

Result 2. A ring R is uniquely weakly nil-clean ⇐⇒ R is decomposable as

R ∼= R1×R2, where either R1 = {0} or R1/J(R1) is Boolean with nil J(R1), and

either R2 = {0} or R2/J(R2) ∼= Z3 with nil J(R2).

Result 3. The weakly nil-clean index of T2(Zp) is equal to p, while for T3(Zp) it

is p2, whenever p is a prime number; the weakly nil-clean index for M2(Z3) equals

to 5.

Result 4. A ring R is strongly n-torsion clean for some n ∈ N ⇐⇒ R is

strongly clean and U(R) is of finite exponent. In particular, if n is odd, then R

is a clean ring in which orders of all units are odd, bounded by n and there exists

a unit of order n ⇐⇒ R is a subdirect product of copies of the fields F2ki , where

i ∈ [1, t] for some integer t ≥ 1 such that there exist integers k1, · · · , kt ≥ 1 with

n = LCM(2k1 − 1, . . . , 2kt − 1).

Result 5. If G is a locally finite group and R is an arbitrary ring, then the group

ring R[G] is UU ⇐⇒ R is UU and G is 2-torsion.

Result 6. Let G = A⊕B be a group. Then
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(1) G is socle-regular ⇐⇒ A is socle-regular, provided B is separable.

(2) A is socle-regular, provided G is socle-regular, that is, a direct summand of

a socle-regular group is again a socle-regular group.

(3) Krylov transitive groups are themselves socle-regular with irreversible im-

plication.

(4) There is a weakly transitive group which is not socle-regular.

(5) Any totally projective group of length ≤ ω2 is strongly projectively fully

transitive.

(6) If G is a group such that the first Ulm subgroup pωG is elementary, then G

is fully transitive ⇐⇒ the square G ⊕ G is strongly projectively fully transitive

⇐⇒ the square G⊕G is strongly commutator fully transitive.

(7) Any totally projective group of length < ω2 is commutator socle-regular.

(8) A direct summand of a commutator socle-regular group is not necessar-

ily commutator socle-regular; a direct summand of a commutator fully transitive

group need not be commutator fully transitive too.

(9) Both projective socle-regularity and commutator socle-regularity notions are

independent to transitivity and full transitivity.

(10) Commutator fully transitive groups are always commutator socle-regular.

(11) A direct summand of a fully transitive torsion-free IFI-group is again a

fully transitive IFI-group.

(12) If G is an IFI-group, then G⊕G is also an IFI-group.

(13) Any strongly irreducible group G such that |G/pG| ≤ p for each prime p

is an IFI-group.

Result 7. Suppose that G is a group such that the factor-group G/pω+1G is pω+1-

projective. If pω+1G is countable, then G is the direct sum of a pω+1-projective

group and a countable group. Moreover, there is a group G for which G/pω+2G

is pω+2-projective and pω+2G is countable, but G is not a direct sum of a pω+2-

projective group and a countable group. In particular, if 0 < n < ω, then the class

of ω + n-totally pω+n-projective groups is not closed under (finite) direct sums.

Result 8. Suppose G is a group, n is an arbitrary natural and λ is an arbitrary

ordinal. Then G is n-simply presented ⇐⇒ both pλG and G/pλG are n-simply

presented.

Result 9. For every n ∈ N a direct summand of an n-simply presented group is

again an n-simply presented group, provided that the complement is a countable

group.

Result 10. Let n ∈ N. Then the following two points hold:
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(a) Nicely ω1-n-simply presented groups of length < ω2 are n-simply presented.

(b) Suppose G is a group whose quotient G/pλG is n-simply presented for some

ordinal λ. Then G is nicely ω1-n-simply presented ⇐⇒ pλG is nicely ω1-n-simply

presented.

So, the main purpose of this dissertation is to promote some new ideas in

certain contemporary subjects of algebra as well as to demonstrate a new insight

of ideas and methods in some branches which could be of further interest for

future developments. This will be subsequently achieved in the next sections and

their subsections. Our strategically point of view is in developing of a modern

technology which will be approachable in many cases in both ring theory and

commutative group theory.
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Chapter I. Introduction and Fundamentals

Everywhere in the text of this dissertation, although it is concretely specified

in each section, all rings into consideration will be associative unital (sometimes

called unitary) and all groups unless it is explicitly stated something else (e.g., the

unit groups of rings and the groups which form the group rings) will be assumed

additive Abelian.

The motivation in writing up this dissertation is to illustrate the study of two

different at first glance topics in the modern algebra, which topics actually possess

a few close relationships each to other. In fact, one evidence for the existence of

such a transversal is the endomorphism ring of Abelian groups. The key approach

is that the ring structure unambiguously helps us to decide how the investigated

groups are situated into some well-behaved classes of groups.

Specifically, these two subjects are relevant to the following two omnibuses:

(1) Weakly Exchange Rings with Applications to Group Rings

We here demonstrate the role of weakly exchange rings and weakly clean as

being a common expansion of the classical exchange rings and clean rings to the

general theory of rings and modules having numerous applications in the area

of (not necessarily commutative) group rings. The new moments are in proving

up that some complete descriptions of these ring classes do exist, including also

some new dealings with the long-known classes of nil-clean rings, weakly nil-clean

rings, invo-clean rings and some their modifications.

(2) Generalizations of (Fully) Transitive and Simply Presented Abelian Groups

We here show the majority of some new classes of commutative groups (e.g.,

the classes of (strongly) socle-regular p-groups and (strongly) n-simply presented

p-groups) to the general point of view in the theory of Abelian groups. The new

moments are in showing up that some complete descriptions of these group classes

do exist, including also some new treatments of the well-known classes of Krylov

transitive groups, weakly transitive groups, IFI-groups, n-balanced projective

groups, n-simply presented groups, ω1-n-simply presented groups and some their

variations.

To be more concrete, the principally known more important results pertain-

ing to the comments alluded to above, on which results we will somewhat do

improvements below, are these:
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On (1) we have that:

• There exist various characterization results on clean, exchange, nil-clean,

weakly nil-clean and some other closely related sorts of rings (see, for more ac-

count, [1], [2], [11], [12], [39], [40], [41], [64], [68], [77], [80], [93], [94], [95], [96],

[110], etc. some other sources listed below in the literature).

Indeed, invoking the classical source [93], where the pivotal concepts of clean

and exchange rings were defined, what can be more importantly mentioned is

that a ring R is clean (resp., exchange) iff the quotient R/J(R) is clean (resp.,

exchange) and all idempotents lift modulo J(R) (that is, given r ∈ R with r2−r ∈
J(R), there is e ∈ Id(R) having the property that e − r ∈ J(R)). This was

somewhat strengthened in [12] (see also [40] for the commutative case) for the

class of weakly nil-clean rings (in fact, it was proven there that any weakly nil-

clean ring is necessarily clean, and clean rings are exchange). Same type of

results appeared for nil-clean rings in [41] (let us remember that nil-clean rings are

always weakly nil-clean). Likewise, further refinements were definitely obtained

in [94], [64], [80] and [110], respectively, where under new points of view a new

insight in the global structure of clean and exchange rings, arising from some new

conditions, was established.

• There exist certain matrix computations regarding to what extent the struc-

ture of matrix ring will heavily depend on the structure of the former ring (see,

for more information, [4], [11], [81]).

Indeed, inspired by the definition of the notion clean index of a ring, which

somewhat reaches one of the best knowledge for the class of clean rings, in [4] was

defined the concept of nil-clean index of a ring. Some interesting results in that

matter were proved. Furthermore, in regard to [4], we define in the corresponding

subsection below the more general setting of weakly nil-clean index of a ring which

is of merit investigation being a successful instrument for the full characterization

of uniquely weakly nil-clean rings (compare also with [D5]) – in that way, some

concrete computations were done for certain special full and triangular matrix

rings. Also, being involved with certain extremely difficult matrix questions in

ring theory, some recent progress was made in [32].

Being closely familiar with the general theory of matrices and its computa-

tional aspects, we shall try to give a comprehensive presentation of its use in

the contemporary directions of the associative rings, especially in their structural

characterizations – see, e.g., [99] and [107].
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• There exist results focussed on the isomorphic structure of group rings which

entirely relies on the group structure of the basis and on the ring structure of the

initial ring (see, for more concrete news, [40], [73], [84], [85], [92], [103]).

Indeed, May gave in [84] a complete description of the nil radical of an ar-

bitrary group ring in terms of special elements, whereas Karpilovsky somewhat

enlarged that to the Jacobson radical of such a ring. On the other vein, Nicholson

explored in [92] local group rings, while in [85] McGovern et al. found a neces-

sary and sufficient condition for a commutative group ring to be nil-clean (for a

general necessary and sufficient condition in that way, we refer to [103]). This

was substantially strengthened in [40] by the present author of the dissertation

along with McGovern to the larger class of weakly nil-clean rings (see [77] too).

On (2) we have that:

• There are a series of results dealing with the characterization of both classical

classes of transitive and fully transitive groups and their non-trivial extensions.

In fact, the classical properties of transitivity and full transitivity for Abelian

groups were firstly defined by Kaplansky in [71] as a common extension of some

well-studied classes of primary Abelian groups. Both the definitions entirely

rely on the manner how two arbitrary elements of the group are situated, by

mapping one to other via an existing group endomorphism, depending on their

Ulm sequences in the full group. Likewise, the independence of these two notions

was firstly showed by Corner in [29]. Namely, he exhibited an Abelian p-group

which is fully transitive but not transitive as well as an Abelian 2-group which is

transitive but not fully transitive – note the remarkable fact that every transitive

group which is not fully transitive is necessarily a 2-group, a fact first shown by

Kaplansky in [71, Theorem 26]. Despite this Corner’s result, there is a connection

between the two concepts: in fact, Files and Goldsmith showed in [43] that an

Abelian p-group G is fully transitive if, and only if, the square’s Abelian p-group

G ⊕ G is transitive. This critical fact will somewhat be refined in one of our

subsections. Furthermore, major works on transitive and fully transitive groups

were produced in [52] and [61], respectively.

Further very general notions of transitivity were introduced by Goldsmith and

Strüngmann in their seminal papers [50] and [51], namely they defined the so-

called Krylov transitive and weakly transitive Abelian p-groups. They proved

there that these two concepts are independent each to other as well.

Some recent advantage in the topic was done in [10, Theorem 2.5] by show-

ing that there is a Krylov transitive 2-group that is neither transitive nor fully
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transitive nor weakly transitive, thus answering a question posed by Danchev-

Goldsmith in [D9]. In proving that, they establish the surprising fact stated in

[10, Proposition 2.4] that if the Abelian p-group G⊕G is Krylov transitive, then

the Abelian p-group G is fully transitive. Some other effective results could be

found in [87, 88] as well.

Nevertheless, among the existing unsettled things of the problematic in the

corresponding literature, stated in the reference list of the bibliography, left-open

were the questions of what can be said for the structure of the former group,

provided its endomorphism ring is (additively) generated by commutators. In

other words, all endomorphism are representable as a finite sum of products of

commutators. We will be trying to give in the current study some satisfactory

affirmative answer in this subject. Our solution will depend heavily on the struc-

ture of the first Ulm subgroup of the whole group, determined by the action of

the full endomorphism ring on this subgroup (see [D12], [D13] and [D14]).

Our major goals here are to promote a new insight in the structure of the

afore-defined (projective, commutator) transitive-like groups and to demonstrate

their capability for the classical concepts of transitivity and full transitivity due

to Kaplansky in his famous red-book leading to the publication of the monograph

[71].

The methods we have developed in order to establish these results are certain

innovations in the representation of projective and commutator endomorphisms

in terms of matrices, by strengthening the methodology utilized in [D14]. They

are concerned with ingenious computations involving number theory and some

other not too classical instruments and tricks.

• There are a series of results which deal with the relationships between char-

acteristic, fully invariant and projection-invariant subgroups of Abelian groups

(see, e.g., [54], [55, 56], [57], [88]).

