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EXPONENTS OF SUBVARIETIES OF UPPER

TRIANGULAR MATRICES OVER ARBITRARY FIELDS

ARE INTEGRAL

V. M. Petrogradsky∗

Communicated by V. Drensky

Abstract. Let Uc be the variety of associative algebras generated by the
algebra of all upper triangular matrices, the field being arbitrary. We prove
that the upper exponent of any subvariety V ⊂ Uc coincides with the lower
exponent and is an integer.

1. Codimension growth and exponents. Let K denote the ground

field, we consider it to be arbitrary. Suppose that V is a variety of (associative)

algebras, this is the class of all algebras that satisfy some fixed set of identical

relations. Let F (V,X) be its free algebra generated by a countable set of gen-

erators X = {xi | i ∈ N}. We denoteby Pn(V) ⊂ F (V,X) the subspace of all
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multilinear elements of degree n in {x1, . . . , xn}. We also consider the dimension

of this subspace

cn(V) = cn(F (V,X),X) = dimK Pn(V), n = 1, 2, . . . .

The codimension growth sequence cn(V), n = 1, 2, . . ., is an important character-

istic of V.

The sequence cn(V) is bounded by an exponential function, provided that

the variety of associative algebras V is nontrivial. This fact was essentially used

by A. Regev to prove that the tensor product of associative PI-algebras is again

a PI-algebra [10]. The proof was simplified by V. N. Latyshev [4]. One defines

the upper exponent and lower exponent of a variety

ExpV = lim
n→∞

n
√

cn(V), ExpV = lim
n→∞

n
√

cn(V).

Almost all results on the growth of associative algebras are concerned

with the case of a field of characteristic zero. For example, there are precise

asymptotics for the growth of prime varieties of associative algebras over a field

of characteristic zero [11]. The main approach there is the technique of represen-

tations of the symmetric group. It has been recently proved that the exponent

of any variety of associative algebras over a field of characteristic zero is always

an integer [2]. The proof of this theorem uses the classification results of A.

R. Kemer [3]. But little is known about the growth in case of fields of positive

characteristic.

Let us also recall some facts on the growth of varieties of Lie algebras.

In this case the growth might be overexponential [13]. The author suggested

a scale for describing a superexponential growth of varieties of Lie algebras [7],

it was sharpened in [8]. Recall that NsA denotes the variety of Lie algebras

whose commutator subalgebras are nilpotent of class s. In [6] it was established

that the exponent of any subvariety V ⊂ NsA is an integer, the field being

of characteristic zero. The proof used techniques of Young diagrams. Another

method allowed us to lift any restrictions on the field [9]. Namely, the method of

“necklaces” was developed to study subvarieties of NsA. This method was also

applied to study the overexponential growth of subvarieties in A3, the variety of

Lie algebras that are soluble of length 3 [9]. Recently it was found that soluble

varieties might have nonintegral exponents [14].

Denote by Us the variety of associative algebras generated by the algebra

of s×s upper triangular matrices. It is well known [5] that in case of characteristic
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zero Us is defined by the identity

[X1,X2] · [X3,X4] · · · [X2s−1,X2s] ≡ 0.(1)

Let A = A(X) be the free associative algebra in the countable set of variables

X = {x1, x2, . . .}. We denote by T (V) ⊂ A(X) the ideal of identities of a variety

(or an algebra). It is known that T (Us) = (T (K))s, where T (K) is the T-ideal of

the field K, for an arbitrary field K. If the field is infinite then the latter ideal is

generated by one identity [X,Y ] ≡ 0. If the field is finite and |K| = q, then it is

enough to add to the generating set one more identity Xq−X≡0 [12]. Properties

of finitely generated algebras in Us were studied in [1].

Our goal is to prove the following statement using the technique of neck-

laces from [9].

Theorem. Let V be a subvariety of Us, the field K being arbitrary.

Then

1. ExpV = ExpV.

2. The exponent of V is an integer: ExpV ∈ {1, . . . , s}.

3. If ExpV = 1, then cn(V) is bounded by a polynomial.

2. Necklaces. We shall use some combinatorial constructions of [9]. We

present them for convenience of the reader.

We shall consider disjoint subsets of {1, 2, . . . , n}. Let A,B ⊂ {1, 2, . . . , n}.
We write A < B if a < b for any a ∈ A, b ∈ B. Obviously < is a partial order. Let

I1, I2, . . . , Ic ⊂ {1, 2, . . . , n} be disjoint subsets (some of which may be empty).

We shall refer to the Ii as chains, and (I1, I2, . . . , Ic) is a chain tuple.

