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Abstract

This paper deals with radial and non-radial solutions for local and non-
local Liouville type equations. At first non-degenerate and degenerate mean
field equations are studied and radially symmetric solutions to the Dirichlet
problem for them are written into explicit form. Non-radial solution is con-
structed in the case of Blaschke type nonlinearity. The Cauchy boundary value
problem for nonlinear Laplace equation with several exponential nonlinearities
is considered and C2 smooth monotonically decreasing radial solution u(r) is
found. Moreover, u(r) has logarithmic growth at ∞. Our results are applied
to the differential geometry, more precisely, minimal non-superconformal de-
generate two dimensional surfaces are constructed in R4 and their Gaussian,
respectively normal curvatures are written into explicit form. At the end of
the paper several examples of local Liouville type PDE with radial coefficients
which do not have radial solutions are given.

Key words: Liouville type equation, Dirichlet problem, mean field equa-
tion, radial and non-radial solutions
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1. Introduction and formulation of the main results. In 1949 On-
sager [7] considered in the frames of the statistical mechanics nonlocal elliptic
equations with exponential type nonlinearities. Similar type equations arise in
the mean field equations of hydrodynamic turbulence in equilibrium. Recently, a
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lot of papers have appeared on the subject. Below we propose several of them:
[3,6, 8, 11,15,17–20]. In studying the corresponding boundary value problem (bvp)
very often variational methods are applied. This approach can be illustrated by
the classical mean field equation (nonlocal elliptic equation of Liouville type with
exponential nonlinearity):

(1)
∆u+ λ eu∫

Ω e
u dx

= 0

u|∂Ω = 0

in the bounded smooth domain Ω ⊂ R2, λ > 0 is the spectral parameter.
In [15] the deterministic Liouville type equation was studied:

(2) ∆u+ λ

(
τ

eu∫
Ω e

u dx
+ (1− τ)

γeγu∫
Ω e

γu dx

)
= 0,Ω ∈ R2,

Ω – bounded, 0 < τ < 1, λ > 0,

u|∂Ω = 0.

For 0 < λ < λτ,γ , λτ,γ > 0 being appropriate constant there exists a solution
of (2) corresponding to the minimum of some functional. Moreover, if Ω = B1 the
solutions are radial. However, the authors of [15] establish a link between (2) and
a special local bvp defined in R2 (this bvp is a special case of the cosmic string
problem – see for example [9]). Our aim here is to find radial solutions of the
Dirichlet problem for local and non-local PDE of Liouville type. To do this an
approach coming from the classical theory of ODE will be applied (see [1,10,12,19]).
In fact, in many cases the solutions of our PDE with constant data on S1 =
∂B1 are radially symmetric (see for example [4,14]). Other methods used in the
investigation of elliptic PDE with exponential nonlinearities are the topological
ones – see [5] as an illustrative example.

Below we shall write down the main objects of our considerations in this
paper as follows:

∆u+ λ
eu∫

B1
eu dx

= 0, x ∈ B1, λ > 0, B1 ⊂ R2,

u|∂B1 = C = const,
(3)

∆u+ λ
eu|x|n∫
B1
eu dx

= 0, x ∈ B1, λ > 0,

u|∂B1 = 0,

(4)

∆u+ λ
eu|x|2∫

B1
eu|x|2 dx

= 0, x ∈ B1, λ > 0,

u|∂B1 = 0,

(5)
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∆u+ λ
eu|x|m

(1 + |x|m+2)2−λB2/(m+2)2 = 0, x ∈ B1, λ > 0,

u|∂B1 = 0,
(6)

((6) is a local bvp in B1).

∆u+ λ|F ′(z)|2 eu∫
B1
eu

= 0, x ∈ B1, λ > 0,(7)

F (z) is Blaschke function F (z) =
∏n
j=1

z−αj
1−αjz , 0 ≤ |αj | < 1.