In fact, Grinshpon in [54] and Grinshpon et al. in [55],[56] consider those groups

(namely, torsion, torsion-free and mixed groups) whose fully invariant subgroups

have finite Ulm-Kaplansky invariants and are also endowed with some additional

properties. We shall extend this by examining the groups for which all fully

invariant subgroups are isomorphic (see [D15], too) as well as we shall consider

some other relations and combinations between appropriate group classes.

• There are a series of results pertaining to the generalization of totally pro-

jective and simply presented Abelian p-groups in various aspects by considering

their purely algebraic structure as well as their homological behavior (see, cf.

[44, 47], [62, 63], [66], [74, 75], [76], [97, 98]).
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In fact, giving a brief outline of the most important of them, it is a Nunke’s

achievement in [98] proving the reduction criterion that a group G is totally

projective (resp., simply presented) iff so are both the groups pαG andG/pαG. We

considerably supersede that in this dissertation to the class of n-simply presented

groups as our proof is rather difficult and long equipping more than ten pages

(compare with [D11] as well). On the other hand, concerning their homological

shape, totally projective groups are known to be balanced projective with respect

to all short-exact sequences (cf. [44]). This will also be improved here for the

class of n-balanced projectives, whenever n ≥ 1 (see [D11] and [76]). Further

generalizations are given in [D16]. Some numerical invariants involving set theory

machinery were given in [3].

Being closely familiar with the theories of homological algebra and set theory,

we shall try to give a detailed presentation of their usage in the contemporary

directions of the commutative groups – see, for instance, [97, 98] and [100]. The

theory of valuated groups also plays a crucial role in the structural aspects of

Abelian groups – see, for example, [101].

Further details in both points (1) and (2) are stated in each of the subsequent

sections and their subsections separately.

As for the fundamental notions, notations and terminology, we will follow

mainly those from the classical monograph series of [79], [102] as well as of

[44, 47], [71] and [78]. Nevertheless, for readers’ convenience and for the sake

of completeness, they will be stated in details in the duration.
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Chapter II. Background and Conventions

For the present dissertation, a ring R will be assumed to be an associative

ring with identity 1 which differs from the zero element 0. We shall use in the

sequel the notation Id(R) to denote the set of all idempotents of R, Nil(R) to

denote the set of all nilpotents of R, and U(R) to denote the set of all units

of R. We also shall use Mn(R) to denote the ring of all n × n matrices with

entries in R (also called the full matrix ring) and Tn(R) to denote the ring of

all n× n upper triangular matrices with elements from R (also called the upper

triangular matrix ring), whenever n ∈ N, the set of all positive integers (also

termed naturals). Almost all other ring-theoretical notions and terminologies

with which we have played will be in agreement with those from [79] as the more

profit ones will be explicitly stated and formulated in each separate section and

subsection from the corresponding chapters. About the conventions in writing

up the text, we shall use ”wnc” to denote the ”weakly nil-clean” index of a

ring as well as ”a JU-ring” will mean ”a ring with Jacobson units”.

Likewise, all our groups in Section 2 titled ”Applications to Group Rings” of

Chapter III ”Noncommutative Rings”, where group rings are considered, will

be written multiplicatively – surely, same appears and for the unit group of an

arbitrary ring.

Concerning Abelian group theory, all our groups with which we will play are

assumed to be additively written. The notion and notation will follow in general

those established in [44, 47] with some little exceptions which will be specified

and clarified when needed in the text. About the conventions in writing, used

throughout the dissertation, we shall abbreviate ”a dsc-group” for ”a direct

sum of countable groups” as well as ”projectives” for ”projective groups”.

Besides, abbreviating ”a cft-group” means ”a commutator fully transitive

group” as well as ”a scft-group” means ”a strongly commutator fully tran-

sitive group”.

Also, we will henceforth use somewhere in the text, where it is possible and

better for usage, the widely accepted shorthand abbreviation ”iff” for the stan-

dard phrase ”if and only if”. As for the latter, we shall somewhere write ”if,

and only if,” whenever the text is more specific in the sense that it needs more

specifications in the meaning.
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Chapter III. Noncommutative Rings

Our main results of this branch are distributed into two sections as follows:

1. Weakly Exchange Rings

Here, for the sake of completeness and for the convenience of the readers, we

shall consider below a few more subsections like these:

1.1. On weakly exchange rings. The following fundamental notion was de-

fined in [93].

Definition 1.1. A ring R is called clean if each r ∈ R can be expressed as

r = u+ e, where u ∈ U(R) and e ∈ Id(R).

Likewise, in [93] it was pointed out the fundamental fact that R is clean iff

R/J(R) is clean and all idempotents lift modulo J(R).

The ”clean” concept was generalized there to the following one:

Definition 1.2. A ring R is said to be exchange if, for every a ∈ R, there exists

an idempotent e ∈ aR such that 1− e ∈ (1− a)R.

It was obtained in [93] that R is an exchange ring iff R/J(R) is an exchange

ring and all idempotents lift modulo J(R). Also, it was established there that

Definitions 1.1 and 1.2 are equivalent for abelian rings (that are rings for which

each idempotent lies in the center of the former ring). However, there is an

exchange ring that is not clean.

On the other hand, it was introduced in [2] the notion of weakly clean rings but

only in a commutative version. We shall do that in the general way as follows:

Definition 1.3. A ring R is called weakly clean if each r ∈ R can be expressed

as either r = u+ e or r = u− e, where u ∈ U(R) and e ∈ Id(R).

Evidently, all clean rings are weakly clean, whereas the converse does not hold

even in the commutative aspect (see, e.g., [2]). However, every weakly clean ring

of characteristic 2 is clean, and vice versa. One of our goals here is to improve

this observation by requiring that 2 lies in J(R), which supersedes the condition

2 = 0.
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Definition 1.4. A ring R is called weakly exchange if, for any x ∈ R, there exists

e ∈ Id(R) such that e ∈ xR and either 1− e ∈ (1− x)R or 1− e ∈ (1 + x)R.

It was established in [24] that the notions of being weakly exchange and weakly

clean do coincide for abelian rings, thus extending the aforementioned facts from

[93] (see also [109]).

Apparently, all exchange rings are weakly exchange, while the converse does

not hold even in the commutative variant as some simple examples demonstrably

show. However, every weakly exchange ring of characteristic 2 is exchange, and

visa versa. One of our aims here is to enlarge this observation by requiring that

2 lies in J(R), which is weaker than the condition 2 = 0.

So, we come to our first basic result in the current subsection.

Theorem 1.5. A ring R is weakly exchange if R/J(R) is weakly exchange and

all idempotents in R lift modulo J(R). In addition, if 2 ∈ J(R), then the converse

is true.

We are now arriving at the following:

Theorem 1.6. A ring R is weakly clean if R/J(R) is weakly clean and all idem-

potents in R lift modulo J(R). In addition, if 2 ∈ J(R), then the converse is

true.

2. Rings with Jacobson units

It is well known that the inclusion 1 + J(R) ⊆ U(R) or, equivalently, J(R) ⊆
1+U(R) holds. However, these containments could be strict, so that it is rather

natural to state the following:

Definition 2.1. A ring R is called a JU ring or a ring with Jacobson units if the

equality U(R) = 1 + J(R) holds.

Obviously, this is tantamount to the equality J(R) = 1+U(R). In an equivalent

form, since one can show

U(R)/(1 + J(R)) ∼= U(R/J(R)),

we observe in the presence of this isomorphism that all JU rings are just those

rings R for which U(R/J(R)) = {1}.
The leitmotif of the next chief result listed below is to describe explicitly ex-

change JU rings. The intersection between these two classes, however, gives

nothing new. Specifically, the following is valid:
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Theorem 2.2. A ring R is an exchange JU ring if, and only if, it is J-clean.

2.1. On exchange π-UU unital rings. We begin here with recalling some

useful concepts as follows:

Definition 2.3. A ring R is said to be UU if U(R) = 1 +Nil(R).

Definition 2.4. A ring R is said to be exchange if, for each r ∈ R, there is an

idempotent e ∈ rR such that 1− e ∈ (1− r)R.

It was proved in [39] that a ring R is an exchange UU ring iff J(R) is nil and

R/J(R) is Boolean.

Before proceed by proving our chief result, we need a few more technicalities.

Generalizing Definition 2.3, one can state the following.

Definition 2.5. Let n ∈ N. A ring R is called n-UU if the inclusion Un(R) ⊆
1 +Nil(R) holds.

Clearly, UU rings just coincide with 1-UU rings.

This can be substantially expanded to the following:

Definition 2.6. A ring R is called π-UU if, for any u ∈ U(R), there exists i ∈ N
such that ui ⊆ 1 +Nil(R).

These rings play a key, if not (at least) facilitate, role in developing a new

modern theory of periodic rings (see, e.g., [32]).

We shall now restate and reproof the main result from [1] by giving a more con-

venient form and more transparent proof arising from well-known recent results

in [39] and [D4] (compare with the subsequent subsection, too), respectively. Ac-

tually, a new substantial achievement, including new points with more strategic

estimations, arises as follows:

Theorem 2.7. Suppose that R is a ring. Then the following five items are

equivalent:

(a) R is exchange 2-UU.

(b) J(R) is nil and R/J(R) is commutative invo-clean.

(c) J(R) is nil and R/J(R) ∼= B × C, where B ⊆
∏

λ Z2 and C ⊆
∏

µ Z3 for

some ordinals λ and µ.

(d) J(R) is nil and R/J(R) is tripotent.

(e) J(R) is nil and R/J(R) ⊆
∏

λ Z2 ×
∏

µ Z3 for some ordinals λ and µ.
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The next construction manifestly demonstrates that the theorem is no longer

true for n-UU rings when n > 2.

Example 2.8. Consider the full matrix 2× 2 ring R = M2(Z2). It was proved in

[11] that R is nil-clean and hence exchange. Moreover, R is a 3-UU ring. However,

it is easily checked that J(R) = {0} and that R is even not tripotent (whence

not Boolean). In fact, U(R) has 6 elements satisfying the following identities:

•
(
0 1

1 0

)3

=

(
0 1

1 0

)
, so that

(
0 1

1 0

)
−

(
1 0

0 1

)
=

(
1 1

1 1

)
with

(
1 1

1 1

)2

=(
0 0

0 0

)
.

•
(
1 0

0 1

)3

=

(
1 0

0 1

)
, so that

(
1 0

0 1

)
−

(
1 0

0 1

)
=

(
0 0

0 0

)
.

•
(
1 1

0 1

)3

=

(
1 0

0 1

)
, so that

(
1 0

0 1

)
−

(
1 0

0 1

)
=

(
0 0

0 0

)
.

•
(
1 0

1 1

)3

=

(
1 0

1 1

)
, so that

(
1 0

1 1

)
−

(
1 0

0 1

)
=

(
0 0

1 0

)
with

(
0 0

1 0

)2

=(
0 0

0 0

)
.

•
(
1 1

1 0

)3

=

(
1 0

0 1

)
, so that

(
1 0

0 1

)
−

(
1 0

0 1

)
=

(
0 0

0 0

)
.

•
(
0 1

1 1

)3

=

(
1 0

0 1

)
, so that

(
1 0

0 1

)
−

(
1 0

0 1

)
=

(
0 0

0 0

)
.

2.2. Weakly nil-clean index and uniquely weakly nil-clean rings. In [41]

a ring R is said to be nil-clean if each element a ∈ R can be represented as

a = b + e, where b ∈ Nil(R) and e ∈ Id(R); note that this is equivalent to the

representation that, for every a ∈ R, we have a = b − e. If this presentation is

unique, the ring R is called uniquely nil-clean. It is not too hard to check that

this is tantamount to the requirement that the existing idempotent e is unique

(see, e.g., [23] and [41]).

On the other vein, in [40] and [12] was stated the definition of a weakly nil-clean

ring as such a ring R for which any element a ∈ R is of the form a = b + e or

a = b − e, where b ∈ Nil(R) and e ∈ Id(R). Moreover, a ring R is said to be

uniquely weakly nil-clean if the existing idempotent e is unique.

