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Abstract

In this note we prove a general upper bound on the size of a binary
(n, {d1, d2})-code with d2 > 2d1. This bound is used to settle recent con-
jectures on the maximal cardinality of an (n, {2, d})-code. The special case of
d = 4 is also resolved using a classical shifting technique introduced by Erdős,
Ko and Rado.
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1. Introduction. A binary (nonlinear) code C ⊂ Fn
2 is called a two-distance

code, or, with a certain abuse of language, a two-weight code if the possible
distances between two different words of the code take on two different values, i.e.

{d(u, v) | u, v ∈ C, u 6= v} = {d1, d2},

where 0 < d1 < d2 < n. Here d(u, v) denotes the Hamming distance between u
and v, i.e. the number of positions in which the words u and v are different. A
binary two-weight code of length n, cardinality M , and with distances d1 and d2
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is called an (n,M, {d1, d2})-code. If the cardinality is not specified we speak of
an (n, {d1, d2})-code. A natural problem is to determine the maximal cardinality,
denoted by A2(n, {d1, d2}), of a binary two-weight code of fixed length n and given
distances d1 and d2.

A systematic investigation of this problem for the non-linear case was made
by Boyvalenkov et al. [1], where along with proving upper bounds and various
facts about A2(n, {d1, d2}), the authors state two conjectures:

(A) A2(n, {2, 4}) =
(
n
2

)
+ 1 for all n ≥ 6, and that

(B) A2(n, {2, d}) =

{
n for 5 ≤ d ≤ n− 2,
n+ 1 for d = n− 1.

Let us note that A2(4, {2, 4}) = 8 and A2(5, {2, 4}) = 16. The optimal codes
are the even weight codes. In the case n = 6 we split the words of the even weight
code into 16 pairs of complementary words. Any choice of a word from each of
these pairs gives a (6, {2, 4})-code. For n ≥ 7 the code consisting of the zero word
and all words of weight two gives an

((
n
2

)
+ 1, {2, 4}

)
-code.

This paper is structured as follows. In Section 2, we prove a upper bound on
the size of a binary (n, {d1, d2})-code which improves on the bound from Theo-
rem 6 in [1]. In Section 3, we settle Conjecture (B) using ideas from Section 2,
which deals with the special case of d1 = 2. In Section 4, we prove Conjecture (A)
using a classical shifting technique introduced by Erdős, Ko and Rado in [2].

2. A bound on the size of a code with two distances. In this section
we consider binary codes with parameters (n, {d1, d2}) with d2 > 2d1. Without
loss of generality we assume that the zero word 0 = (0, 0, . . . , 0︸ ︷︷ ︸

n

) is in C. The

following observation is now straightforward:

• if wt(c1) = wt(c2) = d1, then wt(c1 ∗ c2) = d1/2 and d(c1, c2) = d1;

• if wt(c1) = d1,wt(c2) = d2, then wt(c1 ∗ c2) = d1/2 and d(c1, c2) = d2;

• if wt(c1) = wt(c2) = d2, then

either wt(c1 ∗ c2) = d2 − d1/2, and d(c1, c2) = d1,

or else wt(c1 ∗ c2) = d2/2, and d(c1, c2) = d2.

Here we denote, as usual, by c1 ∗ c2 the star of the vectors c1 and c2, i.e. if
c1 = (α1, . . . , αn), c2 = (β1, . . . , βn), then

c1 ∗ c2 = (α1β1, α2β2, . . . , αnβn).
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Lemma 1. Let C be an (n, {d1, d2})-code with 0 ∈ C, d2 > 2d1, and let
c1, c2, c3 ∈ C be words of weight d2. If

d(c1, c2) = d(c1, c3) = d1,

then d(c2, c3) = d1.
Proof. Assume for a contradiction that d(c2, c3) = d2. Denote by α the

number of positions in which all three words c1, c2, and c3 have 1’s. Then by
wt(c1 ∗ c3) = d2 − d1/2 we get d2 − d1/2 − α ≤ d1/2, whence α > d1. On the
other hand, wt(c2 ∗ c3) = d1/2 implies d1/2− α ≥ 0, a contradiction.