∆u+
∑n

j=1 λj |x|ρjeκju = 0 in R2 \B1,

u|∂B1 = u0 = const, ∂u
∂n

∣∣
∂B1

= u1 = const ≤ 0,

κ1 > κ2 > · · · > κn > 0.

(8)

If the solution u = u(r), we shall consider also (8) in r ≥ 0 with data
u(0) = u0, ∂u∂ru(0) = 0, ρj′ ≥ 1, ρj′′ = 0, ρ = (ρj′ , ρj′′).

The bvp (1), (2), (3), (4), (5), (7) represent 2-dimensional elliptic eigenvalue
problems with exponential nonlinearities (see [17]). This is the first result of our
paper.

Proposition 1.

(a) Consider the nondegenerate mean field equation (3). The solutions of (3)
are radially symmetric and can be written explicitly as

u = log
8|a|2

µ(1 + |a|2r2)2
, r ≤ 1,

where |a±| =
√

2±
√

2−p2

p , 0 < p ≤
√

2, p =
√
µeC/2, µ = λ e

−C

π

(
1− λ

8π

)
,

0 < λ < 8π.

(b) The radial solutions of the degenerate mean field equation (4) exist and
can be written into explicit form.

(c) The radial solution of (5) is given into logarithmic explicit form and exists
for 0 < λ < 16π. There is no solution for λ > 16π.

(d) Equation (6) possesses one parameter family of logarithmic solutions
uB(r), B > 0. The Dirichlet problem for (6) has two radially symmet-

ric solutions if 1 < (m+2)2
− 1

log 4
√
λ log 2

, only one radially symmetric solution for

1 = (m+2)2
− 1

log 4
√
λ log 2

and is nonsolvable in the opposite cases.

(e) The bvp (7) possesses a solution for each λ > 0 if F (z) has at least one
multiple root. It is not radially symmetric in the general case. If F (z)
has only simple roots, then the spectrum of (7) is bounded.
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At the end of Section 2 we propose an application of Proposition 1 to differ-
ential geometry – more precisely, to the theory of minimal, non-superconformal
degenerate two dimensional surfaces in R4. We propose also several examples of
local Liouville type PDE with radial coefficients which have non-radial solutions.
It is worth pointing out that the non-radial solutions are constructed via the radial
ones.

Theorem 1. Consider the local equation (8) in radial coordinates (r, ϕ) in
the whole plane r ≥ 0 equipped with the data u(0) = α, u′(0) = 0. Then if u = u(r)
is radial solution of

(9)
urr + 1

rur +
∑n

j=1 µjr
ρjeκju = 0, r > 0, ρ1 ≥ 1, . . . , ρj′ ≥ 1;

ρj′+1 = · · · = ρn = 0, µj > 0, 1 ≤ j ≤ n, κ1 > · · · > κn > 0,
u(0) = α, u′(0) = 0.

(9) has a C2(r ≥ 0) smooth radial solution u = u(r, µ), µ = (µ1, . . . , µn) which is
strictly monotonically decreasing in r. Moreover, there exists

lim
r→∞

u(r)

ln r
= −m = −

∫ ∞
0

n∑
j=1

µjr
ρj+1eκju(r) dr > −∞.

The above integral is convergent at r =∞ iff m > max1≤j≤n
ρj+2
κj

= M0. Put

Cj =
ρj+2
κj

. Then M0 < m ≤ 2M0. If Cj > C1 for j ≥ 2 it follows that m > 2C1,
while m > Cj for each j = 1, . . . , n.

Corollary 1. Suppose that C1 = · · · = Cn > 0 ⇒ M0 = Cj. Then m =
2C1 > M0 and −

∫
R2 ∆u = 4πC1.

The paper is organized as follows. Some additional results from the complex
analysis, proof of Proposition 1 and several examples of radial and non-radial
solutions of nonlinear PDE are proposed in Section 2. In Section 3 the proof of
Theorem 1 is sketched.