Our further work is motivated by the notions of unique nil-cleanness and weak

nil-cleanness as we will combine them into a new concept. So, the aim here is
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to explore some variations of unique weak nil-cleanness in order to enlarge the

principal known results on unique nil-cleanness from [41] and [23]. In doing that,

we set and explore in details the weakly nil-clean index of rings and discuss the

original notion of uniquely weakly nil-clean rings stated in Problem 3 of [40]. We

shall also investigate here some other aspects of unique weak nil-cleanness which

arise from its specific definition.

For any a ∈ R, let E(a) = {e ∈ R | e2 = e, a− e ∈ U(R)} and then the clean

index of R, denoted as c(R), is defined in [81] by c(R) = sup{|E(a)| : a ∈ R}. For
any a ∈ R, set η(a) = {e ∈ R | e2 = e and a−e ∈ Nil(R)} and then the nil-clean

index of R, denoted as Nin(R), is defined in [4] by sup{|η(a)| : a ∈ R}. In this

way, for a more comprehensive investigation of these two notions and, especially,

as a natural generalization of the nil-clean index, we also define the concept of

weakly nil-clean index of a ring. Thereby, as it will be showed below, a ring is

uniquely weakly nil-clean if and only if it is weakly nil-clean of weakly nil-clean

index 1.

In [81] the clean index c(R) of a ring R was defined and studied. Imitating

this, in [4] was introduced the nil-clean index Nin(R) of R and some detailed

study was given.

In parallel to these two notions, we proceed by stating the following concepts.

Definition 2.9. Let R be a ring and a ∈ R. We define the set

α(a) = {e ∈ R : e2 = e and a− e or a+ e is a nilpotent}.

Definition 2.10. For an element a ∈ R the weakly nil-clean index of a, abbrevi-

ated as wnc(a), is defined to be the cardinality of the set α(a).

Definition 2.11. We define the weakly nil-clean index of a ring R as follows:

wnc(R) = sup{|α(a)| : a ∈ R}.

Our basic theorem here is the following one:

Theorem 2.12. The following are equivalent for a ring R:

(1) R is uniquely weakly nil-clean;

(2) R is abelian weakly nil-clean;

(3) R ∼= R1 ×R2, where R1 is either {0} or an abelian nil-clean ring and R2

is either {0} or a local weakly nil-clean ring such that J(R2) is nil and

R2/J(R2) ∼= Z3.
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2.3. n-Torsion clean rings. Our notations and notions here are in agreement

with those from [79]. For instance, for such a ring R, the symbol U(R) denotes

the group of units, Id(R) the set of idempotents and J(R) the Jacobson radical

of R, respectively. Besides, the finite field with m elements will be denoted by

Fm, and Mk(R) will stand for the k × k matrix ring over R; k ∈ N. For an

element u of a group G, the letter o(u) will denote the order of u. And finally,

the symbol LCM(n1, . . . , nk) will be reserved for the least common multiple of

n1, . . . , nk ∈ N.
We will say a nil ideal I of R is nil of index k if, for any r ∈ I, we have rk = 0

and k is the minimal natural number with this property. Likewise, we will say

that I is nil of bounded index if it is nil of index k, for some fixed k.

Let us recall that a ring R is said to be clean if, for every r ∈ R, there are

u ∈ U(R) and e ∈ Id(R) with r = e + u. If, in addition, the commutativity

condition ue = eu is satisfied, the clean ring R is called strongly clean. These

rings were introduced by Nicholson in [93] and [94]. Both clean rings and their

various specializations or generalizations are intensively studied since then (see,

for example, [12], [23], [D4], [40], [41] and references within).

A decomposition r = e+ u of an element r in a ring R will be called n-torsion

clean decomposition of r if e ∈ Id(R) and u ∈ U(R) is n-torsion, i.e. un = 1. We

will say that such a decomposition of r is strongly n-torsion clean, if additionally

e and u commute.

The aim of this article is to investigate in detail the following proper subclasses

of (strongly) clean rings:

Definition 2.13. A ring R is said to be (strongly) n-torsion clean if there is n ∈ N
such that every element of R has a (strongly) n-torsion clean decomposition and

n is the smallest possible natural number with the above property.

It is easy to see that boolean rings are precisely the rings which are (strongly)

1-torsion clean. Thus the classes introduced above can be treated as natural

generalizations of boolean rings.

Let us notice that in [D4] the class of (strongly) invo-clean rings was investi-

gated. In our terminology, (strongly) invo-clean rings are precisely rings which

are either (strongly) 1-torsion clean or (strongly) 2-torsion clean.

It is clear that every clean ring having the unit group of bounded exponent s is

n-torsion clean for some n with 1 ≤ n ≤ s. We will see below that n has to divide

s, but does not have to be equal to s. Let us also observe that a homomorphic

image of an n-torsion clean ring is always m-torsion clean, for some m ≤ n.

Hoverer, it is not clear whether n is a multiple of m. Notice that finite rings are
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always clean, so they are n-torsion clean for suitable n and it would be of interest

to compute n for some classes of finite rings; for instance, for matrix rings over

finite fields.

Now we are ready to state the following result.

Theorem 2.14. Let n ∈ N. Suppose R is a strongly n-torsion clean ring. Then:

(1) R is a PI-ring satisfying the polynomial identity (xn−1)((x−1)n−1) = 0;

(2) R has finite characteristic char(R) = |1 · Z |;
(3) J(R) is a nil ideal of index smaller than (char(R))n;

(4) When n is odd, then R is a reduced ring of characteristic 2 and J(R) = 0;

(5) If R is an algebra over a field F , then:

(i) J(R) is a nil ideal of index bounded by n;

(ii) either R is abelian (i.e., all idempotents of R are central) or char(F )

divides n.

our next major result is the following one:

Theorem 2.15. For a ring R, the following conditions are equivalent:

(1) There exists n ∈ N such that R is an n-torsion clean abelian ring.

(2) (a) char(R) is finite;

(b) The Jacobson radical J(R) is nil of bounded index;

(c) Idempotents lift uniquely modulo J(R);

(d) R/J(R) is a subdirect product of finite fields Fi, where i ranges over

some index set I, such that LCM(|Fi| − 1 | i ∈ I) exists.

(3) R is an abelian clean ring such that the unit group U(R) is of finite expo-

nent.

In parallel to Theorem 2.15, one can state the following:

Theorem 2.16. For a ring R, the following conditions are equivalent:

(1) R is strongly n-torsion clean, for some n ∈ N.
(2) R is strongly clean and U(R) is of finite exponent.

We now have at our disposal all the necessary information to present a sat-

isfactory structural characterization of strongly n-torsion clean rings for all odd

naturals n.

Theorem 2.17. Suppose n ∈ N is odd. For a ring R, the following conditions

are equivalent:

(1) R is a strongly n-torsion clean ring;
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(2) There exist integers k1, . . . , kt ≥ 1 such that n = LCM(2k1−1, . . . , 2kt−1)

and R is a subdirect product of copies of fields F2ki , 1 ≤ i ≤ t;

(3) R is a clean ring in which orders of all units are odd, bounded by n and

there exists a unit of order n.

3. Applications to Group Rings

Here, as usual, the symbol R[G] stands for the group ring of an arbitrary

multiplicative groupG over an arbitrary unital ringR, and ω(R[G]) is its standard

augmentation ideal, generated by the elements 1− g, where g runs over G.

Imitating [39], we state the following:

Definition 3.1. A ring R is said to be UU if its unit group U(R) satisfies the

equality U(R) = 1 +Nil(R), where Nil(R) is the set of all nilpotent elements of

R.

Our basic statement here is the following one:

Theorem 3.2. Let G be a group and R a ring.

(i) If R[G] is UU, then R is UU and G is a 2-group.

(ii) If G is locally finite, then R[G] is UU if, and only if, R is UU and G is a

2-group.

(iii) If H is a normal subgroup of G such that H is locally normal and if R[G]

is UU, then R[G/H] is UU.
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Chapter IV. Abelian Groups

Our chief results of this branch are distributed into two sections as follows:

4. Generalizations of transitive and fully transitive Abelian

groups

We shall distinguish here six subsections as follows:

4.1. On the socles of fully invariant subgroups of Abelian p-groups. The

classification of all the fully invariant subgroups of a reduced Abelian p-group is

a difficult and long-standing problem, not withstanding the progress made by

Kaplansky in the 1950s utilizing the notion of a fully transitive group - see Σ18

in [71]. Further progress was made for the special class of so-called large subgroups

by Pierce in [100, Theorem 2.7]. A somewhat less ambitious programme is to try

to characterize the socles of fully invariant subgroups and this is the subject of

our discussions here. Despite the seeming simplification engendered by restricting

attention to socles, the situation is still complicated once one moves away from

fully transitive groups. We will show by means of examples that full transitivity is

not the real core of the problem. We remark at the outset that the consideration

of reduced groups only, is not a serious restriction; see the Note after Lemma ??

below. Hence, in the sequel, we shall assume that our groups are always reduced

p-groups for some arbitrary but a fixed prime p.

Our notation is standard and follows [44, 71], an exception being that maps

are written on the right. Finally we recall the notion of a U -sequence from [71]: a

U -sequence relative to a p-group G is a monotone increasing sequence of ordinals

{αi}(i ≥ 0) (each less than the length of the group G) except that it is permitted

that the sequence be ∞ from some point on but that if a gap occurs between αn

and αn+1, the α
th
n Ulm invariant of G is non-zero.

We introduce two additional concepts, the first of which shall be the primary

focus our interest:

(i) A group G is said to be socle-regular if for all fully invariant subgroups F

of G, there exists an ordinal α (depending on F ) such that F [p] = (pαG)[p].

(ii) Suppose that H is an arbitrary subgroup of the group G. Set α =

min{hG(y) : y ∈ H[p]} and write α = min(H[p]); clearly H[p] ≤ (pαG)[p].

Our first result states thus:

Theorem 4.1. If G is a fully transitive group, then G is socle-regular.
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The following is also of some interest and importance.

Theorem 4.2. Suppose that A = G ⊕H where H is separable, then A is socle-

regular if, and only if, G is socle-regular.

We can also show that direct powers of a single socle-regular group are again

socle-regular. In fact we have the stronger:

Theorem 4.3. The group G is socle-regular if, and only if, the direct sum G(κ)

is socle-regular for any cardinal κ.

Once we drop the hypothesis of full transitivity, it is possible to exhibit groups

of varying levels of complexity which are not socle-regular. Our first result shows

that this failure can happen at the next stage beyond separability. We give two

examples, the first based on the well-known realization theorem of Corner in

[27], while the second is essentially due to Megibben in [87] – compare also with

Chapter III above for some similar results on noncommutative rings pertaining

to the endomorphism ring of groups of the present type.

Theorem 4.4. There exist groups of length ω + 1 which are not socle-regular.

Note that the elongations of socle-regular groups by socle-regular groups need

not be socle-regular. We can however obtain some additional information in the

special situation where the quotient G/pωG is a direct sum of cyclic groups.

Theorem 4.5. Let G be a group such that G/pωG is a direct sum of cyclic groups.

Then G is socle-regular if, and only if, pωG is socle-regular.

4.2. On socle-regularity and some notions of transitivity for Abelian p-

groups. Early work in the theory of infinite Abelian p-groups focused on issues

such as classification by cardinal invariants. This led initially to the rich theory

known now as Ulm’s theorem and, in some sense, culminated in deep classifica-

tion of the class of groups known variously as simply presented, totally projective

or Axiom 3 groups. Such groups are, of necessity, somewhat special. On the

other hand, there was also interest in properties of groups that were held by ”the

majority” of Abelian p-groups. Within this latter category, the extensive classes

of transitive and fully transitive groups were prominent. Recently, the present

authors introduced two new classes of p-groups which, respectively, properly con-

tained the corresponding classes of transitive and fully transitive groups: these

are the socle-regular and strongly socle-regular groups developed in [D8] and [35]

– see also Chapter III for some related results on ring theory which could be in-

terpreted on the endomorphism ring of abelian groups of these special kinds. The
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present subsection looks further at the interconnections between these classes and

some other recent notions of transitivity.

