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The PhD thesis examines the discrete transforms and some of their applica-
tions in the calculations of the parameters of linear codes. Developed in the 1960s,
the fast transforms play a key role for the e�ciency of computational algorithms.
Although widespread in noise protection coding and signal processing, the fast dis-
crete transforms still have illimitable potential for application in various �elds of
science and technology.

Preface

The core nature of some discrete transforms is the multiplication of a matrix by
vector. The speci�c character of a particular transformation depends on what type
of matrix is used. For the purposes of fast algorithms the main transform matrix has
been represented as a product of sparse matrices whose rows consist mostly of zeros
except a few elements, for example with value 1 or −1. This leads to algorithms that
are much more e�ective than the usual matrix by vector multiplication [11, 14, 26].
A survey of fast transforms and their applications can be found in [5, 12, 19, 27].

Historically, Walsh functions arose as a discrete analogue of the orthonormal
system of trigonometric functions, and the Walsh-Hadamard transform�as an ana-
logue of the Fourier transform [30]. The Walsh-Hadamard transform is applied to
the study of combinatorial con�gurations such as the Boolean and vector Boolean
functions [8, 9], binary linear codes [17] and others.

The Vilenkin-Chrestenson functions [10, 29] and their corresponding transform
are a generalization of Walsh functions and Walsh transform in complex numbers.
They take as a base a q-th primitive complex root of unity. The transform is
applicable in combinatorial con�gurations over prime �nite �elds [17, 18].

It is appropriate to use the trace transform for linear codes over composite
�nite �elds [1, 18]. A primitive complex root of unity of degree characteristic of the
�eld is taken as a base. In calculations, instead of the inner product, its trace is
used.

The problem set to be solved by the dissertation thesis is to �nd e�ective
algorithms for calculating the weight distribution and the covering radius of a linear
code over a �nite �eld by using a characteristic vector.

The linear codes are de�ned as linear subspaces of the n-dimensional linear
space over a �nite �eld. They are constructed and used in the terms of generator
matrix whose rows are a basis of the subspace. Computing the parameters of the
code (weight distribution, minimal distance, covering radius) using a given generator
(or parity check) matrix presents the basic problem in many aspects of Coding
Theory. Detecting (correcting) errors in information transmission is one of the
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goals in Coding Theory, and the determining factor for this is the minimum weight
and covering radius of the chosen linear code. Coding Theory is systematically
constructed, for example in [2, 4, 15, 22, 24].

The study was motivated by the results and ideas of Mark Karpovsky [17, 18]
on applying fast discrete transforms to �nd the weight distribution and covering
radius of a linear code. For binary linear codes, Karpowsky applies the Walsh-
Hadamard transform. As a generalization for non-binary linear codes, he suggests
the application of the Vilenkin-Chrestenson transform (for prime �elds) and the
trace transform (for composite �elds).

A signi�cant contribution of the present work is that the calculations have
been done over a maximal set of nonproportional vectors. On the one hand this is
enough for determining the weight enumerator and other parameters of the linear
code, on the other hand it decreases the complexity of the algorithms and the size of
used memory. For the purpose, the generator (parity check) matrix that determines
the linear code is represented by the characteristic vector of of the columns of the
matrix by counting the number of the columns belonging to the respective points
of projective geometry. The construction is rather useful when the number of the
rows of the matrix is substantially smaller than the numbers of the columns.

In Chapter 1 the basic concepts are described. In Section 1, some de�nitions
and propositions for �nite �elds are introduced�such as trace, self-dual basis etc.
In Section 2, basic de�nitions and propositions for linear codes are given. In Section
3, Walsh-Hadamard transform is shown. In Section 4, methods for representation
of Kroneker product as a product of sparse matrices are given. This technique is
the basis for fast transforms and the corresponding butter�y algorithms. In Section
5, Vilenkin-Chrestenson transform is described. In Section 6, trace transform is
described.

In Chapter 2 a developed algorithm for calculating the weight distribution
of a linear code over �nite prime �led is described. In Section 1, a special type of
a generator matrix of the simplex code is described and a concept of characteristic
vector with respect to the simplex code is de�ned. In Section 2, the concept of
characteristic distribution is de�ned and its properties are deduced. The relation
between the characteristic distribution and the weight distribution is shown. In
Section 3, the developed algorithm for computing the characteristic distribution is
described in details. In Section 4, the concept of reduced characteristic distribution
is de�ned and the relation between the reduced characteristic distribution and the
weight distribution is given. The reduced characteristic distribution is a generaliza-
tion of the Walsh spectra. In Section 5, the complexity of the proposed algorithm
is computed and an experimental results are presented.

In Chapter 3 methods for computing the weight distribution where the linear
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code is over composite �nite �eld are considered. In Section 1, the problem is
reduced to the problem for computing the weight distribution of a linear code over
a prime �eld by the concept of trace code. In the other sections, the trace transform
[1] is used as a base. In section 2, the standard approach by trace transform of
extended characteristic vector is commented. A more e�ective algorithm when the
elements of the �eld are lexicographically ordered with respect to a self-dual basis
are shown. In Sections 3 and 4, an improved algorithm for computing the trace
transform is described. This algorithm uses the characteristic vector with respect
to the simplex code. In Section 3, the improved algorithm is motivated analytically
on a base of matrices and, in Section 4, a detailed description is given and the
complexity is computed.

In Chapter 4 some methods for computing the covering radius of a linear
code by discrete transforms are described. The decision proposed by Karpovsky for
binary codes [18] is generalized and improved. The concept of reduced distribution
of a vector is de�ned. It is a variant of generalization of Walsh-Hadamard transform.
In Section 1, focus is put on linear codes over prime �nite �elds and the Vilenkin-
Cherestenson transform is applied. In Section 2, some results for composite �nite
�elds are described and the trace transform is applied.
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1 Preliminaries

1.1 Finite �elds

Let Fq be a �nite �eld with q elements and the prime p be its characteristic. Theory
of �nite �elds is systematically built for example in [21, 23].

De�nition 1.1. Let K = Fq, F = Fqm and α ∈ F . The trace TrF/K(α) of α ∈ F
over K is de�ned by

TrF/K(α) = α + αq + αq
2

+ . . .+ αq
m−1

.

If K is the prime sub�eld of F , then TrF/K(α) is called the absolute trace of α and
denoted by TrF (α).

In the dissertation only absolute trace is used and for short it will be called
the trace. If the sub�eld is clear then the trace will be denoted by Tr(α).

De�nition 1.2. Two bases β1, . . . , βm ∈ F and β′1, . . . , β
′
m ∈ F of the �eld F over

the �eld K are called dual, if for 1 ≤ i, j ≤ m

TrF/K(βiβ
′
j) =

{
0, if i 6= j,
1, if i = j.

The basis that is dual to itself is called self-dual.

For every basis there exists an uniquely determined dual basis.

Theorem 1.1 ([25]). There exists a self-dual basis of the �eld F = Fqm over K = Fq
i� q is even or both q and m are odd.

