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Abstract. We further develop the theory of the so called Asplund func-
tions, recently introduced and studied by W. K. Tang. Let f be an As-
plund function on a Banach space X . We prove that (i) the subspace
Y := sp ∂f(X) has a projectional resolution of the identity, and that (ii) if
X is weakly Lindelöf determined, then X admits a projectional resolution of
the identity such that the adjoint projections restricted to Y form a projec-
tional resolution of the identity on Y , and the dual X∗ admits an equivalent
dual norm such that its restriction to Y is locally uniformly rotund.

1. Asplund functions. It is well-known that any of the following
conditions for a Banach space X is equivalent to “X is an Asplund space” [3, 8,
13, 19]:
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(i) Every continuous convex function on X is Fréchet differentiable at all points
of a dense Gδ subset of X.

(ii) Every bounded subset of X∗ is w∗-fragmentable.

(iii) Every bounded subset of X∗ is w∗-dentable.

(iv) Every bounded subset of X∗ is dentable.

(v) For every separable subspace X0 of X, the dual X∗
0 is separable.

W. K. Tang in [17] found a class of continuous convex functions on Banach spaces
that have properties similar to those of continuous convex functions on Asplund
spaces. He calls the functions from this class Asplund functions and establishes a
number of conditions equivalent to say that a function is Asplund. Some of such
conditions are listed in the following theorem.

Theorem 1.1. Let f be a continuous convex function on a Banach space
X. Then the following conditions are equivalent:

(i) If h is a continuous convex function on X such that h ≤ f then h is Fréchet
differentiable at all points of a dense Gδ subset of X.

(ii) For each n ∈ N, every bounded subset of the set {x∗ ∈ X∗ : f∗(x∗) ≤ n}
is w∗-fragmentable.

(iii) Every w∗-compact subset of dom f∗ is w∗-fragmentable.

(iv) Every w∗-compact subset of dom f∗ is w∗-dentable.

(v) Every w∗-compact subset of dom f∗ is dentable.

(vi) For every separable subspace X0 of X, the space sp ∂(x↾X0
)(X0) is separable.

Definition 1.2. A continuous convex function f on a Banach space X
is called an Asplund function if any of the conditions from Theorem 1.1 holds.

Of course, every continuous convex function f on an Asplund space X is
an Asplund function and a Banach space is Asplund if and only if its norm is an
Asplund function. We present several further properties of Asplund functions.
Namely, we prove that (i) the subspace Y := sp ∂f(X) has a projectional resolu-
tion of the identity (PRI) if f is an Asplund function (it is well-known that duals
of Asplund spaces admit a PRI [7]), and that (ii) if f is an Asplund function on a
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weakly Lindelöf determined (WLD) Banach space X, then X admits a PRI such
that the adjoint projections restricted to Y form a PRI on Y and that X∗ admits
an equivalent dual norm such that its restriction to Y is LUR. (It is well-known
that every WLD Asplund space admits a PRI such that the adjoint projections
form a PRI on X∗ and that X∗ admits a dual LUR norm [5].)

Notation and preliminaries. X always denotes a Banach space with
norm ‖ · ‖, X∗ its dual space, BX∗ the unit ball of X∗. “lsc” means lower
semi-continuous. For a function f on X and a subset A ⊂ X, f↾A denotes the

restriction of f to A. We denote by coA, co A, spA, sp A, A, A
∗
, and cardA,

the convex hull, closed convex hull, linear span, closed linear span, norm closure,
weak∗ closure, and cardinality of a set A, respectively. The density of a set A
is the smallest cardinal ℵ such that there exists a dense subset M ⊂ A with
cardM = ℵ. It is denoted by densA. |α| is the cardinality of an ordinal number
α. By a subspace of a Banach space we always mean a closed linear subspace. X is
always considered as a subspace of the second dual X∗∗. For A ⊂ X and B ⊂ X∗,
we put A⊥ := {x∗ ∈ X∗ : 〈x∗, A〉 = {0}} and B⊥ := {x ∈ X : 〈B,x〉 = {0}},
and we say that “A norms B” if ‖x∗‖ = sup{〈x∗, x〉 : x ∈ A, ‖x‖ ≤ 1} for every
x∗ ∈ B. The meaning of “B norms A” is analogous. If (T, τ) is a topological
space and ∆ is a metric on T we say that T is fragmented by the metric ∆ if every
subset of T has a relatively τ -open subset of ∆-diameter as small as we wish. If
T is a subset of a dual Banach space X∗, by saying “T is w∗-fragmentable” we
mean that (T,w∗) is fragmented by the metric generated by the dual norm. A
set-valued mapping Γ : (T1, τ1) → (T2, τ2) is said to be upper semi-continuous
(usc) if the set {t1 ∈ T1 : Γ(t1) ⊂ U} is τ -open for every τ2-open set U ⊂ T2. For
a continuous convex function f : X → R ∪ {∞} we denote

∂f(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ f(y) − f(x) for all y ∈ X}, x ∈ X.

f∗ denotes the (Fenchel) conjugate function to f defined by

f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ X} for x∗ ∈ X∗.

By dom f∗ we denote the set {x∗ ∈ X∗ : f∗(x∗) < ∞}. The infimal convolution
of f and of another function g on X is defined by

(f � g)(x) = inf{f(y) + g(x− y) : y ∈ X}.

We will use the following well-known (and easy to prove) facts:
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• f∗ is w∗-lower semi-continuous convex,

• 〈x∗, x〉 ≤ f(x) + f∗(x∗) for all x ∈ X, x∗ ∈ X∗ with equality holding if and
only if x∗ ∈ ∂f(x) (and this holds if and only if x ∈ ∂f∗(x∗)),

• ∂f(X) ⊂ dom f∗ ⊂ ∂f(X) (for the latter inclusion, see Proposition 1.3),

• f � g is convex and (f � g)∗ = f∗ + g∗.

In the following propositions, f and g are always continuous convex func-
tions on a Banach space X.

Proposition 1.3. dom f∗ ⊂ ∂f(X).

