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THE SPACE OF DIFFERENCES OF
CONVEX FUNCTIONS ON [0, 1]

M. Zippin∗

Communicated by L. Tzafriri

Abstract. The space K[0, 1] of differences of convex functions on the
closed interval [0, 1] is investigated as a dual Banach space. It is proved
that a continuous function f on [0, 1] belongs to K[0, 1] if, and only if,
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Under the norm || ||, K[0, 1] has a predual isometric to C(F ), the space of
continuous functions on F = {−1} ∪ [0, 1] ∪ {2}. The isometry between the
L1(µ)-space C(F )∗ and K[0, 1] maps the positive cone of L1(µ) onto the set
of all non positive convex functions on [0, 1].
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1. Introduction. The space BVN [0, 1] of differences f = g − h of
monotonely increasing functions g and h on [0, 1] has been thoroughly investi-
gated as a Banach space under the norm of the total variation. It is well-known
that BVN [0, 1] is isometric to the dual space of C[0, 1], the space of continuous
functions; and, by Kakutani’s axiomatic characterization of L-spaces [1], it is an
L1(µ) space. Less familiar is the space K[0, 1] of differences f = g − h of convex
functions on the closed interval [0, 1]. The purpose of this paper is to investigate
K[0, 1] as a dual Banach space under certain natural norms. The space BVN [0, 1]
draws attention mainly because of the relation BVN [0, 1] = C[0, 1]∗ and the fact
that its natural norm is the precise dual norm. Analogously we wish to construct
a space A(S) of affine continuous functions on a metrizable Choquet simplex S
such that K[0, 1] = A(S)∗. This relation suggests a “natural” norm on K[0, 1],
namely, the dual norm, which happens to be

(∗) ||f || = |f(0)| + |f(1)|
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As the dual of A(S), the space K[0, 1] is known to be an L1(µ) space (see e.g. [2]).
It turns out that the natural isometry of L1(µ) onto K[0, 1] maps the positive cone
onto the cone Π of non-positive convex functions on [0, 1]. The cone Π determines
a natural lattice structure on K[0, 1]. Since any convex function ĝ on [0, 1] is
continuous in the open interval, ĝ can be represented as a linear combination
ĝ = α0W0 +α1W1 + g, where g is a continuous convex function on [0, 1] while W0

and W1 are the (convex) indicator functions of the singleton subsets {0} and {1}
of [0, 1], respectively. Denoting by KC [0, 1] the space of differences of continuous
convex functions on [0, 1] we have that K[0, 1] = KC [0, 1] + [W0,W1].

At this point we do not know what the “natural” norm on K[0, 1] should
be. But we certainly wish the norm to express the nature of the space elements,
namely, differences of convex functions. A reasonable choice of a temporary norm
for K[0, 1] is

|||f ||| = inf{‖g‖∞ + ‖h‖∞ : f = g − h, where
g and h are convex on [0, 1]}

(1.1)

with ‖ ‖∞ denoting the sup norm. However, an equivalent but slightly different
norm is easier to work with.
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Let M denote the convex cone of non negative convex functions on [0, 1].
It will somewhat simplify our computations in the sequel if we norm K[0, 1] by

‖f‖ = inf{‖g‖∞ + ‖h‖∞ : f = g − h where g, h ∈M}(1.2)

instead of (1.1). Clearly, these two norms are equivalent with |||f ||| ≤ ‖f‖ ≤
3|||f ||| for all f ∈ K[0, 1]. At this point we do not know that the normed space
K[0, 1] is complete. Completeness will be established in Section 2. For each 0 ≤
t ≤ 1 let δ(t) denote the point evaluation functional at t. Let ∆ denote the norm
closed linear span of {δ(t) : 0 ≤ t ≤ 1} in K[0, 1]∗ and put Γ = [δ(t) : 0 < t < 1].

In Section 2 we prove that, under the norm ‖ ‖, the spaces KC [0, 1] and
K[0, 1] are isometric to the spaces Γ∗ and ∆∗, respectively. Sections 3 and 4
are devoted to the study of certain pavements of finite dimensional subspaces
of K[0, 1] and ∆. In Section 5 we construct the “simplex space” A(S) which is
isomorphic to ∆ and induces the natural structure of K[0, 1]. In Section 6 we
investigate the simplex S itself and show that its extreme boundary ∂S (= the set
of extreme points of S) is homeomorphic to the space F = [0, 1]∪{−1}∪{2}. It is
concluded that K[0, 1] is isometric to C(F )∗, the space of regular Borel measures
on F . Let G(0, 0) = 0 = G(1, 1), G(x,−1) = x − 1 and G(x, 2) = −x for all
0 ≤ x ≤ 1 and let

G(x, t) =



































x− 1 if either 0 ≤ t < x ≤
1

2
or 0 ≤ t ≤

1

2
≤ x ≤ 1

−x if either 0 ≤ x ≤
1

2
≤ t ≤ 1 or

1

2
≤ x < t ≤ 1

(1 − t−1)x if 0 ≤ x ≤ t ≤
1

2

(1 − t)−1t(x− 1) if
1

2
≤ t ≤ x ≤ 1.

(1.3)

We show that the map τ : C(F )∗ → K[0, 1], defined for every 0 ≤ x ≤ 1 by

τ(µ)(x) =

∫

F

G(x, t)dµ(t)(1.4)

is a surjective isometry which maps the positive cone of C(F )∗ onto the cone of
non positive convex functions on [0, 1]. In Section 7 we present an algorithm
which constructs a unique pair of non positive convex functions g and h for a
given f ∈ K[0, 1], satisfying f = g − h and ||f || = ||g|| + ||h||.

The space of differences of convex functions with bounded one side deriv-

atives at the boundary has been studied in the literature (see. e.g., [5, 4]). This
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space is denoted by BC[0, 1] and its norm, as suggested by F. Riesz’s paper, is
the following

(∗∗) ‖f‖ = |f(0)| + |f ′r(0)|

+ supP
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∣
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.

However, BC[0, 1] does not include important classes of convex functions. Our
main tools are taken from the theory of L1(µ) preduals. For information about
these spaces the reader is referred to [3], [2] and [6].

Notation. We use standard Banach space notation as can be found in
[3]. In particular, if M = {xα}α∈A is a subset of a Banach space X then [M ]
and [xα]α∈A denote the norm closed linear span of {xα}α∈A. Ball (X) denotes
the closed unit ball of X. The Banach-Mazur distance between the isomorphic
spaces X and Y is denoted by d(X,Y ). We consider only real Banach spaces.

2. The dual space of ∆. The facts described in this section depend
on the special properties of the classical Schauder basis of the space C[0, 1].
Let {fj}

∞
j=0 denote the Schauder basis and let {ψj}

∞
j=0 be the corresponding

biorthogonal functionals.
Recall that f0 ≡ 1, f1(t) = t, ψ0 = δ(0), ψ1 = δ(1) − δ(0), for n ≥ 0

and 1 ≤ i ≤ 2n, f2n+i(t) = 0 at the points 0, (2i − 2)2−n−1, (2i)2−n−1 and 1;
f2n+i((2i− 1)2−n−1) = 1 and f2n+i is linear in between. Also,

ψ2n+i = δ((2i − 1)2−n−1) −
1

2
δ((2i − 2)2−n−1) −

1

2
δ((2i)2−n−1).

