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ABSTRACT. A simpler proof of a result of Burq [1] is presented.

Let O C R*,n > 2, be a bounded domain with C* boundary I' and
connected complement 2 = R™\ O. Consider in € the operator

n
Ag = C(x)Q Z O, (gij(m)ax]-)a
ij=1
where c(z), gij(z) € C*°(Q), ¢(z) > ¢o > 0 and

S gii(2)ee; = CIEP, V(@€ e T, C > 0.

1,j=1
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We also suppose that c¢(x) = 1, g;j(x) = d;; for || > pg for some py > 1. Denote
by G the selfadjoint realization of A, in the Hilbert space H = L*(€2; c¢(x)2dx)
with a domain of definition D(G) = {u € H?(Q), Bu|r = 0}, where either B = Id
(Dirichlet boundary conditions) or B = 0, (Neumann boundary conditions).
Consider the resolvent R(\) := (G + X2)~! : H — H defined for Im A < 0, and
introduce the cutoff resolvent R, (\) := xR(M\)x, where x € C°(R"), x(z) =1
for x| < po+ 1, x(z) = 0 for |z| > pg + 2. It is well known that R, ()) extends
through the real axis as a meromorphic function the poles of which are called
resonances. Using the Carleman estimates proved by Lebeau-Robbiano ([4] in
the Dirichlet case and [5] in the Neumann one) Burq has proved the following
result

Theorem ([1]).  There exist constants C,C1,Cq,v > 0 so that R, ())
extends holomorphically to the region
{AeC:ImA < Cre P [ReA| > Oy}
and satisfies there the estimate

(1) IR W)l ey < Ce?.

Furthermore, he applied this theorem to obtain uniform rate of the decay
of the local energy. Denote by u(t) the solution of the equation

(atZ - Ag)U(t) = 07
Bulr =0,
u(0) = f1,00u(0) = fo.

Given any compact K C Q and any m > 0, set

IVaullpz )+ Oull 2 (k)
IV fill g )+ foll 2 ()

pm(t)zsup{ , (0,0)#(f1, f2)€[C™(Q)) supp f; C K} :

Burq derived from (1) the following bounds

(2) pm(t) < Cp(logt)™™ for t> 2.

Note that another method allowing to derive (2) from (1) is presented in [6,
Section 3.
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The purpose of the present note is to give another proof of how the Car-
leman estimates of Lebeau-Robbiano imply (1). The first observation is that
Theorem follows easily from the bound

(3) IRy Mllean < CP, AeR, A > 1,

(e.g. see [2, Corollary 3.1]). In fact, it suffices to prove (3) for A > 1 as the
case A < —1 can be treated similarly. So, in what follows A will be real, A > 1.
Consider the Helmholtz equation

(Ag+2)u = v in Q,
Bu = 0 on T,
u — A\ —outgoing,
where v € C*°(Q), suppv C Qq, := {z € Q : |z| < ap}, where ag > 1 is taken so

that the support of the perturbation is contained in §2,,. Clearly, (3) is equivalent
to the estimate

A
(4) ullL20,,) < Ce vl L2(o)-
Take a > ap to be fixed later on and denote S = {x € R" : |z| = a}. Define
the Neumann operator N(\) : H'(S) — L%*(S) by N(\)g := A"10,w|s, where w
solves the equation
A+ )w = 0 in |z|>a,

w = g on S,

w — X\ — outgoing.
Here A denotes the free Laplacian and v/ denotes the outer unit normal to S. It
is well known that for strictly convex S we have the bound

(5) N 2ea(s),22(8)) < C

with a constant C' > 0 independent of A (e.g. see [3, Corollary 3.3]). Hereafter,
given a domain K, H*(K) will denote the Sobolev space equipped with the
semiclassical norm || f[| grs(x) := [Asf | z2(x), where Ag is a A = VDO on K with
principal symbol (|¢]? + 1)%/2.

Clearly, v and v satisfy the equation
(Ag+M)u=0v in
Bu=0 on T,
A Louls + NN f =0,
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where f = u|g and v = —/ denotes the inner unit normal to S. By Green’s
formula we have

~Im (NN, frzgs) = —Tm (u,c0) 12,
(6)

<e BAHUHB (Qaq ) eﬁ)\H'UH]ﬁ Q)

V3. Given any X > 0 take a function px(t) € Cg°(R), 0 < px(t) <1, px(t) =1
for [t| < X, px(t) = 0 for || > X + 1. Denote by Ag the Laplace-Beltrami
operator on S. We need the following

Lemma. For every X > 0 there exists vo = 70(X) > 0 so that

(7) —Im (NS, fizes) 2 €7 px A V=2) fll72(s)

Proof. Without loss of generality we may suppose that S is of radius 1
It is well known that the outgoing Neumann operator can be expressed in terms

of the Hankel functions of second type, H,EZ)(Z). Let {y;} be the eigenvalues of
v —Ag repeated according to multiplicity. We have the identities