P r o o f. Let x∗ ∈ dom f∗ be given. Then f − x∗ is bounded below. The
rest of the proof follows from the

Claim. If f is a continuous convex function on a Banach space X and
x∗ ∈ X∗ is such that f − x∗ is bounded below then x∗ ∈ ∂f(X).

P r o o f o f t h e c l a i m. Let ε > 0 be given. Take z ∈ X with

(f − x∗)(z) ≤ inf
X

(f − x∗) + ε2.

This means 〈x∗, x − z〉 ≤ f(x) − f(z) + ε2 for every x ∈ X. By the Brønsted-
Rockafellar theorem ([13], [9, p. 173]), there exist y ∈ X and y∗ ∈ X∗ such that
(‖y − z‖ < ε), ‖y∗ − x∗‖ < ε, y∗ ∈ ∂f(y). �

Proposition 1.4. If f ≤ g, then ∂f(X) ⊂ ∂g(X).

P r o o f. Let x∗ ∈ ∂f(X) be given. Then f − x∗ is bounded below and so
g−x∗ is bounded below, too. The conclusion follows from the claim in the proof
of Proposition 1.3. �

Proposition 1.5. If X0 is a subspace of X, f0 = f↾X0
and Q : X∗ → X∗

0

is the canonical restriction mapping, then Q(∂f(X)) ⊂ ∂f0(X0).

P r o o f. Let x∗ ∈ ∂f(X) be given. f − x∗ is bounded below on X and
so f0 − Q(x∗) is bounded below on X0. The conclusion Q(x∗) ∈ ∂f0(X0) then
follows from the claim in the proof of Proposition 1.3. �

Proposition 1.6. Under the settings of Proposition 1.5, Q(∂f(x0)) =
∂f0(x0) for every x0 ∈ X0.

P r o o f. “x∗0 ∈ ∂f0(x0)” means that 〈x∗0, x − x0〉 ≤ f0(x) − f0(x0) for
every x ∈ X0 while “x∗0 ∈ Q(∂f(x0))” means that x∗0 is the restriction to X0
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of some x∗ ∈ X∗ for which 〈x∗, x − x0〉 ≤ f(x) − f(x0) for every x ∈ X. So,
the inclusion “⊂” is obvious. To show that “⊃” holds true, given x∗0 ∈ ∂f0(x0),
denote g := f + 〈x∗0, x0〉 − f(x0). g is a continuous convex function on X and
x∗0 ≤ g↾X0

. By the Hahn-Banach dominated extension theorem (in the version of
[9, p. 68]) there is a continuous extension x∗ ∈ X∗ of x∗0 (i.e. x∗↾X0

= x∗0) such
that x∗ ≤ g (on X), that is, x∗ ∈ ∂f(x0). �

2. Jayne-Rogers mappings for Asplund functions. Our methods
of constructing projectional resolutions of the identity are elaborations on known
methods ([6, 3]). Namely, we use a generalization of Jayne-Rogers mappings
constructed originally for Asplund spaces. It is well-known that ifX is an Asplund
space then the duality mapping has a selector (the Jayne-Rogers selector) that is
the pointwise limit of a sequence of norm-to-norm continuous mappings from X
into X∗ ([10], [3, Theorem I.5.2]). In other words, there exists a countable-valued
mapping D : X → 2X∗

that can be written in the form

D(x) = {Dn(x) : n ∈ N}, x ∈ X,

where Dn, n ∈ N, are (single-valued) mappings X → X∗ satisfying

(i) Dn is norm-to-norm continuous for every n ∈ N,

(ii) limDn(x) ∈ J(x) for every x ∈ X,

where J is the duality mapping on X defined by J = ∂
‖ · ‖2

2
or, equivalently, by

J(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}, x ∈ X.

The claim of the existence of a Jayne-Rogers mapping on an arbitrary Asplund
space is contained in the following theorem that is due to Jayne and Rogers [10].
(We present it in the form of [3, Theorem I.4.7]). We will use this theorem for the
construction of Jayne-Rogers mappings for Asplund functions in Theorem 2.3.

Theorem 2.1. Let T be a topological space fragmented by a metric ∆
and let K(T ) denote the family of nonempty compact subsets of T . Then there
exists a selector s : K(T ) → T satisfying the following property. If (Z, d) is a
metric space and Γ is a set-valued upper semi-continuous mapping with compact
values from Z into T , then ϕ : z 7→ s(Γ(z)) is a Baire 1 mapping of (Z, d) into
(T,∆). If T is moreover a convex subset of a vector space V and ∆ is induced
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by a topological vector space topology on V , then ϕ is the pointwise ∆-limit of a
sequence (ϕn) of continuous mappings from (Z, d) into (T,∆).

Definition 2.2. Let f be a continuous convex function on a Banach

space X. Let D : X → 2∂f(X) be an at most countable-valued mapping. We call
D a Jayne-Rogers mapping for f if

(i) ∂f(x) ∩ D(x) 6= Ø for every x ∈ X,
and if there exist single-valued mappings Dn : X → ∂f(X), n ∈ N, such that

(ii) Dn is norm-to-norm continuous for every n ∈ N,
(iii) D(x) = {Dn(x) : n ∈ N} for every x ∈ X.

Theorem 2.3. Let f be an Asplund function on a Banach space X.
Then there exists a Jayne-Rogers mapping for f .

P r o o f. By Theorem 1.1 (ii), dom f∗ is the countable union of w∗-
fragmentable w∗-closed convex sets: dom f∗ = ∪{Km : m ∈ N}, where

Km = {x∗ ∈ X∗ : f∗(x∗) ≤ m} ∩mBX∗ .

Put M = {m ∈ N : ∂f(X) ∩Km 6= Ø}. For every m ∈M put

Xm = {x ∈ X : ∂f(x) ∩Km 6= Ø}

and define a (set-valued) mapping gm : Xm → 2Km by

gm(x) = ∂f(x) ∩Km, x ∈ Xm.