Throughout, all groups will be additively written, reduced Abelian p-groups;

standard concepts relating to such groups may be found in [44, 47] or [71]. We

follow the notation of these texts but write mappings on the right. To avoid

subsequent need for definitions of fundamental ideas, we mention that the height

of an element x in the group G (written like hG(x)) is the ordinal α if x ∈
pαG \ pα+1G with the usual convention that h(0) = ∞. The Ulm sequence of x

with respect to G is the sequence of ordinals or symbols ∞ given by UG(x) =

(hG(x), hG(px), hG(p
2x), . . . ); the collection of such sequences may be partially

ordered pointwise. Finally we recall an ad hoc notion introduced in [D8] which

continues to be useful here: suppose that H is an arbitrary subgroup of the

group G. Set α = min{hG(y) : y ∈ H[p]} and write α = min(H[p]); clearly

H[p] ≤ (pαG)[p].

We will now explore some various notions of transitivity. The notions of tran-

sitivity and full transitivity for Abelian p-groups were introduced by Kaplansky

in [70] and became a topic of ongoing interest in Abelian group theory with the

publication of Kaplansky’s famous “little red book” [71]. Recall that a p-group G

is said to be transitive (resp., fully transitive) if for each pair of elements x, y ∈ G

with UG(x) = UG(y) (resp., UG(x) ≤ UG(y)) there is an automorphism (endomor-

phism) ϕ of G with xϕ = y. In recent times two addition notions of transitivity

have been introduced: in [51] a group G is said to be Krylov transitive if, for each

pair of elements x, y ∈ G with UG(x) = UG(y), there is an endomorphism ϕ of G

with xϕ = y. Finally, a group G was said in [51] to be weakly transitive if, given

x, y ∈ G and endomorphisms ϕ, ψ of G with xϕ = y, yψ = x, there is an auto-

morphism θ of G with xθ = y. Notice in this last concept that although there is

no explicit reference to Ulm sequences, the existence of the endomorphisms ϕ, ψ

ensures that UG(x) = UG(y).

To avoid a great deal of repetition, we find it convenient to use the expression

G is *-transitive to mean that G has a fixed one of the the four transitivity

properties discussed above.

In [27], Antony Corner showed that transitivity and full transitivity of a group

G are determined by the action of the endomorphism ring on the first Ulm sub-

group pωG. Following his example, we say that if Φ is a unital subring of the

endomorphism ring End(G) of G and if H is a Φ-invariant subgroup of G, then

(i) Φ is transitive on H if, for any x, y in H with UG(x) = UG(y), there is a

unit ϕ ∈ Φ with xϕ = y;
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(ii) Φ is Krylov transitive on H if, for any x, y in H with UG(x) = UG(y), there

is an element ϕ ∈ Φ with xϕ = y;

(iii) Φ is fully transitive on H if, for any x, y in H with UG(x) ≤ UG(y), there

is an element ϕ ∈ Φ with xϕ = y;

(iv) Φ is weakly transitive on H if, for any x, y in H and elements ϕ, ψ ∈ Φ

with xϕ = y and yψ = x, there is a unit θ ∈ Φ with xθ = y.

Our first result is an analogue for Krylov transitivity of part of a well-known

result of Kaplansky [71, Theorem 26], the other part being contained in (ii) and

(iii) above.

Theorem 4.6. Suppose G is a Krylov transitive reduced p-group and that G has

at most two Ulm invariants equal to 1, and if it has exactly two, they correspond

to successive ordinals, then G is fully transitive.

Our next assertion shows that Krylov transitive groups behave nicely when

“squared”, provided that the lattice of Ulm sequences of the first Ulm subgroup

is a chain.

Theorem 4.7. Suppose G is a group such that all elements of pωG have compa-

rable Ulm sequences. Then G⊕G is Krylov transitive if, and only if, G is Krylov

transitive. This property may fail if there are elements of pωG with incomparable

Ulm sequences.

4.3. On projectively fully transitive Abelian p-groups. In 1952 Kaplansky,

[70], began his investigations into the fully invariant and characteristic subgroups

of an Abelian p-group. He followed this up in his now famous “little red book”,

Infinite Abelian Groups, [71], and introduced the notions of transitive and fully

transitive p-groups in a natural way arising from his investigations in [70]; these

notions have been of interest in Abelian group theory ever since. There is another

notion, closely related to full invariance, which has also been studied: projection

invariance. Recall that a subgroup H of the group G is said to be projection-

invariant in G if π(H) ≤ H for all idempotent endomorphisms π of G. Significant

work on this topic was produced by Hausen [57] and Megibben [88], concentrating

in the main in establishing when projection-invariant subgroups are actually fully

invariant; the socles of such subgroups have been investigated by the present

authors in [36]. In this work we follow a somewhat different path and explore a

new notion of transitivity which we shall call projective full transitivity. Recall

that a group G is said to be fully transitive if, given x, y ∈ G with UG(x) ≤
UG(y), there is an endomorphism ϕ of G with ϕ(x) = y. Our modification

is to say that G is projectively fully transitive if the endomorphism ϕ can be
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chosen to be in the subring of the full endomorphism ring generated by the

idempotent endomorphisms; clearly a projectively fully transitive group is always

fully transitive.

We shall establish a number of basic properties of projectively fully transitive

groups; in particular we shall show that this class of groups is properly contained

in the class of fully transitive groups. Moreover, the class is large but is not closed

under the taking of direct summands, unlike the situation which pertains for fully

transitive groups. Recent work on various types of transitivity - see, for example,

[D9] - has revealed the role played by ‘squares’ of a group in this connection

and similar properties re-appear here (compare also with Chapter III concerning

some ring-theoretic results which might be translated for the endomorphism ring

of abelian groups of the mentioned above sorts).

To simplify the notation and to avoid risk of confusion, we shall write E(G)

for the endomorphism ring of G and End(G) for the endomorphism group of G.

We shall denote by Proj(G) the subring of E(G) generated by the idempotents

of E(G); thus an element ϕ ∈ Proj(G) will have the form ϕ =
∑
finite

±πi1πi2 . . . πik ,

where each πij is an idempotent in E(G).

In the final part of the subsection, we shall examine briefly an apparently

stronger notion. Following Hausen, [57], we let Π(G) denote the subgroup of

the endomorphism group End(G) generated by the idempotent endomorphisms;

so ϕ ∈ Π(G) has the form ϕ =
n∑

i=1

±πi for some finite n, where each πi is an

idempotent endomorphism. Then a group G is said to be strongly projectively

fully transitive if, given x, y ∈ G with UG(x) ≤ UG(y), there exists ϕ ∈ Π(G) with

ϕ(x) = y; clearly a strongly projectively fully transitive group is projectively fully

transitive. Our results here are somewhat sketchier.

Throughout, the word group will denote an additively written Abelian p-group.

In this context our notation is standard and follows Fuchs [44, 47] and Kaplansky

[71, 72]; mappings are written on the left.

Since it is clear that a fully transitive group G is projectively fully transitive

if E(G) = Proj(G) (and similarly it is strongly projectively fully transitive if

End(G) = Π(G)), we consider firstly this situation. To simplify our terminology

we shall say that a group G is an idempotent-generated group (or IG-group)

if E(G) = Proj(G); we say that G is an idempotent-sum group (or IS-group) if

End(G) = Π(G). If E(G) is commutative, then it is obvious that Proj(G) = Π(G)

so that the IG-groups are then precisely the IS-groups; in general an IS-group is

always an IG-group. However, this situation is rather rare for a primary group:

it follows from results of Szele and Szendrei - see Exercise 6, p. 227 in [44] - that
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groups with commutative endomorphism ring are precisely subgroups of Z(p∞)

and it is easy to see that any cyclic group is an IS-group, while the quasi-cyclic

group Z(p∞) is not even an IG-group.

We will now carefully consider the class of projectively fully transitive groups

as follows:

In the classical theory of transitive and fully transitive groups, it is usual to

restrict consideration to reduced groups. However, it is not difficult to extend

the theory to non-reduced groups. This is normally achieved by modifying the

definition of an Ulm sequence for an element of a divisible group - see [71, p.57]

- so that if D is divisible and x ∈ D, then UD(x) = (0, . . . 0,∞, . . . ) where the

symbol ∞ occurs at precisely the (n + 1)st place if x has order pn; with this

understanding it is easy to show that divisible groups are fully transitive – see,

for example, [71, Exercise 71] or [15, Proposition 2.1]. In fact, we can show even

that any divisible group is necessarily a projectively fully transitive group. Recall

once again from the introduction that a group G is said to be projectively fully

transitive if, given x, y ∈ G with UG(x) ≤ UG(y), there exists ϕ ∈ Proj(G) with

ϕ(x) = y; clearly a projectively fully transitive group is fully transitive.

Theorem 4.8. If D is a divisible group, then D is a projectively fully transitive

group.

Recall [43, Definition 1] that the groups G1, G2 form a fully transitive pair

if, for every x ∈ Gi, y ∈ Gj(i, j ∈ {1, 2}) with UG(x) ≤ UG(y), there exists

α ∈ Hom(Gi, Gj) with α(x) = y. Note that {G1, G2} is a fully transitive pair if,

and only if, if G1 ⊕G2 is fully transitive – see [43, Proposition 1].

Summarizing, we have:

Theorem 4.9. If G = D ⊕ R, where D is divisible and R is reduced, then G is

projectively fully transitive if, and only if, R is projectively fully transitive.

We thus come to the following.

Theorem 4.10. Suppose κ > 1. Then the following are equivalent:

(i) G is fully transitive;

(ii) G(κ) is fully transitive;

(iii) G(κ) is transitive;

(iv) G(κ) is projectively fully transitive.

Three other results of interest are these:

Theorem 4.11. Suppose that α is an ordinal strictly less than ω2 and G/pαG is

totally projective. If pαG is projectively fully transitive, then so also is G.



26 P.V. DANCHEV

Theorem 4.12. A group G = D ⊕ R, where D is divisible and R is reduced, is

strongly projectively fully transitive if, and only if, R is strongly projectively fully

transitive.

Theorem 4.13. (i) If G is strongly projectively fully transitive, then pβG is

strongly projectively fully transitive for all ordinals β;

(ii) if pnG is strongly projectively fully transitive for some finite n, then G is

strongly projectively fully transitive;

(iii) if α is an ordinal strictly less than ω2 and G/pαG is totally projective,

then if pαG is strongly projectively fully transitive, so also is G;

(iv) if A,B are strongly projectively fully transitive and {A,B} is a fully tran-

sitive pair, then A⊕B is strongly projectively fully transitive;

(v) if G is strongly projectively fully transitive, then G(κ) is strongly projectively

fully transitive for any cardinal κ;

(vi) if G is totally projective of length ≤ ω2, then G is strongly projectively fully

transitive;

(vii) if λ is cofinal with ω and G is a Cλ-group of length λ ≤ ω2, then G is

strongly projectively fully transitive.

4.4. On commutator socle-regular Abelian p-groups. Throughout our dis-

cussion, we shall focus on additively written Abelian p-groups, where p is a prime

fixed for the rest of the present work, although many of the topics we investi-

gate can be considered in a much wider context. The notion of a fully invariant

subgroup of a group is, of course, a classical notion in algebra, as is the weaker

notion of a characteristic subgroup. Kaplansky devoted a section of his famous

“Little Red Book”[71] (see also [70]) to the study of such subgroups and, arising

from this, he introduced the much-studied classes of transitive and fully transi-

tive groups – see, for example, [27, 28, 29, 43]. Recall that a group G is said to

be transitive (respectively, fully transitive) if given x, y ∈ G with Ulm sequences

UG(x) = UG(y) (respectively, UG(x) ≤ UG(y)), there exists an automorphism

(respectively, an endomorphism) ϕ such that ϕ(x) = y. But there are several

other weaker notions which have been of interest: recall that a subgroup H of a

group G is said to be projection invariant in G if π(H) ≤ H for all idempotent

endomorphisms π of G – see, for instance, [57, 88, 36] as well as [D9] – while a

subgroup H of G is said to be commutator invariant in G if [ϕ, ψ](H) ≤ H for all

ϕ, ψ ∈ E(G), where, as usual, [ϕ, ψ] denotes the additive commutator ϕψ − ψϕ.

