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ABSTRACT. We further develop the theory of the so called Asplund func-
tions, recently introduced and studied by W. K. Tang. Let f be an As-
plund function on a Banach space X. We prove that (i) the subspace
Y :=5p 0f(X) has a projectional resolution of the identity, and that (ii) if
X is weakly Lindel6f determined, then X admits a projectional resolution of
the identity such that the adjoint projections restricted to Y form a projec-
tional resolution of the identity on Y, and the dual X* admits an equivalent
dual norm such that its restriction to Y is locally uniformly rotund.

1. Asplund functions. It is well-known that any of the following
conditions for a Banach space X is equivalent to “X is an Asplund space” [3, 8,
13, 19]:

“Supported by the Grants AV CR 101-97-02, 101-90-03, GA CR 201-98-1449, and by the
Grant of the Faculty of Civil Engineering of the Czech Technical University No. 2003.
2000 Mathematics Subject Classification: primary 46B20, secondary 46B22.
Key words: Asplund function, Asplund space, weakly Lindel6f determined space, projectional
resolution of the identity, locally uniformly rotund norm.



288 Martin Zemek

(i) Every continuous convex function on X is Fréchet differentiable at all points
of a dense Gs subset of X.

(ii) Ewvery bounded subset of X* is w*-fragmentable.

(iii) Ewvery bounded subset of X* is w*-dentable.

(iv
(v

W. K. Tang in [17] found a class of continuous convex functions on Banach spaces
that have properties similar to those of continuous convex functions on Asplund
spaces. He calls the functions from this class Asplund functions and establishes a
number of conditions equivalent to say that a function is Asplund. Some of such
conditions are listed in the following theorem.

Every bounded subset of X* is dentable.

)
)
)
)

For every separable subspace Xo of X, the dual X§ is separable.

Theorem 1.1. Let f be a continuous convex function on a Banach space
X. Then the following conditions are equivalent:

(i) If h is a continuous convex function on X such that h < f then h is Fréchet
differentiable at all points of a dense Gs subset of X.

(ii) For each n € N, every bounded subset of the set {x* € X* : f*(z*) < n}
18 w*-fragmentable.

Every w*-compact subset of dom f* is w*-fragmentable.

)

(iv) Every w*-compact subset of dom f* is w*-dentable.
) Every w*-compact subset of dom f* is dentable.
)

For every separable subspace Xo of X, the space 5p 0(x[ x,)(Xo) is separable.

Definition 1.2. A continuous convex function f on a Banach space X
is called an Asplund function if any of the conditions from Theorem 1.1 holds.

Of course, every continuous convex function f on an Asplund space X is
an Asplund function and a Banach space is Asplund if and only if its norm is an
Asplund function. We present several further properties of Asplund functions.
Namely, we prove that (i) the subspace Y :=5p 0f(X) has a projectional resolu-
tion of the identity (PRI) if f is an Asplund function (it is well-known that duals
of Asplund spaces admit a PRI [7]), and that (ii) if f is an Asplund function on a
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weakly Lindelof determined (WLD) Banach space X, then X admits a PRI such
that the adjoint projections restricted to'Y form a PRI on'Y and that X* admits
an equivalent dual norm such that its restriction to 'Y is LUR. (It is well-known
that every WLD Asplund space admits a PRI such that the adjoint projections
form a PRI on X* and that X* admits a dual LUR norm [5].)

Notation and preliminaries. X always denotes a Banach space with
norm | - ||, X* its dual space, Bx+ the unit ball of X*. “ls¢” means lower
semi-continuous. For a function f on X and a subset A C X, f|, denotes the
restriction of f to A. We denote by co A, o A, sp A, 5p A, A, A" and card A,
the convex hull, closed convex hull, linear span, closed linear span, norm closure,
weak™® closure, and cardinality of a set A, respectively. The density of a set A
is the smallest cardinal R such that there exists a dense subset M C A with
card M = . It is denoted by dens A. |a] is the cardinality of an ordinal number
a. By a subspace of a Banach space we always mean a closed linear subspace. X is
always considered as a subspace of the second dual X**. For A C X and B C X*,
we put At = {z* € X* : (z*,A) = {0}} and B, = {zr € X : (B,z) = {0}},
and we say that “A norms B” if ||x*|| = sup{(z*,z) : © € A, ||z|| < 1} for every
xz* € B. The meaning of “B norms A” is analogous. If (T,7) is a topological
space and A is a metric on T" we say that T is fragmented by the metric A if every
subset of T" has a relatively T-open subset of A-diameter as small as we wish. If
T is a subset of a dual Banach space X*, by saying “T" is w*-fragmentable” we
mean that (7, w*) is fragmented by the metric generated by the dual norm. A
set-valued mapping T' : (T1,71) — (Tb,72) is said to be upper semi-continuous
(usc) if the set {t; € T} : I'(t;) C U} is 7-open for every mp-open set U C Th. For
a continuous convex function f: X — R U {oco} we denote

Of(x)={2" e X*: (z"y—2) < f(y) — f(z) forally € X}, z€X.
f* denotes the (Fenchel) conjugate function to f defined by
[ (@*) =sup{{z*,z) — f(z) :z € X} for z"e€ X"

By dom f* we denote the set {z* € X* : f*(z*) < co}. The infimal convolution
of f and of another function g on X is defined by

(f O g)(z) =inf{f(y) +9(z —y) 1y € X}.