It is known that {fj}
∞
j=0 is a monotone basis of C[0, 1], i.e., if Qj denotes the

natural basis projection of C[0, 1] onto [fi]
j
i=0 (that is, Qj(

∞
∑

i=1
aifi) =

j
∑

i=1
aifi)

then ‖Qj‖∞ = 1 for all 0 ≤ j < ∞. It is also known that, for each j = 2m + i
and f ∈ C[0, 1], Qj(f) is the unique continuous, piecewise linear function on

[0, 1] which agrees with f at each of the points 0, 1,
1

2
, . . . , 2−m, 3 · 2−m, . . .,

(2m − 1)2−m, 2−m−1, . . . , (2i− 1)2−m−1 and is linear in between. It follows that

For each j ≥ 1, Qj(f) is nonnegative if f is and Qj(f) is convex if f
is convex.

(2.1)
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It is easy to check that each fj is in K[0, 1], however, the sequence
{fj}

∞
j=0 does not span the whole space K[0, 1] as this space is non separable. Let

K0 = [fj]
∞
j=0 ∩K[0, 1].

Lemma 2.1. For each j ≥ 0 Qj is a projection with norm 1 on KC [0, 1].
The Schauder functions {fj}

∞
j=0 form a monotone basis of K0.

P r o o f. Let f ∈ KC [0, 1] and assume that ‖f‖ = 1. Hence, given ε > 0,
there exist non negative continuous convex functions g and h such that ‖g‖∞ +
‖h‖∞ < 1+ ε and f = g−h. By (2.1), for each j, Qjg and Qjh are non negative
continuous convex functions with ‖Qjg‖∞ + ‖Qjh‖∞ ≤ ‖g‖∞ + ‖h‖∞ < 1 + ε.
Since Qjf = Qjg −Qjh we get that ‖Qjf‖ ≤ 1. �

Let us now discuss the properties of the subspace ∆0 = [ψj ]
∞
j=0 of K[0, 1]∗.

It is easy to see that, for each k ≥ 1, the subspace ∆k = [ψj ]
2k

j=0 = [δ(j2−k)]2
k

j=0

hence ∆0 ⊂ ∆. In fact ∆0 = ∆ because of the following

Example 2.2. For every 0 < s < t < 1

‖δ(s) − δ(t)‖ = |s− t|max{t−1, (1 − s)−1}.(2.2)

P r o o f. Suppose that g ∈M ∩ Ball(K[0, 1]) then

|(δ(s) − δ(t))(g)| = |g(s) − g(t)| = |a| |s− t|,

where a is the slope of the chord joining (s, g(s)) and (t, g(t)). Since g is convex,
we have that

t−1(g(t) − g(0)) ≤ a ≤ (1 − s)−1(g(1) − g(s))

and therefore, because g is non negative,

|(δ(s) − δ(t))(g)| ≤ |s− t|max{t−1|g(0) − g(t)|, (1 − s)−1|g(1) − g(s)|}

≤ |s− t|max{t−1, (1 − s)−1}.

On the other hand, if 0 ≤ s < t ≤ 1 and g(u) = max{1 − t−1u, 0} for 0 ≤ u ≤ 1
then

g ∈M ∩Ball K[0, 1] and |(δ(s)−δ(t))(g)| = |g(s)−g(t)| = 1− t−1s = t−1|s− t|.

Let h(u) = max{(1− s)−1(u− 1) + 1, 0} then h ∈M ∩Ball(K[0, 1]) and |(δ(s)−
δ(t))(h)| = |h(s) − h(t)| = |s− t|(1 − s)−1. This proves (2.2). �
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It follows from Lemma 2.1 that, for every f ∈ K0 and ϕ ∈ ∆,

‖f‖= sup{〈ψ, f〉:ψ∈Ball(∆)} and ‖ϕ‖= sup{〈ϕ, g〉:g∈Ball(K0)}.(2.3)

Let J : K[0, 1] → ∆∗ denote the natural embedding defined by (Jf)(δ(t)) = f(t).
Then, by (2.3), J |K0

is an isometric embedding. Put Γ = [δ(t)]0<t<1. We will
now prove

Proposition 2.3. (a) The map J : K[0, 1] → ∆∗ is an isometric
isomorphism onto ∆∗ hence K[0, 1] is complete. Moreover, there is projection Q
of ∆∗ onto J(KC [0, 1]) with ‖Q‖ = 1 and Kernel (Q) = [δ(t)]⊥0<t<1 = Γ⊥.
(b) KC [0, 1]is isometric to Γ∗.

P r o o f. The standard separation theorem shows that, by (2.3),
Ball(J(K0)) is ω∗ dense in Ball (∆∗). Put J(K0) = K̂0 and let us denote J(f)
by f̂ for every f ∈ K[0, 1]. Let x∗ ∈ ∆∗ and assume that ‖x∗‖ = 1. Then there
exists a sequence {ên} ⊂ K̂0 with ‖en‖ = ‖ên‖ < 1 so that each en is a finite
linear combination of {fj} and x∗ = ω∗ lim ên. By the definition of ‖ ‖, for
each n ≥ 1 there exist gn and hn ∈ M ∩ Ball(K0) so that en = gn − hn and
‖gn‖∞ + ‖hn‖∞ ≤ 1. By passing to a subsequence, we may assume the existence
of ω∗ lim ĝn = g∗ and ω∗ lim ĥn = h∗. Clearly, g∗ − h∗ = x∗ and ‖g∗‖+ ‖h∗‖ ≤ 1.
Let g0(t) = g∗(δ(t)) and h0(t) = h∗(δ(t)) for all 0 ≤ t ≤ 1. As pointwise limits of
convex functions, g0 and h0 are convex. Therefore x∗ = ĝ0 − ĥ0 ∈ J(K[0, 1]) and
‖g0‖∞ + ‖h0‖∞ ≤ 1. Hence ‖g0 − h0‖ ≤ 1 and x∗ = J(g0 − h0). Let f ∈ K[0, 1]
and assume that ‖J(f)‖ = 1. Put x∗ = J(f) then the above argument shows
that ‖J(f)‖ = ‖f‖. We have thus proved (a) and the completeness of K[0, 1].