These two notions are independent of each other; in fact, there is a commutator

invariant subgroup that is not projection invariant, and a projection invariant

subgroup which is not commutator invariant. For the first case, consider the
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group A = ⟨a⟩ ⊕ ⟨b⟩ such that o(a) = p and o(b) = p3 with a proper subgroup

H = ⟨a+ pb⟩. It was established in [19] that H is commutator invariant in A but

not a fully invariant subgroup. With the aid of [88] we also deduce that H is not

projection invariant in A because in finite groups full invariance and projection

invariance coincide. For the second case, the group G of Example ?? below will

suffice; see the note immediately following the proof of Example ?? as well.

In [D8] and [35] the authors generalized the classes of transitive and fully tran-

sitive groups by focusing on the possible socles of characteristic and fully invariant

subgroups (see [D9] too). In [36] full invariance was replaced by projection in-

variance and the current work continues this theme by replacing full invariance

with commutator invariance. Our interest in this was sparked by the timely

appearance of Chekhlov’s interesting paper [19].

We show that in relation to commutator socle-regularity, one can restrict at-

tention to reduced groups: if A = D ⊕R, where D is divisible and R is reduced,

then A is commutator socle-regular if, and only if, R is commutator socle-regular-

Theorem ??. Using realization results of Corner, we establish a useful method of

constructing groups whose commutator socle-regularity is precisely determined

by that of its first Ulm subgroup. We then exploit this result to show, inter alia,

that for groups G with G/pαG totally projective and α < ω2, commutator socle-

regularity of G is determined by that of pαG - Theorem 4.14; on the other hand

we construct groups G,K with pωG = pωK but K is commutator socle-regular

while G is not - Example ??.

Next, we relate the various notions of socle-regularity that have previously been

investigated in [D8], [D9] and [35, 36] with commutator socle-regularity. Our

principal results show that the notions are equivalent when the group involved

is the direct sum of at least two copies of a fixed group - Theorem ?? - but

we provide examples showing that the notions are, in fact, different in general.

It follows easily from this that summands of commutator socle-regular groups

need not be commutator socle-regular- Corollary ??. However, we also show that

the addition of a separable summand to a group does not influence commutator

socle-regularity - Theorem 4.15.

Our interest here will focus on the Abelian p-groups involved but we should

point out that a ring-theoretic perspective is also possible: Kaplansky in [72]

raised the notion of rings in which every element is a sum of additive commutators

- the so-called commutator rings. These too have been the subject of a great deal

of interest; see, e.g., the recent significant work of Mesyan in [90].

We re-iterate that all groups throughout the current work are additively written

Abelian p-groups, where p is an arbitrary but fixed prime. Our notation and
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terminology not explicitly stated herein are standard and follow mainly those

in [44, 47]. As usual, E(G) denotes the endomorphism ring of a group G. We

close this introduction by recalling an important result of A.L.S. Corner from [28,

Theorem 6.1] which we shall use repeatedly in the sequel: If H is a countable

bounded p-group and Φ is a countable subring of E(H), then H may be imbedded

as the subgroup pωG of a p-group G such that E(G) acts on H as Φ and with the

property that each ϕ ∈ Φ extends to an endomorphism ϕ∗ of G. The mapping

ϕ 7→ ϕ∗ may even be taken as a semigroup homomorphism between the respective

multiplicative semigroups of the rings; we shall need this semigroup property only

in Example ??. We shall also exploit the groups constructed by Corner using this

imbedding result: there is a fully transitive non-transitive p-group with first Ulm

subgroup elementary of countably infinite rank and a transitive 2-group which is

not fully transitive having a finite first Ulm subgroup which is the direct sum of

cycles of order 2 and 8 - see Sections 3 & 4 in [29] and [51] for further details

as well as Chapter III for some related results in ring theory relevant to the

endomorphism ring of such abelian groups.

The construction of examples in this area invariably leads one to consider-

able amounts of reasonably straightforward but somewhat laborious calculations.

These calculations have been recorded separately in an Appendix in order not to

interfere with the presentation of results.

In the upcoming lenes we investigate some of the fundamental properties of

the class of commutator socle-regular groups; we begin with the appropriate

definitions.

Definition 1. A subgroup C of a group G is said to be commutator invariant if

f(C) ≤ C for every f ∈ E(G) which is of the form f = [ϕ, ψ] = ϕψ − ψϕ, where

ϕ, ψ ∈ E(G).

Clearly each fully invariant subgroup is commutator invariant, whereas the con-

verse fails (see, e.g., [19]). Nevertheless, in some concrete situations, commutator

invariant subgroups are fully invariant. Specifically, the following result from [19]

holds:

Definition 2. A group G is said to be commutator socle-regular if, for each

commutator invariant subgroup C of G, there exists an ordinal α (depending on

C) such that C[p] = (pαG)[p].

Our first result here asserts as follows:

Theorem 4.14. (i) If G is a group such that either pωG = {0} or pωG ∼= Z(pn)
for some finite n, then G is commutator socle-regular;
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(ii) A group G is commutator socle-regular if, and only if, pnG is commutator

socle-regular for some n ∈ N;
(iii) If G is a group such that G/pαG is totally projective for some ordinal

α < ω2, then G is commutator socle-regular if, and only if, pαG is commutator

socle-regular;

(iv) Totally projective groups of length < ω2 are commutator socle-regular.

In a certain specific case the following direct summand property holds:

Theorem 4.15. Suppose that A = G ⊕H and H is separable. Then A is com-

mutator socle-regular if, and only if, G is commutator socle-regular.

4.5. On commutator fully transitive Abelian groups. Throughout the present

subsection, let all groups be additive Abelian groups and let all unexplained no-

tions and notations follow those from [44, 47] and [71].

To simplify the notation, and to avoid any risk of confusion, we shall write

E(G) for the endomorphism ring of a group G, and End(G) = E(G)+ for the

endomorphism group of a group G. Likewise, the endomorphism ψ is called

commutator if it can be represented as ψ = [α, β] = αβ − βα for some endomor-

phisms α, β of G. Commutators of endomorphisms rings of groups and certain

other questions connected with them were studied in the papers from [16] to [22].

Moreover, we shall denote by Comm(G) the subring of E(G) containing the

same identity and generated by the commutator endomorphisms. In view of the

equality [α, β] = −[β, α], an element ϕ ∈ Comm(G) will have the form ϕ =∑
finite

ci1ci2 . . . cik , where every cij is a commutator in E(G) for ij ∈ N and 1 ≤ j ≤

k ∈ N.
Analogically, we let comm(G) denote the subgroup of End(G) generated by

the commutator endomorphisms; so φ ∈ comm(G) has the form φ =
n∑

i=1

ci for

some finite n, where each ci is a commutator in End(G). Since 1 can be repre-

sented as a finite sum of finite products of commutators, it is immediately seen

that the same holds for ci = 1 · ci = ci · 1 and thus comm(G) ⊆ Comm(G).

As usual, mimicking [78, Section 27], HG(g) denotes the height matrix of the

element g of a group G. In case that the group G is a p-group, instead of HG(g),

it can be considered the Ulm indicator UG(g) of the element g, while if the group

G is torsion-free it can be considered the characteristic χG(g). Also, o(g) will

denote the order of the element g, i.e., the least n ∈ N with ng = 0 or ∞ if such

an n does not exist. We also define the relation ≼ as follows: for m,n ∈ N∪{∞}
we suppose that m ≼ n ⇔ either n | m or m = ∞.
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Let R be an associative unital ring, let G be a group, and let ϕ : R → E(G)

be a ring homomorphism. We shall define the action of R on G by the equality

r(g) = ϕ(r)(g). Analogously as above, we denote by Comm(R) and comm(R) the

subring of R and the subgroup of R+, respectively, generated by all commutators

of R. So, we come to the following notion:

Main Definition. A group G is said to be R-commutator fully transitive if,

given 0 ̸= x, y ∈ G with HG(x) 6 HG(y) and o(x) ≼ o(y), there exists φ ∈
Comm(R) with φ(x) = y. If φ is chosen from comm(R), then the group is called

R-strongly commutator fully transitive.

In what follows we will consider several times the examined group as a module

on its endomorphism ring. In particular, when R = E(G) and R+ = End(G), one

can obtain the following two concepts:

Definition 1. A group G is said to be commutator fully transitive (briefly written

as a cft-group) if, given 0 ̸= x, y ∈ G with HG(x) 6 HG(y) and o(x) ≼ o(y), there

exists ϕ ∈ Comm(G) with ϕ(x) = y.

Definition 2. A group G is said to be strongly commutator fully transitive

(briefly written as a scft-group) if, given 0 ̸= x, y ∈ G with HG(x) 6 HG(y) and

o(x) ≼ o(y), there exists φ ∈ comm(G) with φ(x) = y.

Note that if the group is reduced, then the condition o(x) ≼ o(y) in both

Definitions 1 and 2 can be eliminated in conjunction with [54, Proposition 2.23].

However, the later usage of that condition is basically motivated by the existence

of divisible direct factors. It is also clear that any scft-group is a cft-group.

Notice that in [D12] were studied the so-termed projectively fully transitive

p-groups,i.e., the p-groups G having the property that, for any x, y ∈ G with

UG(x) 6 UG(y), there exists φ ∈ Proj(G) such that φ(x) = y, where Proj(G)

is the subring of E(G) generated by the idempotents of E(G). There were also

explored strongly projectively fully transitive p-groups defined in a similar way

replacing Proj(G) by Π(G), which is the subgroup of End(G) generated by all

the idempotents additively. We shall often cite and use in what follows some

results of [D12].

Once again, throughout the text, the word group will denote an additively

written Abelian group. In this context, our terminology not explicitly explained

herein is standard and follows the excellent monographs of Fuchs [44, 47] and

the book of Kaplansky [71], where all mappings are written on the left. A good

source in this subject is [15] too. Likewise, if A, B are groups and H ⊆ A, then
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let Hom(A,B)H =
∑

f∈Hom(A,B)

f(H). Standardly, for this subsection Zn denotes

the cyclic group of order n, whereas the ring of integers modulo n is denoted by

Z(n).

Our work is motivated mainly by [D12] and [D13]. Here we wish to consider

the situation when the projection endomorphisms are replaced by commutator

endomorphisms and thus to find the similarity and the discrepancy in both of

them. We just emphasize that there is no absolute analogy in both cases.

It is clear that if Comm(G) = E(G) (resp., comm(G) = End(G)), then the

fully transitive group G is a cft-group (resp., a scft-group), so we consider firstly

this situation. We shall say that a group G is a commutator-generated group

(or a CG-group for short) if Comm(G) = E(G); reciprocally, we say that G is a

commutator-sum group (or a CS-group for short) if comm(G) = End(G). It is

self-evident that a CS-group is a CG-group because End(G) ⊆ E(G). Likewise, it

is apparent that a group with commutative endomorphism ring is neither a CG-

group nor a CS-group; for a more concrete information concerning groups with

commutative endomorphism ring, we refer the interested reader to both [108] and

[106] – compare also with results from Chapter III.

We can now state the following:

Theorem 4.16. Let κ > 1 and let G be either a p-group or a torsion-free homo-

geneous group. Then the following condition are equivalent:

(a) G is fully transitive;

(b) G(κ) is fully transitive;

(c) G(κ) is cft.