We will use the following well-known (and easy to prove) facts:
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e f*is w*-lower semi-continuous convex,

o (z¥,x) < f(z)+ f*(z*) for all z € X, x* € X* with equality holding if and
only if * € df(x) (and this holds if and only if x € 9f*(x*)),

o 0f(X) Cdom f* C 9f(X) (for the latter inclusion, see Proposition 1.3),

e fOgisconvex and (f O g)* = f*+ g*.

In the following propositions, f and g are always continuous convex func-
tions on a Banach space X.

Proposition 1.3. dom f* C 9f(X).

Proof. Let z* € dom f* be given. Then f — z* is bounded below. The
rest of the proof follows from the

Claim. If f is a continuous convex function on a Banach space X and
x* € X* is such that f — x* is bounded below then x* € Of(X).

Proof of the claim. Let € > 0 be given. Take z € X with

(f =a)(2) < inf(f — ") + &%

This means (z*,2 — z) < f(x) — f(z) + €2 for every z € X. By the Brgnsted-
Rockafellar theorem ([13], [9, p. 173]), there exist y € X and y* € X™* such that

(ly =zl <e), ly" —2*[| <&, y* € 0f(y). O

Proposition 1.4. If f < g, then 0f(X) C dg(X).

Proof. Let * € 9f(X) be given. Then f — z* is bounded below and so
g — x* is bounded below, too. The conclusion follows from the claim in the proof
of Proposition 1.3. O

Proposition 1.5. If Xq is a subspace of X, fo = f[x, and Q : X* — X§
is the canonical restriction mapping, then Q(9f(X)) C dfo(Xo).
Proof. Let z* € 0f(X) be given. f — z* is bounded below on X and

so fo — Q(z*) is bounded below on Xy. The conclusion Q(z*) € 9fy(Xp) then
follows from the claim in the proof of Proposition 1.3. O

Proposition 1.6. Under the settings of Proposition 1.5, Q(0f(xg)) =
dfo(xo) for every xg € Xo.

Proof. “xf € 0fo(xo)” means that (xf,z — zo) < fo(z) — fo(zo) for
every x € X while “z§ € Q(0f(zo))” means that zj is the restriction to Xo
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of some z* € X* for which (z*,x — z9) < f(z) — f(z) for every x € X. So,
the inclusion “C” is obvious. To show that “D” holds true, given x{ € 9fo(zo),
denote g := f + (z},z0) — f(z0). ¢ is a continuous convex function on X and
zy < glx,- By the Hahn-Banach dominated extension theorem (in the version of
[9, p. 68]) there is a continuous extension z* € X* of x§ (i.e. 2*[x, = z() such
that 2* < g (on X), that is, z* € df(x¢). O

2. Jayne-Rogers mappings for Asplund functions. Our methods
of constructing projectional resolutions of the identity are elaborations on known
methods ([6, 3]). Namely, we use a generalization of Jayne-Rogers mappings
constructed originally for Asplund spaces. It is well-known that if X is an Asplund
space then the duality mapping has a selector (the Jayne-Rogers selector) that is
the pointwise limit of a sequence of norm-to-norm continuous mappings from X
into X* ([10], [3, Theorem 1.5.2]). In other words, there exists a countable-valued
mapping D : X — 2% that can be written in the form

D(z) = {Dyn(x) : n € N}, z € X,
where D,,, n € N, are (single-valued) mappings X — X* satisfying
(i) Dy, is norm-to-norm continuous for every n € N,

(ii) im D, (z) € J(x) for every x € X,

- 12
2

where J is the duality mapping on X defined by J = 9 or, equivalently, by

J(@)={a" € X" : (a",2) = |l]* = ||}, zeX.

The claim of the existence of a Jayne-Rogers mapping on an arbitrary Asplund
space is contained in the following theorem that is due to Jayne and Rogers [10].
(We present it in the form of [3, Theorem 1.4.7]). We will use this theorem for the
construction of Jayne-Rogers mappings for Asplund functions in Theorem 2.3.

Theorem 2.1. Let T be a topological space fragmented by a metric A
and let KC(T) denote the family of nonempty compact subsets of T. Then there
exists a selector s : K(T) — T satisfying the following property. If (Z,d) is a
metric space and I' is a set-valued upper semi-continuous mapping with compact
values from Z into T, then ¢ : z — s(I'(z)) is a Baire 1 mapping of (Z,d) into
(T,A). If T is moreover a convex subset of a vector space V and A is induced
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by a topological vector space topology on V', then ¢ is the pointwise A-limit of a
sequence (¢n) of continuous mappings from (Z,d) into (T, A).