For the purposes of the dissertation, the elements of the �eld Fq are denoted
respectively by α0 = 0, α1, . . . , αq−1. Let they are ordered lexicographically over a
�xed basis of the �eld over its prime sub�eld.

If x ∈ Fkq then the coordinates of x are denoted by subscripts, i.e. x =
(x1, x2, . . . , xk). If two vectors x and x′ belong to the linear space Fkq , then their
Euclidean scalar product is 〈x, x′〉 = x1x

′
1 + x2x

′
2 + · · ·+ xkx

′
k where the operations

are in the �eld Fq. In the dissertation only Euclidean scalar product is used so it
will be called simply the scalar product.
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1.2 Linear codes

De�nition 1.3. Every k-dimensional linear subspace C of the linear space Fnq is
called q-ary linear [n, k] code (or linear [n, k]q code). The parameters n and k are
called the length and dimension of C, respectively, and the vectors in C are called
the codewords.

De�nition 1.4. The (Hamming) weight wt(x) of the vector x ∈ Fnq is the number
of its nonzero coordinates.

De�nition 1.5. For a given linear [n, k]q code C, the least nonzero weight of a
codeword is called the minimum weight of the code C and is denoted by d. If
Aw is the number of the codewords with length w in C, w = 0, 1, . . . , n, then the
sequence (A0, A1, . . . , An) is called the weight distribution of C and the polynomial
W (z) =

∑n
w=0 Awz

w is called the weight enumerator of the code C.

De�nition 1.6. Every k×n matrix G whose rows form a basis of the linear [n, k]q
code C is called the generator matrix of the code C.

De�nition 1.7. The matrix H with size (n− k)× n that determines C in a sense

C = {x ∈ Fnq |HxT = 0},

is called the parity check matrix of the code C.

De�nition 1.8. For the linear [n, k]q code C and an arbitrary vector x ∈ Fnq the
set x+ C = {x+ c|c ∈ C} is called a coset of the code C. The weight of a coset is
the least weight of a vector in the coset and some vector with this the least weight
in the coset is called the coset leader.

De�nition 1.9. The syndrome of the vector x ∈ Fnq with respect to the check
matrix H of a given linear [n, k]q code C is the vector syn(x) = HxT ∈ Fn−kq .

De�nition 1.10. The maximal among the weights of the cosets of a linear [n, k]q
code C is called the covering radius of C and is denoted by R(C).

Theorem 1.2 ([15], Theorem 1.12.5). R(C) is the smallest integer s such that
every nonzero syndrome is a linear combination of s or fewer columns of the parity
check matrix H, and some syndrome requires s columns.

De�nition 1.11. A linear code of full length is a linear code without zero columns
in its generator matrix.
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The maximal number of pairwise linearly independent vectors in the linear

space Fkq is θ(q, k) = qk−1
q−1

. This is the number of 1-dimensional linear subspaces of

Fkq .

De�nition 1.12. The matrix with size k × θ(q, k) whose columns are pairwise
linear independent vectors in Fkq generate a linear [θ(q, k), k]q code that is called the
simplex code and is denoted by Sq,k.

1.3 Discrete Walsh-Hadamard transform

De�nition 1.13 ([17]). Let f be a Boolean function of k variables. The discrete

Walsh-Hadamard transform of f is the function f̂ : Fk2 → Z de�ned by

f̂(ω) =
∑
x∈Fk2

f(x)(−1)〈x,ω〉, ω ∈ Fk2. (1)

Truth table of the function f̂ is called Walsh spectrum of the function f and is
denoted by Wf .

Transform matrices are de�ned inductively as follows

H1 =

(
1 1
1 −1

)
, Hk =

(
Hk−1 Hk−1

Hk−1 −Hk−1

)
, k > 1. (2)

Theorem 1.3. If f is a Boolean function of k variables then Wf = Hk · TTf .

Naturally, the de�nition 1.13 can be generalized for pseudo-Boolean functions,
i.e. the functions f : Fkq → Z that satisfy

f̂(ω) =
∑
x∈Fk2

f(x)(−1)〈x,ω〉, ω ∈ Fk2. (3)

Let G be a generator matrix of a linear [n, k]2 code and f : Fk2 → Z be a
characteristic function such that f(x) is the number of the columns of G that is

equal to x. In this case the Walsh-Hadamard transform f̂ corresponds to the weight
of the codeword ωG as follows

wt(ωG) =
n− f̂(ω)

2
, ω ∈ Fk2. (4)

This fact is mentioned by Karpovsky [17] in the case when there exists no zero
columns and repeated columns in G, i.e. when the dual code has minimum weight
greater than 2.
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1.4 Kroneker product. Fast transforms

The Kroneker product of matrices A = (aij)s1×t1 and B = (bij)s2×t2 is the s1s2× t1t2
matrix

A⊗B =


a11B a12B . . . a1t1B
a21B a22B . . . a2t1B
. . .

as11B as12B . . . as1t1B

 .

The operation Kroneker product is not commutative.
For square matrixM the k-th Kroneker power⊗kM is de�ned by the recurrent

formulae:
⊗2M = M ⊗M, ⊗k+1M = M ⊗

(
⊗kM

)
, k > 1.

Good [14] shows that Kroneker product can be represented as usual product
of rare matrices. The following theorem is a reformulation to the case of Kroneker
power.

Theorem 1.4. Let M be a square matrix of order t and k be a positive integer.
Then

⊗kM = B1 ·B2 · · ·Bk (5)

where Bl = Itl−1 ⊗M ⊗ Itk−l, 1 ≤ l ≤ k and Is is the identity matrix of order s.

Lechner [20] applies (5) to Walsh-Hadamard transform, but in reverse order
of multipliers, and mentiones that factors commute. This is the statement of the
following theorem.

Theorem 1.5. Factors in (5) commute. So their order does not matter.

1.5 Discrete Vilenkin-Chrestenson transform

Let ξ be a primitive complex q-th root of unity. The Vilenkin-Chrestenson matrices
of order k are de�ned recurrently as follows:

V1 =


1 1 1 . . . 1
1 ξ ξ2 . . . ξq−1

1 ξ2 ξ4 . . . ξ2(q−1)

...
...

...

1 ξq−1 ξ2(q−1) . . . ξ(q−1)2

 , Vk+1 = V1 ⊗ Vk, k ∈ Z, k ≥ 1, (6)

where ⊗ denotes Kroneker product. The elements of the matrix Vk are of the
type vω(x) = ξ〈ω,x〉 where ω, x ∈ Zkq (the row and column indexes respectively) are
lexicographically ordered.
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De�nition 1.14. Let f : Zkq → C be a function. The Vilenkin-Chrestenson trans-

form of f is the function f̂ : Zkq → C de�ned by

f̂(ω) =
∑
x∈Zkq

f(x)vω(x), ω ∈ Zkq . (7)

A detailed information for this transform and other transforms related to
Fourier transform can be found for example in [3, 13, 19].

Let TTf be a value vector of the function f when the elements of Zkq are lexi-
cographically ordered. This is an analogue of the truth table of Boolean functions,
but here the coordinates of TTf̂ are complexes. The value vectors of the functions

f and f̂ are connected by the equality

TTf̂ = Vk · TTf .