Let us now correct the discontinuities of g0 and h0 at the end of points
by defining g(t) = g0(t) and h(t) = h0(t) for 0 < t < 1, g(0) = lim

t→0+
g(t), g(1) =

lim
t→1−

g(t), h(0) = lim
t→0+

h(t) and h(1) = lim
t→1−

h(t). Then g and h are non negative

continuous convex functions on [0, 1] and ‖g‖∞ +‖h‖∞ ≤ 1. Put f0 = g−h then
f0 ∈ KC [0, 1] and

x∗(δ(t)) = f0(t) for all 0 < t < 1.(2.4)

It follows that the map Q : ∆∗ → J(KC [0, 1]) defined by Qx∗ = f0 is a projection
with ‖Q‖ = 1 and Kernel (Q) = [δ(t)]⊥0<t<1 = Γ⊥. Indeed, (2.4) ensures that
Q(x∗) is well defined (independently of the sequences {en}, {gn} and {hn}) and
the inequality ‖g‖∞+‖h‖∞ ≤ 1 implies that ‖Q‖ = 1. To determine Γ∗, note that
Γ ⊂ ∆, hence Γ∗ is naturally isometric to ∆∗/Γ⊥ = ∆∗/(kernelQ) ∼= Q(∆∗) =
J(KC [0, 1]). This middle isomorphism is, in fact, an isometry because, as is easily
checked, for every x∗ ∈ ∆∗, inf{‖x∗ − w‖ : w = α0W0 + α1W1} = ‖Qx∗‖. This
proves Proposition 2.3. �
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Remark 2.4. It follows from (2.2) that ∆ = span{δ(0), δ(1),Γ}.
Hence ∆∗ = span{W0,W1,K

C [0, 1]} where, as mentioned above, W0 and W1 can
be identified with the convex (discontinuous) indicator functions W0 = 1{0} and
W1 = 1{1} of the singleton subsets {0} and {1} of [0, 1], respectively.

3. The structure of Ball([fj]
2

n

j=0
). Consider the subspace

Kn
def
= Q2n(K0) = span{fj}

2n

j=0 in K[0, 1]. In this section we investigate the
structure of Ball(Kn) as a convex set. We start with the identification of the
extreme points of the convex set

An = {f ∈M ∩ Ball(Kn) : f(1) = 0}.

Lemma 3.1. The extreme points of An are the functions {gn
i }

2n

i=1 where
gn
i (t) = 1 − 2ni−1t if 0 ≤ t ≤ i2−n and gn

i (t) = 0 otherwise.

P r o o f. It is easy to see that each gn
i is an extreme point of An. Let us

show that An = conv{gn
i }

2n

i=1. Pick g ∈ An and assume that g(0) = 1. We will

show that there exist αi ≥ 0(1 ≤ i ≤ 2n) with
2n
∑

i=1
αi = 1 so that

g =
2n

∑

i=1

αig
n
i .(3.1)

Since g and gn
i are linear in each interval [(j − 1)2−n, j2−n], the problem is that

of solving the following system of 2n linear equations in 2n variables {αi}
2n

i=1:















2n
∑

i=1
αi = 1

2n
∑

i=1
αig

n
i (j2−n) = g(j2−n) 1 ≤ j ≤ 2n − 1.

(3.2)

But gn
i (

j

2n
) = 0 if j ≥ i, therefore (3.2) reduces to the triangular system



















2n
∑

i=1
αi = 1

2n
∑

i=j+1
αi(1 − ji−1) = g(j2−n) 1 ≤ j ≤ 2n − 1.

(3.3)
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Let us first agree that g(t) denotes 0 whenever t ≥ 1. Starting with the last
equation we get α2n = 2ng((2n − 1)2−n) and going down one easily proves by
induction that for every 0 ≤ k < 2n

α2n−k = (2n − k)[g((2n − (k + 1))2−n) − 2g((2n − k)2−n)
+ g((2n − k + 1)2−n)]

(3.4)

Note that αi ≥ 0 because g is convex. With these values of αi,

2n−1
∑

k=0

α2n−k = 2ng((2n − 1)2−n) + (2n − 1)[g((2n − 2)2−n) − 2g(2n − 1)2−n)]+
+(2n − 2)[g(2n − 3)2−n) − 2g((2n − 2)2−n) + g((2n − 1)2−n)]+
+(2n − 3)[g((2n − 4)2−n) − 2g((2n − 3)2−n) + g((2n − 2)2−n)]+
+ . . .+
+3[g(2 · 2−n) − 2g(3 · 2−n) + g(4 · 2−n)]+
+2[g(2−n) − 2g(2 · 2−n) + g(3 · 2−n)+
+[g(0) − 2g(2−n) + g(2 · 2−n)] =

= g((2n − 1)2−n)[2n − 2(2n − 1) + (2n − 2)]+
+g((2n − 2)2−n)[2n − 1 − 2(2n − 2) + (2n − 3)]+
+g((2n − 3)2−n)[2n − 2 − 2(2n − 3) + (2n − 4)] + · · ·+
+g(2 · 2−n)[3 − 4 + 1]+
+g(2−n)[2 − 2]+
+g(0) = g(0) = 1

This proves Lemma 3.1. �

The functions gn
i (t) = max{1 − 2ni−1t, 0} (1 ≤ i ≤ 2n) and their sym-

metric images with respect to
1

2
,

g̃n
i (t) = gn

2n−i(1 − t) = max{(2n − i)−12n(t− 1) + 1, 0} (0 ≤ i ≤ 2n − 1)

play an important role in the following computations.

Corollary 3.2. For every n ≥ 1

M ∩ Ball(Kn) ⊂ 2conv{{gn
i }

2n

i=1, {g̃n
i }

2n−1
i=0 }(3.5)

and
Ball(Kn) ⊂ 2conv{{±gn

i }
2n

i=1, {±g̃n
i }

2n−1
i=0 }.(3.6)

P r o o f. First note that the function 1 = gn
2n + g̃n

0 . Let f ∈M ∩Ball(Kn)
and assume that min{f(t) : 0 ≤ t ≤ 1} = β = f(t0). Then ‖f−β1‖ = ‖f‖−β and
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f = β1 + g + h where g(t) = f(t)− β if 0 ≤ t ≤ t0, g(t) = 0 if t0 ≤ t ≤ 1, h(t) =
f(t) − β if t0 ≤ t ≤ 1 and h(t) = 0 if 0 ≤ t ≤ t0. Clearly, |β| + ‖g + h‖ ≤ 1.
if g is not identically 0 then g(0) = ‖g‖ 6= 0 and g(0)−1g is a member of the
set An defined in Lemma 3.1. If h 6= 0 then h(1) = ‖h‖ 6= 0 and the function

h(1)−1h is a symmetric image of a member of An with respect to the point t =
1

2
.

By Lemma 3.1, g(0)−1g is a convex combination of {gn
i }

2n

i=1 and h(1)−1h is a

convex combination of {g̃n
i }

2n−1
i=0 hence f = β1 + g(0)

2n
∑

i=1
αig

n
i + h(1)

2n−1
∑

i=0
βig̃

n
i

with β ≥ 0, αi ≥ 0, βi ≥ 0 and β+
2n
∑

i=1
g(0)αi +

2n−1
∑

i=0
h(1)βi = β+g(0)+h(1) ≤ 2.

This proves (3.5).

By the definition of ‖ ‖, each f ∈ Ball(Kn) is a convex combination of
some f1 and −f2 with f1, f2 ∈M ∩ Ball(Kn) therefore, (3.5) implies (3.6).

This proves Corollary 3.2. �

4. The structure of ∆n. Recall that, by (2.3), the subspace ∆n =
[ψj ]

2n

j=0 is isometric to the dual of Kn (under the norm ‖ ‖). For each n ≥ 1 and

1 ≤ i ≤ 2n−1 let w̃n
i = δ(i2−n)−

1

2
δ((i−1)2−n)−

1

2
δ((i+1)2−n). Put w̃n

0 = δ(0)

and w̃n
2n = δ(1) then, as is easily checked ∆n = [w̃n

i ]2
n

i=0.