Definition 2.2. Let f be a continuous convex function on a Banach

space X. Let D : X — 297(X) be an at most countable-valued mapping. We call
D a Jayne-Rogers mapping for f if

(i) of(x) ND(x) # @ for every x € X,
and if there exist single-valued mappings D,, : X — 0f(X), n € N, such that

(ii) D,, is norm-to-norm continuous for every n € N,

(iii) D(z) = {Dn(x) : n € N} for every z € X.

Theorem 2.3. Let f be an Asplund function on a Banach space X.
Then there exists a Jayne-Rogers mapping for f.

Proof. By Theorem 1.1 (ii), dom f* is the countable union of w*-
fragmentable w*-closed convex sets: dom f* = U{K,, : m € N}, where

Ky ={x" € X*: f*(z*) <m}NmBx-~.
Put M = {m e N:9f(X)NK,, # D}. For every m € M put
Xm={zeX:0f(x)NK,, # O}
and define a (set-valued) mapping g, : X, — 25m by
gm(z) = 0f () N Ky, r € Xp.

Clearly, UM X = X. It is well-known that 9f(: X — 2%) is norm-
me

to-weak™ usc compact valued (see e.g. [13, Propositions 1.11 and 2.5]) and using
this it is easy to check that so are the mappings g, and that X,, are closed sets.

So, for every m € M we obtain, by Theorem 2.1, a (countable-valued) mapping
G™ . X,, — 2Km of the form

G"(z) ={G(z) :n e NU{oo}}, =€ X,
where the mappings G satisty
(i) G : X,, — K, is norm-to-norm continuous for every n € N,
(ii) lirrln G'(x) = G (x) for every z € X,

(iii) GZ(x) € gm(x) for every x € X,,.
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(To get these mappings from the “moreover part” of Theorem 2.1, put Z := X,,,,
T := (K, w*), let d be the metric induced by the norm of X, A be the metric
induced by the norm of X* I" := g,,, ¢ := G, and ¢, := G}'.) Since the sets
X™ are closed and the sets K, are convex, by [4, Theorem 4.1], for every m € M
and n € N there is a norm-to-norm continuous mapping D]' : X — K, such that
Di'lx, = Gy. Define D by D(z) = {D;}(x) : m € M,n € N}. Since UX,,, = X,
from (ii) and (iii) it follows that 0f(z) N D(z) # O for any x € X. Thus, D is a
Jayne-Rogers mapping for f. O

Lemma 2.4. Let f be an Asplund function on a Banach space X and let
D be a Jayne-Rogers mapping for f. Then D(A) C m for every subset A C X.
Consequently, if Xo is a (non-trivial) subspace of X then denssp D(Xy) <
dens Xj.

Proof. Follows from the continuity of the mappings D,,, see Defini-
tion 2.2. O

By [17], the restriction f[y, of an Asplund function f to a subspace Xo
is an Asplund function, too. The following proposition derives a Jayne-Rogers
mapping D for flx, from a given Jayne-Rogers mapping D for f.

Proposition 2.5. Let f be an Asplund function on a Banach space
X and let D be a Jayne-Rogers mapping for f. Let Xo be a subspace of X
and let Q@ : X* — X be the canonical restriction mapping. Then the mapping
D: Xy — 2% defined by D = Qo D, is a Jayne-Rogers mapping for f|y, .

Proof. Let D, be the mappings from Definition 2.2. Put D(z) :=
Q(Dy(z)) for n € N, z € X. Obviously, D(z) = {D,(z) : n € N}, = € Xo, and
D,, are continuous, which shows that (i) and (iii) of Definition 2.2 for D and D,
hold. In order to verify (i), we use Proposition 1.6 and the continuity of Q:

8 fo(wo) N D(x0) = QD] (o)) N Q(D(x0))

Q(0f(z0)) N Q(D(z0)) D Q(If(z0) ND(x0) ) # O

U

for every zg € Xo. O
In the proof of Theorem 2.6 we will use Simons’ lemma ([14, Lemma 2],
see also [3, Lemma 1.3.7]).

Simons’ Lemma. Let B be a set and C be a set of functions defined on
B such that

(i) sup sup h(z) < oo,
heC zeB
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(ii) C is stable with respect to taking countable convexr combinations,

(iii) for every h € C there exists xo € B such that h(zg) = sup h(z).
zeB

Then, whenever (hy,) is a sequence in C, we have

sup limsup hy,(z) > inf sup h(z).
z€EB n—0o0 heC zeB

(The stronger assumption of sup sup |h(z)| < oo is among the assumptions of
heC zeB
[14, Lemma 2| instead of (i), but the proof uses only our (i).)

Theorem 2.6. Let f be an Asplund function on a Banach space X.
Then there exists a Jayne-Rogers mapping D for f having the following property:
If Xo is a subspace of X then sp O(f[x,)(Xo) =35p Q(D(Xo)), where Q : X* —

X{ 1is the canonical restriction mapping.

The proof will be divided into three steps.

Lemma 2.7. Let f be an Asplund function on a separable Banach space
X that is bounded on bounded sets and let s : X — X* be a selector of the
subdifferential mapping Of , that is, s(x) € Of (z) for everyx € X. Then 0f(X) C
co s(X).