We consider also another partial ordering on chains. Let I = {i1, . . . , it},
J = {j1, . . . , js}, where i1 > . . . > it, j1 > . . . > js. Then we set I ≺ J if

(i1, . . . , it) ≺ (j1, . . . , js), where the latter ordering is lexicographic from left to

right. The ordering of chains is extended lexicographically from left to right to

chain tuples of the same length (I1, . . . , Ic) using the same sign ≺.

Suppose that (I1, . . . , Ic) is a fixed chain tuple, then Ω = (Ω1,Ω2, . . . ,Ωc)

is called a necklace if Ωi ⊂ Ii, i = 1, . . . , c, Ω1 < Ω2 < . . . < Ωc (if a component

Ωi is empty then the corresponding inequalities are regarded as valid). We call a

chain tuple (or a necklace) non-empty if at least one component is non-empty.
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Let m be a fixed number. Now we describe the m-algorithm of extracting

a necklace Ω = (Ω1,Ω2, . . . ,Ωc) from a chain tuple (I1, I2, . . . , Ic). We shall

look at the components I1, I2, . . . one after other. Suppose that Ω1,Ω2, . . . ,Ωi−1

as well as other accompanying sets in the components I1, I2, . . . , Ii−1 are already

constructed. We partition the chain Ii = Ji∪Ĩi−1, where Ji consists of all elements

greater than all elements of the set Ω̃i−1 = Ω1∪Ω2∪ . . .∪Ωi−1, while Ĩi−1 consists

of the remaining elements. By definition, we set Ω̃0 = Ø. If Ω̃i−1 = Ø, then we

put Ji = Ii, Ĩi = Ø.

1) If |Ji| ≤ m, then we put Ωi = Ø and form a false segment Fi = Ji.

2) In the case |Ji| > m we form a (genuine) segment Si, consisting of m

maximal elements of the set Ji. The remaining elements are included into the

necklace Ωi = Ji \ Si.

Then we pass to the next chain Ii+1.

Lemma 1. The m-algorithm has the following properties:

1. The original chain tuple (I1, I2, . . . , Ic) decomposes into the necklace Ω =

(Ω1,Ω2, . . . ,Ωc). In each chain Ij , j = 1, . . . , c, the algorithm cuts off a

segment (a genuine one Sj with |Sj| = m, or a false one Fj with |Fj | ≤ m).

As a result it remains a new chain tuple (Ĩ1, Ĩ2, . . . , Ĩc).

2. An empty necklace is formed if and only if |Ii| ≤ m, i = 1, . . . , c.

3. For Ĩs 6= Ø there exists a preceding chain It, t < s, that has a greater

segment St > Ĩs.

P r o o f. The first property follows directly from the description of the

m-algorithm. To prove the second property it is sufficient to observe that the

first non-zero component of the necklace Ωi is formed in the first chain whose

length is greater than m.

Let us prove the third property. Suppose that Ĩs 6= Ø. We choose the

greatest t < s such that Ωt 6= Ø, namely Ĩs appeared by comparing with Ω̃t. Let

θ be the maximal element of Ωt. We formed Js from all elements of Is that are

greater than θ. Therefore θ > Ĩs. The algorithm extracted from It the genuine

segment St, hence St > θ > Ĩs. �

If a non-empty necklace is constructed, then we apply the m-algorithm to

the new chain tuple (Ĩ1, Ĩ2, . . . , Ĩc), and so on. We use additional upper indices

to indicate the number of the step at which a given set is formed. The original

chain tuple is denoted by the upper index 1.
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Lemma 2. Suppose that k non-empty necklaces Ω1, . . . ,Ωk were con-

structed as a result of the m-algorithm. Then there exists a decreasing series of

segments

S1
i1 > S2

i2 > . . . > Sk
ik

, i1 < i2 < . . . < ik, |Sj
ij
| = m, j = 1, . . . , k.(2)

P r o o f. Indeed, suppose that Ωk
ik

6= Ø. Then a genuine segment Sk
ik

⊂
Ĩk−1
ik

was constructed in this component at step k. By Property 3 of Lemma 1

there exists Sk−1
ik−1

> Ĩk−1
ik

, ik−1 < ik, so we obtain Sk−1
ik−1

> Sk
ik

. Then we again

apply Property 3 of Lemma 1 to Sk−1
ik−1

⊂ Ĩk−2
ik−1

, and so on. Finally we arrive

at (2). �

3. Proof of the main result. We denote [y1, y2] = y1y2 − y2y1,

[y1, y2, . . . , yi] = [[y1, y2, . . . , yi−1], yi], i ≥ 3.