Clearly, ∪
m∈M

Xm = X. It is well-known that ∂f(: X → 2X∗

) is norm-

to-weak∗ usc compact valued (see e.g. [13, Propositions 1.11 and 2.5]) and using
this it is easy to check that so are the mappings gm and that Xm are closed sets.
So, for every m ∈ M we obtain, by Theorem 2.1, a (countable-valued) mapping
Gm : Xm → 2Km of the form

Gm(x) = {Gm
n (x) : n ∈ N ∪ {∞}}, x ∈ Xm,

where the mappings Gm
n satisfy

(i) Gm
n : Xm → Km is norm-to-norm continuous for every n ∈ N,

(ii) lim
n
Gm

n (x) = Gm
∞(x) for every x ∈ Xm,

(iii) Gm
∞(x) ∈ gm(x) for every x ∈ Xm.
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(To get these mappings from the “moreover part” of Theorem 2.1, put Z := Xm,
T := (Km, w

∗), let d be the metric induced by the norm of X, ∆ be the metric
induced by the norm of X∗, Γ := gm, ϕ := Gm

∞, and ϕn := Gm
n .) Since the sets

Xm are closed and the sets Km are convex, by [4, Theorem 4.1], for every m ∈M
and n ∈ N there is a norm-to-norm continuous mapping Dm

n : X → Km such that
Dm

n ↾Xm
= Gm

n . Define D by D(x) = {Dm
n (x) : m ∈ M,n ∈ N}. Since ∪Xm = X,

from (ii) and (iii) it follows that ∂f(x) ∩ D(x) 6= Ø for any x ∈ X. Thus, D is a
Jayne-Rogers mapping for f . �

Lemma 2.4. Let f be an Asplund function on a Banach space X and let
D be a Jayne-Rogers mapping for f . Then D(A) ⊂ D(A) for every subset A ⊂ X.
Consequently, if X0 is a (non-trivial) subspace of X then dens sp D(X0) ≤
densX0.

P r o o f. Follows from the continuity of the mappings Dn, see Defini-
tion 2.2. �

By [17], the restriction f↾X0
of an Asplund function f to a subspace X0

is an Asplund function, too. The following proposition derives a Jayne-Rogers
mapping D̃ for f↾X0

from a given Jayne-Rogers mapping D for f .

Proposition 2.5. Let f be an Asplund function on a Banach space
X and let D be a Jayne-Rogers mapping for f . Let X0 be a subspace of X
and let Q : X∗ → X∗

0 be the canonical restriction mapping. Then the mapping

D̃ : X0 → 2X∗

0 defined by D̃ = Q ◦ D↾X0
is a Jayne-Rogers mapping for f↾X0

.

P r o o f. Let Dn be the mappings from Definition 2.2. Put D̃(x) :=
Q(Dn(x)) for n ∈ N, x ∈ X. Obviously, D̃(x) = {D̃n(x) : n ∈ N}, x ∈ X0, and
D̃n are continuous, which shows that (ii) and (iii) of Definition 2.2 for D̃ and D̃n

hold. In order to verify (i), we use Proposition 1.6 and the continuity of Q:

∂f0(x0) ∩ D̃(x0) = Q(∂f(x0)) ∩Q(D(x0))

⊃ Q(∂f(x0)) ∩Q(D(x0)) ⊃ Q(∂f(x0) ∩ D(x0) ) 6= Ø

for every x0 ∈ X0. �

In the proof of Theorem 2.6 we will use Simons’ lemma ([14, Lemma 2],
see also [3, Lemma I.3.7]).

Simons’ Lemma. Let B be a set and C be a set of functions defined on
B such that

(i) sup
h∈C

sup
x∈B

h(x) <∞,
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(ii) C is stable with respect to taking countable convex combinations,

(iii) for every h ∈ C there exists x0 ∈ B such that h(x0) = sup
x∈B

h(x).

Then, whenever (hn) is a sequence in C, we have

sup
x∈B

lim sup
n→∞

hn(x) ≥ inf sup
h∈C x∈B

h(x).

(The stronger assumption of sup
h∈C

sup
x∈B

|h(x)| < ∞ is among the assumptions of

[14, Lemma 2] instead of (i), but the proof uses only our (i).)

Theorem 2.6. Let f be an Asplund function on a Banach space X.
Then there exists a Jayne-Rogers mapping D for f having the following property:
If X0 is a subspace of X then sp ∂(f↾X0

)(X0) = sp Q(D(X0)), where Q : X∗ →
X∗

0 is the canonical restriction mapping.

The proof will be divided into three steps.

Lemma 2.7. Let f be an Asplund function on a separable Banach space
X that is bounded on bounded sets and let s : X → X∗ be a selector of the
subdifferential mapping ∂f , that is, s(x) ∈ ∂f(x) for every x ∈ X. Then ∂f(X) ⊂
co s(X).

P r o o f. We use an idea from [16]. Put B = s(X) and γ = inf
B
f∗. Clearly

γ < ∞ as B is nonempty. Since ∂f(X) ⊂ dom f∗ it is sufficient to show that
dom f∗ ⊂ co B. If this is not so, pick y∗0 ∈ dom f∗ \ co B. By the separation
theorem, there is z ∈ X∗∗ and α, β ∈ R such that 〈z, y∗0〉 > β > α > sup〈z, co B〉.
By scaling the functional z, we may assume that β − α > f∗(y∗0) − γ. B is
separable since f is Asplund. (This is the only place in the proof where the
Asplund property of f is used.) It implies that there exists a sequence (xn) in
the set {x ∈ X : ‖x‖ < ‖z‖, 〈x, y∗0〉 ≥ β} that converges to z in the topology of
pointwise convergence on B. For every x ∈ X define a function hx by hx(x∗) :=
〈x, x∗〉 − f∗(x∗) for x∗ ∈ dom f∗. Set

A =

{
∞∑

k=1

λkxk : λk ≥ 0,
∞∑

k=1

λk = 1

}
, C =

{
∞∑

k=1

λkhxk
: λk ≥ 0,

∞∑

k=1

λk = 1

}
.