In this way the Vilenkin-Chrestenson transform turns into matrix by vector multi-
plication.

Let q be a prime, G be a generator matrix of a linear [n, k]q code with full
length and the function f : Fkq → Z be de�ned by the number of the columns of
G that are proportional (with nonzero coe�cient) to x. In this case the Vilenkin-

Chrestenson transform f̂ corresponds to the weight of the codeword ωG as follows

wt(ωG) =
(q − 1)n− f̂(ω)

q
, ω ∈ Fkq . (8)

1.6 Trace transform

A generalization of Walsh-Hadamard transform that is applied to linear codes over
composite �nite �elds is proposed by Karpovsky [18]. He suggests to use this
transform for computing the weight distribution of cosets.

Let Fq be a composite �nite �eld where q = pm and p be a prime.
In trace transform, the absolute trace of the scalar product is used instead of

the scalar product in Vilenkin-Chrestenson transform [1, p. 367].
Let ζ be a primitive complex p-th root of unity and

τω(x) = ζTr(〈ω,x〉) (9)

for arbitrary ω, x ∈ Fkq . As it was earlier mentioned, the natural homomorphism
between Fp and complexes with absolute value 1 are used. The transform is deter-
mined by the matrix Tk = (τω(x)) with size qk × qk where the indexes ω, x ∈ Fkq
are lexicographically ordered. By (9) transform of Fourier type is de�ned [1] that
is called trace transform.
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De�nition 1.15. Let Fq be a �nite �eld with q elements, q = pm where p is a
prime and ζ be a primitive complex p-th root of unity. The trace transform of the
function f : Fkq → C is the function f̂ : Fkq → C that is de�ned by

f̂(ω) =
∑
x∈Fkq

f(x)τω(x) =
∑
x∈Fkq

f(x)ζTr(〈ω,x〉), ω ∈ Fkq . (10)

The value tables of f and f̂ are related by the equality

TTf̂ = Tk · TTf .

For the matrices Tk the following recurrence relation holds Tk+1 = T1⊗Tk and
Tk = ⊗kT1 for k ∈ N.

De�nition 1.16. The value of the characteristic function fG(x) of a linear [n, k]q
code C with a generator matrix G is the number of the columns of G that are
proportional (by nonzero coe�cient) to x, for x ∈ Fkq .

Remark 1.1. Karpovsky [18] considers the extended matrix

G′ = (α1G|α2G| . . . |αq−1G) (11)

where G has no pairwise proportional columns, i.e. the minimum weight of the dual
code is greater than 2. In this case the characteristic function in the classic sense
f ′ : Fkq → F2, that for every vector x shows if it is the column of G′, is the same as
the above de�ned function fG.

Theorem 1.6. Let G be a generator matrix of a linear [n, k]q code with full length
C. Then the weights of the codewords of C

wt(ωG) =
(q − 1)n− f̂(ω)

q
, ω ∈ Fkq , (12)

where f̂ is the trace transform of the characteristic function fG of the code C.

2 An algorithm for computing the weight distribu-

tion of a linear code over a prime �nite �eld using

characteristic vector

In this chapter the prime �nite �eld Fq = Zq = {0, 1, 2, . . . , q − 1} with �xed order
of its elements α0 = 0, α1 = 1, α2, . . . , αq−1 is considered.

By α the vector (α, α, . . . , α) = α(1, 1, . . . , 1) with length by default and
consisting of the same coordinates is denoted.
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2.1 Characteristic vector of linear code

A special type of a generator matrix of the simplex code Sq,k that will mainly be
used in dissertation is recurrently de�ned by the equalities:

G1 = (1) , Gk+1 =

(
0 α1 α2 . . . αq−1 1
Gk Gk Gk Gk 0T

)
, k ∈ N. (13)

De�nition 2.1. The characteristic vector of the linear [n, k]q code C with respect
to a generator matrix G is the vector

χ(C,G) = (χ1, χ2, . . . , χθ(q,k)) ∈ Zθ(q,k) (14)

where χu is the number of the columns of G that are equal to proportional (by
nonzero coe�cient) to the u-th column of the matrix Gk, u = 1, 2, . . . , θ(q, k).

Below the characteristic vector is denoted for short by χ only, if the code C
and the generator matrix G are clear from context.

For computing the weight distribution of the code C, it is enough to calculate
the weights of the rows of the matrix GT

k ·G.
Let Mk = GT

k · Gk, k ∈ N, where multiplication is over Fq. Below by N (Mk)
the matrix obtained fromMk by replacing the all nonzero elements by 1 is denoted.
This matrix is called normalized matrix.

Lemma 2.1. Let C be a linear [n, k]q code with a generator matrix G and χ be a
characteristic vector of C with respect to G. Then the Hamming weight of the i-th
row of the matrix GT

k ·G (multiplication is over Fq) is the i-th element of the column
vector N (Mk) · χT (multiplication is over Z), i = 1, . . . , θ(q, k).

From (13) the recurrence relation of the matrices Mk is obtained, namely:
M1 = (1) and for all k ∈ Z, k ≥ 2

Mk =



Mk−1 Mk−1 . . . Mk−1 0T

Mk−1 Mk−1 + J . . . Mk−1 + αq−1J 1T

Mk−1 Mk−1 + α2J . . . Mk−1 + α2αq−1J α2
T

...
Mk−1 Mk−1 + αq−1J . . . Mk−1 + α2

q−1J αq−1
T

0 1 . . . αq−1 1


. (15)

The matrix J in the furmula above is θ(q, k−1)×θ(q, k−1) matrix consisting
of ones.
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2.2 Characteristic distribution

De�nition 2.2. Let χ = (χ1, . . . , χt) ∈ Zt and b = (b1, . . . , bt) ∈ Ftq, t ∈ N. The
characteristic distribution of a vector b with respect to χ is the vector

b[χ] = (µ0, µ1, . . . , µq−1) ∈ Zq

where µj is the sum of the coordinates χu of the vector χ such that bu = αj,
1 ≤ u ≤ t, j = 0, 1, . . . , q − 1. If no coordinate of b that is equal to αj then µj = 0.

De�nition 2.3. Let s, t ∈ N, χ ∈ Zt, B ∈ Fs×tq and B1, . . . , Bs be the rows of
the matrix B. The characteristic distribution of the matrix B with respect to the
vector χ is the matrix B[χ] ∈ Zs×q whose rows are B[χ]

1 , . . . , B
[χ]
s .

Theorem 2.2. Let C be a linear [n, k]q code of full length and χ be a characteristic
vector of the code C with respect to an its generator matrix. The i-th coordinate of
N (Mk) · χT is equal to n− µ0 where µ0 is the �rst coordinate of the characteristic

distribution c
[χ]
i = (µ0, µ1, . . . , µq−1) of the i-th row ci of the matrix Mk with respect

to χ.