Let B(X) be an associative algebra generated by a countable set X =

{x1, x2, . . .}. Let Y = {yi1, . . . , yin} ⊂ X. By Pn(Y ) ⊂ B(X) we denote the

space of multilinear elements of degree n in Y . Suppose that for a subspace

U ⊂ B(X) the dimension of U ∩Pn(Y ) does not depend on Y , but depends on n

only. In this case we consider Y = {x1, . . . , xn} and denote

Pn(U) = U ∩ Pn(Y ), cn(U) = dimK Pn(U), n ∈ N.

Let us fix some subvariety V ⊂ Us. We introduce the following vector

spaces

Wc,n =

{
Pn(A(X)/T (U1 ∩V)), c = 1;

Pn(T (Uc−1 ∩ V)/T (Uc ∩ V)), c = 2, . . . , s;

cn(V) =

s∑

c=1

dimWc,n, n ≥ 1.(3)

We apply identity (1), and observe that these spaces are spanned by the following

elements [12]:

Wc,n = 〈x11 · · · x1a1
[x21, . . . , x2a2

] · · · [xc1, . . . , xcac ] |(4)

a2 ≥ 2, . . . , ac ≥ 2; a1 + . . . + ac = n; {xij} = {x1, . . . , xn};

x11 < . . . < x1a1
; xi1 > xi2 < . . . < xiai

, i = 2, . . . , s〉K .(5)
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Now we demonstrate why we need the chain tuples. Note that the

products (4) do not change under an arbitrary permutation of the elements

x11, . . . , x1a1
, as well as under any permutation in the brackets of xi3, . . . xiai

,

i = 2, . . . , s, since interchanging of any two adjacent elements produces an addi-

tional element from T (Uc), which is zero in Wc,n. We denote this property by (∗).
Let I = {i1, . . . , it} ⊂ {1, . . . , n}, to simplify the notation we use the same symbol

for the set of variables with the corresponding indices I = {xi1 , . . . , xit}. We de-

note (y, I) = yxi1 · · · xit , where i1 ≤ . . . ≤ it, also we denote (I) = (1, I). In case

I = Ø we set (y, I) = y. Analogously [y, I] = [y, xi1 , . . . , xit ], where i1 ≤ . . . ≤ it,

also we set [y,Ø] = y. We consider the following chains I1 = {x11, . . . , x1a1
} and

Ii = {xi3, . . . , xiai
}, i = 2, . . . , c. This enables us to rewrite (4) in the form

Wc,n = 〈 (I1)[x21, x22, I2] · · · [xc1, xc2, Ic] |(6)

{xij | i = 2, . . . , c, j = 1, 2} ∪ I1 ∪ . . . ∪ Ic = {x1, . . . , xn}〉K .

Let us construct a special identity for interchanging of the elements of the

necklaces.

Lemma 3. Let c ∈ N be a fixed number. Suppose that the variety V is

such that ExpV < k, where k ∈ N, k ≤ c. Then there exists a natural number n

of the form n = n′+d, where n′ = mk and c ≤ d < c+k, that satisfy the following

property. We fix Lie words y1, . . . , yk in the letters xn′+1, . . . , xn as well as letters

z1, . . . , zk−1, so that each letter xn′+1, . . . , xn enters some yi or zj exactly once.

Then V satisfies

1. A nontrivial multilinear identity of type

[y1, xn′ , . . ., xn′
−m+1]z1· · ·zk−2[yk−1, x2m, . . ., xm+1]zk−1[yk, xm, . . ., x1]≡

∑

σ

λσ[y1, xσ(1,1), . . . , xσ(1,m)]z1 · · · zk−1[yk, xσ(k,1), . . . , xσ(k,m)]; λσ ∈ K.

Here the summands on the second line correspond to all possible partitions

σ of the set {1, . . . , n′} into k groups of size m:

{σ(1, 1), . . . , σ(1,m)} ∪ . . . ∪ {σ(k, 1), . . . , σ(k,m)} = {1, . . . , n′};

σ(i, 1) > . . . > σ(i,m), i = 1, . . . , k;

while we write on the left-hand side the summand that corresponds to the

partition {n′, . . . , n′ − m + 1} ∪ . . . ∪ {2m, . . . ,m + 1} ∪ {m, . . . , 1}.
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2. An analogous identity, where instead of the first commutators we have prod-

ucts xn′ · · · xn′
−m+1 and xσ(1,1) · · · xσ(1,m).

P r o o f. By hypothesis there exists a subsequence

ni, i = 1, 2, . . . , lim
i→∞

ni

√
cni

(V) < k.(7)

For each ni we choose the unique mi, such that ni = kmi+di, where c ≤ di < c+k.

We fix n = ni, m = mi, d = di, n′ = kmi.

