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ASYMPTOTIC BEHAVIOUR OF COLENGTH OF

VARIETIES OF LIE ALGEBRAS
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Abstract. We study the asymptotic behaviour of numerical characteristics
of polynomial identities of Lie algebras over a field of characteristic 0. In
particular we investigate the colength for the cocharacters of polynilpotent
varieties of Lie algebras. We prove that there exist polynilpotent Lie varieties
with exponential and overexponential colength growth. We give the exact
asymptotics for the colength of a product of two nilpotent varieties.

1. Introduction. We study numerical characteristics of varieties of Lie

algebras. Among the most important characteristics for the polynomial identi-

ties of any variety of algebras are the codimension and the colength sequences.

There are a lot of papers about the codimension growth of associativeand Lie
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algebras. The asymptotic behaviour of the colength sequence has not been stud-

ied so intensively. It is known that for any variety of associative algebras the

colength is polynomially bounded, see Berele and Regev [3]. This result gives a

wide class of examples of varieties of Lie algebras with a polynomially bounded

colength (the so-called SPI Lie algebras). As it was shown by the authors [9], the

same restriction for the colength can be obtained for a more general class of Lie

algebras (the so-called API-algebras or Lie algebras of associative type) but, in

general, the colength growth may be faster than any polynomial function. In [9]

we constructed also an example of a Lie variety with a subexponential colength

growth.

In the present paper we prove that there exist Lie varieties with exponen-

tial and overexponential colength growth. For a product of two nilpotent varieties

we give the exact asymptotic for the colength. All these results were announced

in [10].

We recall all essential notions. For more details on general theory of

varieties of Lie algebras we refer to [2]. The characteristic of the ground field Φ

is supposed to be equal to zero. We omit the Lie brackets in the monomials if

the product is left-normed, i.e. abc = ((ab)c).

Let V be a variety of Lie algebras over the field Φ. Denote by F =

F (X,V) the relatively free algebra of the variety V with a countable set of

generators X = {x1, x2, . . .}. Denote also by Pn = Pn(V) the set of all multilinear

Lie polynomials in x1, . . . , xn in F . The action σ(xi) = xσ(i) of the symmetric

group Sn can be naturally extended to the vector space Pn. The structure of

Pn as an Sn-module is an important characterization of V and gives a lot of

information about V.

Denote by χ
λ

the irreducible character of the symmetric group Sn corre-

sponding to the partition λ of n and, for a variety V, consider the decomposition

of the character χ(Pn(V)) as a sum of irreducible components

χn(V) = χ(Pn(V)) =
∑

λ⊢n,

mλχλ.(1)

The integer cn = cn(V) = dimPn(V) is called the n-th codimension of

V. The total number of summands

ln = ln(V) =
∑

λ⊢n,

mλ(2)
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in the sum (1) is called the n-th colength of the variety V. Important numerical

characteristics of V are also the multiplicities mλ in (1).

Denote by dλ the dimension of the irreducible Sn-module corresponding to

λ. Then for the introduced above numerical characteristics the following relation

holds:

cn(V) = dimPn(V) =
∑

λ⊢n,

mλdλ.(3)

Recall that for associative algebras the colength and the multiplicities

are bounded by a polynomial function nq for a suitable q (see, for instance, [3,

Theorem 16]). In the case of Lie algebras there are examples of varieties with

non-polynomial but subexponential growth of multiplicities and colength [9]. In

this paper we present examples of varieties with an overexponential colength

growth. From the asymptotic estimates for the number of distinct partitions of

n we derive the existence of multiplicities also with an overexponential growth.

We also construct for any integer b ≥ 2 an example of a variety with the colength

of the type b
n
2 .

In order to compare the asymptotic behaviour of functions we use the

following notions. Let f(n) and g(n) be two functions of natural argument.

Then f(n) ≪ g(n) means that f(n) does not exceed g(n) starting from some

value of n. Now, let gα(n) be a function of natural argument depending also on

the positive real parameter α and let gα(n) ≤ gβ(n) for all n if α < β. Denote

f(n) ≃ gγ(n) ⇐⇒ γ = inf{α | f(n) ≪ gα(n)} = sup{β | gβ(n) ≪ f(n)}.

Note also that

f(n) ≃ gγ(n) ⇐⇒ ∀ε ∃N : gγ−ε(n) ≪ f(n) ≪ gγ+ε(n) for n ≥ N.

The next two statements are the main results of the paper.

Theorem 1. The varieties of Lie algebras A3 and AN3 have an overex-

ponential colength growth.