Let the characteristic vector χ of a linear [n, k]q code C be split to q+ 1 parts
as follows

χ =
(
χ(0)|χ(1)| . . . |χ(q−1)|χ(q)

)
(16)

where χ(j) ∈ Zθ(q,k−1), j = 0, . . . , q − 1 è χ(q) ∈ Z. It is known that θ(q, k) =
qθ(q, k − 1) + 1. Then the following recurrence relation holds:

M
[χ]
k =

M
[χ(0)]
k−1 + M

[χ(1)]
k−1 + · · ·+ M

[χ(q−1)]
k−1 + 0T[χ(q)]

M
[χ(0)]
k−1 + SR(M

[χ(1)]
k−1 ) + · · ·+ SRαq−1(M

[χ(q−1)]
k−1 ) + 1T[χ(q)]

M
[χ(0)]
k−1 + SRα2(M

[χ(1)]
k−1 ) + · · ·+ SRα2αq−1(M

[χ(q−1)]
k−1 ) + α2

T[χ(q)]

...

M
[χ(0)]
k−1 + SRαq−1(M

[χ(1)]
k−1 ) + · · ·+ SRα2

q−1
(M

[χ(q−1)]
k−1 ) + αq−1

T[χ(q)]

0[χ(0)] + 1[χ(1)] + · · ·+ αq−1
[χ(q−1)] + 1[χ(q)]


(17)

where by SR the operation circular shift right is denoted.
Thus one cam use only permutations and additions to calculate M

[χ]
k from

M
[χ(0)]
k−1 ,M

[χ(1)]
k−1 , . . . ,M

[χ(q−1)]
k−1 and χ(q). Moreover 1[χ], . . . ,αq−1

[χ] can be obtained

from 0[χ] by the operation SR.
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De�nition 2.4. Let k ∈ N and χ = (χ1, . . . , χθ(q,k)) ∈ Zθ(q,k). The partial charac-

teristic distribution M
[χ]
k (l) for l = 1, . . . , k is recursively de�ned as follows

1. M
[χ]
k (k) = M

[χ]
k .

2. If 1 ≤ l < k and the vector χ is split to the q + 1 part as in (16) then M
[χ]
k (l)

is calculated by the formula

M
[χ]
k (l) =


M

[χ(0)]
k−1 (l)

M
[χ(1)]
k−1 (l)

. . .

M
[χ(q−1)]
k−1 (l)

M
[χ(q)]
1

 .

The matrix M
[χ]
k (1) is with size θ(q, k)× q and rows M

[χu]
1 , u = 1, . . . , θ(q, k).

Because of M1 = (1), so the columns of the matrix M
[χ]
k (1) are zero vectors except

the second that equals to χT.
The last row of the matrix M

[χ]
k (l) is the same for l = 1, . . . , k − 1, namely

M
[χ(q)]
1 . Furthermore, the row before the last one in M

[χ]
k (l) is the same for l =

1, . . . , k − 2. Actually, for all l < k there are some rows that save themselves in all
matrices M

[χ]
k (l′) for 1 ≤ l′ < l. These rows are called inactive rows. There exist

exactly θ(q, k − l) inactive rows in M [χ]
k (l), l = 2, . . . , k − 1.

2.3 An algorithm for computing the characteristic distribu-

tion

In this section the developed algorithm for computing M
[χ]
k by consequently calcu-

lating M
[χ]
k (1), M

[χ]
k (2),..., M

[χ]
k (k − 1), M

[χ]
k (k) is presented.

The algorithm consists of three main transformations that are called Add0,
LastRow and AllRows. These transformations are explained for l = k below.
The computation begins by

1. Add0: First, the operation circular shift left over the last row of the matrix

M
[χ]
k (k − 1) is applied. The resulted vector lcs(M

[χ(q)]
1 ) = (χ(q), 0, . . . , 0) =

0[χ(q)] is added to every row of the matrix M
[χ(1)]
k−1 .
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2. LastRow: The last row of the matrix M
[χ]
k (k) that is equal to

M
[χ]
k last =

(
0[χ(0)] + 1[χ(1)] + · · ·+ αq−1

[χ(q−1)] + 1[χ(q)]
)

=

(
θ0∑
u=1

χu, χ
(q) +

2θ0∑
u=θ0+1

χu, . . . ,

θ1−1∑
u=θ1−θ0

χu

)
,

has been calculated, where θ0 = θ(q, k − 1) and θ1 = θ(q, k).

3. AllRows: In the core of this transformation q rows AllRows[j], j =

0, 1, . . . , q − 1, of the matrix M
[χ]
k have been computed. For this purpose,

a help array TEMP with size q × q has been used. The vectors AllRows[j]
have been calculated fron TEMP by the formulae

AllRows[0](TEMP) = TEMP[0]+TEMP[1] + · · ·+ TEMP[q − 1],
AllRows[j](TEMP) = TEMP[0]+SRαj(TEMP[1]) + · · ·+

SRαjαq−1(TEMP[q − 1]), j > 0,

where TEMP[0], TEMP[1], . . ., TEMP[q − 1] are the rows of TEMP.

In the calculation of M
[χ]
k (l) from M

[χ]
k (l − 1), inactive rows have been left

unchanged and above formulae have been applied for obtaining the matrix M
[χ′]
l (l)

from the matrix M
[χ′]
l (l − 1) where χ′ is a suitable part of χ.

To explain more formally the main algorithm one can introduce a matrix rep-
resentation of the transform steps between the partial characteristic distributions.

Let all the rows of the matrix M
[χ]
k (l) be ordered in one vector with length

qθ(q, k) that will be denoted by M̃
[χ]
k (l), l = 1, . . . , k. For shortness the notations

M̃
[χ]
k = M̃

[χ]
k (k) and χ̃ = M̃

[χ]
k (1) are used below.

In the next theorem the matrices of a few types are used, namely:

� The identity matrices Is of size s× s.

� The permutation matrices Pj of size q× q that realize the permutations SRαj

respectively. In particular, P0 = Iq, P1 =

(
0 1
Iq−1 0T

)
and Pj = P j

1 .

� The matrices Ej of size q × q, j = 0, 1, . . . , q − 1, for which the j + 1-st row
of Ej consists of 1's only and the other rows consist of 0's.

� The matrices O consisting of 0's only, with default size.

� The matrices Tk,l for k, l ∈ Z, 2 ≤ l ≤ k, that are inductively de�ned by the
following rules:
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1. if k = l = 2 then

T2,2 =



Iq Iq Iq . . . Iq P−1
1

Iq P1 Pα2 . . . Pαq−1 Iq
Iq Pα2 Pα2

2
. . . Pα2αq−1 Pα2P

−1
1

...
Iq Pαq−1 Pαq−1α2 . . . Pα2

q−1
Pαq−1P

−1
1

E0 E1 E2 . . . Eq−1 E1


; (18)

2. if k > l then

Tk,l =

(
Iq ⊗ Tk−1,l O

O Iq

)
; (19)

3. if k = l > 2 then

Tk,k =

Iθ(q,k−1) ⊗ Iq Iθ(q,k−1) ⊗ Iq . . . Iθ(q,k−1) ⊗ Iq 1⊗ P−1
1

Iθ(q,k−1) ⊗ Iq Iθ(q,k−1) ⊗ P1 . . . Iθ(q,k−1) ⊗ Pαq−1 1⊗ Iq
Iθ(q,k−1) ⊗ Iq Iθ(q,k−1) ⊗ Pα2 . . . Iθ(q,k−1) ⊗ Pα2αq−1 1⊗ P2 · P−1

1
...
Iθ(q,k−1) ⊗ Iq Iθ(q,k−1) ⊗ Pαq−1 . . . Iθ(q,k−1) ⊗ Pα2

q−1
1⊗ Pαq−1 · P−1

1

E0 O E1 O . . . Eq−1 O Iq


.