Proof. We use an idea from [16]. Put B = s(X) and v = i%f f*. Clearly

v < oo as B is nonempty. Since df(X) C dom f* it is sufficient to show that
dom f* C €6 B. If this is not so, pick y; € dom f*\ ¢ B. By the separation
theorem, there is z € X** and «, § € R such that (z,y5) > 8 > o > sup(z,co B).
By scaling the functional z, we may assume that § —a > f*(y5) — 7. B is
separable since f is Asplund. (This is the only place in the proof where the
Asplund property of f is used.) It implies that there exists a sequence (x,) in
the set {x € X : ||z|| < ||2|, (z,y5) > B} that converges to z in the topology of
pointwise convergence on B. For every x € X define a function h, by h,(z*) :=
(x,z*)y — f*(x*) for z* € dom f*. Set

A= {i)\kl‘k : )\k > O,i)\k = 1}, C = {i)‘khm Z)\k > O,i)\k = 1} .
k=1 k=1 k=1 k=1

o0 o
Let {\x} be any sequence with A\ > 0, > Ay = 1. Put 2 = > A\yxgx. We have
k=1 k=1
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z € A and

D Aihay (s(z)) = <Z Ak, 8(1‘)> — [7(s(z))
k=1 k=1

= sup{(x,x*> — f*(l‘*) S domf*}

> sup {(z,z*) — f*(z*) : 2" € B}

= sup{<2/\kxk,a:*> — f(x%) 2" € B}
k=1
= sup {Z Ahg, (%) 2™ € B} .

k=1

Thus, the sets B and C satisfy (iii) from Simons’ lemma if we regard functions
h € C as functions defined only on B C dom f*. As regards (i), we have

sup sup h(z*) = sup sup {<Z )\khxk,w*> P > O,Z)\k = 1}
k=1

heC x*eB z*€eB =1

= sup sup {Z Ae((@®, zg) — 5 (27) : A\ > O’Z/\k = 1}

z*€B k=1 k=1

Ssup{z/\kf(xk) A >0, A= 1} < +00

k=1 k=1

as f is bounded on bounded sets. Clearly, (ii) is also satisfied. So, by Simons’
lemma,

sup limsup hy, (z*) > inf sup h(z™).
r*eB n—oo heC z*eB

Since lim hy, (z*) = (z,2%) — f*(z*) for * € B, we have
n

a — 7 > sup limsup hy, (z¥).
z*€eB n
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Therefore there is hg € C such that sup ho(z*) < o — 7. But we already proved
z*eB
that

sup ho(z") = sup ho(z")
*eB z*Edom f*

[o¢] [o¢]

and so o — 7y > ho(yg). Find pg > 0 such that ) pp =1 and ho = > prhy, .
k=1 k=1

We get

a—7y>ho(yp) = <Z ukxk,y8> = [*(yo) = B—f"(w0),
k=1

a contradiction. 0O

Proof of Theorem 2.6. First step. Assume that X is separable, that
f is bounded on bounded sets and that D is an arbitrary Jayne-Rogers mapping
for f. For every x € X take s(z) € df(x) ND(x). Then from Lemma 2.7 we have
Sp 0f(X) =5p 5(X) and so 5p 0f (X) =5p D(X).

Second step. Reduction to the separable case. Now, X is not required to
be separable. We assume that f is bounded on bounded sets and that D is an
arbitrary Jayne-Rogers mapping for f. We follow an idea from [3, Theorem 1.5.9]
to show that 0f(X) C 8p D(X). Let * € 9f(X). We pick a separable subspace
Ap of X such that * € 9f(Ag). The space By = 5p D(Ayp) is a separable subspace
of Y, by Lemma 2.4. There exists a separable subspace A; C X that contains
Ap and norms By. Put B; = 5p D(A4;) and find a separable subspace Ay C X
that contains A; and norms B;j. Thus, by induction, we construct an increasing
sequence A,, of separable subspaces of X such that A, 11 norms sp D(A4,). Put

X, = UAn.

neN

X is a separable Banach space. Let D", n € N, be the mappings from Definition
2.2 and let @ be the canonical restriction mapping X* — X{. Clearly, %[y €

dfo(Xo), where fo = f[x,. Since D:=Qo Dy, is a Jayne-Rogers mapping for
fo (Proposition 2.5), by the first step we have

2" I, €50 D(Xp).

Hence for every ¢ > 0 we can find m € N, z; € Xg, k; € N and \; € R,
i=1,...,m such that

<e,

2% xy = Y AiDp, ()
i=1
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where Dy, = QoDy, [x,,i=1,...,m. Since Xg = nLEJN Ay, and Dy, , are continuous,

there are ngp € N and y; € A,,, i = 1,...,m, such that

<e.

2 xo = Y AiDri ()
=1

We have

m
y* =" — Z)\szz (yz) € SpD(Ano)
=1

and thus
15[l = 1™ T4, ol < Ny T |l < e

m

From z* —y* = > \iDy, (y;) € sp D(X) we conclude that x* € s5p D(X). There-
i=1

fore, sp 0f(X) = 5p D(X).