Proposition 4.1. For every n ≥ 1,

d(∆n, ℓ
2n+1
∞ ) ≤ 8.

P r o o f. We wish to estimate

∥

∥

∥

∥

2n
∑

i=0
aiw̃

n
i

∥

∥

∥

∥

from above and from below.

This is done in two steps. We start with the computation of 〈w̃n
i , g

n
j 〉, 〈w̃

n
i , g̃

n
j 〉

and ‖w̃n
i ‖.

Lemma 4.2. For all 1 ≤ i ≤ 2n − 1, 1 ≤ j ≤ 2n and 0 ≤ h ≤ 2n − 1

〈w̃n
i , g

n
j 〉 = −(2i)−1δi,j, 〈w̃n

i , g̃
n
h〉 = −[2(2n − i)]−1δi,h

‖w̃n
0 ‖ = 〈w̃n

0 , g
n
2n〉 = 1, ‖w̃n

2n‖ = 〈w̃n
2n , g̃n

0 〉 = 1

(4.1)

and
1

2
max{i−1, (2n − i)−1} ≤ ‖w̃n

i ‖ ≤ max{i−1, (2n − i)−1}.
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P r o o f. Clearly, ‖w̃n
0 ‖ = ‖δ(0)‖ = 1 = ‖δ(1)‖ = ‖wn

2n‖ and 〈w̃n
0 , g

n
2n〉 =

gn
2n(0) = 1 = g̃n

0 (1) = 〈w̃n
2n , g̃n

0 〉. By (2.2), for each 1 ≤ i ≤ 2n − 1

‖w̃n
i ‖ ≤

1

2
‖δ(i2−n) − δ((i − 1)2−n)‖ +

1

2
‖δ(i2−n) − δ((i + 1)2−n)‖

=
1

2
max{i−1, (2n − i+ 1)−1} +

1

2
max{(i+ 1)−1, (2n − i)−1}.

Therefore ‖w̃n
i ‖ ≤ i−1 if 1 ≤ i ≤ 2n−1 while ‖w̃n

i ‖ ≤ (2n−i)−1 if 2n−1 ≤ i ≤ 2n−1.
Clearly, 〈w̃n

i , g
n
j 〉 = 0 = 〈wn

i , g̃
n
j 〉 whenever i 6= j. If 1 ≤ i ≤ 2n − 1 then

〈w̃n
i , g

n
i 〉 =

〈

−
1

2
δ((i − 1)2−n), gn

i

〉

= −
1

2
gn
i ((i− 1)2−n) = −

1

2
(1 − i−12n(i− 1)2−n) = −(2i)−1.

Since ‖gn
i ‖ = 1, we get, for all 1 ≤ i ≤ 2n−1, that 1 = 〈−(2i)w̃n

i , g
n
i 〉 ≤ ‖ −

(2i)w̃n
i ‖ ≤ 2. Similarly, if 1 ≤ i ≤ 2n − 1 then

〈w̃n
i , g̃

n
i 〉 =

〈

−
1

2
δ((i + 1))2−n), g̃n

i

〉

= −
1

2
g̃n
i ((i + 1)2−n) = −

1

2
[(2n − i)−12n((i+ 1)2−n − 1) + 1]

= −[2(2n − i)]−1.

Again, since ‖g̃i‖ = 1, we have that, for 2n−1 ≤ i ≤ 2n − 1,

1 ≤ 〈−2(2n − i)w̃n
i , g̃

n
i 〉 ≤ ‖ − 2(2n − i)w̃n

i ‖ ≤ 2.

This proves (4.1). �

Let us define

wn
0 = −w̃n

0 = −δ(0), wn
2n = −w̃n

2n = −δ(1)

wn
i = −(2i)w̃n

i if 1 ≤ i ≤ 2n−1

and wn
i = −2(2n − i)w̃n

i if 2n−1 < i ≤ 2n − 1.

In order to complete the proof of Proposition 4.1 we need

Lemma 4.3. For every n ≥ 1 and any sequence {ai}
2n

i=0 of numbers,

1

2
max |ai| ≤ ‖

2n

∑

i=0

aiw
n
i ‖ ≤ 4max |ai|.(4.2)
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P r o o f. By Corollary 3.2, for each w ∈ ∆n

||w|| ≤ 2 max{max{|〈w, gn
i 〉| : 1 ≤ i ≤ 2n},

max{| < w, g̃n
i 〉| : 0 ≤ i ≤ 2n − 1}}.

If w =
2n
∑

i=0
aiw

n
i then, by (4.1),

max{〈w, gn
i 〉| : 1 ≤ i ≤ 2n} =

max{max{| − a0 + ai| : 1 ≤ i < 2n−1},max{| − a0 + ai(2
n − i)i−1| :

2n−1 ≤ i ≤ 2n − 1}} ≤ 2max{|ai| : 0 ≤ i ≤ 2n} while

max{|〈w, g̃n
i 〉| : 0 ≤ i ≤ 2n − 1} =

max{max{| − a2n + ai(2
n − i)−1i| : 1 ≤ i ≤ 2n−1},

max{| − a2n + ai| : 2n−1 < i ≤ 2n}} ≤ 2max{|ai| : 0 ≤ i ≤ 2n}

Therefore ‖w‖ ≤ 4max{|ai| : 0 ≤ i ≤ 2n}. On the other hand, for all 1 ≤ i ≤ 2n

and 0 ≤ j ≤ 2n − 1, ‖gn
i ‖ = ‖g̃n

j ‖ = 1 hence

|a0| = |a0g
n
2n(0) = |a0〈g

n
2n , δ(0)|〉 = |a0〈−g

n
2n , wn

0 〉|

= |〈−gn
2n , w〉| ≤ ‖w‖ and

|a2n | = |a2n g̃n
0 (1)| = |a2n〈g̃n

0 , δ(1)〉| = an
2n〈−g̃n

0 , w̃
n
2n〉|

= |〈−g̃n
0 , w〉| ≤ ‖w‖.

For 1 ≤ i < 2n−1 let vn
i = gn

i − gn
2n and, if 2n−1 ≤ i < 2n, put vn

i = g̃n
i − g̃n

0 .
Then 〈vn

i , w
n
0 〉 = 〈vn

i ,−δ(0)〉 = −vn
i (0) = 0 = −vn

i (1) = 〈vn
i ,−δ(1)〉 = 〈vn

i , w
n
2n〉.

Because both 〈gn
2n , wi〉 = 0 = 〈g̃n

0 , wi〉 and ‖vn
i ‖ ≤ 2 for all 1 ≤ i ≤ 2n − 1 we

get that |ai| = |〈vn
i , w〉| ≤ 2‖w‖. This proves (4.2) and completes the proof of

Proposition 4.1 �

Remark 4.4. The biorthogonal functionals of {wn
i }

2n

i=0.