(20)

Theorem 2.3. Let χ be the characteristic vector of a linear [n, k]q code. Then(
M̃

[χ]
k (l)

)T

= Tk,l ·
(
M̃

[χ]
k (l − 1)

)T

, l = 2, . . . , k, (21)

and (
M̃

[χ]
k

)T

= Tk,k · Tk,k−1 · · ·Tk,2 · χ̃T. (22)

2.4 Reduced characteristic distribution

De�nition 2.5. Let χ ∈ Zt and b ∈ Ftq, t ∈ N. The reduced characteristic distribu-
tion of the vector b with respect to χ is the vector

b[χ]r = (µ0 − µ1, . . . , µ0 − µq−1) ∈ Zq−1,

where b[χ] = (µ0, µ1, . . . , µq−1) is the characteristic distribution of b with respect to
χ.
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Lemma 2.4. If χ ∈ Zt and b ∈ Ftq, t ∈ N then

(b[χ]r)T =


1 −1 0 · · · 0 0
1 0 −1 · · · 0 0
...

...
...

. . .
...

...
1 0 0 · · · −1 0
1 0 0 · · · 0 −1

 · (b[χ])T.

Analogously to what was described in the previous section, the notions reduced
characteristic distribution of matrices, partial reduced characteristic distribution
and its vector representation can be introduced.

Lemma 2.5. Let χ be the characteristic vector of a linear [n, k]q code with full

length. So the sum of coordinates of M̃
[χ]r
k is −n.

2.5 Complexity of the algorithms and experimental results

The total complexity of the described algorithm is

k∑
l=2

qk+2 − qk+2−l + qk−1 − qk−l

q − 1
= (k − 1)

qk+2 + qk−1

q − 1
− (q2 + 1)(qk−1 − 1)

(q − 1)2
.

This gives that for a �xed q the complexity of the algorithm is O(kqk). When k
and q are considered as variables, the running time is O(kqk+1).

Remark 2.1. Comparison between the approved algorithm and Algorithm 9.8
(Walsh transform over a prime �nite �eld Fp) in [16] was done. According to Joux,
the complexity of the second algorithm if p varies is O(kpk+2).

The presented approach is implemented in a C/C++ program [6]. To com-
pare the e�ciency, the C program is used where the algorithm described in [7] is
embedded. The e�ciency of the last algorithm is as the Gray code algorithms. The
input data are randomly generated linear codes with lengths 30, 300, 3000, 30000
and di�erent dimensions over �nite �elds with 2, 3, 4, 5 and 7 elements. For the
same parameters, results that are obtained using Magma V2.25-2 by online Magma
Calculator are presented.

The results show that the presented approach is faster for codes with large
length. The execution time for computing the characteristic vector is negligible.
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3 Some methods for computing the weight distri-

bution of a linear code over a composite �nite

�eld

3.1 Approach by the trace code

Let q = pm where p is a prime and m > 1.
If G is a generator matrix of a linear [n, k]q code C then the extended matrix

G = (α1G|α2G| · · · |αq−1G) is a generator matrix of a linear [(q − 1)n, k]q code C.
If the minimum weight of C is d then the minimum weight of C is (q − 1)d.

For every vector x ∈ Fnq let Tr(x) = (Tr(x1), . . . ,Tr(xn)) ∈ Fnp .

De�nition 3.1. Let C be a linear [n, k]q code with generator matrix G. The code
Tr(C) = {Tr(c)|c ∈ C} is called the trace code of C.

Tr(C) is a linear code over the �nite �eld Fp with the same length as C but
its dimension is less than or equal to mk [28]. Therefore instead of Tr(C) the trace
code of C will be considered.

Lemma 3.1. The dimension of the code Tr(C) is equal to mk.

Corollary 3.2. The codes C and Tr(C) have the same number of codewords, namely
qk = pmk.

Theorem 3.3. Let q = pm where p is a prime and m > 1. Let C be a linear
[n, k]q code with weight enumerator W (z) =

∑n
w=0 Awz

w. So Tr(C) is a linear
[(q − 1)n,mk]p code with weight enumerator

W1(z) =
n∑

w=0

Awz
q(p−1)w

p .

According to the theorem above, by applying the algorithm described in
the previous chapter the weight distribution of a linear code C over a compos-
ite �nite �eld can be obtained from the weight distribution of the linear code
Tr(C) that is over a �nite �eld. The complexity of calculations for the char-
acteristic vector of Tr(C) is O(mkqn) and for the characteristic distribution�
O(mkpmk+1) = O(kmpqk).
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3.2 Approach by trace transform

In the rest of this chapter composite �nite �eld with characteristic 2 is considered.
This can easily be generalized for an other characteristic of a composite �nite �eld.

Let q = 2m and β1, . . . , βm be a self-dual basis of F2m over F2. According to
theorem 1.1 there exists such basis. Let by λ(α) = (λ1(α), . . . , λm(α)) be denoted
the vector λ(α) ∈ Fm2 , that corresponds to the element

α = λ1(α)β1 + · · ·+ λm(α)βm ∈ Fq.

For the rest of this chapter, let the elements α0 = 0, α1, . . . , αq−1 of Fq be ordered the
way so that the corresponding binary vectors λ(0), λ(α1), . . . , λ(αq−1) are ordered
lexicographically.

Let G be a generator matrix of a linear [n, k]q code C with full length where
q = 2m. Let fG be the characteristic function of C according to de�nition 1.16.
Theorem 1.6 gives the relation between the weight distribution of C and the trace
transform of fG, that by de�nition 1.15 is the function

f̂(ω) =
∑
x∈Fkq

fG(x)τω(x) =
∑
x∈Fkq

fG(x)(−1)Tr(〈ω,x〉), ω ∈ Fkq . (23)

The value vectors of f̂ and fG relate by equality TTf̂ = Tk ·TTfG , where the indexes
ω, x ∈ Fkq , that determine the order of the rows and the columns of the matrix
Tk = (τω(x)) respectively, are ordered lexicographically.

Lemma 3.4. The matrix

T1 =
(

(−1)Tr(αjαj′ )
)q−1

j,j′=0

is the transform matrix Hm de�ned by (2).