Theorem 2. The colength of the variety NbN2, b ≥ 2, is asymptotically

equal to the exponential function b
n
2 , i.e. ln(NbN2) ≃ (

√
b)n.
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2. Examples of varieties with overexponential colength. First we

prove an easy statement based on a simple estimation of dimensions of irreducible

Sn-modules.

Proposition. The colength and codimension of any variety V of linear

algebras satisfy the inequality

ln(V) ≥ cn(V)√
n!

.

P r o o f. It is well-known that

n! =
∑

λ⊢n,

d2
λ.

Using this relation we obtain the restriction dλ <
√
n! for dimension of any irre-

ducible module. Now we apply formulas (2) and (3), and the proof is complete. �

Now we give examples of varieties of Lie algebras with colength growth

asymptotically faster than any bn, where b is an arbitrary constant.

Petrogradsky [5] found the asymptotics of the codimension growth of poly-

nilpotent varieties of Lie algebras. Using his result and the above Proposition we

obtain lower bounds for the colength.

First let V = A3 be the variety of all solvable Lie algebras with a solv-

ability length not greater than 3. Then by [5]

cn(A3) ≃ n!

(lnn)n
,(4)

and we get

ln(A3) ≥
√
n!

(lnn)n
.(5)

We can rewrite (4) in the form cn(A3) ≃ g1(n) where

gγ(n) =
n!

(lnn)
n
γ

.

The inequality (5) completes the proof of Theorem 1 for A3. In particular,
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it follows that any variety which contains A3 has an overexponential colength

growth.

Any polynilpotent variety V = NsqNsq−1
· · ·Ns1

has a faster colength

growth if q ≥ 3. Denote by ln(k) x the k-multiple composition of the natural

logarithm, i.e. ln(k) x = ln(ln(. . . x) . . .). For polynilpotent varieties the following

asymptotics of codimension growth was found in [5].

Theorem ([5, Theorem 2.2]). Let V = NsqNsq−1
· · ·Ns1

. If q ≥ 3, then

there exists an infinitely small value o(1) such that

cn(V) =
n!

(ln(q−2) n)n/s1

(

s2 + o(1)

s1

)
n
s1

.

If q = 2, then

cn(V) = (n!)
s1−1

s1 (s2 + o(1))
n
s1 .

From the above stated Proposition we obtain a lower bound for the

colength growth if q ≥ 3:

ln(V) ≥
√
n!

(ln(q−2) n)n/s1

.

If we have only two factors, i.e. q = 2 and V = NbNa, then we find

ln(NbNa) ≥ b
n
a (n!)

a−2

2a .

Hence, if a ≥ 3, then the colength is growing as an overexponential function, and

the proof of Theorem 1 is complete. �

In the case a = 2 these formulas give us an exponential lower bound for

the colength. In other words, we have the following.

Lemma. Let V = NbN2. Then for any positive ε there exists an integer
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N such that the condition n ≥ N implies the inequality

ln(NbN2) ≥ (b− ε)
n
2 .

We shall use this bound in the proof of Theorem 2.

Remark. There exist varieties of Lie algebras with overexponential mul-

tiplicities for some of the irreducible Sn-modules.

The remark follows from the well-known asymptotics for the number

p(n) of distinct partitions of n, see for example [1]. This value has an inter-

mediate growth between polynomial and exponential. More precisely, p(n) ∼
1

4n
√

3
exp

(

π

√

2n

3

)

.

Note also that in [4] the following estimate for the colength of the variety

AN2 was found:

ln(AN2) ∼ exp

(

π

√

2

3
n

)

.(6)

For this variety the colength growth is intermediate between polynomial and

exponential.

3. Proof of Theorem 2. In this section we complete the proof of

Theorem 2. By the Lemma from Section 2 it is sufficient to verify the upper

bound of the form

ln(NbN2) ≤ (b+ ε)
n
2 .(7)

for any ε > 0.

We shall prove (7) by induction on b. If b = 1, then (7) follows from (6)

since a
√

n is asymptotically less than (
√

1 + ε)n for any a. Now, let b > 1 and

let L = F (X,NbN2) be a free algebra of the variety NbN2. Then (L3)b+1 = 0

and (L3)b ∩PN is a non-zero SN -submodule of PN = PN (NbN2). Obvilously, the

length lN (NbN2) of the SN -module PN is equal to the sum of lN (Nb−1N2) and
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the length of module PN ∩ (L3)b. Since lN (Nb−1N2) ≃ (
√
b− 1)N , it is sufficient

to restrict the length of K = PN ∩ (L3)b by (
√
b+ ε)N .