2. Some additional results from the complex analysis, proof of
Proposition 1 and several examples. Denote by ∂

∂z = 1
2

(
∂
∂x − i

∂
∂y

)
, ∂
∂z =

1
2

(
∂
∂x + i ∂∂y

)
, where z = x + iy ∈ C1. Then the two-dimensional Laplace

operator ∆ = 4 ∂2

∂z∂z . Assume that f(z) is analytic function of z. Accord-
ing to the definition of analyticity ∂z

∂z = 0, while we denote d
dzf(z) = f ′(z).

Evidently, ∂
∂zf(z) = 0 as ∂z

∂z = 0, ∂z̄
∂z = 0 and ∂

∂zf(z) = f ′(z). Suppose
that f(z0) 6= 0. Then near z0 in C1 there exists a single-valued branch of
log f(z) = log |f(z)|+ i arg f(z)⇒ ∆ log |f(z)| = 0 near z0.

On the other hand, ∂
∂z log

(
1 +

∣∣∣Φ(z)Φ(z)
∣∣∣) = Φ′(z)Φ(z)

1+|Φ|2 , Φ(z) being analytic

function. There are no difficulties to check that ∆ log(1 + |Φ|2) = e
log

4|Φ′|2

(1+|Φ|2)2 . In
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this way we conclude that if F (z), Φ(z) are analytic functions near z0, F (z0) 6= 0,
Φ′(z0) 6= 0, then the real function

(10) u = log
8|Φ′|2

|F (z)|2(1 + |Φ|2)2

satisfies near z0 the Liouville equation

(11) ∆u+ |F |2eu = 0.

Conversely, if the C4 solution u of (11) with F (z0) 6= 0 satisfies (11) near z0,
then one can find analytic function Φ(z), Φ′(z0) 6= 0 for which (11) holds near z0.
Certainly, F (z) is analytic.

We shall prove now Proposition 1 in the unit disc B1 ⊂ R2.
We do not consider the case (a) as it is similar to the considerations of (b), (c),

(e). As we mentioned above the classical solutions of (3) are radially symmetric
(see [11]). The Laplace operator ∆ in polar coordinates in the plane (r, ϕ) is given
by ∆ = ∂2

∂r2 + 1
r
∂
∂r + 1

r2
∂2

∂ϕ2 . These solutions are not uniquely determined. Via
Pohozaev type identity one can prove that if classical solution of (3) exists, then
λ < 8π.

Proof of Proposition 1(b). Our first step is to construct radial solutions
of equation

(12) ∆u+ µeu|x|n = 0, x ∈ B1,

where µ = λ∫
B1

eu dx
.

Then according to (10) the solution u(r) of (12) takes the form

(13) u = log
2(n+ 2)2C

µ(C + rn+2)2
,

C > 0 being a parameter. The condition u|∂B1 = 0 ⇐⇒ 2(n+2)2C = µ(C+1)2.
Thus,

(14) 0 < C±(µ) =
(n+ 2)2 − µ± (n+ 2)

√
(n+ 2)2 − 2µ

µ
.

Certainly, (n+2)2

2 ≥ µ > 0 is a necessary condition for the existence of classical
solution to the Dirichlet problem for (12). Then in polar coordinates

λ

µ
=

∫
B1

eu =
4πC(n+ 2)2

µ

∫ 1

0

r dr

(C + rn+2)2
.

Therefore,

(15) λ = 4πC(n+ 2)2F (C), F (C±) =

∫ 1

0

r dr

(C±(µ) + rn+2)2
> 0.
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Put G(C) = CF (C) =
∫ C− 1

n+2

0
s ds

(1+sn+2)
C

2
n+2
−1, n ≥ 1. Therefore, C → +∞ ⇒

G(C) ∼ 1
2C , G(C) ∼ KC

2
n+2
−1, C → 0, K = const, i.e. the continuous mapping

G(C) is onto (0,∞). On the other hand, one can check that C+(µ) ∼ 2(n+2)2

µ ,

µ→ 0, C±
(

(n+2)2

2

)
= 1, C−(µ) ∼ µ2

(n+2)2 , µ→ 0. So C± is a continuous mapping

from
(

0, (n+2)2

2

)
onto (0,∞). As G′(C) < 0, G is monotonically decreasing, etc.

