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THE SPACE OF DIFFERENCES OF
CONVEX FUNCTIONS ON [0, 1]
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Communicated by L. Tzafriri

Abstract. The space K[0, 1] of differences of convex functions on the
closed interval [0, 1] is investigated as a dual Banach space. It is proved
that a continuous function f on [0, 1] belongs to K[0, 1] if, and only if,
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Under the norm || ||, K[0, 1] has a predual isometric to C(F ), the space of
continuous functions on F = {−1} ∪ [0, 1] ∪ {2}. The isometry between the
L1(µ)-space C(F )∗ and K[0, 1] maps the positive cone of L1(µ) onto the set
of all non positive convex functions on [0, 1].

2000 Mathematics Subject Classification: 46B20.
Key words: L-preduals, convex functions.
∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University,

College Station, Texas, 2000. Research partially supported by the Edmund Landau Center
for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation
(Germany).



332 M. Zippin

1. Introduction. The space BVN [0, 1] of differences f = g − h of
monotonely increasing functions g and h on [0, 1] has been thoroughly investi-
gated as a Banach space under the norm of the total variation. It is well-known
that BVN [0, 1] is isometric to the dual space of C[0, 1], the space of continuous
functions; and, by Kakutani’s axiomatic characterization of L-spaces [1], it is an
L1(µ) space. Less familiar is the space K[0, 1] of differences f = g − h of convex
functions on the closed interval [0, 1]. The purpose of this paper is to investigate
K[0, 1] as a dual Banach space under certain natural norms. The space BVN [0, 1]
draws attention mainly because of the relation BVN [0, 1] = C[0, 1]∗ and the fact
that its natural norm is the precise dual norm. Analogously we wish to construct
a space A(S) of affine continuous functions on a metrizable Choquet simplex S
such that K[0, 1] = A(S)∗. This relation suggests a “natural” norm on K[0, 1],
namely, the dual norm, which happens to be

(∗) ||f || = |f(0)| + |f(1)|

+2 sup
n


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
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As the dual of A(S), the space K[0, 1] is known to be an L1(µ) space (see e.g. [2]).
It turns out that the natural isometry of L1(µ) onto K[0, 1] maps the positive cone
onto the cone Π of non-positive convex functions on [0, 1]. The cone Π determines
a natural lattice structure on K[0, 1]. Since any convex function ĝ on [0, 1] is
continuous in the open interval, ĝ can be represented as a linear combination
ĝ = α0W0 +α1W1 + g, where g is a continuous convex function on [0, 1] while W0

and W1 are the (convex) indicator functions of the singleton subsets {0} and {1}
of [0, 1], respectively. Denoting by KC [0, 1] the space of differences of continuous
convex functions on [0, 1] we have that K[0, 1] = KC [0, 1] + [W0,W1].

At this point we do not know what the “natural” norm on K[0, 1] should
be. But we certainly wish the norm to express the nature of the space elements,
namely, differences of convex functions. A reasonable choice of a temporary norm
for K[0, 1] is

|||f ||| = inf{‖g‖∞ + ‖h‖∞ : f = g − h, where
g and h are convex on [0, 1]}

(1.1)

with ‖ ‖∞ denoting the sup norm. However, an equivalent but slightly different
norm is easier to work with.
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Let M denote the convex cone of non negative convex functions on [0, 1].
It will somewhat simplify our computations in the sequel if we norm K[0, 1] by

‖f‖ = inf{‖g‖∞ + ‖h‖∞ : f = g − h where g, h ∈M}(1.2)

instead of (1.1). Clearly, these two norms are equivalent with |||f ||| ≤ ‖f‖ ≤
3|||f ||| for all f ∈ K[0, 1]. At this point we do not know that the normed space
K[0, 1] is complete. Completeness will be established in Section 2. For each 0 ≤
t ≤ 1 let δ(t) denote the point evaluation functional at t. Let ∆ denote the norm
closed linear span of {δ(t) : 0 ≤ t ≤ 1} in K[0, 1]∗ and put Γ = [δ(t) : 0 < t < 1].

