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ABSTRACT. It was recently proved that any variety of associative algebras

over a field of characteristic zero has an integral exponential growth. It is
known that a variety V has polynomial growth if and only if V does not
contain the Grassmann algebra and the algebra of 2 x 2 upper triangular
matrices. It follows that any variety with overpolynomial growth has ex-
ponent at least 2. In this note we characterize varieties of exponent 2 by
exhibiting a finite list of algebras playing a role similar to the one played by
the two algebras above.

Let F' be a field of characteristic zero and V a variety of associative al-
gebras over F. Let F(X) be the free algebra of countable rank over F' and
F(X)/Id(V) the corresponding free algebra of the variety V where Id(V) is the
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T-ideal of polynomial identities of V. The exponent of a variety V is defined as
follows: for every n > 1 let P, be the space of multilinear polynomials in the
variables z1,...,x,. If ¢, (V) = dim P, /(P,,N1d(V)) is the n-th codimension of V
and V has at least one non-trivial identity it is well known ([8]) that the sequence
of codimensions is exponentially bounded. Then one defines the exponent of V
as Exp(V) = nhjrg() v/ cn (V). Hence if V is nilpotent, then Exp()) = 0. It has been
shown in [1] and [2] that for every non-nilpotent variety V, Exp(V) exists and is
a positive integer.

Kemer in [4] described in various ways the T-ideals (or varieties) of poly-
nomial growth. Later [5] he proved that a variety V has a polynomially bounded
codimension sequence if and only if G ¢ V and UT,(F) ¢ V where G is the
infinite dimensional Grassmann algebra and UT,(F') is the algebra of 2 x 2 upper
triangular matrices over F'. From its characterization (see also [3]) it follows that
if Exp(V) = 1 then the codimensions of V are polynomially bounded.

In this note we shall characterize the varieties V of exponent two. To
this end, we view G = G + G with its natural Zs-grading where G(© and
GW are the spaces generated by the monomials of even degree and odd degree
respectively. We then define the following five algebras over F:

G G
1) A = (0 G(o));

GO @
2) A2=< 0 G);

3) Az = UT;s(F), the algebra of 3 x 3 upper triangular matrices over F;
4) A4 = My(F), the algebra of 2 x 2 matrices over F

relOrelty
el el

0 _ G 0 1 o a
M1,1—< 0 o) Mi=|l.0 o |-

The main result of this note is the following

5) As =M 1(G) = ( > equipped with the Zy-grading

Theorem 1. Let F' be a field of characteristic zero and V a variety
of associative F-algebras. Then Exp(V) > 2 if and only if A; € V for some
ie{l,...,5}.



A characterization of varieties of associative algebras of exponent two 247

For every ¢ = 1,...,5 let V; = var(A;) be the variety generated by the
algebra A;. The above list of algebras cannot be reduced; in fact we shall prove
the following

Proposition 1. For alli# j, Vi Z V;.

Hence Vi, ..., Vs are the only minimal varieties of exponent > 2 in the
sense that, for every 7, Exp(V;) > 2 and for every subvariety W of V;, Exp(W) <
2. From the proof of Theorem 1 it will be clear that Exp(V;) = Exp(V2) =
Exp(V3) = 3 and Exp(Vy4) = Exp(Vs) = 4.

Invoking the result of Kemer mentioned above we get

Corollary 1. LetV be a variety of algebras over a field of characteristic
zero. Then Exp(V) = 2 if and only if Ay,...,As € V and either G € V or
UTQ(F) ev.

Proof of Theorem 1. Suppose Exp(V) = p > 2. By aresult of Kemer
([6]) there exists a finite dimensional Zy-graded algebra B = B() + B such that
V = var(G(B)) where G(B) = GO @ B0 + G @ B is the Grassmann envelope
of B. Let B= B1®---® B+ J be the Wedderburn-Malcev decomposition of B
where J is the Jacobson radical of B and By, ..., By are simple subalgebras that
are homogeneous in the Zo-grading. For each i = 1,...k, let B; = Bi(o) + BZ.(I)
and J = J© + JO be the induced Zo-grading (see [6, p. 21]).