Consequently, we can solve the transcendental equation (15) finding µ = µ(λ),
µ > 0. Formula (13) with µ = µ(λ) gives us the solution of (4).

Proof of Proposition 1(c). Again λ
µ =

∫
B1
eu|x|2 dx, u(r) is a solution of

the Dirichlet problem for (12) with u|∂B1 = 0, C±(µ) is given by (14). The only
difference from the previous case is that

0 <
λ

µ
=

64πC

µ

∫ 1

0

r3 dr

(C + r4)2
=

16π

µ

1

C + 1
,

i.e.

(16) λ =
πµ

1±
√

1− µ/8
= F1±(µ), 0 < µ ≤ 8.

Evidently, F1±(8) = 8π, F1+(0) = 0, F1−(0) = 16π. Therefore, for each λ ∈
(0, 8π] there exists µ ∈ (0, 8] such that F1+(µ) = λ and for each λ ∈ [8π, 16π)
there exists µ ∈ (0, 8] such that F1−(µ) = λ. Obviously, λ ∈ (0, 16π), F1+ is
monotonically increasing, F1− is monotonically decreasing and (16) implies that
µ = λ

π2

(
2π − λ

8

)
.

Proof of Proposition 1(d). The considerations for (6) are similar to the
previous ones. For the unknown constants m > 0, n > 0, p > 0 we consider the
Dirichlet problem

(17) ∆u+ λeu |x|m
(1+|x|n)p = 0 in B1

u|∂B1 = 0.

We are looking for a radial solution of (17) having the form

(18) u = log(ϕ2AB2), ϕ(r) > 0, B = const > 0.

For ϕ(r) we obtain the following ODE

(19) ϕϕ′′ +
ϕϕ′

r
− (ϕ′)2 = −λB

2

2A
ϕ2A+2 rm

(1 + rn)p
.

Assume that ϕ = 1 + rν . Then

ν2rn−2 = −λB
2

2A
rm
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for ν = n, 2A+ 2 = p, n = m+ 2, ν2 = −λB2

2A < 0 ⇐⇒ A < 0.
Evidently, A = p−2

2 < 0. Thus,

ν = n = m+ 2⇒ (m+ 2)2

B2
= − λ

2A
=

λ

2− p
,

i.e. p = 2− λB2

n2 < 2; B > 0 is a parameter. Then equation (17) takes the form

∆u+ λeu
|x|m

(1 + |x|m+2)2−λB2/n2 = 0 in B1,

i.e. we obtain (6). Dirichlet problem (6) possesses the radial solution

(20) u(r) = log

(
B2
(
1 + rm+2

)− λB2

(m+2)2

)
,

where B > 0 is arbitrary.
To solve the Dirichlet problem (6) we must have

(21)
B2

2λB2/(m+2)2 = 1 for some B > 0 ⇐⇒ B

2λB2/2(m+1)2 = 1.

Consider the function f(B) = B

2λB
2/2(m+2)2

> 0, B > 0.
One can check that

f(∞) = 0, f(0) = 0, f ′(B) = 0 ⇐⇒ B = B∗ =
m+ 2√
λ log 2

⇒ fmax = f(B∗) =
(m+ 2)2

− 1
log 4

√
λ log 2

.

In this way (21) possesses two solutions for 1 < fmax, only one solution for
1 = fmax and does not have any solution for 1 > fmax. Proposition 1(d) is
proved.