(3) T (N, )z = — 3 T ( ) o2,
(9) lox AV =28)Fl725) = D 5N ')

where {a;} are such that
Hf‘|%2(5) = Za?a

and h,(z) = zl/QH,EQ)(z), v= u? + (g — 1), satisfies the equation

v? —
(10) ) = (1) o)
For real z > 0, set ¥, (z) = —Im Z:’jg;, n,(2) = —Re Z:,:Ez; In view of (10) we

have

/ 2 "
(1) ¥(z) = Im ((’“”) - ’W’)) .
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d z
— {wy(yz) exp <—2u/ ny(uy)dy>} =0,
dz 2o

and hence

(12) bo(2) = by (v20) exp (2u I m(vy)dy) |

20

This implies

Fix zg = 2. We are going to show that for v > 1y > 1 we have: Vo > 0,
de = ¢(d) > 0 so that

(13) Py (vz) > e, Vz >0,
and
(14) Uy (2z) >0, Vz > 0.

By Olver’s expansions

VERES

<0

VYu(vzo) =
Clearly, this together with (12) imply (14). To prove (13) we will first consider

the case when z > 2. Again by Olver’s expansions

422 — 3

_ 495 —2
—22(Z2_1)V + 0 ),

Ny (vz)

uniformly for z > 2, and hence 7, (vz) > 0. This together with (12) yield
Yo (v2) > Py (vzg) > Const > 0,
which proves (13) in this case. Furthermore, still by Olver’s expansions we have

Ny (vz) = O(1) uniformly in 6 < z < 2. Hence, by (12), for § < z <2,

B (v2) > iy (v20) exp <—2u /5 2 \nu(vy)\dy>

>y (vzo) exp (=Cv),  C>0,

which implies (13) in this case.
Let now 1/2 < v < 1. Using the well known asymptotics of the Hankel
functions as z — +o0, v > 1/2 fixed, we get

(15) U (2) =140z, 1/2 <v <.
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Since ¥ = O(\) on supp px, it is easy to see that (7) follows from (8) and (9)
combinned with (13), (14) and (15).

Let x € C°(R"), x =1 for |z| < ag+2, x =0 for |x| > ap+ 3. Applying
the Carleman estimates of Lebeau-Robbiano [4], [5] to the function yu leads to

/ (Jul* + A" Vul?) dz
Qa0+2

(16)
< 62’YIA/ (\u|2 + |/\*1Vu\2) dx + 62'”)‘HUH%2(Q),
ao+2<|z|<ao+3

with some ~; > 0. To eliminate the first term in the RHS of (16) we will use the
Carleman estimates up to S. Set P = —A72A — 1. If p € C*®(Qy,), then P, :=
eM Pe™*¢ is again a A — WDO with principal symbol py (7, &) = p(z,£ + V),
p being the principal symbol of P considered as a A — WDO. We will construct a
real-valued C*° function ¢ defined in a neighbourhood of ay < |z| < a such that
Vo#Oonay<l|z|<a,¢o=—-lon|z|=ayp, p>ym+1lonay+2<|z]<ap+3
and satisfying the condition

(17) Pp(,§) = 0= {Repy, Imp,} > 0.

We will be looking for ¢ in the form ¢(r), r = |z|. It is easy to see that (17) is
equivalent to

1 /2
(18) ¢ (go”gol + i) >0 for agp<r<a.
r

Given any constant C' > 2(ap + 3), it is easy to check that the function

/C
o' (r) = P 1 satisfies (18) with a = C/2. Define ¢(r) as follows
p(r)=-1 —|—/ VOt=1 —1dt.
ag

Clearly, if we take C' > Ci(ag,v1) we can arrange ¢(ag +2) > 71 + 1 and hence
o(r) >y +1for ap +2 < r < a. Fix C = max{2(ap + 3),C1(ao,71)} and
a = C/2. Since p(ag) = —1, there exist ag < a1 < az < ag + 1 so that ¢(r) < 0
for a; < r < ay. Choose a function x; € C*°(R"), x1 = 0 for |z| < ay, x1 = 1 for
|z| > aa. We would like to apply the Carleman estimates up to S to the function
x1u. Set w = ey u. We are going to prove the estimate

1wl 1 (a0 <)) <a) + lwls] 1 (s)

(19)
< ONY2)||Ppw]| 2 (ag<fo)<a) + O] OPA ()]sl 2(s):
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where n(2’, &) € C§(T*S), n = 1 for ro(2/,¢&') < 3, n = 0 for ro(2',&') > 4,
ro(2’,£’) denotes the principal symbol of —Ag. Before proceeding to the proof
of (19) we will complete the proof of (4). Since P,w = —A72e*[A, x;]u and
w|s = e? @A f (19) implies

/ (\u|2 + |)\_1Vu|2) M dr < / (\u|2 + |)\_1Vu\2) e da
az<|z|<a a1<|z|<a2
(20) +O(1)e W | 0pA(n) flI72(5) — €1 f 172(s)

Since 71 < ¢ on ag + 2 < |z| < ap + 3, the first term in the RHS of (16) is
estimated from above by the LHS of (20) times a factor e=%*, §; > 0. On the
other hand, since ¢ < 0 on a; < |z| < ag, the first term in the RHS of (20) is
estimated from above by the LHS of (16) times a factor e~%2*, §; > 0. Therefore,
we have

@21) e P ullBagq, ) + 1225 < E M 020y + OMIOPAM) 225,

with some constants 72 and 73. On the other hand, taking n(a’,¢') =
px(v/ro(z',€")), applying (7) with X = /3 and combining with (6) give

(22) 0pA(m) fl72() < o)1 f 1725y + ¢ PO ullFaqq, ) + PNl g

V@. Clearly, taking 3 > 2v2 + 79, (4) follows from (21) and (22).