The above lemma shows that

T1 = Hm = ⊗mH1 = ⊗m
(

1 1
1 −1

)
. (24)

Because of the transform matrix Tk is a Kroneker power of T1, so

Tk = ⊗kT1 = ⊗kmH1 = ⊗km
(

1 1
1 −1

)
(25)

and one can use a butter�y algorithm for computing the transform (23). A similar
pseudocode is described by Joux [16, Algorithm 9.3].
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3.3 Matrix representation of an improved algorithm

An improvement of the calculations can be performed when the transforms act only
over a part of the value vector of the characteristic function that corresponds to
nonproportional arguments. For the purpose, it is convenient to use the columns of
the generator matrix Gk of the simplex code, inductively de�ned as in the scheme
(13). The developed algorithm uses input data with size θ(q, k) instead of qk. The
complexity of the algorithm is O(mkqk−1).

The matrices Gk are de�ned inductively by the equalities

G1 = (1), Gk =

(
0 α1 . . . αq−1 1

Gk−1 Gk−1 . . . Gk−1 0T

)
, k ∈ N, k ≥ 2. (26)

Let the columns of the matrix Gk be denoted by gu, u = 1, . . . , θ(q, k), i. e.

Gk =
(
g1 . . . gθ(q,k)

)
.

The extended matrix Gk is de�ined by the equality

Gk = (0|α1Gk| . . . |αq−1Gk). (27)

This matrix consists of the all vectors in Fkq as columns and determines an order in

this set. Let the columns of the matrix Gk be denoted by ḡt, t = 1, . . . , qk, i. e.

Gk =
(
ḡ1 . . . ḡqk

)
.

Let G be a generator matrix of a linear [n, k]q code C with full length where
q = 2m. Let fG be the characteristic function of C according to de�nition 1.16. The
characteristic vector χ = (χ1, . . . , χθ(q,k)) is de�ned by the equalities χu = fG(gu) çà
u = 1, . . . , θ(q, k). The extended characteristic vector χ = (χ1, . . . , χqk) is de�ned
by the equalities χt = fG(ḡt) çà t = 1, . . . , qk. From (27) it follows that for every
t1, t2 ∈ N, such that 1 < t1 < t2 ≤ qk and t2 − t1 are devisible by θ(q, k), the
vectors ḡt1 è ḡt2 are proportional and χt1 = fG(ḡt1) = fG(ḡt2) = χt2 . This shows
that χ = (0|χ| . . . |χ).

For explanation of the algorithm the following matrices are needed:

Mk = G
T

k ·Gk = (〈ḡt1 , ḡt2〉)
qk

t1,t2=1 ,

Mk = GT
k ·Gk = (〈gu1 , gu2〉)

θ(q,k)
u1,u2=1 ,

P k =
(

(−1)Tr(〈ḡt1 ,ḡt2 〉)
)qk
t1,t2=1

,
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Pk =
(

(−1)Tr(〈gu1 ,gu2 〉)
)θ(q,k)

u1,u2=1
,

Pk,α =
(

(−1)Tr(α〈gu1 ,gu2 〉)
)θ(q,k)

u1,u2=1
, α ∈ Fq\{0},

Λ(α) =
(

(−1)Tr(ααj1αj2 )
)q−1

j1,j2=0
, α ∈ Fq\{0}.

The matrix P k can be obtained from the matrix Tk by a suitable permutation
of some rows and some columns. Let χ̂ = (χ̂1, . . . , χ̂qk) be the vector determined

by the equalities χ̂t = f̂(ḡt) for t = 1, . . . , qk. Hence χ̂T = P k · χT.

P k · χT =



(q − 1)
∑θ(q,k)

u=1 χu(∑q−1
j=1 Pk,αj

)
χT(∑q−1

j=1 Pk,αj

)
χT

...(∑q−1
j=1 Pk,αj

)
χT


. (28)

This means that it is not necessary to use the 2k × 2k matrix P k and the larger
vector χ. To obtain χ̂ and the weight distribution of the code, it is enough to use
the characteristic vector χ, the matrix Pk and the matrices Pk,α for α ∈ Fq\{0}.

Pk =


T1 ⊗ Pk−1

Λ0
T

Λα1

T

...
Λαq−1

T

Λ0 Λα1 . . . Λαq−1
Λ1

 , (29)

where Λα = (−1)Tr(α) for α ∈ Fq and Λα is a row vector with default length and
the same coordinates Λα. The last equality and (24) give possibility to apply a
butter�y algorithm for computing Pk · χT.

Let the characteristic vector χ be split in parts as follows

χ = (χ(0)|χ(1)| . . . |χ(q−1)|χθ(q,k)), (30)

where χ(0), χ(1), . . . , χ(q−1) ∈ Zθ(q,k−1).
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Let Num(α) ∈ {0, 1, . . . , q − 1} be the position of the element α in the order
of the �eld Fq, i. e. αNum(α) = α. Therefore

Pk · χT =


(T1 ⊗ Iθ(q,k−1)) ·



Pk−1 · χ(0)T

Pk−1 · χ(1)T

...

Pk−1 · χ(Num(1))T
+ χθ.1

T

...

Pk−1 · χ(q−1)T


Λ0

∑
χ(0)+· · ·+Λ1

(
χθ+

∑
χ(Num(1))

)
+· · ·+Λαq−1

∑
χ(q−1)


, (31)

where for short θ = θ(q, k) and
∑
χ(j) denotes the sum of coordinates of χ(j),

j = 0, 1, . . . , q − 1.
For 1 < l < k it is hold

Pl · χ′T + χθ.1
T =


(
T1 ⊗ Iθ(q,l−1)

)
·



Pl−1 · χ′(0)T
+ χθ.1

T

Pl−1 · χ′(1)T

...

Pl−1 · χ′(Num(1))T
+ χ′θ(q,l−1).1

T

...

Pl−1 · χ′(q−1)T


Λ0

(
χθ+

∑
χ′(0))

)
+Λα1

∑
χ′(1)+. . .


, (32)

where χ′ is a vector with length θ(q, l) that is a suitable part of χ. From this

equality by induction one can prove that for computing Pk−1 ·χ(Num(1))T
+χθ.1

T it
is enough to add χθ only to the �rst coordinate of the vector χ(Num(1)), previously
multiplied by Λ1. For calculating the last coordinate of Pk ·χT one needs add χθ to
the same coordinate, but without previous multiplication. These observations give
the possibility to do some previous operations with the value of χθ and with the
last coordinates of all blocks χ′(j), j = 0, . . . , q − 1.

Consider the matrices Pk,α for α ∈ Fq\{0}. For k = 1 the matrices are
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P1,α = (Λα). For the recurrent step it is hold

Pk,α · χT =


(Λ(α) ⊗ Iθ(q,k−1)) ·



Pk−1,α · χ(0)T

Pk−1,α · χ(1)T

...

Pk−1,α · χ(Num(1))T
+ χθ.1

T

...

Pk−1,α · χ(q−1)T


Λ0

∑
χ(0) + Λαα1

∑
χ(1) + · · ·+ Λα

(
χθ +

∑
χ(Num(1))

)
+ · · ·


.