Third step. We do not assume that f is bounded on bounded sets. By [3,
Lemma 1.4.10], there exists an increasing sequence of Lipschitz convex functions
f™: X — R, m € N such that

(i) fL<f?<---<fand

(ii) for every z € X there exist mg € N and a neighbourhood V' of  such that
™y = fly for all m > my.

Let Dy, be a Jayne-Rogers mapping for f™ for m € N, and define D by D(z) :=
U D™(x) for x € X. To show that D is a Jayne-Rogers mapping for f we only

meN
need to verify that D(z) N df(x) # O for every z and D(X) C 9f(X). But,
given x, (i) implies that df(z) = ™0 (x) for some mg and so D(z) N If(x) D
Dmo(x) NOf™(x) # . Further, from Proposition 1.4 and (i) we deduce that
IfY(X) Cc 0f*(X) C --- C df(X), hence that D™(X) C df™(X) C 9f(X) for
every m € N, and finally that D(X) C 9f(X).

Finally, let X be a subspace of X. Put fy := f|y

every m € N. Obviously, fj* are Lipschitz and

(io) fo < fE <+ < fo,

, and fi" = f] . for

(iig) for every x € X there exist mg € N and a neighbourhood Vj of z in X

such that f§*[y, = foly;, for all m > my.
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Again, by Proposition 1.4, from (ip) it follows that df}(Xo) C 9f2(Xo) C -+ C

0fy(Xo). From (iig) it follows that 9fy(Xo) C mLEJN of"(Xo). So,
osr(Xo) = 0f(Xo).

Put D := QoD|y, and D™ = QoD™|x,, form € N. Obviously, 25(1:) = Uﬁm(az)
m
for every x € Xy. By Proposition 2.5, D™ is a Jayne-Rogers mapping for fj",

m € N. So, using the second step we get

Sp D(Xo) =5p Uﬁm(Xo) =Jsp D™ (Xo)

= Jsp a/5"(X0) =5p | JOfi"(X0) =3P 0fo(Xo). O

Lemma 2.8. Let f be an Asplund function on a Banach space X and let
D be a Jayne-Rogers mapping for f satisfying the conclusion of Theorem 2.6. Let
Xo be a subspace of X, put Y =5p 0f(X), Yo =5p D(Xp) and let Q : X* — X
be the canonical restriction mapping. Suppose that Xg norms Yy. Then

(i) Yo is isometrical to 5p O(f ] x,)(Xo),

(ii) there exists a linear projection P of Y onto Yy of norm one that assigns to
each y € Y the unique yo € Yo satisfying ylx, = volx,-

Proof. Put fo = f[y,. Since Xo norms Yy, Q[y, is an isometry. By
Proposition 1.5 and Theorem 2.6 we get

QYY) =Q@p 0f(X)) Csp QOf(z))
C 5P 0fy(Xo) = 5D dfo(Xo) =5 Q(D(Xo))
= Q(5p D(Xo)) = Q(Y0).

This proves (i) and shows that @[y, is an isometry between Yy and Q(Y'). Hence,
there is an inverse mapping (Q [YO)_1 of norm one from Q(Y) onto Yy and so

P:=(Qly,) " o (@Qly)

is a projection of norm one from Y onto Y. Finally, suppose that for some y € Y,
Yo € Yo we have y[x, = yolx,. It means that Q(y) = Q(yo). Applying (Qly,) ™"
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to both sides of this equality yields Py = yg. This shows that for every y € Y
there is just one yo € Yy satisfying y[y, = vo[x, and that yo = Py. This proves
(ii). O

3. PRI for the subspace sp 9f(X).

Definition 3.1. Given a Banach space X, denote by u the smallest
ordinal such that || = dens X. A projectional resolution of the identity (PRI)
for X is a collection {P, : wog < a < u} of linear projections of X into X that
satisfy, for every a € [wo, u|, the following conditions:

(i) [[Pall =1,

(ii Papﬁ = PgPa = Pg waO < ﬂ < a,

)
)
(iii) dens P, X < |,
(iv) U{PsX 1wy < B < a} is dense in P, X if a is a limit ordinal,
)

(v) P, =1Idx.

Lemma 3.2. Let X be a Banach space. Let D : X — 2% be an at most
countable valued mapping. Let R be an infinite cardinal number and let Ay C )_(
be a subset with card Ag < N. Then there exists a set Ag C A C X such that A
is linear, card A < X and A norms sp D(A).

Proof. Follows from Lemma 4.2 below. O

Theorem 3.3. Let f be an Asplund function on a Banach space X.
Then the space Sp Of(X) admits a PRI {P, : wyp < o < u} such that for every
a € [wo, p] there is a subspace Xo of X such that P, (Sp 0f(X)) is isometrical to
P O(f x,)(Xa).