This lemma implies that the graph with vertices – the words of weight d2, and
neighbourhood between two vertices iff the corresponding words are at distance
d1, is a union of (possibly trivial) cliques.

Let us denote by A the (M − 1)-by-n matrix having as rows the non-zero
words of C. By Lemma 1, the words can be ordered in such way that

AAT =


d1
2 J + d1

2 I
d1
2 J

d1
2 J . . . d1

2 J
d1
2 J (d2 − d1

2 )J + d1
2 I

d2
2 J . . . d2

2 J
d1
2 J

d2
2 J (d2 − d1

2 )J + d1
2 I . . . d2

2 J
...

...
...

. . .
...

d1
2 J

d2
2 J

d2
2 J . . . (d2 − d1

2 )J + d1
2 I

,

where the diagonal matrices are of size k0 × k0, k1 × k1, . . . , ks × ks, respectively,
where k0 + k1 + · · ·+ ks =M − 1.

Using standard techniques for computing determinants, one can verify that
the determinant of the matrix B is not zero.

Theorem 2. Let C be a binary (n,M, {d1, d2})-code. Then M ≤ n+ 1.
Proof. By the above argument detAAT 6= 0 and hence the matrix AAT is

of full rank over Q. Now using the Sylvester inequality, we get

M − 1 = rankAAT ≤ rankA ≤ n,

which proves the theorem.
Corollary 3. If d2 > 2d1, we have A2(n, {d1, d2}) ≤ n+ 1.
Let us note that this theorem improves significantly on the bound given in

Theorem 6 from [1], which for the case q = 2 gives A2(n, {d1, d2}) ≤ 2n + 1.
Equality in Corollary 3 can be achieved, for instance, if d1 = 2, d2 = n − 1. As
we shall prove in the next section, there exist pairs (d1, d2) for which this bound
can be improved.

3. On (n, {2, d})-codes. Using the idea from the previous section, we can
tackle the second part of Conjecture 1 from [1]. The authors conjecture there that
A2(n, {2, d}) = n for n ≥ 6, 5 ≤ d ≤ n− 1, and A2(n, {2, n− 1}) = n+ 1.

The construction of an (n,M = n, {2, d})-code, as well as of a code of car-
dinality n + 1 for d = n − 1 is given in [1]. The upper bound is easily verified in
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the cases of d odd, as demonstrated in [1]. For d = n− 1 this bound follows from
Theorem 2. Below we consider the most interesting case where d is even.

Let us assume that n ≥ 8 and 6 ≤ d ≤ n− 2, d even. Furthermore, let C be
an (n,M, {2, d})-code with d and n satisfying the above restrictions.

Without loss of generality 0 ∈ C. All the remaining words are of weight 2 or
d. We denote by a the number of words in C that are of Hamming weight 2. We
have 1 ≤ a ≤M−2 since there exist two words at distance 2 and not all distances
between different words are equal to 2. As before, denote by A the (M − 1)-by-n
matrix that has as rows the non-zero words of C. Then up to a row and column
permutation A has the following form:

(1) A =



1 1 0 . . . 0 0 0 . . . 0 0
1 0 1 . . . 0 0 0 . . . 0 0
...

. . . . . .
1 0 0 . . . 1 0 0 . . . 0 0

0 1 1 . . . 1
...

. . .
0 1 1 . . . 1
1 0 0 . . . 0 B
...

. . .
1 0 0 . . . 0



.

The matrix B is the (M − a − 1)-by-(n − a − 1) matrix formed by the bottom
M−a−1 rows (corresponding to the words of weight d) and the rightmost n−a−1
columns. We denote by Ci, i = 0, 1, the set of all words of C that are of weight d
and have i in the first coordinate.

By Lemma 1 the graph with vertices – the words of weight d, and edges – the
pairs of words of weight d that are at distance 2, is a union of (possibly trivial)
cliques.