In Section 2 we prove that, under the norm ‖ ‖, the spaces KC [0, 1] and
K[0, 1] are isometric to the spaces Γ∗ and ∆∗, respectively. Sections 3 and 4
are devoted to the study of certain pavements of finite dimensional subspaces
of K[0, 1] and ∆. In Section 5 we construct the “simplex space” A(S) which is
isomorphic to ∆ and induces the natural structure of K[0, 1]. In Section 6 we
investigate the simplex S itself and show that its extreme boundary ∂S (= the set
of extreme points of S) is homeomorphic to the space F = [0, 1]∪{−1}∪{2}. It is
concluded that K[0, 1] is isometric to C(F )∗, the space of regular Borel measures
on F . Let G(0, 0) = 0 = G(1, 1), G(x,−1) = x − 1 and G(x, 2) = −x for all
0 ≤ x ≤ 1 and let

G(x, t) =



































x− 1 if either 0 ≤ t < x ≤
1

2
or 0 ≤ t ≤

1

2
≤ x ≤ 1

−x if either 0 ≤ x ≤
1

2
≤ t ≤ 1 or

1

2
≤ x < t ≤ 1

(1 − t−1)x if 0 ≤ x ≤ t ≤
1

2

(1 − t)−1t(x− 1) if
1

2
≤ t ≤ x ≤ 1.

(1.3)

We show that the map τ : C(F )∗ → K[0, 1], defined for every 0 ≤ x ≤ 1 by

τ(µ)(x) =

∫

F

G(x, t)dµ(t)(1.4)

is a surjective isometry which maps the positive cone of C(F )∗ onto the cone of
non positive convex functions on [0, 1]. In Section 7 we present an algorithm
which constructs a unique pair of non positive convex functions g and h for a
given f ∈ K[0, 1], satisfying f = g − h and ||f || = ||g|| + ||h||.

The space of differences of convex functions with bounded one side deriv-

atives at the boundary has been studied in the literature (see. e.g., [5, 4]). This
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space is denoted by BC[0, 1] and its norm, as suggested by F. Riesz’s paper, is
the following

(∗∗) ‖f‖ = |f(0)| + |f ′r(0)|

+ supP

{

n−1
∑

i=1

∣

∣

∣

f(xi+1) − f(xi)
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−
f(xi) − f(xi−1)

xi − xi−1

∣

∣

∣
:

P = {xi}
n
i=0 a partition of [0, 1]

}

.

However, BC[0, 1] does not include important classes of convex functions. Our
main tools are taken from the theory of L1(µ) preduals. For information about
these spaces the reader is referred to [3], [2] and [6].

Notation. We use standard Banach space notation as can be found in
[3]. In particular, if M = {xα}α∈A is a subset of a Banach space X then [M ]
and [xα]α∈A denote the norm closed linear span of {xα}α∈A. Ball (X) denotes
the closed unit ball of X. The Banach-Mazur distance between the isomorphic
spaces X and Y is denoted by d(X,Y ). We consider only real Banach spaces.

2. The dual space of ∆. The facts described in this section depend
on the special properties of the classical Schauder basis of the space C[0, 1].
Let {fj}

∞
j=0 denote the Schauder basis and let {ψj}

∞
j=0 be the corresponding

biorthogonal functionals.
Recall that f0 ≡ 1, f1(t) = t, ψ0 = δ(0), ψ1 = δ(1) − δ(0), for n ≥ 0

and 1 ≤ i ≤ 2n, f2n+i(t) = 0 at the points 0, (2i − 2)2−n−1, (2i)2−n−1 and 1;
f2n+i((2i− 1)2−n−1) = 1 and f2n+i is linear in between. Also,

ψ2n+i = δ((2i − 1)2−n−1) −
1

2
δ((2i − 2)2−n−1) −

1

2
δ((2i)2−n−1).

It is known that {fj}
∞
j=0 is a monotone basis of C[0, 1], i.e., if Qj denotes the

natural basis projection of C[0, 1] onto [fi]
j
i=0 (that is, Qj(

∞
∑

i=1
aifi) =

j
∑

i=1
aifi)

then ‖Qj‖∞ = 1 for all 0 ≤ j < ∞. It is also known that, for each j = 2m + i
and f ∈ C[0, 1], Qj(f) is the unique continuous, piecewise linear function on

[0, 1] which agrees with f at each of the points 0, 1,
1

2
, . . . , 2−m, 3 · 2−m, . . .,

(2m − 1)2−m, 2−m−1, . . . , (2i− 1)2−m−1 and is linear in between. It follows that

For each j ≥ 1, Qj(f) is nonnegative if f is and Qj(f) is convex if f
is convex.

(2.1)
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It is easy to check that each fj is in K[0, 1], however, the sequence
{fj}

∞
j=0 does not span the whole space K[0, 1] as this space is non separable. Let

K0 = [fj]
∞
j=0 ∩K[0, 1].

Lemma 2.1. For each j ≥ 0 Qj is a projection with norm 1 on KC [0, 1].
The Schauder functions {fj}

∞
j=0 form a monotone basis of K0.