Let {λk} be any sequence with λk ≥ 0,
∞∑

k=1

λk = 1. Put x =
∞∑

k=1

λkxk. We have
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x ∈ A and

∞∑

k=1

λkhxk
(s(x)) =

〈
∞∑

k=1

λkxk, s(x)

〉
− f∗(s(x))

= 〈x, s(x)〉 − f∗(s(x)) = f(x)

= sup {〈x, x∗〉 − f∗(x∗) : x∗ ∈ dom f∗}

≥ sup {〈x, x∗〉 − f∗(x∗) : x∗ ∈ B}

= sup

{〈
∞∑

k=1

λkxk, x
∗

〉
− f∗(x∗) : x∗ ∈ B

}

= sup

{
∞∑

k=1

λkhxk
(x∗) : x∗ ∈ B

}
.

Thus, the sets B and C satisfy (iii) from Simons’ lemma if we regard functions
h ∈ C as functions defined only on B ⊂ dom f∗. As regards (i), we have

sup
h∈C

sup
x∗∈B

h(x∗) = sup
x∗∈B

sup

{〈
∞∑

k=1

λkhxk
, x∗

〉
: λk ≥ 0,

∞∑

k=1

λk = 1

}

= sup
x∗∈B

sup

{
∞∑

k=1

λk(〈x
∗, xk〉 − f∗(x∗)) : λk ≥ 0,

∞∑

k=1

λk = 1

}

≤ sup

{
∞∑

k=1

λkf(xk) : λk ≥ 0,

∞∑

k=1

λk = 1

}
< +∞

as f is bounded on bounded sets. Clearly, (ii) is also satisfied. So, by Simons’
lemma,

sup
x∗∈B

lim sup
n→∞

hxn
(x∗) ≥ inf sup

h∈C x∗∈B

h(x∗).

Since lim
n
hxn

(x∗) = 〈z, x∗〉 − f∗(x∗) for x∗ ∈ B, we have

α− γ > sup
x∗∈B

lim sup
n

hxn
(x∗).
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Therefore there is h0 ∈ C such that sup
x∗∈B

h0(x
∗) < α− γ. But we already proved

that
sup
x∗∈B

h0(x
∗) = sup

x∗∈dom f∗

h0(x
∗)

and so α − γ > h0(y
∗
0). Find µk ≥ 0 such that

∞∑
k=1

µk = 1 and h0 =
∞∑

k=1

µkhxk
.

We get

α− γ > h0(y
∗
0) =

〈
∞∑

k=1

µkxk, y
∗
0

〉
− f∗(y∗0) ≥ β − f∗(y∗0),

a contradiction. �

P r o o f o f T h e o r em 2.6. First step. Assume that X is separable, that
f is bounded on bounded sets and that D is an arbitrary Jayne-Rogers mapping
for f . For every x ∈ X take s(x) ∈ ∂f(x)∩D(x). Then from Lemma 2.7 we have
sp ∂f(X) = sp s(X) and so sp ∂f(X) = sp D(X).

Second step. Reduction to the separable case. Now, X is not required to
be separable. We assume that f is bounded on bounded sets and that D is an
arbitrary Jayne-Rogers mapping for f . We follow an idea from [3, Theorem I.5.9]
to show that ∂f(X) ⊂ sp D(X). Let x∗ ∈ ∂f(X). We pick a separable subspace
A0 of X such that x∗ ∈ ∂f(A0). The space B0 = sp D(A0) is a separable subspace
of Y , by Lemma 2.4. There exists a separable subspace A1 ⊂ X that contains
A0 and norms B0. Put B1 = sp D(A1) and find a separable subspace A2 ⊂ X
that contains A1 and norms B1. Thus, by induction, we construct an increasing
sequence An of separable subspaces of X such that An+1 norms sp D(An). Put

X0 =
⋃

n∈N

An.

X0 is a separable Banach space. Let Dn, n ∈ N, be the mappings from Definition
2.2 and let Q be the canonical restriction mapping X∗ → X∗

0 . Clearly, x∗↾X0
∈

∂f0(X0), where f0 = f↾X0
. Since D̃ := Q ◦ D↾X0

is a Jayne-Rogers mapping for
f0 (Proposition 2.5), by the first step we have

x∗↾X0
∈ sp D̃(X0).

Hence for every ε > 0 we can find m ∈ N, xi ∈ X0, ki ∈ N and λi ∈ R,
i = 1, . . . ,m such that

∥∥∥∥∥x
∗↾X0

−
m∑

i=1

λiD̃ki
(xi)

∥∥∥∥∥ < ε,
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where D̃ki
= Q◦Dki

↾X0
, i = 1, . . . ,m. SinceX0 = ∪

n∈N

An and D̃ki
, are continuous,

there are n0 ∈ N and yi ∈ An0
, i = 1, . . . ,m, such that

∥∥∥∥∥x
∗↾X0

−

m∑

i=1

λiD̃ki
(yi)

∥∥∥∥∥ < ε.

We have

y∗ := x∗ −

m∑

i=1

λiDki
(yi) ∈ spD(An0

)

and thus

‖y∗‖ = ‖y∗↾An0+1
‖ ≤ ‖y∗↾X0

‖ < ε.

From x∗ − y∗ =
m∑

i=1
λiDki

(yi) ∈ spD(X) we conclude that x∗ ∈ sp D(X). There-

fore, sp ∂f(X) = sp D(X).

Third step. We do not assume that f is bounded on bounded sets. By [3,
Lemma 1.4.10], there exists an increasing sequence of Lipschitz convex functions
fm : X → R, m ∈ N such that

(i) f1 ≤ f2 ≤ · · · ≤ f and

(ii) for every x ∈ X there exist m0 ∈ N and a neighbourhood V of x such that
fm↾V = f↾V for all m ≥ m0.