We have established the fact that, for each n ≥ 1, {wn
i }

2n

i=0 is a ba-
sis of ∆n which is 8-equivalent to the unit vector basis of ℓ2

n+1
∞ . While prov-

ing Lemma 4.3 we have, in fact, constructed “natural” biorthogonal functionals
{vn

i }
2n

i=0 of {wn
i }

2n

i=0 in Kn as follows: vn
0 (t) = t − 1, vn

2n(t) = −t, for each 1 ≤
i < 2n−1, vn

i (t) = gn
i (t) − gn

2n(t) = max{−(2n − i)i−1t, t − 1} and for 2n−1 ≤
i < 2n, vn

i (t) = max{−t, i(2n − i)−1(t − 1)}. Note that each of the functions
vn
i (t) is convex and continuous and those vn

i which are not linear vanish at the
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end points. Clearly, 〈vn
i , w

n
j 〉 = δi,j , ‖v

n
i ‖ ≤ 2 for all 0 ≤ i, j ≤ 2n and for every

sequence {bi}
2n

i=0 of numbers

2

2n

∑

i=0

|bi| ≥ ‖

2n

∑

i=0

biv
n
i ‖ ≥

1

4

2n

∑

i=0

|bi|.(4.3)

Note that vn
i = vn+1

2i for all n ≥ 1 and 0 ≤ i ≤ 2n.

5. The structure of the space ∆. Most of the properties of K[0, 1]
stated in the Introduction are based on the following

Theorem 5.1. There exists a metrizable Choquet simplex S such that
∆ is 8-isomorphic to the space A(S) of all affine continuous functions on S.

P r o o f. The theory of L1(µ) preduals makes it possible to show that
∆ ∼ A(S) by studying the structure of ∆ without even knowing what the simplex
S is. By Theorem 5.2 of [2] it suffices to show that there exists a sequence {∆n}

∞
n=1

of subspaces of ∆ with
∞
∪

n=1
∆n = ∆ such that ∆n ⊂ ∆n+1,dim ∆n = 2n + 1 for

each n ≥ 1, and, each ∆n admits a basis {wn
i }

2n

i=0 satisfying the following three
conditions:

wn
0 = wn+1

0 , wn
2n = wn+1

2n+1 and for each 1 ≤ i ≤ 2n − 1,(5.1)

wn
i = wn+1

2i + an
i w

n+1
2i−1 + bni w

n+1
2i+1

where 1 ≥ an
i , b

n
i ≥ 0,

an
1 = bn2n−1 = 1 and an

i + bni−1 = 1 for all 1 ≤ i ≤ 2n − 1(5.2)

hence, there is an w0
0 ∈ ∆ so that, for every n ≥ 1, w0

0 =
2n
∑

i=0
wn

i , and

For every n ≥ 1 and any numbers{ai}
2n

i=0,(5.3)

1

2
max |ai| ≤ ‖

2n

∑

i=0

aiw
n
i ‖ ≤ 4max |ai|.

We will show that the bases {wn
i }

2n

i=0 of ∆n constructed in Section 4 satisfy
the above three conditions. Indeed, for every n ≥ 1 wn

0 = −δ(0) = wn+1
0 and

wn
2n = −δ(1) = wn+1

2n+1 . If 1 ≤ i ≤ 2n − 1 then we have

w̃n
i = δ(i2−n) −

1

2
δ((i − 1)2−n) −

1

2
δ((i + 1)2−n)
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= 2[δ(2i2−n−1) −
1

2
δ(2i − 1)2−n−1 −

1

2
δ((2i + 1)2−n−1)]

= [δ(2i − 1)2−n−1 −
1

2
δ((2i − 2)2−n−1) −

1

2
δ((2i)2−n−1)]

+[δ((2i + 1)2−n−1) −
1

2
δ((2i)2−n−1) −

1

2
δ((2i + 2)w−n−1)]

= 2w̃n+1
2i + w̃n+1

2i−1 + w̃n+1
2i+1.

Therefore, if 1 ≤ i ≤ 2n−1 − 1 then

wn
i = −2iw̃n

i = −(4iw̃n+1
2i + 2iw̃n+1

2i−1 + 2iw̃n+1
2i+1)

= wn+1
2i + (4i− 2)−12iwn+1

2i−1 + (4i+ 2)−12iwn+1
2i+1

= wn+1
2i + (2i− 1)−1iwn+1

2i−1 + (2i + 1)−1iwn+1
2i+1.

If 2n−1 < i ≤ 2n − 1 then

wn
i = −2(2n − i)w̃n

i = −(4(2n − i)w̃n+1
2i + 2(2n − i)w̃n+1

2i−1

+2(2n − i)w̃n+1
2i+1) = wn+1

2i + (2n+1 − 2i)(2n+2 − 4i+ 2)−1wn+1
2i−1

+(2n+1 − 2i)(2n+2 − 4i− 2)−1wn+1
2i+1

= wn+1
2i + (2n − i)(2n+1 − (2i − 1))−1wn+1

2i−1

+(2n − i)(2n+1 − (2i + 1))−1wn+1
2i+1.

In the case i = 2n−1 we get that

wn
2n−1 = −2nw̃n

2n−1 = −(2n+1w̃n+1
2n + 2nw̃n+1

2n−1 + 2nw̃n+1
2n+1)

= wn+1
2n + 2n(2n+1 − 2)−1wn+1

2n−1 + 2n(2n+2 − 2n+1 − 2)−1wn+1
2n+1

= wn+1
2n + 2n−1(2n − 1)−1wn+1

2n−1 + 2n−1(2n+1 − (2n + 1))−1wn+1
2n+1

= wn+1
2n + 2n−1(2n − 1)−1wn+1

2n−1 + 2n−1(2n − 1)−1wn+1
2n+1.

We have thus proved (5.1) with

an
i = (2i − 1)−1i if 0 ≤ i ≤ 2n−1,

an
i = (2n − i)(2n+1 − (2i− 1))−1 if 2n−1 < i ≤ 2n

bni = (2i + 1)−1i if 0 ≤ i < 2n−1,

and bni = (2n − i)(2n+1 − (2i+ 1))−1 if 2n−1 ≤ i ≤ 2n.

Let us prove (5.2). Clearly,

an
1 = 1 = bn2n−1 and, for 1 ≤ i < 2n−1,

an
i + bni−1 = i(2i − 1)−1 + (i− 1)(2i − 1)−1 = 1.
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If i = 2n−1 then an
2n−1 + bn2n−1−1 = 2n−1(2n − 1)−1 + (2n − 1)−1(2n−1 − 1) = 1.

For 2n−1 < i < 2n − 1 we get that

an
i + bni−1 = (2n − i)(2n+1 − (2i− 1))−1 + (2n − i+ 1)(2n+1 − 2i+ 1)−1 = 1.

Finally, if i = 2n−1 + 1 we have

an
2n−1+1 + bn2n−1 = (2n−1 − 1)(2n − 1)−1 + 2n−1(2n − 1)−1 = 1.