(33)
The multiplication by α 6= 0 can be considered as a permutation of the ele-

ments of Fq, so the matrix Λ(α) can be obtained from the matrix T1 = Λ(1) by a
suitable permutation of rows (and/or columns)). Let πα ∈ Sq be the permutation
de�ned by the equality πα(j) = j′, where αj′ = ααj, j = 0, 1, . . . , q−1. The permu-
tation πα induces a permutation of the blocks of columns in the matrix T1⊗Iθ(q,k−1).
Hence

Pk,α · χT =


(T1 ⊗ Iθ(q,k−1)) ·



Pk−1,α · χ(π−1
α (0))

T

Pk−1,α · χ(π−1
α (1))

T

...

Pk−1,α · χ(π−1
α (Num(α)))

T
+ χθ.1

T

...

Pk−1,α · χ(π−1
α (q−1))

T


Λ0

∑
χ(0) + Λαα1

∑
χ(1) + · · ·+ Λα

(
χθ +

∑
χ(Num(1))

)
+ · · ·


,

(34)
where π−1

α (Num(α)) = Num(1).
The comparison between the equalities (31) and (34) shows that for calculating

the coordinates (without the last one) a multiplication by the same matrix T1 ⊗
Iθ(q,k−1) is used. In the last equality the blocks Pk−1,α · χ(j)T

are permuted. By
induction, these permutations can be transferred over the coordinates of the vector
χ. Likewise, χθ and the last elements of the intermediate blocks are added to a
determined positions in χ. The modi�ed vector in this way is denoted by πα(χ)
below.

In the improved algorithm, to compute
(∑q−1

j=1 Pk,αj

)
χT directly the sum

SP (χ) = πα1(χ) + πα2(χ) + · · ·+ παq−1(χ)

is used and in addition only one modi�cation of χ is used.
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3.4 Description of the improved algorithm

3.4.1 Precomputation

Let ρ : Zθ(q,k) → Zk−1 be a map de�ned as follows: if 0 ≤ z ≤ θ(q, k) − 1 and
ρ(z) = (ρ1, . . . , ρk−1), then

ρ1 =

⌊
z

θ(q, k − 1)

⌋
, ρt =

⌊
z −

∑t−1
s=1 ρsθ(q, k − s)
θ(q, k − t)

⌋
çà t = 2, . . . , k − 1.

Lemma 3.5. If 0 ≤ z ≤ θ(q, k)− 1 and ρ(z) = (ρ1, . . . , ρk−1), then

z = ρ1θ(q, k − 1) + ρ2θ(q, k − 2) + · · ·+ ρk−2θ(q, 2) + ρk−1,

and 0 ≤ ρt ≤ q, t = 1, . . . , k − 1.

Corollary 3.6. The map ρ is injective.

Lemma 3.7. If 0 ≤ z ≤ θ(q, k) − 1, ρ(z) = (ρ1, . . . , ρk−1) and there exists an
index t ∈ {1, . . . , k − 1} such that ρt = q and ρs < q çà s = 1, . . . , t − 1, then
ρt+1 = · · · = ρk−1 = 0.

A small modi�cation of the vector ρ(z) is more convenient for the developed
algorithm. For this purpose the map ν : {1, . . . , θ(q, k)} → Zk−1, de�ned by

ν(z) =

{
ρ(z), if ρt < q for all t = 1, . . . , k − 1,
(ρ1, . . . , ρt−1, q, . . . , q), if ρt = q for some t ≤ k − 1,

is used.
Let κ : Fk−1

q → Z be the map de�ned by the equality

κ(αj1 , . . . , αjk−1
) = ρ−1(j1, . . . , jk−1) + 1.

Obviously, the images of the vectors in Fk−1
q are positive integers less than or equal

to θ(q, k). Moreover, the di�erent vectors have di�erent images. If u, where 1 ≤
u ≤ θ(q, k), is not an image of the map κ, then the corresponding coordinate χu of
the characteristic vector χ is called an inactive coordinate. Indeed, χu is an inactive
coordinate if the last coordinate of the vector ν(u− 1) is q.

In the developed algorithm three arrays with length θ(q, k) are used. They
are denoted by χ(0), χ(1) and S. The arrays χ(0) and χ(1) play a role of modi�ed
copies of the characteristic vector χ. If the last coordinate of ν(u−1) is not equal to
q, then χ(s)[u] = (−1)sχu, for u = 1, . . . , θ(q, k) and s = 0, 1. Inactive coordinates
of χ are added to a suitable positions in the copies. The array S serves to form the
vector SP (χ).
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3.4.2 Main algorithm

A butter�y algorithm over the sum S and the vector χ(0) is performed. As a

result S takes value
(∑q−1

j=1 Pk,αj

)
χT. Throughout the procedure the right places

of inactive coordinates are searched. For this purpose suitable permutations are
applied. The realization is with the help of the maps σl, ν

(l) and ν−1. The butter�y
algorithms for S and χ(0) are similar to the algorithm described in the section 3.2.

3.4.3 Complexity analysis

The total complexity of the improved algorithm is O(kmqk−1).
It is easy to see that the complexity of the algorithm from the section 3.2 is

O(kmqk). Furthermore the array with size qk is used, while the improved algorithm
uses three arrays with lengths θ(q, k) = (qk − 1)/(q − 1). The described improved
algorithm is more e�ective than the previous algorithms for computing the weight
distribution especially when the length n and/or the number of the elements of the
considered �eld q are large numbers.

4 Computing the covering radius of a linear code

over a �nite �eld by discrete transforms

To clarify the relation between the matter considered in this chapter and the algo-
rithms in the previous chapters the following concept is needed.

De�nition 4.1. Let b ∈ Zθ be a vector with length θ(q, k) and integer coordinates.
For every row vector c of the matrix Mk let be de�ned the vector

c[b]r = (µ0 − µ1, . . . , µ0 − µq−1),

where µ0, µ1, . . . , µq−1 are the coordinates of c[b]. The matrix M
[b]r
k consists of the

vectors c[b]r as rows. The sum of the columns of M
[b]r
k is called the reduced distri-

bution of b and is denoted by r(b).

Lemma 4.1. The reduced distribution r(b) of the vector b ∈ Zθ is

r(b) = [(q − 1)J − qN (Mk)]b
T

where J is the θ × θ all 1's matrix.
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4.1 Computing the covering radius of a linear code over a

prime �nite �eld

In this section only prime �elds are considered. So q is a prime and Fq = Zq =
{0, 1, . . . , q − 1}.

Let C be a linear [n, k]q code with a parity check matrix H. The characteristic
function of the matrix H is de�ned by

hH(x) =

{
1, if x is proportional to a column of H,
0, otherwise,

(35)

where the proportion coe�cients have to be nonzero. This characteristic function
is used to compute the covering radius of the code. The following theorem is hold
for prime q ≥ 3. A similar result is published [18, Theorem 2] for the case q = 2.

Theorem 4.2. Let C be a linear [n, k]q code with a parity check matrix H, where

q is an odd prime, and ĥ : Fn−kq → C be the Vilenkin-Chrestenson transform of
the characteristic function h = hH . Then the covering radius R(C) is equal to the

smallest positive integer t such that
̂̂
ht(y) 6= 0 for all vectors y ∈ Fn−kq , y 6= 0.