Let Dm be a Jayne-Rogers mapping for fm for m ∈ N, and define D by D(x) :=
∪

m∈N

Dm(x) for x ∈ X. To show that D is a Jayne-Rogers mapping for f we only

need to verify that D(x) ∩ ∂f(x) 6= Ø for every x and D(X) ⊂ ∂f(X). But,
given x, (ii) implies that ∂f(x) = ∂fm0(x) for some m0 and so D(x) ∩ ∂f(x) ⊃
Dm0(x) ∩ ∂fm0(x) 6= Ø. Further, from Proposition 1.4 and (i) we deduce that
∂f1(X) ⊂ ∂f2(X) ⊂ · · · ⊂ ∂f (X), hence that Dm(X) ⊂ ∂fm(X) ⊂ ∂f (X) for
every m ∈ N, and finally that D(X) ⊂ ∂f (X).

Finally, let X0 be a subspace of X. Put f0 := f↾X0
and fm

0 := fm↾X0
for

every m ∈ N. Obviously, fm
0 are Lipschitz and

(i0) f
1
0 ≤ f2

0 ≤ · · · ≤ f0,

(ii0) for every x ∈ X0 there exist m0 ∈ N and a neighbourhood V0 of x in X0

such that fm
0 ↾V0

= f0↾V0
for all m ≥ m0.
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Again, by Proposition 1.4, from (i0) it follows that ∂f1
0 (X0) ⊂ ∂f2

0 (X0) ⊂ · · · ⊂
∂f0(X0). From (ii0) it follows that ∂f0(X0) ⊂ ∪

m∈N

∂fm
0 (X0). So,

⋃

m

∂fm
0 (X0) = ∂f (X0).

Put D̃ := Q◦D↾X0
and D̃m := Q◦Dm↾X0

, form ∈ N. Obviously, D̃(x) = ∪
m
D̃m(x)

for every x ∈ X0. By Proposition 2.5, D̃m is a Jayne-Rogers mapping for fm
0 ,

m ∈ N. So, using the second step we get

sp D̃(X0) = sp
⋃

m

D̃m(X0) =
⋃

m

sp D̃m(X0)

=
⋃

m

sp ∂fm
0 (X0) = sp

⋃

m

∂fm
0 (X0) = sp ∂f0(X0). �

Lemma 2.8. Let f be an Asplund function on a Banach space X and let
D be a Jayne-Rogers mapping for f satisfying the conclusion of Theorem 2.6. Let
X0 be a subspace of X, put Y = sp ∂f(X), Y0 = sp D(X0) and let Q : X∗ → X∗

0

be the canonical restriction mapping. Suppose that X0 norms Y0. Then

(i) Y0 is isometrical to sp ∂(f↾X0
)(X0),

(ii) there exists a linear projection P of Y onto Y0 of norm one that assigns to
each y ∈ Y the unique y0 ∈ Y0 satisfying y↾X0

= y0↾X0
.

P r o o f. Put f0 = f↾X0
. Since X0 norms Y0, Q↾Y0

is an isometry. By
Proposition 1.5 and Theorem 2.6 we get

Q(Y ) = Q(sp ∂f(X)) ⊂ sp Q(∂f(x))

⊂ sp ∂f0(X0) = sp ∂f0(X0) = sp Q(D(X0))

= Q(sp D(X0)) = Q(Y0).

This proves (i) and shows that Q↾Y0
is an isometry between Y0 and Q(Y ). Hence,

there is an inverse mapping (Q↾Y0
)−1 of norm one from Q(Y ) onto Y0 and so

P := (Q↾Y0
)−1 ◦ (Q↾Y )

is a projection of norm one from Y onto Y0. Finally, suppose that for some y ∈ Y ,
y0 ∈ Y0 we have y↾X0

= y0↾X0
. It means that Q(y) = Q(y0). Applying (Q↾Y0

)−1
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to both sides of this equality yields Py = y0. This shows that for every y ∈ Y
there is just one y0 ∈ Y0 satisfying y↾X0

= y0↾X0
and that y0 = Py. This proves

(ii). �

3. PRI for the subspace sp ∂f(X).

Definition 3.1. Given a Banach space X, denote by µ the smallest
ordinal such that |µ| = densX. A projectional resolution of the identity (PRI)
for X is a collection {Pα : ω0 ≤ α ≤ µ} of linear projections of X into X that
satisfy, for every α ∈ [ω0, µ], the following conditions:

(i) ‖Pα‖ = 1,

(ii) PαPβ = PβPα = Pβ if ω0 ≤ β ≤ α,

(iii) densPαX ≤ |α|,

(iv) ∪{PβX : ω0 ≤ β < α} is dense in PαX if α is a limit ordinal,

(v) Pµ = IdX .

Lemma 3.2. Let X be a Banach space. Let D : X → 2X∗

be an at most
countable valued mapping. Let ℵ be an infinite cardinal number and let A0 ⊂ X
be a subset with cardA0 ≤ ℵ. Then there exists a set A0 ⊂ A ⊂ X such that A
is linear, cardA ≤ ℵ and A norms spD(A).

P r o o f. Follows from Lemma 4.2 below. �

Theorem 3.3. Let f be an Asplund function on a Banach space X.
Then the space sp ∂f(X) admits a PRI {Pα : ω0 ≤ α ≤ µ} such that for every
α ∈ [ω0, µ] there is a subspace Xα of X such that Pα(sp ∂f(X)) is isometrical to
sp ∂(f↾Xα

)(Xα).

P r o o f. Denote Y = sp ∂f(X). Let D : X → 2Y be a Jayne-Rogers
mapping for f satisfying the conclusion of Theorem 2.6. Let µ be the smallest
ordinal with densX = |µ| and let {xα : ω0 ≤ α < µ} be a dense set in X.
By transfinite induction, we construct a “long sequence” {Aα : ω0 ≤ α ≤ µ} of
subsets of X satisfying, for every α ∈ [ω0, µ],

(i) Aα is linear,

(ii) cardAα ≤ |α|,
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(iii) Aβ ⊂ Aα if ω0 ≤ β ≤ α,

(iv) Aα = ∪{Aβ : ω0 ≤ β < α} if α is a limit ordinal,

(v) Aα norms spD(Aα).