These equalities imply, in view of (5.1), that the element w0
0 = −2δ(

1

2
) =

2n

∑

i=0

wn
i

for all n ≥ 1; this w0
0 is the unit function of A(S). This proves (5.2). Since

condition (5.3) is exactly (4.2), the proof of Theorem 5.1 is complete. �

We now know that ∆ is 8-isomorphic to the space A(S) where the natural
norm of each affine continuous function w(s) is ‖w‖ = max{|w(s)| : s ∈ S}.

Remark 5.2. It is known (see e.g., [2]) that, for each w ∈ A(S)

‖w‖ = sup
n

max{|〈w, vn
i 〉| : 0 ≤ i ≤ 2n} = lim

n
max{|〈w, vn

i 〉| : i ≤ 2n}(5.4)

Since
1

2
‖w‖ ≤ ||w|| ≤ 4‖w‖, we get that, for every f ∈ K[0, 1],

1

4
‖f‖ ≤ ||f || = lim

n

2n

∑

i=0

|〈f,wn
i 〉| ≤ 2‖f‖.(5.5)

Hence, the dual norm ||f || in A(S)∗ = K[0, 1], can be expressed in the form

||f || = lim
n

[|f(0)| + |f(1)|(5.6)

+2
2n−1−1
∑

i=0

i|f(i2−n) −
1

2
f((i− 1)2−n) −

1

2
f((i+ 1)2−n)|

+2
2n−1
∑

i=2n−1

(2n − i)|f(i2−n) −
1

2
f((i− 1)2−n) −

1

2
f((i+ 1)2−n)|

which is (∗)

6. The simplex S. We have used structure theorems in order to show
that ∆ is a space A(S) of all affine continuous functions on some Choquet simplex
S, under the norm ||w|| determined by (5.4). In this space the unit function is



The Space of Differences of Convex Functions on [0, 1] 345

w0
0 = −2δ(

1

2
). The theory of A(S) spaces suggests a simple way to present the

simplex S itself: S can be identified with the set {f ∈ A(S∗) : ||f || = 〈f,w0
0〉 =

1} equipped with the relative w∗ topology (see e.g., Section 2 of [6]). Before
investigating S we study the properties of some special members of S. Define
the following functions on [0, 1]: v−1(x) = x − 1, v2(x) = −x, v0(x) = x − 1 if
0 < x ≤ 1, v0(0) = 0, v1(x) = −x if 0 ≤ x < 1 and v1(1) = 0. For every

0 < t ≤
1

2
put vt(x) = max{{−t−1(1 − t)x, x − 1} and, if

1

2
< t ≤ 1, let

vt(x) = max{−x, t(1 − t)−1(x− 1)}. Let V = {vt : 0 ≤ t ≤ 1} ∪ {v−1} ∪ {v2}.

Lemma 6.1. (a) For each v ∈ V, ||v|| = 〈v,w0
0〉 = 1 and 〈v,w

n
i 〉 ≥ 0 for

all n ≥ 1 and 0 ≤ i ≤ 2n.
(b) Each v ∈ V is an extreme point of S.

P r o o f. (a) A straightforward computation gives 〈v,w0
0〉 = 〈v,−2δ(

1

2
)〉 =

1 for every v ∈ V . Let us compute the norm ||v||. Since v−1 and v2 are linear,
〈v−1, w

n
i 〉 = 0 = 〈v2, w

n
i 〉 for all n ≥ 1 and 1 ≤ i ≤ 2n − 1, while 〈v−1, w

n
2n〉 =

〈v−1,−δ(1)〉 = 0 = 〈v2,−δ(0)〉 = 〈v2, w
n
0 〉. Therefore, by (5.6), ||v−1||

= |〈v−1, w
n
0 〉| = 〈v−1,−δ(0)〉 = −v−1(0) = 1 and ||v2|| = |〈v2, w

n
2n〉| = 〈v2,−δ(1)〉 =

−v2(1) = 1. Consider v0 and v1: because of the linearity in the half-closed inter-
val, 〈v1, w

n
i 〉 = 0 for n ≥ 1 and all 2 ≤ i ≤ 2n while 〈v2, w

n
i 〉 = 0 if n ≥ 1 and

0 ≤ i ≤ 2n − 2. Since 〈v0, w
n
0 〉 = −v0(0) = 0 = −v1(1) = 〈v1, w

n
2n〉 we get that

||v0|| = |〈v0, w
n
1 〉| = |2v0(2

−n)−v0(2
−n+1)| = |2−n+1−2−2−n+1 +1| = 1. Similarly

one proves that ||v1|| = |〈v1, w
n
2n−1〉| = 1. Consider vt with 0 ≤ t ≤ 1. First note

that if t = i2−n then vt = vn
i and by Remark 4.4, ||vt|| = ||vn

i || = |〈vn
i , w

n
i 〉| = 1. If

0 ≤ t ≤ 1 and t 6= i2−n then pick a numerical sequence t(k) = i(k)2−n(k) which
converges to t. The definition of vt implies that the pointwise limit lim

n
vt(k) = vt.

Therefore 〈vt(k), δ(s)〉 → 〈vt, δ(s)〉, i.e., vt(k) converges to vt in the w∗ topology.
Since ||vt(k)|| = 1, ||vt|| ≤ 1 and because 〈vt, w

0
0〉 = 1 we get that ||vt|| = 1 for all

0 ≤ t ≤ 1. It follows from (5.1) and (5.2) that, for every v ∈ V and n ≥ 1,

1 ≥
2n

∑

i=0

|〈v,wn
i 〉| ≥

2n

∑

i=0

〈v,wn
i 〉

= 〈v,
2n

∑

i=0

wn
i 〉 = 〈v,w0

0〉 = 1 therefore

〈v,wn
i 〉 ≥ 0 for all 0 ≤ i ≤ 2n.

This proves (a).
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(b). Suppose that 0 < t <
1

2
, c > 0 and let g(x) = −ct−1x if 0 ≤ x ≤ t

and g(x) = (1 − t)−1c(x− 1) if t ≤ x ≤ 1. Let us compute ||g||. Let n be so large

that t ≤
1

2
− 2−n+1 and let j be the integer for which (j − 1)2−n < t ≤ j2−n.

Because g is linear in each of the intervals [0, t] and [t, 1], 〈g,wn
i 〉 = 0 for all

0 ≤ i ≤ 2n except possibly for i = j and i = j − 1. Hence

2n
∑

i=0
|〈g,wn

i 〉| = |〈g,wn
j−1〉| + |〈g,wn

j 〉|

= 2(j − 1)|g((j − 1)2−n) −
1

2
g(j − 2)2−n) −

1

2
g(j2−n)|

+2j|g(j2−n) −
1

2
g((j − 1)2−n) −

1

2
g((j + 1)2−n)|

= (j − 1)c(1 − t)−1(j2−nt−1 − 1) + jc(1 − t)−1(1 − 2−nt−1(j − 1))

= (1 − t)−1c.