Remark 4.1. The same method can be used for computing the weight distribution
of the coset leaders of a linear code over Fq for an odd prime q. If t ≥ 2 is an
integer, then the number of the coset leaders of weight t is equal to the number of

the vectors y ∈ Fn−kq \{0} such that
̂̂
ht(y) 6= 0 and

̂̂
ht−1(y) = 0. The number of the

coset leaders of weight 1 is equal to the number of the nonzero vectors y ∈ Fn−kq

such that h(y) 6= 0.

Let g1, . . . , gθ be the columns of the generator matrix Gs of the simplex code
de�ned by (13). It is satis�ed

ĥ(0) =
∑
x∈Fsq

h(x)v0(x) =
∑
x∈Fsq

h(x) = h(0) + (q − 1)
θ∑

u=1

h(gu) (36)

and

ĥ(gi) =
∑
x∈Fsq

h(x)vgi(x) = h(0) +
θ∑

u=1

q−1∑
j=1

h(gu)vgi(jgu)

= h(0) +
θ∑

u=1

h(gu)

q−1∑
j=1

(
ξ〈gi,gu〉

)j
, i = 1, . . . , θ. (37)
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Lemma 4.3. Let q be an odd prime and h : Fsq → Z be a function with the property

h(x) = h(αx) for all α ∈ Fq\{0} and x ∈ Fsq. If ĥ : Fsq → C is the Vilenkin-

Chrestenson transform of h then ĥ is actually an integer valued function and ĥ(ω) =

ĥ(αω) for all α ∈ Fq\{0} and ω ∈ Fsq.
Corollary 4.4. Let C be a linear [n, k]q code with a parity check matrix H, where

q is an odd prime, and ĥ : Fn−kq → C be the Vilenkin-Chrestenson transform of
the characteristic function h = hH . Then the covering radius R(C) is equal to the

smallest positive integer t such that
̂̂
ht(gi) 6= 0 for all i = 1, . . . , θ(q, n− k).

The above corollary shows that it is enough to calculate
̂̂
ht(0) è

̂̂
ht(gi) for

i = 1, . . . , θ(q, n− k). Because of

q−1∑
j=1

(
ξ〈gi,gu〉

)j
=

{
q − 1, if 〈gi, gu〉 = 0,
−1, if 〈gi, gu〉 6= 0,

(38)

from (37) follows that

ĥ(αgi) = ĥ(gi) = h(0) +

θ(q,s)∑
u=1

riuh(gu),

where α ∈ Fq\{0} ans

riu =

{
q − 1, if 〈gi, gu〉 = 0,
−1, if 〈gi, gu〉 6= 0.

If b = (h(g1), . . . , h(gθ)), then
ĥ(0)

ĥ(g1)
...

ĥ(gθ)

 =

(
ĥ(0)

h(0).1T + Λ · bT

)
=

 h(0) + (q − 1)
∑θ

u=1 h(gu)

h(0).1T + r(b)T

 . (39)

To compute r(b) the algorithm described in Chapter 2 is applicable.

4.2 Computing the covering radius of a linear code over a

composite �nite �eld

In this section composite �elds are considered, i. e. q = pm where p is a prime,
m ≥ 2 is a positive integer and Fp = Zp = {0, 1, . . . , p − 1}. The results from
the previous section can be reformulated for composite �elds by using the trace
transform.
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Theorem 4.5. Let C be a linear [n, k]q code with a parity check matrix H where

q = pn for an odd prime p, and ĥ : Fn−kq → C be the trace transform of the
characteristic function h = hH . Then the covering radius R(C) is equal to the

smallest positive integer t such that
̂̂
ht(y) 6= 0 for all vectors y ∈ Fn−kq , y 6= 0.

Theorem 4.6. Let C be a linear [n, k]q code with parity check matrix H where

q = 2m, and ĥ : Fn−kq → C be the trace transform of the characteristic function
h = hH . Let

ϕt(ω) =
t∑
l=1

(
ĥ(ω)

)l
, ω ∈ Fn−kq , t = 1, . . . , n,

and ϕ̂t : Fn−kq → C be the trace transform of ϕt. Then the covering radius R(C) is
equal to the smallest positive integer t such that ϕ̂t(y) 6= 0 for all y ∈ Fn−kq , y 6= 0.

Lemma 4.7. Let q = pm for a prime p and h : Fsq → Z be a function with the

property h(x) = h(αx) for all α ∈ Fq\{0} and x ∈ Fsq. if ĥ : Fsq → C is the trace

transform of h, than ĥ is actually an integer valued function and ĥ(ω) = ĥ(αω) for
all α ∈ Fq\{0} and ω ∈ Fsq.

Again, the reduced distribution can be used to compute the covering radius.
For this purpose, the algorithms described in the previous chapters are applicable.

Conclusion

Solutions of the problems of computing the weight distribution and the covering
radius of a linear code over a �nite �eld are presented in the dissertation. For this
purpose the generator (parity check) matrix is represented by a characteristic vector
that determines the number of the columns proportional by nonzero coe�cient to
the columns of a specially chosen generator matrix of the simplex code. Some
algorithms are developed depending on the �nite �eld (prime or composite). As a
basis of this work, the Walsh-Hadamard transform, Vilenkin-Chrestenson transform
and trace transform are used. Due to the transition to a characteristic vector, the
proposed algorithms have a less complexity. The algorithms are notably e�ective to
linear codes with large length and to �nite �elds with the large number of elements.
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Scienti�c contributions

Main scienti�c contributions in the dissertation are:
1. The knowledge for discrete Walsh-Hadamard transform, discrete Vilenkin-

Chrestenson transform and trace transform are studied and systematized. Their
application for computing the weight distribution of a linear code is shown.

2. A special type of a generator matrix of the simplex code is de�ned. This
is convenient for determining the characteristic vector of a generator (parity check)
matrix of a linear code. These de�nitions help to obtain natural recurrent relations
between transform matrices of di�erent orders.

3. For linear codes over prime �elds with characteristic p > 2, an algorithm
for computing the weight distribution from a given characteristic vector is devel-
oped. This algorithm has a complexity O(kpk+1), that is p times smaller than the
complexity of the algorithms known so far.

4. For linear codes over composite �nite �elds, a general algorithm for comput-
ing the weight distribution from a given extended characteristic vector is developed.
This algorithm uses the trace transform and self-dual basis. Thus the considered
transform is reduced to the Walsh-Hadamard transform (for characteristic 2) or the
Vilenkin-Chrestenson transform. The complexity of the algorithm is O(kmqk).

5. For linear codes over composite �nite �elds, an improved algorithm for
computing the weight distribution from a given characteristic vector is developed.
The complexity is decreasing q times. This algorithm is described in detail for
composite �elds with characteristic 2.

6. Some methods for computing the covering radius of a linear code over
a �nite �eld (prime or composite) from a given characteristic vector of a parity
check matrix are developed. These methods are generalizations of the proposed by
Karpovsky method for binary linear codes.

7. The developed algorithms are presented by theoretical justi�cations, de-
scriptions and diagrams.
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