Let αn be the number of monomials of the form indicated in the lemma,

with the elements z1, . . . , zk−1, y1, . . . , yk being fixed. We order the letters xn >

. . . > x1. Without loss of generality we assume that the letters xn, . . . , xn′+1

stand in all monomials in fixed positions in decreasing order. Then the leading

terms of the monomials of the identity are obtained simply by erasing of the

brackets. One easily observes that these elements are linearly independent in the

free associative algebra. By Stirling’s formula we have

αn =
n′!

((n′/k)!)k
≈ kn′

kk/2

(2πn′)(k−1)/2
=

kn−dkk/2

(2π(n − d))(k−1)/2
; lim

i→∞

ni
√

αni
= k.

Using (7) we obtain that for a sufficiently large n = ni our monomials are lin-

early dependent modulo Pn(V, {x1, . . . , xn}). This yields a non-trivial identity

of the required form. The monomial indicated on the left-hand side is isolated

by relabelling the variables. �

P r o o f o f Th e o r e m. Let us evaluate the growth of cn(Us). First, we

find an upper bound for dimWc,n in (4). We can decompose letters {x1, . . . , xn}
into c sets: {x11, . . . , x1a1

}, {x21, . . . , x2a2
},. . . , {xc1, . . . , xcac}, in at most cn

ways. Next, if we choose elements for the first two places in each bracket (4), then

we uniquely determine the element (4) by (5). Therefore, dimWc,n ≤ cnn2c−2,

c = 1, . . . , s. By (3), we derive ExpUs ≤ s.

Now we suppose that ExpV < k for a subvariety V ⊂ Us, where k ∈
{2, . . . , s}. We shall prove that these conditions imply that ExpV ≤ k − 1, thus

yielding claims 1), 2).

We fix c ∈ {1, . . . , s} and choose n according to Lemma 3. We prove that

Wc,n is a linear span of elements of type (6) and such that, an iteration of the m-

algorithm to the chain tuple (I1, . . . , Ic) gives at most k−1 non-empty necklaces.

Indeed, we consider an element (6), and suppose that the algorithm gives k non-

empty necklaces Ω1, . . . ,Ωk. Then by Lemma 2 we obtain a decreasing sequence
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of segments

S1
i1 > S2

i2 > . . . > Sk
ik

, i1 < i2 < . . . < ik, |Sj
ij
| = m, j = 1, . . . , k.(8)

We remark that this is only possible in the case c ≥ k. We denote Dij = Iij \Sj
ij

,

j = 1, . . . , k. We apply (∗) to the element (6) and shift segments to the ends of

brackets in the brackets with numbers i1, i2, . . . , ik. This presents our element as

follows:

{
(I1) · · · [zi1 ,Di1 , S

1
i1

] · · · [zik ,Dik , Sk
ik

] · · · [zc, Ic], i1 > 1;

(D1, S
1
1) · · · [zi2 ,Di2 , S

2
i2

] · · · [zik ,Dik , Sk
ik

] · · · [zc, Ic], i1 = 1;
(9)

zi = [xi1, xi2], i = 2, . . . , c.

In order to apply Lemma 3 it is sufficient that the total degree of words apart

from the chosen segments exceeds c+ k. This is the case when n is large enough.

In virtue of (8) we apply the identity of the lemma to the element (9) and obtain

another element with a new chain tuple (Ĩ1, . . . , Ĩc) ≺ (I1, . . . , Ic). (If i1 > 1 then

we apply the identity of the first type, if i1 = 1 then we use the identity of the

second type). Since the number of monomials in the given letters is finite all

elements of Wc,n will be expressed via monomials from which the m-algorithm

extracts at most k − 1 non-empty necklaces.

We give an upper bound of the number of such monomials. An empty

necklace is formed not late than at Step k. Hence at most q = kmc + 2(c −
1) elements are involved in segments of both types and first two terms of the

brackets. We choose at most q elements from {1, . . . , n} and then choose positions

for them in (4), this can be done in at most n2q ways. The remaining elements in

{1, . . . , n} are distributed among at most k−1 necklaces, which can be done in at

most (k−1)n ways. Further, each necklace Ω can be split up into its components

Ω = (Ω1, . . . ,Ωc), Ω1 < . . . < Ωc in at most
(

n+c−1
c−1

)
≈ nc−1

(c−1)! ways. As a result

we obtain the bound

dim Wc,n ≤ (k − 1)n
n2q+c−1

(c − 1)!
.(10)

Taking into account (3) it follows that ExpV ≤ k − 1. This proves the first two

statements.

In order to prove the third statement we suppose that ExpV = 1 < k = 2,

then (10) yields a polynomial bound. �
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