1) Let us first assume that a > d
2 . Assume that both C0 and C1 are non-

empty. For c0 ∈ C0 and c1 ∈ C1, we have

d(c0, c1) ≥ a+ 1 + (d− 1)− (d− a) = 2a > d,

a contradiction. Thus we have either C0 = ∅, or C1 = ∅.
(a) Assume C1 = ∅. Since every two words from C0 are obviously at dis-

tance 2, we have
BBT = (d− a− 1)J + I,

and it is easily checked that detBBT 6= 0. Now we have

M − a− 1 = rankBBT ≤ rankB ≤ n− a− 1,

whence M ≤ n.
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(b) Assume C0 = ∅. Now we have

BBT =



d− 1 d− 2 . . . d− 2
d− 2 d− 1 . . . d− 2
...

...
. . .

... d
2J

d
2J . . .

d− 2 d− 2 . . . d− 1

d− 1 . . . d− 2

d
2J

...
. . .

... d
2J . . .

d− 2 . . . d− 1

d− 1 . . . d− 2

d
2J

d
2J

...
. . .

... . . .
d− 2 . . . d− 1

...
...

...
. . .



·

It can be proved again that detBBT 6= 0, and we can repeat the above
argument:

M − a− 1 = rankBBT ≤ rankB ≤ n− a− 1.

2) Now we consider the case where 1 ≤ a ≤ d
2 . The structure of C is again

the same as in (1). We keep the notation form 1), i.e. C0 is the set of all words
of weight d that start with 0, and C1 is the set of all words of weight d that start
with 1.

Let us note that if c0 ∈ C0, and c1 ∈ C1, then d(c0, c1) = d. This is obvious
if a ≥ 2. Assume that a = 1. Set

c0 = (0, 1, 1, . . . , 1︸ ︷︷ ︸
d−1

, 0, . . . , 0),

c1 = (1, 0, 1, . . . , 1︸ ︷︷ ︸
d−1

, 0, . . . , 0).

Consider a word c′ ∈ C. Obviously, c′ = (0, 1, ∗, ∗, . . . , ∗), or c′ = (1, 0, ∗, ∗, . . . , ∗).
In both cases, we have

|d(c0, c′)− d(c1, c′)| = 2

which is impossible since this difference can take on only the values 0 and d− 2.
Now we compute again detBBT which turns out to be not 0. Hence using

the chain of inequalities

M − a− 1 = rankBBT ≤ rankB ≤ n− a− 1

we get again M ≤ n. Thus we have proved the following theorem.
Theorem 4. If C is an (n,M, {2, d})-code with n ≥ 8, 6 ≤ d ≤ n − 2, d

even, then M ≤ n.
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This implies the validity of Conjecture 1(b) from [1]:
Corollary 5. If d ≥ 5 then

A2(n, {2, d}) =

{
n for 5 ≤ d ≤ n− 2,
n+ 1 for d = n− 1.

4. The shifting technique. In this section, we consider the case d1 = 2,
d2 = 4. The following definition goes back to Erdős, Ko and Rado [2] (see also
Frankl [3]) and is introduced here for binary vectors and binary codes.

Let C ⊂ Fn
2 and let v ∈ Fn

2 . We denote by supp(v) the set of non-zero
coordinate positions of v. So supp(v) can be thought of as a subset of {1, . . . , n}.
The (i, j)-shift of v is defined by

(2) si,j(v) =

{
v + ei + ej if i /∈ supp(v), j ∈ supp(v), v + ei + ej /∈ C;
v otherwise.

Here ei is the unit vector with 1 in position i. The (i, j)-shift of a binary code C
is defined by

(3) Si,j(C) = {si,j(v) | v ∈ C}.

Our proof is based on the following lemma.
Lemma 6. Let C be a (n, {2, 4})-code. Then Si,j(C) is also an (n, {2, 4})-

code.
Proof. Let us consider two words u,v ∈ C, u 6= v. We have to show that

d(si,j(u), si,j(v)) ∈ {2, 4}. We have four possibilities:

(1) si,j(u) = u, si,j(v) = v;

(2) si,j(u) = u, si,j(v) 6= v;

(3) si,j(u) 6= u, si,j(v) = v;

(4) si,j(u) 6= u, si,j(v) 6= v.