Let now F be the algebraic closure of the field FF and B = B ®p F.
Then G(B) ®r F 2 G(B ®r F) = G(B) and the n-th codimension of G(B) over
F equals the n-th codimension of G(B) over F, for all n. It follows that the
exponent of G(B) over F coincides with the exponent of G(B) over F. Since
G(B) € var(G(B)) =V, in order to prove that A; € V for some i, it is enough to
show that G(B) contains a copy of A; for some i. In particular we may assume
that I is algebraically closed.

From [2] we obtain that Exp()) is computed as follows: consider all
possible products of the form

(1) ChJCyJ - JCy #0
where C1,...,Cy € {By,..., By} are distinct and define
p@ =dim(c” @ o), pV=dm(C" oo ).

Then p = Exp(V) is the maximal value of p(® +p(!) where C1, ..., Cy satisfy (1).
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Also recall that a simple finite dimensional Zs-graded algebra over F' is
isomorphic to one of the following algebras:

i) Map(F)= An Ar where A11, A19, Ag1, Agg are a X a,a X b, b x a and
Ay Ago

b x b matrices respectively, a > 0,b > 0, with grading
0 (A O (1) (0 A
M,y (F) = ( 0 A22> . My, (F) = <A21 0 )

i) My(F) ® cMy(F) where ¢ = 1, with grading My(F)© = My(F),
My (F)V = eMy (F).

Now, if B contains one simple component of type i) with a + b > 2 or of
type ii) with N > 2, then we will get that G(B) contains an algebra isomorphic
to either A4 or As and in this case we will be done.

Therefore, since p > 2, we may assume that one of the following possibil-
ities occurs:

1) for some i # I, B;JB; # 0 where B; 2 F 4 cF,c*> =1 and B; & F;
2) for some i # 1, B;JB; # 0 where B; =~ F and B} = F + cF,c* = 1;

3) there exist distinct B;, By, By, such that B;JB;JB,, # 0 and B; = B; =
B, = F.

Suppose 1) holds. Then there exists a + cb € B; such that (a4 ¢b)jls # 0
where 13 is the unit element of B; and j € J is homogeneous. By eventually
multiplying by ¢ on the left, we may assume that (a + ¢b)jols # 0 for some
jo € JO Write a4-cb = u11(a+b)+uge(a—b) where uy; = (14¢)/2,u20 = (1—c)/2
and 1 = 1p, is the unit element of B;. Set us3 = 13.

First consider the case when jguss and cjpuss are linearly dependent over
F. Since ¢? = 1 it follows that cjouss = Fjouss.

Suppose CjoU33 = joU33. Then U11j0u33 = joU33 and UQ2j0u33 = 0. If we
set u13 = jouss, then the upi’s behave like the corresponding matrix units of 3 x 3
matrices and the algebra generated by wui1,u92,uss, u13 over F' is isomorphic to
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F 0 F
the Zs-graded algebra D= | 0 F 0 | with grading
0 0 F
A0 v A0 v
DO = 0 x 0]y, DOD=Lf0o —-x 0
0 0 u 0 0 O
Clearly,
a+b 0 z
G(D) = 0 a—-b 0
0 0 t

where a,t € Go,b € G1, z € G. Tt is easy to check that G(D) = ((Cj GC(T;)> = A

and the map

0 a—>b 0 0 .

a-+b 0 z (a—i—b z)
—
0 0 t

is an isomorphism. Hence A; € V and we are done.

Now let Cj(]u;gg = —joUgg. Then U11j0u33 = 07u22j(]u33 = jQ’LL33 and the
elements w1y, ug2, uss, us3 = jouss generate a Zs-graded algebra isomorphic to
F 0 0
D=0 F F | with Zy-grading
0O 0 F
A0 O A0 O
DO = 0 X v]y, DO= 0 -\
0 0 pu 0 0 O

In this case the isomorphism of algebras G(D’) = A; is given by the map
a+b 0 0
a—b =z
0 a—b z |~ < 0 t)
0 0 t

where a,t € Gp,b € G1 and z € G.

