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Abstract

In this note we prove a general upper bound on the size of a binary
(n,{d1,d2})-code with dy > 2d;. This bound is used to settle recent con-
jectures on the maximal cardinality of an (n, {2, d})-code. The special case of
d = 4 is also resolved using a classical shifting technique introduced by Erddés,
Ko and Rado.
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1. Introduction. A binary (nonlinear) code C' C F¥ is called a two-distance
code, or, with a certain abuse of language, a two-weight code if the possible
distances between two different words of the code take on two different values, i.e.

{d(u7v> | u,v € C,’LL 7& U} = {d17d2}7

where 0 < d; < d2 < n. Here d(u,v) denotes the Hamming distance between u
and v, i.e. the number of positions in which the words u and v are different. A
binary two-weight code of length n, cardinality M, and with distances d; and ds
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is called an (n, M, {d;,ds})-code. If the cardinality is not specified we speak of
an (n, {dy,da})-code. A natural problem is to determine the maximal cardinality,
denoted by As(n,{di,ds}), of a binary two-weight code of fixed length n and given
distances d; and ds.

A systematic investigation of this problem for the non-linear case was made
by BOYVALENKOV et al. [!], where along with proving upper bounds and various
facts about Aa(n,{di,d2}), the authors state two conjectures:

(A) Ag(n,{2,4}) = (5) + 1 for all n > 6, and that

(B) Ag(n,{Q,d}):{n for 5<d<n-—2,
n+1 ford=n-—1.

Let us note that As(4,{2,4}) = 8 and Ax(5,{2,4}) = 16. The optimal codes
are the even weight codes. In the case n = 6 we split the words of the even weight
code into 16 pairs of complementary words. Any choice of a word from each of
these pairs gives a (6, {2,4})-code. For n > 7 the code consisting of the zero word
and all words of weight two gives an ((g) +1,{2, 4})—C0de.

This paper is structured as follows. In Section 2, we prove a upper bound on
the size of a binary (n, {di,d2})-code which improves on the bound from Theo-
rem 6 in [}]. In Section 3, we settle Conjecture (B) using ideas from Section 2,
which deals with the special case of d; = 2. In Section 4, we prove Conjecture (A)
using a classical shifting technique introduced by ERDGS, Ko and RADO in [?].

2. A bound on the size of a code with two distances. In this section
we consider binary codes with parameters (n, {d1,d2}) with do > 2d;. Without
loss of generality we assume that the zero word 0 = (0,0,...,0) is in C. The

~————

following observation is now straightforward: "
o if wt(c;) = wt(ez) = di, then wt(ey * ¢2) = d1/2 and d(eq, ¢2) = di;
o if Wt(cl) = dl,Wt(Cg) = ds, then Wt(Cl * CQ) = d1/2 and d(Cl, 02) = do;

o if wt(c1) = wt(ca) = da, then

either Wt(Cl * CQ) =dy — d1/2, and d(Cl, (22) =dj,

or else wt(ey * ¢3) = d2/2, and d(cq, c2) = da.

Here we denote, as usual, by ¢; * ¢co the star of the vectors ¢; and co, i.e. if
C1 = (alv cee 7an)7 C2 = (/817 ce 75%)7 then

Cl1 ¥ Cy = (alﬁl,ogﬁz, e ,Oénﬁn).
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Lemma 1. Let C be an (n,{d1,ds})-code with 0 € C, dy > 2d;, and let
ci,Co,c3 € C be words of weight do. If

d(c1,c2) =d(c1, e3) = d,

then d(CQ, 63) = dl.

Proof. Assume for a contradiction that d(eca,c3) = da. Denote by « the
number of positions in which all three words ¢1, co, and e3 have 1’s. Then by
wt(ey * e3) = do — dy/2 we get do — d1/2 — a < di/2, whence a > di. On the
other hand, wt(e2 * ¢3) = d1/2 implies d;/2 — a > 0, a contradiction. O

This lemma implies that the graph with vertices — the words of weight do, and
neighbourhood between two vertices iff the corresponding words are at distance
dy, is a union of (possibly trivial) cliques.

Let us denote by A the (M — 1)-by-n matrix having as rows the non-zero
words of C. By Lemma 1, the words can be ordered in such way that

d d d d d
%Jd—l— S d71J . ?IJ d71J
5J (do — 5)J +F1 5J 5J
AAT = b Ly (do—G)J+4r1 ... Ly ,
g Ly L oo (de =Wy g+ U
where the diagonal matrices are of size kg X kg, k1 X k1,..., ks X ks, respectively,

where kg + k1 + -+ ks =M — 1.

Using standard techniques for computing determinants, one can verify that
the determinant of the matrix B is not zero.

Theorem 2. Let C be a binary (n, M,{d;,d2})-code. Then M <n+ 1.