It is clear that in cases (1) and (4), we have d(si,j(u), si,j(v)) = d(u,v). Cases
(2) and (3) are similar and are treated in the same way. Hence we shall consider
just case (2). Since si,j(u) = u one of the following must take place:

(i) i /∈ supp(u), j /∈ supp(u);

(ii) i ∈ supp(u), j ∈ supp(u);

(iii) i ∈ supp(u), j /∈ supp(u);

(iv) i /∈ supp(u), j ∈ supp(u), u+ ei + ej ∈ C.
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The vectors v and si,j(v) have exactly one unit in positions i and j in all
cases. So, in cases (i) and (ii) d(u,v) = d(u, si,j(v)). Similarly, in case (iii), we
get

d(u, si,j(v)) = d(u,v)− 2.

If d(u,v) = 4, then d(u, si,j(v)) = 2. If d(u,v) = 2, then d(u, si,j(v)) = 0, i.e.
u = si,j(v) which contradicts the definition of an (i, j)-shift.

Finally, in case (iv)

d(u, si,j(v)) = d(u,v + ei + ej) = d(u+ ei + ej ,v) ∈ {2, 4},

since u+ ei + ej ∈ C.
A code C with the property

Si,j(C) = C

for all i < j is called stable. Clearly, every code can be transformed to a stable
code by performing at most

(
n
2

)
shifts, e.g. the shifts Si,j for all pairs i, j with

i < j.
Now we are going to prove our main result that implies the exact value of

A2(n, {2, 4}).
Theorem 7. Let C be a binary (n, {2, 4})-code with n ≥ 6. Then

|C| ≤
(
n

2

)
+ 1.

Proof. Assume for a contradiction that C is an (n, {2, 4})-code of cardinality

|C| >
(
n

2

)
+ 1.

Because of Lemma 6 we can assume that C is a stable code. Since the case n = 6
was settled in the introduction, we can assume that n ≥ 7. Since the Hamming
metric is translation invariant we can also assume that the zero word is in C.
Hence all words in C are of weight 2 or 4.

Denote
Ci = {v = (v1, . . . , vn) ∈ C | vn = i}, i = 0, 1.

We shall use induction on the length of C. Therefore we can assume that |C0| ≤(
n−1
2

)
which in turn implies that |C1| > n− 1.

Assume that ei + en ∈ C, i 6= n. Since C is stable it contains also all vectors
ei + ej for all j ∈ {1, . . . , n} \ {i}. This implies that all words in C of weight 4
have 1 in position i. Otherwise, such a word of weight 4 is at distance 6 from
at least one of ei + ej . This uses the fact that n ≥ 7. This observation implies
immediately that there are at most four words of weight 2 in C1. If there are
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exactly four words of weight 2 in C1, then C1 cannot contain a word of weight 4
and hence |C1| ≤ n− 1. This implies

|C| = |C0|+ |C1| ≤ 1 +

(
n− 1

2

)
+

(
n− 1

1

)
= 1 +

(
n

2

)
.

Now let there exist exactly three words of weight 2 in C1: eij +en, j = 1, 2, 3.
Then the only possible word of weight 4 in C1 is ei1 + ei2 + ei3 + en and

|C| = |C0|+ |C1| ≤ 1 +

(
n− 1

2

)
+ (1 + 3) <

(
n

2

)
+ 1.

Now assume C1 has two words of weight 4, u and v say. We consider the
case where d(u,v) = 4, i.e.

u = ei1 + ei2 + ei3 + en, v = ei1 + ej2 + ej3 + en,

where i1, i2, i3, j2, j3 are all different. Let k ∈ {1, . . . , n − 1} \ {i1, i2, i3, j2, j3}
(n ≥ 7). Since C is stable we have that w = ei1 + ei2 + ei3 + ek ∈ C. Now
d(w,v) = 6, a contradiction. Thus we have proved that if u,v ∈ C1 and they
are both of weight 4, then d(u,v) = 2. Now by the Erdős–Ko–Rado theorem the

number of the words of weight 4 in C1 is at most
(
n− 1− 2

3− 2

)
= n− 3. Hence

|C| = |C0|+ |C1| ≤
(
n− 1

2

)
+ 1 + (n− 3) ≤

(
n

2

)
+ 1.

Corollary 8. A2(n, {2, 4}) =
(
n
2

)
+ 1 for all n ≥ 6.
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