Now consider the case when jouss and cjouss are linearly independent
over F'. In this case Ui, U22,U33,U13 — ullj(]’u,gg and U923 = U22j0U33 are linearly
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F 0 F
independent and form a subalgebra in B isomorphicto D” = [ 0 F F | with
0 0 F
Zs-grading
A0 v A0 v
D" = 0 A v]|y, D'O= 0 -\ —v
0 0 u 0 0 0

Hence G(D") € V and

a+b 0 zZ+w
G(D") = 0 a—-b z—w
0 0 t

where a, z,t € Go,b,w € Gy.
As before we construct an algebra isomorphism G(D") = A; by setting

a—b z—w

0 t

0 a—b z—w

a-+b 0 z4+w
-
0 0 t

> where a, z,t € Gg,b,w € Gy.

In case 2) holds then the same procedure as above shows that Ay € V.

Finally suppose that 3) holds. Then there exist jo,j; € J©, 51,4, € JO
such that 11(jo + j1)12(j) + 71)1s # 0 where 11, 12,13 are the unit elements of
B, By, By, respectively. In this case at least one of the products 115,125.13, 7, s €
{0,1} is non-zero. Then, for fixed r and s set u1; = 11, u9e = lo,u3z = 13, u12 =
11jT12,UQ3 = 12j;13,U13 = 11]}12]213 and let Drs be the Zg—graded subalgebra
of B generated by w11, w22, uss, u12, U, u13. By taking the Grassmann envelope
of the algebra D,¢, we get that V must contain at least one of the following four
algebras denoted E7, Fs, E3, E4 respectively

G0 g GO G0 g gl G0 g GO
Ulz(F),l o GO g | [ o GO gO] | o O O
0 0 GO 0 0 GO 0 0 GO

It is easy to check that each E; satisfies the identity [z1,z2][x3, z4][z5,26] = 0
and, according to [7], all the identities of UT5(F") . On the other hand, each one
of the algebras Fs, E3, E4 has a subalgebra isomorphic to UT5(F'). In the case
of E4 this subalgebra is generated by eq1, €29, €33, xe12,yeos and xye;3 where x
and y are two distinct generators of G. For Fjs it is the subalgebra generated
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by €11, €22, €33, €23, TE12 and xTreqs. For EQ we take €11, €22,€33,€12, €13 and xTreos.
Hence UT3(F) € V and we are done. From [1] and [2] it follows that Exp(V;) =
Exp(V) = Exp(V3) = 3 and Exp(V4) = Exp(Vs) = 4. Hence if W 5 A; for some
i€{l,...,5} then Exp(W) >2. O

Proof of Proposition 1. It is clear that if W C V are varieties,
then Exp(W) < Exp(V); hence V4 Z V; and Vs Z V; for all i = 1,2, 3.

Since UT3(F) and Ms(F) are the only two algebras among the A;’s satis-
fying a standard identity, we get that Vi, Vs, V5 € V;, i = 3,4. Also, the algebra
M (F) satisfies the standard identity Sy = 0 but Sy # 0 on UT3(F'), hence
Vs V.

The algebra M 1 (F) = G®G is the only algebra among the A;’s satisfying
the identity [[x1,x2], [x3,x4],25] = 0; hence V; € Vs for i = 1,2,3,4.

The algebra A; satisfies the identity fi = [z, z2, x3][z4,25] = 0 and the
algebra As satisfies the identity fo = [z1, z2][x3, 24, z5] = 0. Since f; # 0 on As
and fo £ 0 on A, we get that Vi € Vs and Vo € V;. Moreover since f1 and fo
do not vanish on UT3(F') we get that V3 € V1, Ve, O
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