Proof. By the above argument det AAT # 0 and hence the matrix AA” is
of full rank over Q. Now using the Sylvester inequality, we get

M —1 =rank AAT < rank A < n,

which proves the theorem. O

Corollary 3. If do > 2d;, we have Ay(n,{dy,d2}) <n+1.

Let us note that this theorem improves significantly on the bound given in
Theorem 6 from [!], which for the case ¢ = 2 gives As(n, {d1,d2}) < 2n + 1.
Equality in Corollary 3 can be achieved, for instance, if dj = 2, do = n — 1. As
we shall prove in the next section, there exist pairs (di,ds) for which this bound
can be improved.

3. On (n, {2,d})-codes. Using the idea from the previous section, we can
tackle the second part of Conjecture 1 from [!|. The authors conjecture there that
As(n,{2,d}) =nforn>6,5<d<n-1,and As(n,{2,n —1}) =n+1.

The construction of an (n, M = n,{2,d})-code, as well as of a code of car-
dinality n + 1 for d = n — 1 is given in [!]. The upper bound is easily verified in
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the cases of d odd, as demonstrated in [!]. For d = n — 1 this bound follows from
Theorem 2. Below we consider the most interesting case where d is even.

Let us assume that n > 8 and 6 < d < n — 2, d even. Furthermore, let C' be
an (n, M,{2,d})-code with d and n satisfying the above restrictions.

Without loss of generality 0 € C. All the remaining words are of weight 2 or
d. We denote by a the number of words in C that are of Hamming weight 2. We
have 1 < a < M — 2 since there exist two words at distance 2 and not all distances
between different words are equal to 2. As before, denote by A the (M — 1)-by-n
matrix that has as rows the non-zero words of C'. Then up to a row and column
permutation A has the following form:

110 ...0[00 00
110 1 ... 0]0 O 0 0
1 0 110 O 0 0
1 1 1

(1) A=
011 1 1
110 B
110 0 ... O

The matrix B is the (M — a — 1)-by-(n — a — 1) matrix formed by the bottom
M —a—1 rows (corresponding to the words of weight d) and the rightmost n—a—1
columns. We denote by Cj, ¢ = 0,1, the set of all words of C' that are of weight d
and have ¢ in the first coordinate.

By Lemma 1 the graph with vertices — the words of weight d, and edges — the
pairs of words of weight d that are at distance 2, is a union of (possibly trivial)
cliques.

1) Let us first assume that a > %. Assume that both Cy and C; are non-
empty. For ¢y € Cy and ¢; € C1, we have

d(cg,e1) >a+1+(d—1)—(d—a) =2a>d,

a contradiction. Thus we have either Cy = &, or C; = @.
(a) Assume C) = @. Since every two words from Cj are obviously at dis-
tance 2, we have

BB =(d—a—-1)J +1,
and it is easily checked that det BBT # 0. Now we have
Mfafl:rankBBTgrankBgnfafl,
whence M < n.
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(b) Assume Cyp = @. Now we have

d—1d—-2 ... d—2
d—2 d-1 d—2

d—2 d-2 ... d-1

T d . . . d

It can be proved again that det BBT # 0, and we can repeat the above

argument:
M—a—lzrankBBTgrankBSn—a—l.

2) Now we consider the case where 1 < a < %. The structure of C' is again
the same as in (1). We keep the notation form 1), i.e. Cp is the set of all words
of weight d that start with 0, and C is the set of all words of weight d that start
with 1.

Let us note that if ¢y € Cp, and ¢; € C1, then d(cp, ¢1) = d. This is obvious
if @ > 2. Assume that a = 1. Set

co=(0,1,1,...,1,0,...,0),
——
d—1
e =(1,0,1,...,1,0,...,0).
~——
d—1
Consider a word ¢’ € C. Obviously, ¢ = (0,1,%,%,...,%),or ¢ = (1,0,%,%,...,%).

In both cases, we have
|d(co, ) —d(er,c)| =2

which is impossible since this difference can take on only the values 0 and d — 2.
Now we compute again det BBT which turns out to be not 0. Hence using
the chain of inequalities

M—a—l:rankBBTgrankBgn—a—l

we get again M < n. Thus we have proved the following theorem.
Theorem 4. If C is an (n,M,{2,d})-code withn > 8, 6 < d <n—2,d
even, then M < n.
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This implies the validity of Conjecture 1(b) from [!]:
Corollary 5. Ifd > 5 then

for5<d<n-—2,

Ax(n, (2,d}) = {n—l—l ford=mn—1.

4. The shifting technique. In this section, we consider the case d; = 2,
dy = 4. The following definition goes back to Erdss, Ko and Rado [?] (see also
FRANKL [?]) and is introduced here for binary vectors and binary codes.