4.6. On abelian groups having all proper fully invariant subgroups iso-

morphic. Throughout the present subsection, let all groups into consideration

be additively written and abelian. Our notations and terminology from group

theory are mainly standard and follow those from [44, 47] and [71]. For instance,

if p is a prime integer and G is an arbitrary group, pnG = {png | g ∈ G} denotes

the pn-th power subgroup of G consisting of all elements of p-height greater than

or equal to n ∈ N, G[pn] = {g ∈ G | png = 0, n ∈ N} denotes the pn-socle of G,

and Gp = ∪n<ωG[p
n] denotes the p-component of the torsion part tG = ⊕pGp of

G.

On the other hand, if G is a torsion-free group and a ∈ G, then let χG(a) denote

the characteristic and let τG(a) denote the type of a, respectively. Specifically, the

class of equivalence in the set of all characteristics is just called type and we write

τ . If χG(a) ∈ τ , then we write τG(a) = τ , and so τ(G) = {τG(a) | 0 ̸= a ∈ G} is

the set of types of all non-zero elements of G. The set G(τ) = {g ∈ G | τ(g) > τ}
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forms a pure fully invariant subgroup of the torsion-free group G. Recall that a

torsion-free group G is called homogeneous if all its non-zero elements have the

same type.

Concerning ring theory, suppose that all rings which we consider are associative

with identity element. For any ring R, the letter R+ will denote its additive group.

To simplify the notation and to avoid a risk of confusion, we shall write E(G) for

the endomorphism ring of G and End(G) = E(G)+ for the endomorphism group

of G.

As usual, a subgroup F of a group G is called fully invariant if ϕ(F ) ⊆ F for

any ϕ ∈ E(G). In addition, if ϕ is an invertible endomorphism (= an automor-

phism), then F is called a characteristic subgroup, while if ϕ is an idempotent

endomorphism (= a projection), then F is called a projection invariant subgroup.

Classical examples of important fully invariant subgroups of an arbitrary group

G are the defined above subgroups pnG and G[pn] for any natural n as well as

tG and the maximal divisible subgroup dG of G; actually dG is a fully invariant

direct summand of G (see, for instance, [44]).

We shall say that a group G has only trivial fully invariant subgroups if {0}
and G are the only ones. Same appears for characteristic and projection invariant

subgroups, respectively.

The following notions are our major tools.

Definition 1. A non-zero group G is said to be an IFI-group if either it has only

trivial fully invariant subgroups, or all its non-trivial fully invariant subgroups

are isomorphic otherwise.

Definition 2. A non-zero group G is said to be an IC-group if either it has only

trivial characteristic subgroups, or all its non-trivial characteristic subgroups are

isomorphic otherwise.

Definition 3. A non-zero group G is said to be an IPI-group if either it has only

trivial projection invariant subgroups, or all its non-trivial projection invariant

subgroups are isomorphic otherwise.

Note that Definition 3 implies Definition 1 and Definition 2 implies Definition

1. In other words, any IPI-group is an IFI-group and any IC-group is an IFI-

group; in fact every fully invariant subgroup is both characteristic and projection

invariant.

Definition 4. A non-zero group G is called a strongly IFI-group if either it has

only trivial fully invariant subgroups, or all its non-zero fully invariant subgroups

are isomorphic otherwise.
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Definition 5. A non-zero group G is called a strongly IC-group if either it has

only trivial characteristic subgroups, or all its non-zero characteristic subgroups

are isomorphic otherwise.

Definition 6. A non-zero group G is called a strongly IPI-group if either it has

only trivial projection invariant subgroups, or all its non-zero projection invariant

subgroups are isomorphic otherwise.

Notice that Definition 6 implies Definition 4 and Definition 5 implies Definition

4.

On the other hand, it is obvious that Definition 4 implies Definition 1, whereas

the converse fails as the next example shows: In fact, construct the group G ∼=
Z(p) ⊕ ⊕ℵoZ(p2). Since it is fairly clear that G ̸= pG, G ̸= G[p] and G = G[p2],

we deduce that pG ∼= ⊕ℵ0Z(p) ∼= G[p] that are the only proper fully invariant

subgroups of G. However, G ̸∼= G[p], as required. Thus there exists a p-primary

IFI-group which is not a strongly IFI-group, as asserted.

However, in the torsion-free case, Definitions 1 and 4 are tantamount (see

Proposition ?? below).

Moreover, each subgroup of an indecomposable group is projection invariant,

so that an indecomposable group is an IPI-group if and only if it is either a cyclic

group of order p for some prime p, or is isomorphic to the additive group of

integers Z.
It is worthwhile noticing in the current context that in [55] and [56] were studied

p-groups which are isomorphic to their fixed proper fully invariant subgroup (see

also cf. [54]) as well as in [5] were examined the so-called IP-groups that are

isomorphic to their fixed pure subgroup.

Our purpose here is to explore some crucial properties of the defined above new

classes of groups. The chief results are stated and proved in the next section.

As usual, ⊕mG = G(m) will denote the external direct sum of m copies of the

group G, where m is some ordinal (finite or infinite). The following statement

asserts that in a special case the three classes from Definitions 1, 2 and 3 do

coincide.

Theorem 4.17. Let G be a p-group and let m > 2 be an ordinal. Then G(m) is

an IFI-group if, and only if, G is an IC-group if and only if G is an IPI-group.

In accordance to the last statement, since divisible groups are well-classified

(cf. [44]), we will henceforth consider only reduced groups.

Theorem 4.18. The following two points hold:
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(i) A non-zero group G is an IFI-group if, and only if, one of the following

holds:

• For some prime p either pG = {0}, or p2G = {0} with r(G) = r(pG).

• G is a homogeneous torsion-free IFI-group of an idempotent type.

(ii) A non-zero torsion group G is a strongly IFI-group if, and only if, it is an

elementary p-group for some prime p.

So, we proceed with the following statement.

Theorem 4.19. Suppose A is an irreducible endofinite torsion-free group, the

center C of E(A) is a principal ideal domain and the module CA has rank 6 ℵ0.

Then A is an IFI-group. Besides, if the group A is decomposable, then it is both

an IC-group and an IP -group.

The next statement also describes certain cases of IFI-groups.

Theorem 4.20. For a torsion-free group G of finite rank, for which the center

C of E(G) is a ring satisfying property (∗), the following four conditions are

equivalent:

(1) G is an IFI-group;

(2) G is an irreducible endofinite group and C is a principal ideal E-ring;

(3) G ∼= (C+)(n), where n is some natural number and C+ is a strongly inde-

composable E-group of finite rank;

(4) G is a homogeneous fully transitive group of idempotent type.

5. Generalizations of simply presented Abelian p-groups

We shall distinguish here three subsections as follows:

5.1. An application of set theory to (ω+n)-totally pω+n-projective abelian

p-groups. By the term “group” we will mean an abelian p-group, where p is a

prime fixed for the duration. Our group theoretic terminology and notation

will generally follow that found in [44, 47]. In particular, pωG denotes the first

Ulm subgroup of a group G consisting of all elements of infinite height, and

pω+nG = pn(pωG). The cyclic group of order pk will be denoted by Zpk and the

infinite cocyclic group will be denoted by Zp∞ . We will say a group G is Σ-cyclic

if it is isomorphic to a direct sum of cyclic groups. A group G is a dsc-group if

it is isomorphic to a direct sum of countable groups. In particular, we are not

assuming that our dsc-groups are necessarily reduced; in fact, they are a direct
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sum of a divisible group and a reduced group where the second summand is a

dsc-group in the sense of [44]. Following [65] and [67], a group G is said to be a

Σ-group if one (and hence every) high subgroup of G is Σ-cyclic (where a subgroup

X of G is high if it is maximal with respect to the property X ∩ pωG = {0}).
It was asked in [65] and [67] whether or not subgroups of Σ-groups are again

Σ-groups. In general, a subgroup of a Σ-group is not necessarily a Σ-group (see

Example 2 of [86]). We will say G is a totally Σ-group if every subgroup of G is

also a Σ-group. Our first objective is to give several different characterizations

of this class (Theorem 5.1). For example, G is a totally Σ-group iff it is the

direct sum of a countable group and a Σ-cyclic group. Alternatively, we will say

that G is ω-totally Σ-cyclic if every separable subgroup S of G is Σ-cyclic. It is

elementary that G is a totally Σ-group iff it is ω-totally Σ-cyclic.

The class of ω-totally Σ-cyclic groups can be described in other ways. For

example, it coincides with the class of ω-totally pure-complete groups, i.e., those

groups all of whose separable subgroups are pure-complete (where a group X is

pure-complete if for every subgroup S ⊆ X[p] there is a pure subgroup P ⊆ X

such that P [p] = S). It also coincides with the class of ω + n-totally dsc-groups,

i.e., those groups all of whose pω+n-bounded subgroups are dsc-groups.

Expanding slightly on the example of Megibben in [86], if H is any group (e.g.,

a torsion-complete group), then there is a group G such that pωG = H and

G/pωG is Σ-cyclic. Since for any high subgroup Z of G there is an embedding

Z → G/pωG, Z must be Σ-cyclic, so that G will be a Σ-group containing H. On

the other hand, if H is not countable, then G will not be a totally Σ-group. We

sharpen this observation by showing that any separable group S can be embedded

as a subgroup in a group G of length ω + 1 which is a Σ-group but not a totally

Σ-group.

More generally, if C is a class of groups and α is an ordinal, we will say that

G is α-totally C if every pα-bounded subgroup of G is a member of C. Again,

it is elementary that G is α-totally C iff every subgroup of G has the property

that all of its pα-high subgroups are in C (where a subgroup X of a group Y

is pα-high iff it is maximal with respect to the property that X ∩ pαY = {0}).
In fact, we will mainly be concerned with the case where n < ω, α = ω + n

and C is the class of pω+n-projective groups; recall that G is pω+n-projective if

pω+nExt(G,X) = 0 for all X, or equivalently, if there is a subgroup P ⊆ G[pn]

such that G/P is Σ-cyclic (see, e.g., [97]). So, a group is pω-projective iff it is Σ-

cyclic. It follows easily that the class of pω+n-projectives is closed under arbitrary

subgroups. In addition, if G1 and G2 are pω+n-projectives, then G1 and G2 are

isomorphic iff G1[p
n] and G2[p

n] are isometric (i.e., there is an isomorphism that
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preserves the height functions on the two groups; see [46]). So, if C is the class

of pω+n-projective groups and α = ω+n, we have that a group G is ω+n-totally

pω+n-projective iff every pω+n-bounded subgroup X of G is pω+n-projective. And

since a group is pω-projective iff it is Σ-cyclic, a group is ω-totally pω-projective

iff it is ω-totally Σ-cyclic.

Note that if pω+nG = {0}, then G is ω + n-totally pω+n-projective iff it is

pω+n-projective. It is also straightforward to verify that the class of ω+n-totally

pω+n-projectives contains the class of ω-totally Σ-cyclic groups (Corollary ??).

We will say an ø + n-totally pω+n-projective group G is proper if it does not

belong to either of these two classes; i.e., iff it is not pω+n-projective and not ω-

totally Σ-cyclic. In particular, there are no proper ω-totally pω-projectives. For

0 < n < ω we study the question of whether there are, in fact, any proper ø + n-

totally pω+n-projective groups. In fact, we show that this question is equivalent to

a natural construction expressible using valuated vector spaces (see, for example,

[101] and [45]).

If V is a group, then a valuation on V is a function v : V → O∞ (where

O∞ is the class of all ordinals plus the symbol ∞), such that for all x, y ∈ V ,

v(x± y) ≥ min{v(x), v(y)} and v(px) > v(x). It follows that for every α ∈ O∞,

V (α) = {x ∈ V : v(x) ≥ α} is a subgroup of V . If V and W are valuated groups,

then a homomorphism ϕ : V → W will be said to be valuated if v(x)<v(ϕ(x))

for all x ∈ V , and an isometry if it is bijective and preserves all values. Note

that if G is any group and H is a subgroup of G, then the height function on G

restricts to a valuation on H. The category of valuated groups clearly has direct

sums.