Sketch of the proof of Proposition 1e). We look for solution of (7) having
the form u = log 8a2

µ(1+a2|F (z)|2)2 and such that eC/2 = 2
√

2a√
µ(1+a2)

, as |F (z)||S1 = 1.
The number a satisfies a quadratic equation, possessing two positive roots a+,
a− for 0 < µ ≤ 2e−C , namely, a+ =

√
2e−C/2µ−1/2

(
1 +

√
1− µ

2 e
C
)
, a− =

√
2

2 e
C/2 µ1/2

1+
√

1−µ
2
eC

. Moreover, λ± = 8
a2
±

∫
B1

dx dy

(a−2
± +|F (z)|2)

2 , z = x+ iy. The remain-

ing part of the proof is standard but rather technical and we omit it.
We shall illustrate some of the results of Proposition 1 with an application

in geometry. It concerns the model example of de Azevedo Tribuzy and
Guadalupe [16].
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We propose here a slight generalization of [16] and we find two-parametric
family of its radially symmetric solutions into explicit form. Consider the system

(22)
(K2 − κ2)1/4∆ log |κ−K| = 2|x|n(2K − κ)

(K2 − κ2)1/4∆ log |κ+K| = 2|x|n(2K + κ)
,

where K2 > κ2, K < 0 and K denotes the Gaussian curvature of some two-
dimensional non-super conformal minimal surface M2 ⊂ R4, while κ stands for
the normal curvature of M2. The classical case is (22) with n = 0. As it is shown
in [16] (K,κ), n = 0 defines minimal non-super conformal surface M2 ⊂ R2. Our
generalization (22) admits a power degeneration of the righthand side of (22). To
find solutions of the system (22) we put

0 > K − κ = −eu
0 > K + κ = −ev ⇒ |K − κ| = eu, |K + κ| = ev ⇒

K = −e
u + ev

2

κ =
eu − ev

2

⇒ (K2 − κ2)1/4 = e(u+v)/4.

Then (22) takes the form

(23) ∆u = −|x|n(3ep + eq)
∆v = −|x|n(ep + 3eq)

,

where p = (3u− v)/4, q = (3v − u)/4.
One can easily see that

(24) ∆p+ 2|x|nep = 0
∆q + 2|x|neq = 0.

System (23) reduces to two scalar equations (24). According to formula (13) for
equation (12) with µ = 2 we have that

p = log
16C1

(C1 + r4)2
, C1 > 0, C1 – arbitrary,

q = log
16C2

(C2 + r4)2
, C2 > 0, C2 – arbitrary.

Having in mind that u = (q+ 3p)/2, v = (p+ 3q)/2 we get two-parametric family
of solutions of (22)

(25)

K = −1

2

162C
1/2
1 C

1/2
2

(C1 + r4)(C2 + r4)

(
C

1/2
1

(C1 + r4)2
+

C
1/2
2

(C2 + r4)2

)

κ =
1

2

162C
1/2
1 C

1/2
2

(C1 + r4)(C2 + r4)

(
C

1/2
1

(C1 + r4)2
− C

1/2
2

(C2 + r4)2

)
.
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At the end of this section we shall discuss the problem for existence of non-
radial solutions of Liouville type PDE with radially symmetric coefficients. Start-
ing from radial solutions of some classes of Liouville type PDE we shall construct
several classes of non-radial solutions of other PDE with radially symmetric co-
efficients. It is proved in [4] that if ∆u + f(u) = 0 in B1, u ∈ C2(B1), f ∈ C1

and f(u) ≥ 0 everywhere, then any non-trivial solution of the Dirichlet problem
u|∂B1 = 0 is positive in B1 and radially symmetric. No unicity holds for the
radial solutions u(r). Moreover, ∂u

∂r < 0 for 0 < r < 1. Let ∆u + f(r, u) = 0
in B1 and u|∂B1 = 0, u ∈ C2(B1), f ∈ C1 and f(r, u) is decreasing in r, i.e.
f ′r(r, u) ≤ 0. Then each positive solution u > 0 is radially symmetric and ∂u

∂r < 0
for 0 < r < 1. This result does not hold if f is not decreasing in r (there are
counter examples). Consider the polynomial P (z) in C1. Then P (z) is radially
symmetric, i.e. |P (reiϕ)| = g(r) iff P is a monomial: P (z) = azm.