Let C C F% and let v € Fy. We denote by supp(v) the set of non-zero
coordinate positions of v. So supp(v) can be thought of as a subset of {1,...,n}.
The (i, 7)-shift of v is defined by

v+e;+e; ifidsupp(v),jesupp(v),v+e +e;é¢C,
2)  sijlv) = { .
v otherwise.

Here e; is the unit vector with 1 in position ¢. The (i, j)-shift of a binary code C
is defined by

(3) Sii(C) = {si;j(v) |v € C}

Our proof is based on the following lemma.

Lemma 6. Let C be a (n,{2,4})-code. Then S;;(C) is also an (n,{2,4})-
code.

Proof. Let us consider two words u,v € C, u # v. We have to show that
d(sij(u), s;,j(v)) € {2,4}. We have four possibilities:

(1) sij(u) = u, si(v) =
(2) sij(u) = u, si;(v) # v;
(3) sij(u) #u, si(v) =
(4) sij(u) #u, si(v) #v.

It is clear that in cases (1) and (4), we have d(s; ;(u), s; j(v)) = d(u,v). Cases
(2) and (3) are similar and are treated in the same way. Hence we shall consider
just case (2). Since s; ;(u) = u one of the following must take place:

(i) (
(ii) ¢ € supp(u
) (

) (

i ¢ supp(u), j ¢ supp(u);

(u)
), j € supp(u);

(iii) @ € supp(u), j ¢ supp(u);

(iv) i ¢ supp(u), j € supp(u), u+e;+e; € C.
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The vectors v and s; j(v) have exactly one unit in positions ¢ and j in all
cases. So, in cases (i) and (ii) d(u,v) = d(u, s;;(v)). Similarly, in case (iii), we
get

d(u, s; j(v)) = d(u,v) — 2.

If d(u,v) = 4, then d(u, s; ;(v)) = 2. If d(u,v) = 2, then d(u,s; ;(v)) =0, i.e.
u = s; j(v) which contradicts the definition of an (4, j)-shift.
Finally, in case (iv)

d(u,s;j(v)) =d(u,v+e; +e;) =d(u+e; +ejv) € {2,4},

since u +e; +e; € C. O
A code C with the property

Si;(C)=C

for all ¢ < j is called stable. Clearly, every code can be transformed to a stable
code by performing at most (Z) shifts, e.g. the shifts S;; for all pairs 7,5 with
1< 7.

Now we are going to prove our main result that implies the exact value of
AQ(TL, {2, 4})

Theorem 7. Let C be a binary (n,{2,4})-code with n > 6. Then

0] < <Z> +1.

Proof. Assume for a contradiction that C'is an (n, {2,4})-code of cardinality

0] > <Z> +1.

Because of Lemma 6 we can assume that C' is a stable code. Since the case n = 6
was settled in the introduction, we can assume that n > 7. Since the Hamming
metric is translation invariant we can also assume that the zero word is in C.
Hence all words in C' are of weight 2 or 4.
Denote
Ci={v=(v,...,v,) €C|v, =1}, i=0,1L

We shall use induction on the length of C. Therefore we can assume that |Cp| <
(”51) which in turn implies that |C;| > n — 1.

Assume that e; + e, € C, i # n. Since C is stable it contains also all vectors
e; +e; forall j € {1,...,n}\ {¢}. This implies that all words in C' of weight 4
have 1 in position ¢. Otherwise, such a word of weight 4 is at distance 6 from
at least one of e; + e;. This uses the fact that n > 7. This observation implies
immediately that there are at most four words of weight 2 in Cy. If there are
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exactly four words of weight 2 in C1, then C] cannot contain a word of weight 4
and hence |C1]| < n — 1. This implies

n—1 n—1 n
|C| \Co|+01|_1+< 5 >+< . ) 1+(2)

Now let there exist exactly three words of weight 2 in C1: €;; +e€,, j = 1,2,3.
Then the only possible word of weight 4 in C} is e;; + e;, + e;; + e, and

-1
|C\=]Co\+101\§1+<n2 >+(1+3)<<Z>+1.

Now assume C has two words of weight 4, u and v say. We consider the
case where d(u,v) =4, i.e.

u:ei1+ei2+ei3+en7 U:ei1+ej2+ej3+en7

where ’il,ig, i3,j2,j3 are all different. Let k € {1, ceeya o — 1} \ {il,iQ, ig,jQ,jg}
(n > 7). Since C is stable we have that w = e;; + e;, + e;; + e € C. Now
d(w,v) = 6, a contradiction. Thus we have proved that if u,v € Cy and they
are both of weight 4, then d(u,v) = 2. Now by the Erdés-Ko-Rado theorem the

—1-2
number of the words of weight 4 in C is at most (n 59 > — n — 3. Hence
-1
rc|—\co|+\cl|s<”2 )+1+(n—3)§<g>+1_ .

Corollary 8. Ay(n,{2,4}) = (5) + 1 for all n > 6.
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