It follows that
||g|| = (1 − t)−1c.(6.1)

We are now ready to prove that every v ∈ V is an extreme point of S. First
suppose that t is either −1, 2 or a dyadic fraction t = i2−n with 1 ≤ i < 2n. Then
vt = vn

i for some 0 ≤ i ≤ 2n, which is an extreme point of S by Proposition 3.1
of [6]. It remains to consider t = 0, 1, and 0 < t < 1, t 6= i2−n. Suppose that

0 < t <
1

2
, t 6= i2−n. Let g, h ∈ S and assume that vt =

1

2
(g + h). Recall that,

because ||g|| = 〈g,w0
0〉 = 1 = 〈h,w0

0〉 = ||h||, we have that 〈g,wn
i 〉, 〈h,wn

i 〉 ≥ 0 for
all n ≥ 1 and 0 ≤ i ≤ 2n. Since vt is linear in each of the intervals [0, t] and
[t, 1] g and h must also be linear in these intervals. Similarly, because −vt(0) =
〈vt, w

n
0 〉 = 0 = 〈vt, w

n
2n〉 = −vt(1) also g(0) = h(0) = 0 = h(1) = g(1). Suppose

that g(t) = −c and h(t) = −d for some c, d ≥ 0. Then by (6.1),

1 = ||g|| = (1 − t)−1c and 1 = ||h|| = (1 − t)d

hence c = d = (1 − t)−1 and therefore vt = h = g. This proves that vt is an

extreme point of S if 0 < t <
1

2
. The case

1

2
< t < 1 is proved in a similar

fashion. Let us consider v0 and let v0 =
1

2
(g+h) where g, h ∈ S. Again, because

v0 is linear in (0, 1] so are g and h. Since v0(1) = 0 also −g(1) = 〈g,wn
2n〉 =

0 = 〈h,wn
2n〉 = −h(1). It follows that g(x) = a(x − 1) and h(x) = b(x − 1) for

0 < x ≤ 1. Let g(0) = c and h(0) = d. Then c = g(0) = 〈g, δ(0)〉 = −〈g,wn
0 〉 ≤ 0
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and d = h(0) = 〈h, δ(0)〉 = −〈h,wn
0 〉 ≤ 0. Since 0 = v0(0) =

1

2
(g(0)+h(0)) we get

that c = d = 0. If 0 < x ≤ 1 then x−1 = v0(x) =
1

2
(g(x)+h(x)) =

1

2
(a+b)(x−1).

Hence
1

2
(a+ b) = 1. But, for each n ≥ 1, by (a),

1 ≥ 〈g,wn
1 〉 = −2〈g, δ(2−n) −

1

2
δ(0) −

1

2
δ(2−n+1)〉

= −2g(2−n) + g(2−n+1) = −2a(2−n − 1) + a(2−n+1 − 1) = a.

Similarly, b ≤ 1 and therefore a = b = 1. It follows that v0 = g = h. A similar
argument works for v1. This proves (b) and completes the proof of Lemma 6.1. �

We are now prepared to characterize the extreme boundary ∂S of S which
is the set of extreme points of S.

Lemma 6.2. (a) V = ∂S
(b) ∂S is a w∗ compact set.

P r o o f. (a). In Lemma 6.1 we proved that each v ∈ V is an extreme point
of S. By Proposition 3.4 of [6] each extreme point of S is a w∗ limit of a sequence

v
n(k)
i(k) with 0 ≤ i(k) ≤ 2n(k). We know that every w∗ lim vt(k) with {t(k)} ⊂ [0, 1] is

in V . Hence by Lemma 6.1 (b) V = ∂S. To prove (b), given a numerical sequence
{t(k)} ⊂ [0, 1], pick a converging subsequence {t′(k)} with lim t′(k) = t ∈ [0, 1].
Then the pointwise limit lim

k
vt′(k)(x) = vt(x) hence vt = w∗ lim vt′(k). This proves

(b). �

A metrizable Choquet simplex with a compact set ∂S of its extreme points
is called a Bauer Simplex. For information about Bauer simplices we refer the
reader to Section 4 of [6]. A direct consequence of Lemma 6.2, Theorem 6.1 and
Remark 5.2 is the following

Theorem 6.3. Let F denote the compact metric space [0, 1]∪{−1}∪{2}.
Then the operator T : A(S) → C(F ) defined by

(Tw)(t) = 〈w, vt〉(6.2)

is an isometry of A(S) onto C(F ). The dual surjective isometry T ∗ : C(F )∗ →
K[0, 1] maps the measure µ ∈ C(F )∗ (represented on [0, 1] by the BVN [0, 1]
function µ̃ with µ̃(0) = 0) onto the function f ∈ K[0, 1] defined (see (1.3)) by

f(x) =

1
∫

0

G(x, t)dµ(t) + x(µ({−1}) − µ({2})) − µ({−1})(6.3)
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=















































x(2µ̃(1
2 ) − µ̃(1) + µ({−1}) − µ({2})) − µ({−1}) − µ̃(x) − x

1

2
∫

x

t−1dµ(t)

if 0 ≤ x ≤
1

2

x(2µ̃(
1

2
) − µ̃(1) + µ({−1}) − µ({2})) − µ({−1}) − 2µ̃(

1

2
)+

µ̃(x) + (x− 1)
x
∫

1

2

(1 − t)−1dµ(t) if 1
2 ≤ x ≤ 1

P r o o f. Lemma 6.2 states that ∂S = {vt : 0 ≤ t ≤ 1}∪{v−1}∪{v2} which,
under the topology of S (i.e., the w∗ topology of Ball A(S)∗), is homeomorphic
to F . Since ∂S is compact, S is a Bauer simplex, hence (see e.g., Proposition 2.1
of [6]) the restriction map R : A(S) → C(∂S) defined by (Rw)(t) = 〈w, vt〉 for
all vt ∈ ∂S (t ∈ F ), is an isometry of A(S) onto C(∂S) = C(F ). But, in view of
Lemma 6.2 and (6.2), R = T , which proves the first part of Theorem 6.3. Let us
now consider the dual surjective isometry T ∗ : C(F )∗ → K[0, 1] and put T ∗ = τ .
For each x ∈ [0, 1] we have that

τ(µ)(x) = f(x) = 〈f, δ(x)〉 = 〈T ∗µ, δ(x)〉 = 〈µ, Tδ(x)〉(6.4)

=

∫

F

〈δ(x), vt〉dµ(t) = v−1(x)µ({−1}) + v2(x)µ({2}) +

1
∫

0

〈δ(x), vt〉dµ(t)

= x(µ({−1}) − µ({2}) − µ({−1}) +

1
∫

0

〈δ(x), vt〉dµ(t).

Let us compute 〈δ(x), vt〉. We get that, if 0 < x ≤
1

2
, then

〈δ(x), vt〉 =























x− 1 if 0 ≤ t < x

t−1(t− 1)x if x ≤ t ≤
1

2

−x if
1

2
≤ t ≤ 1

(6.5)
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while, for
1

2
≤ x < 1, we have

〈δ(x), vt〉 =























x− 1 if 0 ≤ t ≤
1

2

(1 − t)−1t(x− 1) if
1

2
≤ t ≤ x

−x if x < t ≤ 1.