This is done as follows. Put Aω0
= sp{xω0

} and assume that, for an ordinal
α ∈ (ω0, µ], we have constructed Aβ for all β ∈ [ω0, α). We will construct Aα.
If α is a limit ordinal then we put Aα = ∪

β<α
Aβ . It is easy to check that (i)–(v)

are satisfied. If α is a non-limit ordinal then we put Aα := A where A is found
by Lemma 3.2 for A0 := Aα−1 ∪ {xα}. Again, it is easy to verify (i)–(v). This
completes the construction.

Now, fix α ∈ [ω0, µ]. By Lemma 2.4, D(Aα) ⊃ D(Aα) and so, by (v),
Aα norms Yα := sp D(Aα) = sp D(Aα) = sp D(Aα). Lemma 2.8 then yields
a norm one projection Pα : Y → Y such that PαY = Yα, Yα is isometrical to
sp ∂(f↾Aα

)(Aα) and

(∗)
Pα assigns to each y∗ ∈ Y the unique y∗α ∈ Yα,
satisfying y∗↾Aα

= y∗α↾Aα
.

We claim that {Pα : ω0 ≤ α ≤ µ} is a PRI on Y . Indeed, Aµ = X since
Aµ ⊃ {xα : ω0 ≤ α < µ} and thus Yµ = Y , Pµ = IdY . For any ω0 ≤ β ≤ α ≤ µ
we have PβY = Yβ ⊂ PαY = Yα by (iii), and so PαPβ = Pβ. Also, by (∗) it is
clear that PβPα = Pβ . If α is a limit ordinal then (iv) yields Yα = ∪

β<α
Yβ, i.e.

PαY = ∪
β<α

PβY . Finally, by Lemma 2.4, densYα ≤ densAα ≤ |α|. �

4. Asplund functions on weakly Lindelöf determined Banach
spaces. A Banach space X is called weakly Lindelöf determined (WLD) if there
are a nonempty set Γ and an injective continuous mapping T : (X∗, w∗) → RΓ

such that for every x∗ ∈ X∗ the set {γ ∈ Γ : Tx∗(γ) 6= 0} is at most countable.
We recall that every WCG, even every WCD space is weakly Lindelöf determined.
See e.g. [6, 8] for details.

Lemma 4.1 ([6, Lemma 6.1.1]). Let X be a Banach space and suppose
there exist two sets A ⊂ X, B ⊂ X∗ such that A, B are linear and

(i) ‖x‖ = sup〈B ∩BX∗ , x〉 for every x ∈ A,

(ii) A⊥ ∩B
∗

= {0}.
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Then there exists a norm one linear projection P : X → X such that PX = A,
P−1(0) = B⊥ and P ∗X∗ = B

∗
.

The following is a variant of [6, Lemma 6.1.3].

Lemma 4.2. Let X be a Banach space. Let Φ : X∗ → 2X , Ψ : X → 2X∗

and D : X → 2X∗

be three at most countable valued mappings. Let ℵ be an infinite
cardinal number and let A0 ⊂ X, B0 ⊂ X∗ be two subsets with cardA0 ≤ ℵ,
cardB0 ≤ ℵ.

Then there exist sets A0 ⊂ A ⊂ X, B0 ⊂ B ⊂ X∗ such that A, B are
linear, cardA ≤ ℵ, cardB ≤ ℵ, Φ(B) ⊂ A, D(A) ∪ Ψ(A) ⊂ B and A norms
spD(A).

P r o o f. We will use an old glueing argument due to S. Mazur. By
induction we will construct sequences of sets A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ X and
B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ X∗ as follows. If, for some n ∈ N, An−1 and Bn−1 are
already found then find a set Cn ⊂ X with cardCn ≤ ℵ that norms spD(An−1)
and put

An =

{
m∑

i=1

rixi : m ∈ N, xi ∈ Cn ∪An−1 ∪ Φ(Bn−1), ri rational, i = 1, . . . ,m

}

and

Bn =

{
m∑

i=1

rix
∗
i : m ∈ N, x∗i ∈ Bn−1 ∪ D(An−1) ∪ Ψ(An−1),

ri rational, i = 1, . . . ,m

}
.

Now, put A =
∞

∪
n=1

An, B =
∞

∪
n=1

Bn. If x1, x2 ∈ A then x1, x2 ∈ An for some

n ∈ N and so x1 + x2 ∈ An+1 ⊂ A. Similarly, if x ∈ A and λ ∈ R there is n ∈ N
so that λx ∈ λAn ⊂ An+1 ⊂ A, which shows that A is linear. An analogous
argument guarantees the linearity of B. The remaining properties of the sets A
and B claimed in the statement of the lemma are easy to check �

The following lemma is due to Valdivia. It claims the existence of so
called projectional generator on any WLD space.

Lemma 4.3 ([6, Proposition 8.3.1]). Let X be a weakly Lindelöf deter-
mined Banach space. Then there exists an at most countably valued mapping
Φ : X∗ → 2X such that Φ(B)⊥ ∩ B

∗
= {0} whenever Ø 6= B ⊂ X∗ and B is

linear.
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Theorem 4.4. Let f be an Asplund function on a weakly Lindelöf de-
termined Banach space. Then X admits a PRI {Pα : ω0 ≤ α ≤ µ} such that
{P ∗

α↾sp∂f(X) : ω0 ≤ α ≤ µ} is a PRI on sp ∂f(X) and P ∗
αsp ∂f(X) is isometrical

to sp ∂(f↾PαX)(PαX).

P r o o f. Denote Y = sp ∂f(X). Let Φ : X∗ → 2X be a mapping found in
Lemma 4.3 and let D : X → 2Y be a Jayne-Rogers mapping for f satisfying the
conclusion of Theorem 2.6. For every x ∈ X find Ψ(x) ∈ BX∗ with 〈ψ(x), x〉 =
‖x‖.