P r o o f. Let f ∈ KC [0, 1] and assume that ‖f‖ = 1. Hence, given ε > 0,
there exist non negative continuous convex functions g and h such that ‖g‖∞ +
‖h‖∞ < 1+ ε and f = g−h. By (2.1), for each j, Qjg and Qjh are non negative
continuous convex functions with ‖Qjg‖∞ + ‖Qjh‖∞ ≤ ‖g‖∞ + ‖h‖∞ < 1 + ε.
Since Qjf = Qjg −Qjh we get that ‖Qjf‖ ≤ 1. �

Let us now discuss the properties of the subspace ∆0 = [ψj ]
∞
j=0 of K[0, 1]∗.

It is easy to see that, for each k ≥ 1, the subspace ∆k = [ψj ]
2k

j=0 = [δ(j2−k)]2
k

j=0

hence ∆0 ⊂ ∆. In fact ∆0 = ∆ because of the following

Example 2.2. For every 0 < s < t < 1

‖δ(s) − δ(t)‖ = |s− t|max{t−1, (1 − s)−1}.(2.2)

P r o o f. Suppose that g ∈M ∩ Ball(K[0, 1]) then

|(δ(s) − δ(t))(g)| = |g(s) − g(t)| = |a| |s− t|,

where a is the slope of the chord joining (s, g(s)) and (t, g(t)). Since g is convex,
we have that

t−1(g(t) − g(0)) ≤ a ≤ (1 − s)−1(g(1) − g(s))

and therefore, because g is non negative,

|(δ(s) − δ(t))(g)| ≤ |s− t|max{t−1|g(0) − g(t)|, (1 − s)−1|g(1) − g(s)|}

≤ |s− t|max{t−1, (1 − s)−1}.

On the other hand, if 0 ≤ s < t ≤ 1 and g(u) = max{1 − t−1u, 0} for 0 ≤ u ≤ 1
then

g ∈M ∩Ball K[0, 1] and |(δ(s)−δ(t))(g)| = |g(s)−g(t)| = 1− t−1s = t−1|s− t|.

Let h(u) = max{(1− s)−1(u− 1) + 1, 0} then h ∈M ∩Ball(K[0, 1]) and |(δ(s)−
δ(t))(h)| = |h(s) − h(t)| = |s− t|(1 − s)−1. This proves (2.2). �
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It follows from Lemma 2.1 that, for every f ∈ K0 and ϕ ∈ ∆,

‖f‖= sup{〈ψ, f〉:ψ∈Ball(∆)} and ‖ϕ‖= sup{〈ϕ, g〉:g∈Ball(K0)}.(2.3)

Let J : K[0, 1] → ∆∗ denote the natural embedding defined by (Jf)(δ(t)) = f(t).
Then, by (2.3), J |K0

is an isometric embedding. Put Γ = [δ(t)]0<t<1. We will
now prove

Proposition 2.3. (a) The map J : K[0, 1] → ∆∗ is an isometric
isomorphism onto ∆∗ hence K[0, 1] is complete. Moreover, there is projection Q
of ∆∗ onto J(KC [0, 1]) with ‖Q‖ = 1 and Kernel (Q) = [δ(t)]⊥0<t<1 = Γ⊥.
(b) KC [0, 1]is isometric to Γ∗.

P r o o f. The standard separation theorem shows that, by (2.3),
Ball(J(K0)) is ω∗ dense in Ball (∆∗). Put J(K0) = K̂0 and let us denote J(f)
by f̂ for every f ∈ K[0, 1]. Let x∗ ∈ ∆∗ and assume that ‖x∗‖ = 1. Then there
exists a sequence {ên} ⊂ K̂0 with ‖en‖ = ‖ên‖ < 1 so that each en is a finite
linear combination of {fj} and x∗ = ω∗ lim ên. By the definition of ‖ ‖, for
each n ≥ 1 there exist gn and hn ∈ M ∩ Ball(K0) so that en = gn − hn and
‖gn‖∞ + ‖hn‖∞ ≤ 1. By passing to a subsequence, we may assume the existence
of ω∗ lim ĝn = g∗ and ω∗ lim ĥn = h∗. Clearly, g∗ − h∗ = x∗ and ‖g∗‖+ ‖h∗‖ ≤ 1.
Let g0(t) = g∗(δ(t)) and h0(t) = h∗(δ(t)) for all 0 ≤ t ≤ 1. As pointwise limits of
convex functions, g0 and h0 are convex. Therefore x∗ = ĝ0 − ĥ0 ∈ J(K[0, 1]) and
‖g0‖∞ + ‖h0‖∞ ≤ 1. Hence ‖g0 − h0‖ ≤ 1 and x∗ = J(g0 − h0). Let f ∈ K[0, 1]
and assume that ‖J(f)‖ = 1. Put x∗ = J(f) then the above argument shows
that ‖J(f)‖ = ‖f‖. We have thus proved (a) and the completeness of K[0, 1].