Proof. Denote Y = 5p 9f(X). Let D : X — 2Y be a Jayne-Rogers
mapping for f satisfying the conclusion of Theorem 2.6. Let p be the smallest
ordinal with dens X = |u| and let {zo : wo < @ < p} be a dense set in X.
By transfinite induction, we construct a “long sequence” {4, : wy < a < u} of
subsets of X satisfying, for every a € [wy, ],

(i) A, is linear,

(ii) card A, < |af,
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(ifl) Ag C Aq if wo < B8 < a,
(iv) Aq = U{Ap :wp < B < a} if a is a limit ordinal,
(v) A, norms spD(A,).

This is done as follows. Put A,, = sp{z,,} and assume that, for an ordinal

a € (wo, ], we have constructed Ag for all 5 € [wo, ). We will construct A,.

If v is a limit ordinal then we put A, = ﬁU Ag. It is easy to check that (i)—(v)
<a

are satisfied. If « is a non-limit ordinal then we put A, := A where A is found
by Lemma 3.2 for Ay := Ay—1 U {zs}. Again, it is easy to verify (i)—(v). This
completes the construction.

Now, fix a € [wp, ). By Lemma 2.4, D(A4,) D D(A,) and so, by (v),
A, norms Y, := 5p D(A,) = 5 D(A,) = 5p D(A,). Lemma 2.8 then yields
a norm one projection P, : Y — Y such that P, Y =Y,, Y, is isometrical to

sp O(f1,)(Aqa) and

(%) P, assigns to each y* € Y the unique y}, € Y,,
satisfying y* [1— = v [
We claim that {P, : wop < a < u} is a PRI on Y. Indeed, A_u = X since
Ay D {ra:wo <a<p}andthusY, =Y, P, =Idy. Forany wg < < a < p
we have PgY = Y3 C P,Y =Y, by (iii), and so P,Pg = Pg. Also, by (x) it is
clear that PgP, = P3. If a is a limit ordinal then (iv) yields Y, = ﬂu Y3, ie.
<«

P)Y = ﬁu PgY . Finally, by Lemma 2.4, dens Y, < dens 4, < |a|. O
<o

4. Asplund functions on weakly Lindel6f determined Banach
spaces. A Banach space X is called weakly Lindeldf determined (WLD) if there
are a nonempty set I' and an injective continuous mapping 7' : (X*,w*) — R
such that for every z* € X* the set {y € I' : Tx*(y) # 0} is at most countable.
We recall that every WCG, even every WCD space is weakly Lindelof determined.
See e.g. [6, 8] for details.

Lemma 4.1 ([6, Lemma 6.1.1]). Let X be a Banach space and suppose
there exist two sets A C X, B C X* such that A, B are linear and

(i) ||z]| =sup(B N Bx=,x) for every x € A,

(i) A-nB" ={0}.
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Then there exists a norm one linear projection P : X — X such that PX = A,
P~1(0) = B, and P*X* =B".
The following is a variant of [6, Lemma 6.1.3].

Lemma 4.2. Let X be a Banach space. Let ® : X* — 2%, ¥ : X — 2X7
and D : X — 257 be three at most countable valued mappings. Let R be an infinite
cardinal number and let Ay C X, By C X* be two subsets with card Ay < N,
card By < N.

Then there exist sets Ay C A C X, By C B C X* such that A, B are
linear, card A < R, card B < X, ®(B) C A, D(A) UVY(A) C B and A norms
spD(A).

Proof. We will use an old glueing argument due to S. Mazur. By
induction we will construct sequences of sets 49 C A1 C Ay C --- C X and
By C By C By C--- C X" as follows. If, for some n € N, A,,_1 and B,,_1 are
already found then find a set C,, C X with card C,, < X that norms sp D(A4,,—1)
and put

m
An:{zrixz meN,z; € C,,UA,_1UP(B,_1),r; rational, i = 1,. m}
i=1

and
" = {Z riz; :meNxf € B, 1 UD(A,_1) UV (A, 1),

r; rational, 1 =1, ... ,m} .

Now, put A = U An, B = U B,. If 1,29 € A then z1,z9 € A, for some
n € N and so 21 —1—332 € Ant1 C A Similarly, if x € A and A € R there is n € N
so that Az € AA, C A,.1 C A, which shows that A is linear. An analogous
argument guarantees the linearity of B. The remaining properties of the sets A
and B claimed in the statement of the lemma are easy to check O

The following lemma is due to Valdivia. It claims the existence of so
called projectional generator on any WLD space.

Lemma 4.3 ([6, Proposition 8.3.1]). Let X be a weakly Lindeldf deter-
mined Banach space. Then there exists an at most countably valued mapping
® : X* — 2% such that ®(B)- N B" = {0} whenever @ # B ¢ X* and B is
linear.
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Theorem 4.4. Let f be an Asplund function on a weakly Lindeldf de-
termined Banach space. Then X admits a PRI {P, : wo < a < p} such that
{Pilsporx) two < a<putisa PRIonSpOf(X) and Paspof(X) is isometrical

to SpO(f [ p,x)(FaX).

Proof. Denote Y =sp9f(X). Let ® : X* — 2% be a mapping found in
Lemma 4.3 and let D : X — 2" be a Jayne-Rogers mapping for f satisfying the
conclusion of Theorem 2.6. For every z € X find ¥(z) € Bx- with (¢(z),x) =
Jall.