Let µ be the smallest ordinal with densX = |µ| and let {xα : ω0 ≤ α < µ}
be a dense set in X. By transfinite induction, we construct “long sequences”
{Aα : ω0 ≤ α ≤ µ} and {Bα : ω0 ≤ α ≤ µ} of subsets of X and X∗, respectively,
satisfying, for every α ∈ [ω0, µ],

(i) Aα, Bα are linear,

(ii) cardAα ≤ |α|, cardBα ≤ |α|,

(iii) Φ(Bα) ⊂ Aα, D(Aα) ∪ Ψ(Aα) ⊂ Bα,

(iv) Aβ ⊂ Aα, Bβ ⊂ Bα if ω0 ≤ β ≤ α,

(v) Aα = ∪{Aβ : ω0 ≤ β < α}, Bβ = ∪{Bβ : ω0 ≤ β < α} if α is a limit
ordinal,

(vi) Aα norms spD(Aα).

This is done as follows. Put Aω0
= sp{xω0

}, Bω0
= {0}. Assume that, for

an ordinal α ∈ (ω0, µ], we have constructed Aβ, Bβ for every β ∈ [ω0, α). We
will construct Aα and Bα. If α is a limit ordinal then we put Aα = ∪

β<α
Aβ,

Bα = ∪
β<α

Bβ . It is easy to check that (i)–(vi) are satisfied. If α is a non-limit

ordinal then we put Aα = A, Bα = B, where A and B are found in Lemma 4.2
for A0 := Aα−1 ∪ {xα} and B0 := Bα−1. Again, it is easy to verify (i)–(vi). This
completes the construction.

Now, let us fix α ∈ [ω0, µ] and verify the assumptions of Lemma 4.1. For
x ∈ Aα we have

‖x‖ = 〈Ψ(x), x〉 ≤ sup〈Bα ∩BX∗ , x〉 ≤ ‖x‖

by (iii). Further,

A⊥
α ∪Bα

∗
⊂ Φ(Bα)⊥ ∪Bα

∗
= {0}
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by (iii) and by Lemma 4.3. Thus, Lemma 4.1 yields a norm one projection
Pα : X → X such that PαX = Aα, P−1

α (0) = Bα⊥ and P ∗
αX

∗ = Bα
∗
.

By Lemma 2.4, D(Aα) ⊃ D(Aα) and so, by (vi), Aα norms Yα :=
sp D(Aα) = spD(Aα) = spD(Aα). Lemma 2.8 then yields a norm one projection
P̃α : Y → Y such that P̃αY = Yα, P̃αY is isometrical to sp ∂(f↾PαX)(PαX) and

(∗)
P̃α assigns to each y∗ ∈ Y the unique y∗α ∈ Yα

satisfying y∗↾Aα
= y∗α↾Aα

.

We have to verify P̃α = P ∗
α↾Y . To this end, consider any y∗ ∈ Y and x ∈ X.

Then 〈
P̃αy

∗, x
〉

=
〈
P̃αy

∗, Pαx+ (x− Pαx)
〉

=
〈
P̃αy

∗, Pαx
〉

= 〈y∗, Pαx〉 = 〈P ∗
αy

∗, x〉

as
x− Pαx ∈ P−1

α (0) = Bα⊥ ⊂ D(Aα)⊥ = (spD(Aα))⊥ = (P̃αY )⊥

by (iii) and Lemma 2.4. We claim that {Pα : ω0 ≤ α ≤ µ} is a PRI on X.
Indeed, Aµ = X since Aµ ⊃ {xα : ω0 ≤ α < µ}. For any ω0 ≤ β ≤ α ≤ µ we
have PβX ⊂ PαX and P−1

β (0) ⊃ P−1
α (0) by (iv) and so PβPα = PαPβ = Pβ . For

limit ordinals α, (v) implies Aα = ∪
β<α

Aβ , i.e. PαX = ∪
β<α

PβX .

That {P ∗
α↾Y : ω0 ≤ α ≤ µ} forms a PRI on Y follows in the same manner

as in the proof of Theorem 3.3, because the construction of P̃α in this proof is
the same as that of Pα in Theorem 3.3. �

5. LUR-renorming of sp ∂f(X). We will use the following theorem
by Troyanski and Zizler ([18, 20]). We present it in the form of [3, Theorem
VII.1.8 and Remark VII.1.7].

Theorem 5.1. Let P be a class of Banach spaces such that every Y
in P admits a PRI {Pα : ω0 ≤ α ≤ µ} such that PαY belongs to P for every
α ∈ [ω0, µ). Then every Y in P admits an equivalent LUR norm. Moreover, if
the spaces Y in P are subspaces of dual Banach spaces and if the projections Pα

are weak∗-to-weak∗ continuous then every Y ∈ P admits an equivalent w∗-lower
semi-continuous LUR norm.

Theorem 5.2. Let f be an Asplund function on a WLD Banach space
X. Then there exists an equivalent dual norm on X∗ such that its restriction to
sp ∂f(X) is LUR.
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P r o o f. Denote by P the class of all Banach spaces that are isometrical
to a subspace Y of dual Banach spaces Z∗ such that (i) Z is WLD and (ii) there
exists an Asplund function g on Z with Y = sp ∂g(Z). It follows from Theorem
4.4 and from the fact that subspaces of WLD spaces are WLD that this class P
satisfies the assumptions of the “moreover part” of Theorem 5.1. Consequently,
there exists an equivalent w∗-lower semi-continuous LUR norm on every Y ∈ P.
The conclusion follows from the following proposition. �

Proposition 5.3. Let Y be a subspace of a dual Banach space X∗ and
let | · | be an equivalent w∗-lower semi-continuous norm on Y . Then there exists
an equivalent dual norm ||| · ||| on X∗ such that ||| · ||| ↾Y = | · |.

P r o o f. Let BX∗ be the unit ball of X∗ in the original norm ‖ · ‖ and let
B1 ⊂ Y be the | · |-unit ball of Y . We may and do assume that | · | ≤ ‖·‖↾Y ≤ β| · |
for some β ∈ R. Since B1 is relatively w∗-closed in Y it can be written as an
intersection of relatively w∗-closed halfspaces (in Y ), i.e. there exist an index set
I and a family {pα : α ∈ I} of w∗-continuous linear functionals on Y such that

B1 = {y∗ ∈ Y : pα(y∗) ≤ 1, α ∈ I}.