Naturally, a valuated group V is a valuated vector space if pV = {0}. In par-

ticular, the socle of a group will always be a valuated vector space. The valuated

vector space V will be said to be separable if V (ω) = {x ∈ V : v(x) ≥ ω} = {0}
and free if it is isometric to the valuated direct sum of valuated vector spaces

of rank one. If W is a subspace of V , then the corank of W is the dimension of

V/W . A subspace E of V will be called cofree if there is a valuated decomposition

V = E⊕F , where F is free [in other words, V is algebraically the internal direct

sum of E and F , and v(x+ y) = min{v(x), v(y)} for all x ∈ E and y ∈ F ].

If κ is an infinite cardinal, then a valuated vector space V will be said to

be κ-coseparable if it is separable and every subspace W of corank strictly less

than κ contains a subspace E ⊆ W that is cofree in V . We will really only be

concerned with the cases where κ = ℵ0 or ℵ1. A κ-coseparable valuated vector

space will be said to be proper if it is not free. In [38] the existence of a proper

ℵ1-coseparable valuated vector space was shown to be equivalent to a question
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involving the structure of abelian groups, and to be independent of ZFC. We

conclude this subsection by showing that for 0 < n < ω, the existence of a proper

ℵ0-coseparable valuated vector space is equivalent to the existence of a proper

ω+n-totally pω+n-projective group, and we prove that both of these propositions

are independent of ZFC (Theorem 5.4).

Our frontier here is the following:

Theorem 5.1. If G is a group, then the following are equivalent:

(a) G is a totally Σ-group;

(b) G is ω-totally Σ-cyclic;

(c) G is a Σ-group and pωG is countable;

(d) G/pωG is Σ-cyclic and pωG is countable;

(e) G ∼= C ⊕M , where C is countable and M is Σ-cyclic;

(f) G is ω-totally pure-complete;

(g) For all n < ω, G is an ω + n-totally dsc-group;

(h) For some n < ω, G is an ω + n-totally dsc-group.

The following result is our main tool in analyzing proper ω + n-totally pω+n-

projective groups. Since non-free separable valuated vector spaces are usually not

ℵ0-coseparable, it puts a serious limitation on the structure of proper ω+n-totally

pω+n-projectives, showing that they are relatively rare phenomena.

Theorem 5.2. Suppose n < ω and G is a proper ω + n-totally pω+n-projective

group. If V is a separable valuated vector space for which there is an injective

valuated homomorphism V → G[p], then V is ℵ0-coseparable.

A crucial fact is also the following one:

Theorem 5.3. The following hold:

(a) A group G is special iff pωG is finite, G/pωG is pω+1-projective and K(G)

is ℵ0-coseparable.

(b) The class of special groups is closed under arbitrary subgroups.

(c) Any special group is ω + n-totally pω+n-projective for all 0 < n < ω.

We come now to our main theorem on proper ω + n-totally pω+n-projectives.

Theorem 5.4. The equivalence of the following three statements is a theorem in

ZFC:

(a) There is a proper ω + n-totally pω+n-projective group for some 0 < n < ω.

(b) There is a proper ℵ0-coseparable valuated vector space.
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(c) There is a separable pω+1-projective group A which is not Σ-cyclic such

that whenever G is a group with pωG ∼= Zp and G/pωG ∼= A, then G must also be

pω+1-projective.

On the other hand, all three are undecidable in ZFC; in particular, they all hold

in a model of MA+¬CH, whereas they all fail in a model of V=L.

5.2. On n-simply presented abelian p-groups. Throughout, by the term

“group” we will mean an abelian p-group, where p is a prime fixed for the duration

of the subsection. Our terminology and notation will be based upon [44] and [47].

For example, if α is an ordinal, then a group G will be said to be pα-projective

if pαExt(G,X) = {0} for all groups X. We will denote the height of an element

x ∈ G by |x|G. We will say G is Σ-cyclic if it is isomorphic to a direct sum of

cyclic groups.

The totally projective groups have a central position in the study of abelian

p-groups (see Chapter XII of [44] or Chapter VI of [53]). One reason for their

importance is the number of different ways they can be characterized; recall that

a group G is totally projective if any one of the following equivalent conditions is

satisfied:

(1) G is simply presented;

(2) G is balanced projective, i.e., Bext(G,X) = {0} for all groups X;

(3) G/pαG is pα-projective for every ordinal α;

(4) G has a nice system;

(5) G has a nice composition series.

It is worth pointing out that, unlike the treatment in [44], we do not require a

simply presented group to be reduced.

In a somewhat different direction, if n is a non-negative integer (that will

be fixed for the remainder of this section), then the group G is pω+n-projective

iff there is a subgroup P ⊆ G[pn] such that G/P is Σ-cyclic (see, e.g., [97]).

So, a group is pω-projective iff it is Σ-cyclic. It follows easily that the class of

pω+n-projectives is closed under arbitrary subgroups. In addition, if G1 and G2

are pω+n-projectives, then G1 and G2 are isomorphic iff G1[p
n] and G2[p

n] are

isometric (i.e., there exists an isomorphism that preserves the height functions on

the two subgroups as computed in the whole groups; see [46]).

A number of papers have been written over the years that combine elements

of these two important components of the study of abelian p-groups (see, for

example, [48], [49] and [74]). In this and a subsequent section, we will consider

several other interesting ways to combine them.
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Generalizing (1), a group G will be said to be n-simply presented if there is

a subgroup P ⊆ G[pn] such that G/P is simply presented. Such a subgroup

will be called n-simply representing. It follows, therefore, that the class of n-

simply presented groups includes both the simply presented groups and the pω+n-

projective groups.

In terms of homological algebra, we say a short exact sequence 0 → X →
Y → G → 0 is n-balanced exact if it represents an element of pnBext(G,X).

Generalizing (2), we say G is n-balanced projective if every such n-balanced exact

sequence splits. We show that G is n-balanced projective iff it is a summand

of a group that is n-simply presented, and that there are enough n-balanced

projectives (Theorem 5.5). We also show that a separable group G is n-simply

presented iff it is n-balanced projective iff it is pω+n-projective (Proposition ??).

If G is pω+n-projective and P is a subgroup of G[pn] such that G/P is Σ-cyclic,

then P will, in fact, be nice in G (i.e., every coset x+P will contain an element of

maximal height). This leads to a further generalization of (1): We say the group

G is strongly n-simply presented if it has an n-simply representing subgroup which

is nice.

Continuing in the language of homological algebra, we say a short exact se-

quence 0 → X → Y
ϕ→G → 0 is strongly n-balanced exact if it is balanced

and there is a height-preserving homomorphism ν : G[pn] → Y [pn] such that

ϕ ◦ ν is the identity on G[pn] (note that if n ≥ 1, then the latter condition

already implies that the sequence is balanced - see, for instance, [44, Proposi-

tion 80.2]). In other words, we are requiring that the induced exact sequence,

0 → X[pn] → Y [pn] → G[pn] → 0, is split in the category of valuated groups. We

can, therefore, consider the class of strongly n-balanced projectives.

In parallel with the above, we next show that a group G is strongly n-balanced

projective iff it is a summand of a group that is strongly n-simply presented, and

that there are enough strongly n-balanced projectives (Theorem 5.6). We also

show that a pω+n-bounded group G is strongly n-simply presented iff it is strongly

n-balanced projective iff it is pω+n-projective (Proposition ??).

One of the most useful and important results in the study of totally projective

groups is a theorem of Nunke from [98] which states that if λ is an ordinal, then a

group G is totally projective iff pλG and G/pλG are both totally projective (see,

for example, [53, Theorem 74]). The same property was independently proved by

Crawley-Hales for simply presented groups (see [30] and [31]). It is not hard to

see that if G is (strongly) n-simply presented or (strongly) n-balanced projective,

then pλG and G/pλG must share the corresponding property (Theorem 5.7(a)

and Proposition ??(a)). The converse is rather more complicated. We show that
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if pλ+nG and G/pλ+nG are strongly n-simply presented or strongly n-balanced

projective, then so is G (Theorem 5.7(b) and Proposition ??(b)). On the other

hand, for ordinals not of the form λ + n (e.g., limit ordinals), we show that this

can fail for strongly n-simply presented groups (Example ??).

The next part of the subsection is devoted to showing that for an arbitrary

ordinal λ, if pλG and G/pλG are n-simply presented or n-balanced projective,

then the same can be said of G (Theorem 5.8 and Corollary ??). This surprisingly

very difficult proof requires a detailed examination of the behavior of bounded

subgroups P of G for which G/P is simply presented.

These properties allow us to conclude that for any group G of length strictly

less than ω2, that G is (strongly) n-simply presented iff it is (strongly) n-balanced

projective (Corollaries ?? and ??). In other words, the (strongly) n-simply pre-

sented groups of length less than ω2 are closed under taking direct summands.

Later, we will establish some further statements of this sort.

A group G is pω+n-projective iff there is a Σ-cyclic group T and a subgroup

Q ⊆ T [pn] such that T/Q ∼= G (see, e.g., [46]). The proof of this property

depends solely on the fact that T is Σ-cyclic iff pnT is Σ-cyclic. Similarly, we say

G is n-co-simply presented if there is a simply presented group T and a subgroup

Q ⊆ T [pn] such that T/Q ∼= G. Since T is also simply presented iff pnT is simply

presented, the same proof shows that G is n-simply presented iff it is n-co-simply

presented.

We begin by describing the summands of the n-simply presented groups.

Theorem 5.5. The group G is n-balanced projective iff it is a summand of a

group that is n-simply presented. There are enough n-balanced projectives.

We also have the following analogue of Theorem 5.5.

Theorem 5.6. The group G is strongly n-balanced projective iff it is a summand

of a group that is strongly n-simply presented. There are enough strongly n-

balanced projectives.

Nunke’s-like theorems for our point of view are of the type:

Theorem 5.7. Suppose λ is an ordinal and G is a group.

(a) If G is (strongly) n-simply presented, then both pλG and G/pλG are

(strongly) n-simply presented.

(b) If both pλ+nG and G/pλ+nG are (strongly) n-simply presented, then G is

(strongly) n-simply presented.

By a graded vector space, we will mean a collection of vector spaces indexed

by the ordinals, U = [Uα]α<∞, such that there is an ordinal λ with Uα = {0} for
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all α ≥ λ; the smallest such ordinal λ we call the length of U . The definition

of a graded homomorphism or isomorphism follows naturally and the resulting

category of graded vector spaces clearly has direct sums. We say x ∈ U if there

is an α such that x ∈ Uα and if x ̸= 0 we write |x|U = α. We say U is admissible

if its Ulm function fU(α) = r(Uα) is admissible in the usual sense. Let R(U) =∑
α<∞ r(Uα), and if β is an ordinal, let Rβ(U) =

∑
β <α<β+ω r(Uα).

Our motivating example is where V is a valuated vector space (e.g., the socle

of some group) and U(V ) is the graded vector space [Uα(V )]α<∞ = [V (α)/V (α+

1)]α<∞. We let R(V ) = R(U(V )) and Rβ(V ) = Rβ(U(V )). If L is a subset of a

valuated vector space V , then for each ordinal α we let Lα = {x ∈ L : |x|V = α}
and we let span(L) be the graded vector space [span(Lα)]α<∞.

This brings us to the objective of this section.

Theorem 5.8. Suppose G is a group and λ is any ordinal. Then G is n-simply

presented iff pλG and G/pλG are n-simply presented.

Theorem 5.9. If G is a group and λ is a limit ordinal such that pλG is bounded

and G/pλG is n-simply presented, then G is n-simply presented.