Proof of (19). Since d,¢|s = —1, the boundary conditions on S become
A 19,wls = —(N()\) + 1)f1, where f; := w|s. By the Carleman estimates of
Lebeau-Robbiano [4], in view of (5), we have

(23) 0| £t (ag <f<a) < ON) I Pow]| 12 (ag<ta)<a) + O f1ll 1 (s)

It is easy to see that (19) would follow from (23) and the estimate

10pA(T = m) fillz(s)
< ONY)|Ppw| £2(ag <) <a) + oW 71 (ag<laef<a) + 0D f1ll 211 (5)

To prove (24) we will use that 1 — n is supported in the elliptic region of the
corresponding boundary value problem. Clearly, it suffices to prove (24) locally
and then conclude by a partition of the unity on S. Given a xy € S take a small
neighbourhood in R", V', of zy, and denote U = VNS, Vy = VN{|z| < a}. Takein
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V. the so called normal to the boundary local coordinates = = (2/, x,,) € U x[0, 4],
0 < 0 < 1. In these coordinates the principal symbols of P and P, write as follows

p=E& +r(x,)—1=8 +ro(z,&) — 1+ O(z,[¢']),

Repy =& +7(x, &) —1— (¢, )> = & +710(z,&) =2+ O(za (€' + 1)),
Imp, = 2¢, & = —2&,(1+ O(zy)),

where ro(2, £’) is the principal symbol of —Ag written in the coordinates (z/,&’) €
T*U. Hence, the restriction of p, = 0 on T*S is given by ro = 2. In what
follows || - ||s and || - ||s,+ will denote the norms in H*(R""!) and H*(R"! x RT),
respectively, while (-,-) and (-,-); will denote the scalar products in L?(R"~1)
and L?2(R"~! x R"), respectively. By Lil’k we will denote the space of A— V¥ DQO’s
with symbols a ~ A¥ 37 A77 a; with a; independent of A satisfying

1050 3] < Cap(1+ €]~ 717
We will also denote D; := (i\)"10,,, D = (D', Dy). Let ¢(t) € C°(R), ¢ = 1

for |t| < /2, ¢ = 0 for |t| > 6. Let also ¢(2') € C§°(U), ¢ = 1 in a small
neighbourhood of xy € U. Set

9= 0px\((1 = n)[E'Nd(zn)C(zw,  h = glu,=0 = Opx((1 —n)[€'¢(2) f1-
We have
Dnglea=0 = —(N(A) + 1)h + [N (A), Opx((1 = n)[€'){(2")] f1.

Since N()\) has a parametrix of class Lil’o on supp(1 — n) with principal symbol
—+/ro — 1, we have that the commutator above (which will be denoted by A) is

f class LY. Let P* be the formal adjoi P, and d R
of class L ; ~. Let F7 be the formal adjoint to F, and denote Q1 = —5
P,— P}
Q2 = % with principal symbols Re p, and Im p,, respectively. Using the
i
identities
o o
/ ’Dig -gdx, = / ‘Dng‘den + i)\ilfpnm;rnzo : §|$n:0>
0 0
Im (Q29, 9)+ = —A"*[[A§ + e(9),
where

le(@)l < o(W)lgll¥
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it is easy to get

Re ((Q1—D3)g, 9)+ + [Duglli + = Re (Pog,9)+ + A~ Re (N(\h + Af1, h) + e(g)

(25)

< [T 1P s+ el + O il s

Ve > 0. On the other hand, the principal symbol of Q1 — D2 is > C|¢'|?, C > 0,
on supp(l —n), 0 <z, <9, 0 < 0 < 1. Therefore, by Gérding’s inequality we

get

(o ¢]
0< O/HQH%,Jr < 51/0 ||P¢g( xn)” 1dzy, +5H9||1 + T O\~ )Hfl”Hl (S)

and hence

(26)

\Iglli+<0(1)/0 1Pog(, 20) |2y d + OON) |1l 7 s

On the other hand,

> d
Il == [ ot i,

o¢]
= —QA/O Re (g( @n), iDng (-, zn))dan < Ol

which combinned with (26) gives

00 1/2
Ihllo < O(A?) (/0 \|Psog('7$n)||21d$n> + O ) fillns)

< OWNA)IPywllos + ON ) wlh g + O fillms).

which in turn implies (24) by making a partition of the unity on S.
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