(6.6)

Also, 〈δ(0, vt〉 = 0 = 〈δ(1), vt〉 for all 0 ≤ t ≤ 1. Using (6.4) and (6.5) we get for

all 0 ≤ x ≤
1

2
that

τ(µ)(x) = f(x) = x(µ({−1}) − µ({2})) − µ({−1}) +

1
∫

0

G(x, t)dµ(t)

= x(µ({−1}) − µ({2})) − µ({−1})

+(x− 1)µ̃(x) − x

1

2
∫

x

t−1(1 − t)dµ(t) − x(µ̃(1) − µ̃(
1

2
))

= x(µ({−1}) − µ({2}) + 2µ̃(
1

2
) − µ̃(1)) − µ({−1})

−µ̃(x) − x

1

2
∫

x

t−1dµ(t).

If
1

2
≤ x ≤ 1 then, a similar computation yields, by (6.4) and (6.6), the equality

τ(µ)(x) = f(x) = x(µ({−1}) − µ({2})) − µ({−1})

+

1
∫

0

G(x, t)dµ(t) = x(µ({−1}) − µ({2}) + 2µ̃(
1

2
) − µ̃(1))

−2µ̃(
1

2
) − µ({−1}) + µ̃(x) + (x− 1)

x
∫

1

2

(1 − t)−1dµ(t).

Also, τ(µ)(0) = f(0) = 〈δ(x), T ∗µ〉 =
∫

F

〈δ(0), vt〉dµ(t)− = −µ({−1}) while

f(1) =
∫

F

〈δ(1), vt〉δµ(t) = −µ({2}). This proves Theorem 6.3. �
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The properties of the map τ = T ∗.

If µ is a finite positive measure on F then f = τ(µ) is a non(6.7)

positive convex function on [0, 1].

P r o o f. By (6.3), f(x) is the sum of a non positive linear function and
1
∫

0

G(x, t)dµ(t). For each 0 ≤ t ≤ 1, G(x, t) = vt(x), which is a convex function

vanishing at the end points. When µ(t) is a finite positive measure,
1
∫

0

G(x, t)dµ(t)

is also a convex function vanishing at 0 and at 1. �

Conversely , let T ∗µ = f and assume that f is a nonpositive(6.8)

convex function. Then µ is a positive measure on F .

P r o o f. Let n ≥ 1 and pick 0 ≤ i ≤ 2n. Then 〈f,wn
i 〉 = 〈T ∗µ,wn

i 〉 =
∫

F

〈wn
i , vt〉dµ(t). If i = 0 then wn

0 = −δ(0), v−1(t) = t − 1 and vt vanishes at

0. Therefore 0 ≤ 〈f,−δ(0)〉 =
∫

F

〈−δ(0), vt〉dµ(t) = −v−1(0)µ({−1}) = µ({−1}).

Similarly, choosing i = 2n we get that 0 ≤ µ({2}).
For 1 ≤ i ≤ 2n, the definition of vt yields the equality

〈wn
i , vt〉 = (negative constant)[〈δ(i2−n) −

1

2
δ(i − 1)2−n)

−
1

2
〈δ((i + 1)2−n), vt〉] = 0 if either (i+ 1)2−n ≤ t or t ≤ (i− 1)2−n.

Hence, because f is convex,

0 ≤ 〈f,wn
i 〉 =

∫

F

〈wn
i , vt〉dµ(t) =

1
∫

0

〈wn
i , vt〉dµ(t)

=

(i+1)2−n

∫

(i−1)2−n

〈wn
i , vt〉dµ(t).

Since the integrand is positive (vt is a convex function) and because this inequality
holds for every n ≥ 1 and 1 ≤ i ≤ 2n − 1 we get that the regular measure µ is
positive. �
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7. Construction of the difference g − h = f . The purpose of this
section is to present an algorithm which will construct, for each f ∈ K[0, 1], a
unique pair of non positive convex functions g and h satisfying f = g − h and
||g|| + ||h|| = ||f ||. This is done in the following three steps.

Step 1. A commuting sequence of projections on ∆.
We use the bases {wn

i }
2n

i=0 and their biorthogonal functionals {vn
i }

2n

i=0

described in Remark 4.4. For each n ≥ 1 define the projection Pn of ∆ onto

∆n by Pnw =
2n
∑

i=0
〈w, vn

i > wn
i . Then (5.4) yields the equality ||Pn|| = 1 and, by

(5.1) we get that Pn+1Pn = Pn. Since P ∗
n(∆) = [vn

i ]2
n

i=0 and because (see Remark
4.4) vn

0 = vn+1
0 , vn

2n = vn+1
2n+1 and, for 1 ≤ i ≤ 2n, vn

i = vn+1
2i we have that

P ∗
n+1P

∗
n = P ∗

n . It follows that {Pn}
∞
n=1 is a sequence of commuting projections

on ∆. Moreover, for every w ∈
∞
∪

n=1
∆n, Pmw = w eventually, hence

lim
n→∞

Pnw = w for all w ∈ ∆.(7.1)

It follows from (7.1) that, for every f ∈ ∆∗ and w ∈ ∆

lim
n
〈P ∗

nf, w〉 = 〈f,w〉.(7.2)

Hence {P ∗
n}

∞
n=1 converges to the identity I of ∆∗ in the w∗-strong topology. In

fact, it is easy to see that, for each n ≥ 1, P ∗
n = Q2n , the (2n + 1)th Schauder

basis projection.

Step 2. Obtaining approximating differences of continuous convex func-

tions.

Given f ∈ K[0, 1] with ||f || = 1, let

B(n) = {0 ≤ i ≤ 2n : 〈f,wn
i 〉 ≥ 0} and

C(n) = {0 ≤ i ≤ 2n : 〈f,wn
i 〉 < 0} and consider

the functions un=P ∗
nf=

2n
∑

i=0
〈f,wn

i 〉v
n
i , gn=

∑

i∈B(n)

〈f,wn
i 〉v

n
i and hn=−

∑

i∈C(n)

〈f,wn
i 〉v

n
i .

Since each vn
i is a non positive continuous convex function, so are gn and hn;

moreover, un = gn − hn.
By (5.5), the norm ||gn|| + ||hn|| = ||un|| = ||Pnf || ≤ ||f || = 1.

Step 3. The limit process.

Using the w∗ compactness of Ball(∆∗), by passing to a subsequence
{n(k)} we may assume that g = w∗ lim gn(k) and h = w∗ lim hn(k) exist with
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||g||+ ||h|| ≤ ||f || = 1 and, by (7.3), g−h = w∗ lim(gn(k) −hn(k)) = w∗ limP ∗
n(k)f = f .

As pointwise limits of sequences of non positive convex functions, both g and h
are non positive convex functions with ||g|| + ||h|| = ||f ||. We claim that g and h
are independent of the subsequence {n(k)}. Indeed, if {m(k)} is another sub-
sequence with g̃ = w∗ lim gm(k) and h̃ = w∗ limhm(k) then, again, both g̃ and h̃

are non positive convex functions, f = g̃ − h̃ and ||g̃|| + ||h̃|| = ||f ||. Since K[0, 1] is
order-isometric to C(F )∗, an L1(µ) - space, and because, in L1(µ), the decompo-
sition of each elements into the sum of its positive and negative parts is uniquely
determined, we get by (6.7) and (6.8) that g = g̃ and h = h̃. This concludes the
construction of the difference of convex functions g − h = f .
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