Let u0(r) be some non-trivial radial solution of ∆u + f(u) = 0, f(u) ≥ 0,
u|∂B1 = 0. Assume that g(z) is a non-trivial analytic function for |z| < 1 + ε0,

ε0 > 0 and consider the smooth function U(z) = u0(|g(z)|), |g(z)| =

√
g(z)g(z).

Certainly

∆U = 4
∂2

∂z∂z
U(z),

∂U

∂z
= u′0(|g(z)|)g

′(z)

2

√
g(z)(g(z))−1.

Thus,
∆U + |g′(z)|2f(U) = 0, U ||g(z)|=1 = u0(1) = 0

but U(z) is not radially symmetric if |g(z)| is not radially symmetric function. For
example, let g(z) = zm+C, m ≥ 1, C 6= 0. Then |g(z)| is not radially symmetric,
|g(z)|2 = r2m+ |C|2 +2rm|C| cos(mϕ−ψ), where C = |C|eiψ, z = reiϕ. Moreover,
|g(z)| = 1 ⇐⇒ r2m + |C|2 − 1 + 2rm|C| cos(mϕ− ψ) = 0⇒ |C| ≤ 1.

In this way we get that the PDE with radial coefficients

∆U(z) +m2|z|2m−2f(U) = 0

possesses the non-radial solution U(z) = u0(|zm + C|).
Example 1. Let f(u) =

∑n
j=1Aje

κju, Aj > 0, κ1 > · · · > κn > 0 and
u0(r) be non-trivial radial solution of the Dirichlet problem ∆u + f(u) = 0,
u|∂B1 = 0. Then U(z) = u0(|zm + C|), C 6= 0 is positive nonradial solution of
∆U(z) +m2|z|2m−2f(U) = 0.

3. Existence results for global radial solutions of some local Liouville
type equations. Short proof of Theorem 1. The initial value problem (9)
can be written as

(26)
ru′′ + u′ = −

n∑
j=1

µjr
ρj+1eκju = −f(r, u) < 0, r > 0,

u(0) = α,
u′(0) = 0.
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Thus, d
dt(ru

′) = −rf(r, u(r)), r ≥ 0. Therefore,

(27) ru′ = −
∫ r

0
sf(s, u(s)) ds = g(r, u(r)) = g̃(r) < 0, r ≥ 0,

g̃′(r) < 0 for r > 0.
We rewrite the Cauchy problem (26) as

(28) u′ = −

{
1
r

∫ r
0 sf(s, u(s)) ds, r ≥ 0,

0, r < 0.

If we put

F (r, u) = −

{
1
r

∫ r
0 sf(s, u(s)) ds, r ≥ 0,

0, r < 0,

then F (r, u) is Lipschitz continuous function with respect to u and (26) takes the
form

(29) u′(r) = F (r, u(r)), r ≥ 0,
u(0) = α.

A classical result (Picard E.) gives us existence and uniqueness of u ∈ C1 solution
near r = 0, r > 0 of (29). The idea of the proof of Theorem 1 can be found in [19].
The rest of the proof is technical and we omit it due to lack of space.

We shall formulate only two formulas, crucial for the proof of Theorem 1.
They are:

lim
r→∞

u(r)

log r
= lim

r→∞
ru′(r) = −m = −

∫ ∞
0

n∑
j=1

rρj+1eκju(r) dr < 0,

m = const > maxj
ρj+2
κj

and

m2

2
−mC1 =

∫ ∞
0

n∑
j=2

µj(Cj − C1)rρj+1eκju(r) dr,

where Cj = (ρj + 2)/κj , j = 1, 2, . . . , n.
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