5.3. On ω1-n-simply presented abelian p-groups. Throughout the present

subsection, let all groups into examination be p-torsion abelian written additively

as is the custom when discussing such groups. Also, let n ≥ 0 be a non-negative

integer. Most of the used notions and notations are standard and can be seen

in the classical sources [44, 47] and [53]. For the more specific terminology the

interested reader can read [37, 38] and [D11] (actually, representing the statements

from the previous subsection). For instance, we will abbreviate G as a dsc-group

if it is a direct sum of countable groups. Besides, imitating [D11] (compare with

the preceding subsection, too) a group G is called n-simply presented if there is

P ≤ G[pn] such that G/P is simply presented. When P is nice in G, such groups

are said to be strongly n-simply presented or nicely n-simply presented. The last

is a common generalization of the well-known concept of pω+n-projectivity due to

Nunke where G is pω+n-projective whenever there exists a pn-bounded subgroup

P ≤ G such that G/P is Σ-cyclic (= a direct sum of cyclics). Later on, Keef

enlarged in [75] that notion to the so-called ω1-p
ω+n-projective groups that are

groups G for which there exist countable (nice) subgroups C such that G/C are

pω+n-projective.

This article is an extension of n-simply presented groups in the spirit of (the

previous generalizations of) ω1-p
ω+n-projective groups. It is organized as follows:

In the first part, i.e. here, we put the main definitions. In the second one, we

prove some useful preliminary assertions and state some background material,
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and in the third one we state with proofs the major results in the subject. Next,

in the final stage, we prove a series of statements concerning the important full

Nunke-esque property, and we close in the remaining part with some unsettled

challenging questions.

Definition 1. The group G is called ω1-n-simply presented if there is a countable

subgroup K of G such that G/K is n-simply presented. In addition, if K is finite,

G is said to be ω-n-simply presented.

When n = 0, and as a result G/K is simply presented, we will just say that G

is ω1-simply presented. But if K is nice in G, G is just simply presented (see [37]

or [38]). Likewise, ω-n-simply presented groups are precisely n-simply presented.

When K is a priory chosen nice in G, one may state:

Definition 2. The group G is called nicely ω1-n-simply presented if there is a

countable nice subgroup N of G such that G/N is n-simply presented.

When n = 0, and hence G/N is simply presented, we observe with the aid of

[37, 38] that G must be simply presented, too.

Definition 3. The group G is said to be strongly ω1-n-simply presented if there

exists a countable subgroup C of G such that G/C is strongly n-simply presented.

In addition, if C is finite, we will say that G is strongly ω-n-simply presented.

In case that C is taken a priory nice in G, one can state:

Definition 4. The group G is said to be strongly nice ω1-n-simply presented

if there exists a countable nice subgroup M of G such that G/M is strongly

n-simply presented.

Apparently, because pω+n-projective groups are strongly n-simply presented,

the ω1-p
ω+n-projectives, defined as in [75], are themselves strongly nice ω1-n-

simply presented. Moreover, strongly ω-n-simply presented groups are strongly

nice ω1-n-simply presented, because finite subgroups are always nice. As indicated

in [D11], strongly ω-n-simply presented groups need not be strongly n-simply

presented.

Also, it is clear that Definition 4 yields Definition 2 and Definition 3 implies

Definition 1. Likewise, some enlargements of this kind for the n-totally projective

groups from [76] can be given as well.
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On the other vein, Hill and Megibben gave in [63] the definition of a c.c. group

as a group G such that pω(G/C) is countable whenever C ≤ G is a countable

subgroup. For our applicable purposes we shall now enlarge this concept to the

so-called α-countably groups where α is an arbitrary ordinal. This is necessary

because the approach used in [D11] does not work here because pα+n(G/C) is not

always contained in (pαG+ C)/C if pnC ̸= {0}.

Definition 5. We will say that the group G is α-countably if for any its countable

subgroup C the factor-group pα(G/C)/(pαG+ C)/C is always countable.

Note also that if either C is a nice subgroup or α ∈ N, the factor-group

pα(G/C)/(pαG + C)/C equals to zero, and so Definition 5 is satisfied in both

situations.

When α = ω, the posed condition is equivalent to the countability of the quo-

tient [∩i<ω(p
iG+C)]/[∩i<ωp

iG] which in turn is tantamount to the countability of

the quotient [∩i<ω(p
iG+C)]/(∩i<ωp

iG+C). Apparently, c.c. groups are always

ω-countably. To treat the converse relationship, one sees that if pωG is count-

able, then every ω-countably group is a c.c. group, and thus these two notions

do coincide. In particular, weakly ω1-separable groups (which are of necessity

separable), are ω-countably as well as ω-countably separable groups are weakly

ω1-separable.

Definition 6. We will say that the group G is α-boundary if for any its countable

subgroup C the factor-group pα(G/C)/[(pαG+ C)/C] is always bounded.

In particular, there is a natural numberm such that the inclusion pα+m(G/C) ⊆
(pαG+ C)/C holds.

Note also that if either C is a nice subgroup or α ∈ N then the quotient

pα(G/C)/[(pαG+C)/C] equals to zero, as well as if pmC = {0} then the inclusion

pα+m(G/C) ⊆ (pαG+C)/C holds appealing to Lemma 3.1 of [D11], and thus in

all cases Definition 6 is fulfilled.

Our first result here is the following:

Theorem 5.10. The following points are equivalent:

(i) G is ω1-n-simply presented;

(ii) G/(C ⊕ L) is simply presented where C is a countable subgroup of G and

L is a pn-bounded subgroup of G;

(iii) G/L is ω1-simply presented for some L ≤ G[pn].
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Our next claim asserts the following:

Theorem 5.11. Nicely ω1-n-simply presented groups of length < ω2 are n-simply

presented.

We are now ready to state the following central result:

Theorem 5.12. The class of ω1-n-simply presented groups is closed under the

formation of ω1-bijections, and is the smallest class containing n-simply presented

groups with this property.

In other words, if f : G → A is an ω1-bijective homomorphism and G is

an ω1-n-simply presented group, then A is an ω1-n-simply presented group, and

ω1-n-simply presented groups form the minimal class of groups possessing that

property.

We are now proceed with the following main result:

Theorem 5.13. The classes of strongly ω1-n-simply presented groups, nicely ω1-

n-simply presented groups and strongly nice ω1-n-simply presented groups are

closed under taking ω-bijections. Moreover, the class of strongly nice ω1-n-simply

presented groups is the smallest (minimal) class containing strongly n-simply pre-

sented groups possessing that property.

So we come to the following two assertions of Nunke’s-esque form.

Theorem 5.14. Suppose G is a λ-boundary group for some ordinal λ such that

pλG is n-simply presented. Then G is ω1-n-simply presented if, and only if,

G/pλG is ω1-n-simply presented.

Theorem 5.15. Suppose G is a λ-countably group for some ordinal λ such that

pλG is n-simply presented. Then G is ω1-n-simply presented if, and only if,

G/pλG is ω1-n-simply presented.
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Chapter V. Left-Open Problems

We shall here state some still unsettled intriguing questions as well as we shall

restate for completeness of the exposition some already putted queries in the

corresponding subsections quoted above.

Concerning ring theory (possibly non-commutative), recall that a ring R is said

to be π-regular if, for each a ∈ R, there is a natural number n (depending on a)

such that an ∈ anRan.

Problem 5.16. Does it follow that all weakly exchange (respectively, all exchange)

rings whose units are sums of two idempotents are π-regular?

Problem 5.17. Suppose that R is a ring with R = Id(R) + Id(R) such that

U(R) = 1 +Nil(R). Is it true that R is (weakly) exchange or even π-regular?

We close the queries on ring theory with

Problem 5.18. Let R be a ring and G a group. Is the group ring R[G] a UU-ring

iff R is a UU-ring and G is a 2-group? If not, find a necessary and sufficient

condition for R[G] to be UU only in terms of R, G and their sections.

Concerning Abelian group theory, we finish off our work with a few challenging

problems of certain interest and importance, some of which are also relevantly

stated for concreteness in the separate subsections alluded to above. So, we ask

for the following:

Problem 5.19. Are reduced simply presented p-groups necessarily projectively

fully transitive?

Problem 5.20. Suppose n ∈ N. If the direct sum G ⊕ H is a strongly n-simply

presented group for two groups G and H such that H is countable, does the

complement G is also strongly n-simply presented?

We end all the work with our final query.

Problem 5.21. In the presence of ZFC, if G is a proper (ω + n)-totally pω+n-

projective p-group for some n ∈ N, does it follow that pωG is necessarily count-

able?
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[51] B. Goldsmith and L. Strüngmann, Some transitivity results for torsion Abelian groups,

Houston J. Math. 23 (2007), 941–957.

[52] P. Griffith, Transitive and fully transitive primary abelian groups, Pac. J. Math. 25 (1968),

249–254.

[53] P. Griffith, Infinite Abelian Group Theory, The University of Chicago Press, Chicago and

London, 1970.

[54] S.Ya. Grinshpon, Fully invariant subgroups of abelian groups and full transitivity, Fundam.

Prikl. Mat. 8 (2002), 407–473. (In Russian).

[55] S.Ya. Grinshpon and M.M. Nikolskaya-Savinkova, Fully invariant subgroups of abelian p-

groups with finite Ulm-Kaplansky invariants, Commun. Algebra 39 (2011), 4273–4282.

[56] S.Ya. Grinshpon and M.M. Nikolskaya-Savinkova, Torsion IF-groups, Fundam. Prikl. Mat.

17 (2011-2012), 47–58 (in Russian); translated in J. Math. Sci. 197 (2014), 614–622.

[57] J. Hausen, Endomorphism rings generated by idempotents, Tamkang J. Math. 9 (1978),

215–218.

[58] J. Hausen, On strongly irreducible torsion-free abelian groups, Abelian Group Theory, Gor-

don and Breach, New York, 1987, 351–358.

[59] G. Hennecke, Unpublished calculations relating to the PhD thesis Transitive und volltran-

sitive Abelsche p-gruppen, Diplomarbeit im Fachbereich Mathematik an der Universität

GH Essen 1996.

[60] M. Henriksen, Two classes of rings generated by their units, J. Algebra 31 (1974), 182–193.

[61] P.D. Hill, On transitive and fully transitive primary groups, Proc. Amer. Math. Soc. 22

(1969), 414–417.

[62] P.D. Hill and C.K. Megibben, Extending automorphisms and lifting decompositions in

Abelian groups, Math. Ann. 175 (1968), 159–168.

[63] P.D. Hill and C.K. Megibben, Primary abelian groups whose countable subgroups have

countable closure, in Abelian Groups and Modules, Mathematics and its Application, Vol.

343, 283–290, Kluwer Academic Publishers, Dordrecht, 1995.

[64] C.Y. Hong, N.K. Kim and Y. Lee, Exchange rings and their extensions, J. Pure & Appl.

Algebra 179 (2003), 117–126.

[65] J. Irwin, High subgroups of abelian torsion groups, Pac. J. Math. 11 (1961), 1375–1384.



NONCOMMUTATIVE RINGS AND ABELIAN GROUPS 49

[66] J. Irwin and P. Keef, Primary abelian groups and direct sums of cyclics, J. Algebra 159

(1993), 387–399.

[67] J. Irwin and E. Walker, On N-high subgroups of abelian groups, Pac. J. Math. 11 (1961),

1363–1374.

[68] N. Jacobson, Structure theory for algebraic algebras of bounded degree, Ann. Math. 46

(1945), 695–707.

[69] P. Kanwar, A. Leroy and J. Matczuk, Idempotents in ring extensions, J. Algebra 389

(2013), 128–136.

[70] I. Kaplansky, Some results on Abelian groups, Proc. Nat. Acad. Sci. 38 (1952), 538–540.

[71] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954 and

1969.

[72] I. Kaplansky, Problems in the theory of rings revisited, Amer. Math. Monthly 77 (1970),

445–454.

[73] G. Karpilovsky, The Jacobson radical of commutative group rings, Arch. Math. (Basel) 39

(1982), 428–430.

[74] P.W. Keef, Elongations of totally projective groups and pω+n-projective groups, Commun.

Algebra 18 (1990), 4377–4385.

[75] P.W. Keef, On ω1-p
ω+n-projective primary abelian groups, J. Algebra Number Theory

Acad. 1 (2010), 41–75.

[76] P.W. Keef and P.V. Danchev, On m,n-balanced projective and m,n-totally pojective pri-

mary abelian groups, J. Korean Math. Soc. (2) 50 (2013), 307–330.
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