Let p be the smallest ordinal with dens X = |p| and let {z, : wo < a < p}
be a dense set in X. By transfinite induction, we construct “long sequences”
{An :wo < a<p}and {B, :wy < a < p} of subsets of X and X*, respectively,
satisfying, for every a € [wo, p],

(i) A,, By are linear,
(i

)
) card A, < |af, card B, < |a,
(iii) ®(Ba) C A, D(An) UV (A,) C Ba,
)
)

(iv) Ag C An, B3 C By ifwg < B < a

(v) Aa = U{Ag :wop < B < a}, Bg = U{Bg : wy < B < a} if o is a limit

ordinal,
(vi) A, norms spD(A,).

This is done as follows. Put A,, = sp{zu,}, B., = {0}. Assume that, for

an ordinal o € (wo, 1], we have constructed Ag, Bg for every 3 € [wp, ). We

will construct A, and B,. If « is a limit ordinal then we put A, = ﬁU Ag,
<a

B, = ﬁU Bg. It is easy to check that (i)—(vi) are satisfied. If o is a non-limit
<o

ordinal then we put A, = A, B, = B, where A and B are found in Lemma 4.2
for Ay := Ap—1 U{zs} and By := B,—1. Again, it is easy to verify (i)—(vi). This
completes the construction.

Now, let us fix a € [wp, 1] and verify the assumptions of Lemma 4.1. For
r € A, we have

]| = (¥ (z), z) < sup(Bo N Bx+,z) < |z

by (iii). Further,
A UB,  c ®(B,)t UB, " = {0}
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by (iii) and by Lemma 4.3. Thus, Lemma 4.1 yields a norm one projection

P, : X — X such that P,X = A,, P;'(0) = B, and P:X* =B, .
By Lemma 2.4, D(4,) D D(A,) and so, by (vi), A, norms Y, :=

Sp D(Aq) =P D(As) =SPD(A,). Lemma 2.8 then yields a norm one projection
Py :Y — Y such that P,Y =Y,, P,Y is isometrical to SpO(f[p, x)(FPaX) and

(+) P, assigns to each y* € Y the unique y}, € Y,

satisfying y*[1- = va 4
We have to verify P, = P*[y. To this end, consider any y* € Y and = € X.
Then

<ﬁay*, x> = <ﬁay*, Pyx + (x — Pa:v)>

- <ﬁay*apax> =y, Paz) = (P3y", 2)
as o ~
r—P,x € Pa_l(O) = Ba1 CD(As)1L = (5PD(An))L = (PY)L

by (iii) and Lemma 2.4. We claim that {P, : wo < a < u} is a PRI on X.
Indeed,A_#:XsinceA”D{xa:w0§a<u}. For any wyp < B < a < u we
have P3X C P,X and Pgl(O) > P;1(0) by (iv) and so P3P, = P,Pg = Ps. For
limit ordinals «, (v) implies A, = U Ag, ie. P,X = U PgX.
[A<a B<a
That {P}[y : wo < o < p} forms a PRI on Y follows in the same manner

as in the proof of Theorem 3.3, because the construction of ﬁa in this proof is
the same as that of P, in Theorem 3.3. O

5. LUR-renorming of spadf(X). We will use the following theorem
by Troyanski and Zizler ([18, 20]). We present it in the form of [3, Theorem
VII.1.8 and Remark VIIL.1.7].

Theorem 5.1. Let P be a class of Banach spaces such that every Y
in P admits a PRI {P, : wo < a < u} such that P,Y belongs to P for every
a € [wo,p). Then every Y in P admits an equivalent LUR norm. Moreover, if
the spaces Y in P are subspaces of dual Banach spaces and if the projections P,
are weak*-to-weak® continuous then every Y € P admits an equivalent w*-lower
semi-continuous LUR norm.

Theorem 5.2. Let f be an Asplund function on a WLD Banach space
X. Then there exists an equivalent dual norm on X* such that its restriction to
spOf(X) is LUR.
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Proof. Denote by P the class of all Banach spaces that are isometrical
to a subspace Y of dual Banach spaces Z* such that (i) Z is WLD and (ii) there
exists an Asplund function g on Z with Y =5pdg(Z). It follows from Theorem
4.4 and from the fact that subspaces of WLD spaces are WLD that this class P
satisfies the assumptions of the “moreover part” of Theorem 5.1. Consequently,
there exists an equivalent w*-lower semi-continuous LUR norm on every Y € P.
The conclusion follows from the following proposition. O

Proposition 5.3. Let Y be a subspace of a dual Banach space X* and
let | - | be an equivalent w*-lower semi-continuous norm on'Y . Then there exists
an equivalent dual norm ||| - ||| on X* such that ||- || Ty =]

Proof. Let By~ be the unit ball of X* in the original norm || - || and let
By C Y be the |-|-unit ball of Y. We may and do assume that |-| <|-[|[y < G]]
for some § € R. Since Bj is relatively w*-closed in Y it can be written as an
intersection of relatively w*-closed halfspaces (in Y'), i.e. there exist an index set
I and a family {p, : @ € I} of w*-continuous linear functionals on Y such that