Since B1 is symmetric, it also satisfies

B1 = {y∗ ∈ Y : |pα(y∗)| < 1, α ∈ I}.

Clearly, pα ≤ ‖ · ‖↾Y for all a ∈ I. By the Hahn-Banach dominated extension
theorem([9, p. 68]), every pα can be extended to a w∗-continuous linear functional
p̃α defined on the whole of X∗ in such a way that p̃α ≤ ‖ · ‖ on X∗. Denote

B2 = {y∗ ∈ X∗ : |p̃α(y∗)| ≤ 1, α ∈ I} ∩ βBX∗ .

From the construction it follows that

(i) B2 is w∗-closed, symmetric and convex,

(ii) BX∗ ⊂ B2 ⊂ βBX∗ ,

(iii) B2 ∩ Y = B1.

Consequently, the Minkowski’s functional ||| · ||| of the set B2 is an equivalent dual
norm on X∗ such that ||| · ||| ↾Y = | · |. �

Theorem 5.4. Let f be an Asplund function on a WLD Banach space
X.
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(a) If f is bounded on bounded sets then f can be approximated by Fréchet
differentiable convex functions uniformly on bounded sets.

(b) If f is Lipschitz then f can be approximated by Fréchet differentiable convex
functions uniformly on X.

P r o o f. We use the argument from [15]. Denote Y = sp ∂f(X) and define

a sequence (hn) of functions on X∗ by hn(x∗) = f∗(x∗) +
1

n3
‖x∗‖∗2 for x∗ ∈ Y

and hn(x∗) = ∞ for x∗ ∈ X∗ \ Y , where ‖ · ‖∗ is an equivalent dual norm on X∗

whose restriction to Y is LUR (Theorem 5.2). Clearly, domhn = dom f∗ ⊂ Y .

Define gn := f �
n3

4
‖ · ‖2, where � denotes the infimal convolution. gn is a

continuous convex function satisfying g∗n = hn for all n. If n ∈ N, x ∈ X and
y∗ ∈ ∂gn(x) are given, then y∗ ∈ Y and hn is rotund at y∗ with respect to
x in the sense of [2], i.e. for every ε > 0 there exists δ > 0 such that {x∗ :
hn(y∗ + x∗) − hn(y∗) − 〈x∗, x〉 ≤ δ} ⊂ εBX∗ . By [2, Proposition 4], gn is Fréchet
differentiable at x with the derivative y∗. By [11, Lemma 2.4] (resp. by its proof)
gn → f uniformly on bounded sets (resp. uniformly on X). �

Remarks. In the context of the presented results the following questions
arise.

Q1. Given an Asplund space X, does its dual X∗ admit a PRI with
respect to any equivalent nondual norm? We note that the result of Fabian and
Godefroy from [7] reads as: The dual to every Asplund space, that is, every dual
Banach space with the Radon-Nikodým property, admits a PRI with respect to
any dual norm. Once a norm is not dual, the argument of [7] does not work.

Q2. Given an Asplund space X and a non-weak∗-closed subspace Y of X,
does there exist a PRI on Y with respect to the restriction of the dual norm of X∗

to Y ? Theorem 3.3 says that the answer is “Yes” if Y is of the form sp ∂f(X),
where f is a continuous convex function on X. The answer is also “Yes” if the
subspace Y is weak∗-closed. Indeed, if we put Z = Y⊥ then the quotient X/Z is
also Asplund and (X/Z)∗ is isometrical to Z⊥ = (Y⊥)⊥ = Y

∗
= Y .

Q3. Given an arbitrary Banach space X and a non-weak∗-closed weak∗-
dentable subspace Y of X∗, does there exist a PRI on Y with respect to the
restriction of the dual norm of X∗ to Y ? The question is stronger than Q2,
because the dual to every Asplund space is weak∗ dentable.

Q4. If a Banach space X is dentable, does there exist a PRI on X? The
question Q3 is stronger than Q4 because here X is a weak∗-dentable subspace
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of X∗∗. A positive answer to Q4 would imply that spaces with Radon-Nikodým
property admit an equivalent locally uniformly rotund norm, which is, however,
a long standing and widely open problem.

Example of an Asplund function. Consider the Banach space

X = (ℓ1(Γ), ‖ · ‖1),

where Γ is an infinite set and ‖ · ‖1 is the canonical norm on ℓ1(Γ), and consider
a function f : X → R defined by

f(x) =
∑

γ∈Γ

x2
γ , x = (xγ) ∈ ℓ1(Γ).

We can easily check that, for every x ∈ X, ∂f(x) = {2x} (⊂ (ℓ∞(Γ), ‖·‖∞) = X∗,
where ‖ · ‖∞ is the canonical norm on ℓ∞(Γ)). Since the “identity” mapping
(ℓ1(Γ), ‖ ·‖1) → (ℓ∞(Γ), ‖ ·‖∞) is norm-to-norm continuous, f is Fréchet differen-
tiable on X and thus Asplund. (f ′ is continuous on X and so, for every separable
subspace X0 ⊂ X, sp ∂(f↾X0

)(X0) = sp(f ′↾X0
)(X0) is separable.) We can also

easily check that

∂f(x) = ℓ1(Γ), dom f∗ = ℓ2(Γ), dom f∗ = c0(Γ).

Thus,
∂f(X) $ dom f∗ $ dom f∗ $ ℓ∞(Γ) = X∗

and
Y = sp ∂f(X) = sp dom f∗ = c0(Γ) $ X∗.

Note that (c0(Γ), ‖ · ‖∞) is not dentable (it contains an infinite 2-tree) and so Y ,
as a subspace of X∗, is not weak∗-dentable. But, by Theorem 4.1, (c0(Γ), ‖ · ‖∞)
has a PRI.
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