For convenience we shall denote some of the free generators as x’s and

some as y’s. In particular, let Yi = yi1yi2yi3 be a left-normed product of yi1, yi2

and yi3. We denote by Xi = ad xi the adjoint action of xi on L.

Consider the multilinear monomial on generators {x1, x2, . . . , xN} of the

type

gt = (Y1X11 . . . X1t1) · · · (YbXb1 . . . Xbtb),

where N = 3b+ n, n =
∑b

i=1 ti, and t = (t1, . . . , tb) is a multiindex.

For any multiindex t we generate by the element gt the submodule Kt in

K. Clearly, K is the sum of all such submodules, i.e.

K =
∑

t

Kt.(8)

First we shall establish an upper bound for the multiplicity of an arbitrary

irreducible summand in some Kt.

Let Qi, i = 1, . . . , b, be the permutation group on the set {yi1, yi2, yi3}.
Obviously, Qi is isomorphic to S3. Similarly, let Ri, i = 1, . . . , b, be the permu-

tation group on the set {xi1, . . . , xiti}; clearly, Ri ≃ Sti . Consider the subgroup

H = Q1 × R1 × . . . ×Qb × Rb of the group G = SN . Clearly, the SN -module K

is also an H-module.

Note, that for any i = 1, . . . , b, the character of the ΦQi−module ΦQigt

is irreducible and corresponds to the partition λ = (2, 1). (It is a well-known

fact from the theory of varieties of Lie algebras that this is the character of the

multilinear component of degree 3 in the free Lie algebra.)

Applying the same arguments as in [7] Proposition 2, one can see that

the character of the ΦRi-module M = ΦRigt is a sum of distinct irreducible

characters with multiplicities 1, i.e.

χ(M) =
∑

λ⊢ti

ελχλ,(9)

where ελ ≤ 1. Therefore the total number of summands in (9) does not exceed

the number p(ti) of distinct partitions.

It follows that in the decomposition of the H-module ΦHgt as a sum
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of irreducible components the number of summands will be not greater than

p(t1) · · · p(tb). This latter value has a subexponential growth.

Now we consider one irreducible with respect to H summand U in ΦHgt

and generate a G-module W . Our nearest goal is to estimate the multiplicities

of the irreducible summands in W .

Let ϕ be the H-character of U and let ψ be some irreducible G-character

of W . Denote by m = (G : H) the index of H in G. First we shall find a bound

for the multiplicity in the induced from ϕ representation. Let 〈Ind ϕ,ψ〉G = q.

Then, as it is known (see, for example, [6]), 〈ϕ,Res ψ〉H = q, and we obtain:

mϕ(1) = Ind ϕ(1) ≥ qψ(1), Res ψ(1) = ψ(1) ≥ qϕ(1).

Hence q ≤ √
m.

On the other hand

(G : H) =
N !

t1! · · · tb!(3!)b
=

(

N

t1, . . . , tb

)

(3b)!

(3!)b
,

where

(

N

t1, . . . , tb

)

is a generalized binomial coefficient. Hence

(G : H) ≤ bN (3b)!

(3!)b
≤ (b+ ε)N

and the multiplicity q is bounded from above by (
√
b+ ε)N .

The total number of summands in (8) can be bounded by a polyno-

mial function on N in the following way. This number is equal to the number
(

N + b− 1

b− 1

)

of monomials of degree N on b commuting variables, which is a

function on N of the type (N + b−1)b−1. Now the number of summands in (8) is

polynomially bounded and any fixed summand can be decomposed to at most T =

p(t1) · · · p(tb) irreducible H-modules U , where t1 + · · ·+ tb = N − 3b and p(m) is

the number of distinct partitions of the integer m. Hence, p(m) ∼ exp

(

π

√

2m

3

)

and T ≤ p(N)b ∼ C
√

N for some constant C. Finally, any irreducible H-module

U generates a G-module W with no more than p(N) non-isomorphic summands

with multiplicities not greater than (b+ ε)
N
2 . This completes the proof of Theo-

rem 2. �
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In conclusion we formulate the following conjecture. Is it true that a

variety V has an exponential colength if and only if it does not contain the

subvarieties A3 and AN3?

In particular, is it true that any proper subvariety of A3 or of AN3 has an

exponentially bounded colength? The latter conjecture is true for any subvariety

of finite basic rank in A3 as follows from [8] and for any proper subvariety V of

AN2 as it was shown in [4].
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