B ={y" €Y :p(y") <1l,a €I}
Since Bj is symmetric, it also satisfies
Bi={y" €Y :|pa(y")| <lacl}

Clearly, po < || - ||y for all @ € I. By the Hahn-Banach dominated extension
theorem([9, p. 68]), every p, can be extended to a w*-continuous linear functional
Da defined on the whole of X* in such a way that p, < || - || on X*. Denote

By ={y" € X" : [pa(y")| <1,a € I} N fBx-.
From the construction it follows that
(i) By is w*-closed, symmetric and convex,
(i) Bx+ C By C Bx+,
(iii) BoNY = By.

Consequently, the Minkowski’s functional ||| - ||| of the set By is an equivalent dual
norm on X* such that |||y =] O

Theorem 5.4. Let f be an Asplund function on a WLD Banach space
X.
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(a) If f is bounded on bounded sets then f can be approximated by Fréchet
differentiable convex functions uniformly on bounded sets.

(b) If f is Lipschitz then f can be approzimated by Fréchet differentiable convex
functions uniformly on X.

Proof. We use the argument from [15]. Denote Y =35pdf(X) and define
1

a sequence (h,) of functions on X* by h,(z*) = f*(z*) + —3||:L‘*H"‘2 for x* €Y
n

and hp(z*) = oo for * € X*\ Y, where || - [|* is an equivalent dual norm on X*
whose restriction to Y is LUR (Theorem 5.2). Clearly, dom h,, = dom f* C Y.

3
n
Define g, = f O IH - ||?, where O denotes the infimal convolution. g, is a

continuous convex function satisfying g = hy, for all n. If n € N, x € X and
y* € Ogn(z) are given, then y* € Y and h, is rotund at y* with respect to
x in the sense of [2], i.e. for every ¢ > 0 there exists 6 > 0 such that {z* :
hn(y* + 2%) — hy(y*) — (2%, 2) < §} C eBx+. By [2, Proposition 4], g,, is Fréchet
differentiable at = with the derivative y*. By [11, Lemma 2.4] (resp. by its proof)
gn — [ uniformly on bounded sets (resp. uniformly on X). O

Remarks. In the context of the presented results the following questions
arise.

Q1. Given an Asplund space X, does its dual X* admit a PRI with
respect to any equivalent nondual norm? We note that the result of Fabian and
Godefroy from [7] reads as: The dual to every Asplund space, that is, every dual
Banach space with the Radon-Nikodym property, admits a PRI with respect to
any dual norm. Once a norm is not dual, the argument of [7] does not work.

Q2. Given an Asplund space X and a non-weak*-closed subspace Y of X,
does there exist a PRI on'Y with respect to the restriction of the dual norm of X*
to Y ¢ Theorem 3.3 says that the answer is “Yes” if Y is of the form spof(X),
where f is a continuous convex function on X. The answer is also “Yes” if the
subspace Y is weak*-closed. Indeed, if we put Z =Y then the quotient X/Z is
also Asplund and (X/Z)* is isometrical to Z- = (Y, )1 =Y =Y.

Q3. Given an arbitrary Banach space X and a non-weak*-closed weak* -
dentable subspace Y of X*, does there exist a PRI on Y with respect to the
restriction of the dual norm of X* to Y ? The question is stronger than Q2,
because the dual to every Asplund space is weak® dentable.

Q4. If a Banach space X is dentable, does there exist a PRI on X ¢ The
question Q3 is stronger than Q4 because here X is a weak*-dentable subspace



306 Martin Zemek

of X**. A positive answer to Q4 would imply that spaces with Radon-Nikodym
property admit an equivalent locally uniformly rotund norm, which is, however,
a long standing and widely open problem.

Example of an Asplund function. Consider the Banach space

X = (@), -1,

where I' is an infinite set and || - ||; is the canonical norm on ¢;(I"), and consider
a function f : X — R defined by

fl@)=> 22, x=(x,) €t(D).
yel’

We can easily check that, for every z € X, 0f(z) = {22} (C (loo(I), || |lc) = X,
where || - ||oo is the canonical norm on ¢ (I")). Since the “identity” mapping
(LD, - 111) = FBoo(D), ||+ |loo) is norm-to-norm continuous, f is Fréchet differen-
tiable on X and thus Asplund. (f’ is continuous on X and so, for every separable
subspace Xo C X, 5p9(fx,)(Xo) = 5p(f'[x,)(Xo) is separable.) We can also
easily check that

df (x) = (), dom f* =£5(T'), dom f* = co(I).
Thus,
Of(X) G dom f* G dom f* G Lo (') = X~

and
Y =5p0f(X) =5p dom f* = ¢o(I') & X™.

Note that (¢o(T'), ] - |lo) is not dentable (it contains an infinite 2-tree) and so Y,
as a subspace of X*, is not weak*-dentable. But, by Theorem 4.1, (co(T), || - [|0)
has a PRI.
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