Let us now correct the discontinuities of g0 and h0 at the end of points
by defining g(t) = g0(t) and h(t) = h0(t) for 0 < t < 1, g(0) = lim

t→0+
g(t), g(1) =

lim
t→1−

g(t), h(0) = lim
t→0+

h(t) and h(1) = lim
t→1−

h(t). Then g and h are non negative

continuous convex functions on [0, 1] and ‖g‖∞ +‖h‖∞ ≤ 1. Put f0 = g−h then
f0 ∈ KC [0, 1] and

x∗(δ(t)) = f0(t) for all 0 < t < 1.(2.4)

It follows that the map Q : ∆∗ → J(KC [0, 1]) defined by Qx∗ = f0 is a projection
with ‖Q‖ = 1 and Kernel (Q) = [δ(t)]⊥0<t<1 = Γ⊥. Indeed, (2.4) ensures that
Q(x∗) is well defined (independently of the sequences {en}, {gn} and {hn}) and
the inequality ‖g‖∞+‖h‖∞ ≤ 1 implies that ‖Q‖ = 1. To determine Γ∗, note that
Γ ⊂ ∆, hence Γ∗ is naturally isometric to ∆∗/Γ⊥ = ∆∗/(kernelQ) ∼= Q(∆∗) =
J(KC [0, 1]). This middle isomorphism is, in fact, an isometry because, as is easily
checked, for every x∗ ∈ ∆∗, inf{‖x∗ − w‖ : w = α0W0 + α1W1} = ‖Qx∗‖. This
proves Proposition 2.3. �
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Remark 2.4. It follows from (2.2) that ∆ = span{δ(0), δ(1),Γ}.
Hence ∆∗ = span{W0,W1,K

C [0, 1]} where, as mentioned above, W0 and W1 can
be identified with the convex (discontinuous) indicator functions W0 = 1{0} and
W1 = 1{1} of the singleton subsets {0} and {1} of [0, 1], respectively.

3. The structure of Ball([fj]
2

n

j=0
). Consider the subspace

Kn
def
= Q2n(K0) = span{fj}

2n

j=0 in K[0, 1]. In this section we investigate the
structure of Ball(Kn) as a convex set. We start with the identification of the
extreme points of the convex set

An = {f ∈M ∩ Ball(Kn) : f(1) = 0}.

Lemma 3.1. The extreme points of An are the functions {gn
i }

2n

i=1 where
gn
i (t) = 1 − 2ni−1t if 0 ≤ t ≤ i2−n and gn

i (t) = 0 otherwise.

P r o o f. It is easy to see that each gn
i is an extreme point of An. Let us

show that An = conv{gn
i }

2n

i=1. Pick g ∈ An and assume that g(0) = 1. We will

show that there exist αi ≥ 0(1 ≤ i ≤ 2n) with
2n
∑

i=1
αi = 1 so that

g =
2n

∑

i=1

αig
n
i .(3.1)

Since g and gn
i are linear in each interval [(j − 1)2−n, j2−n], the problem is that

of solving the following system of 2n linear equations in 2n variables {αi}
2n

i=1:















2n
∑

i=1
αi = 1

2n
∑

i=1
αig

n
i (j2−n) = g(j2−n) 1 ≤ j ≤ 2n − 1.

(3.2)

But gn
i (

j

2n
) = 0 if j ≥ i, therefore (3.2) reduces to the triangular system



















2n
∑

i=1
αi = 1

2n
∑

i=j+1
αi(1 − ji−1) = g(j2−n) 1 ≤ j ≤ 2n − 1.

(3.3)
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Let us first agree that g(t) denotes 0 whenever t ≥ 1. Starting with the last
equation we get α2n = 2ng((2n − 1)2−n) and going down one easily proves by
induction that for every 0 ≤ k < 2n

α2n−k = (2n − k)[g((2n − (k + 1))2−n) − 2g((2n − k)2−n)
+ g((2n − k + 1)2−n)]

(3.4)

Note that αi ≥ 0 because g is convex. With these values of αi,

2n−1
∑

k=0

α2n−k = 2ng((2n − 1)2−n) + (2n − 1)[g((2n − 2)2−n) − 2g(2n − 1)2−n)]+
+(2n − 2)[g(2n − 3)2−n) − 2g((2n − 2)2−n) + g((2n − 1)2−n)]+
+(2n − 3)[g((2n − 4)2−n) − 2g((2n − 3)2−n) + g((2n − 2)2−n)]+
+ . . .+
+3[g(2 · 2−n) − 2g(3 · 2−n) + g(4 · 2−n)]+
+2[g(2−n) − 2g(2 · 2−n) + g(3 · 2−n)+
+[g(0) − 2g(2−n) + g(2 · 2−n)] =

= g((2n − 1)2−n)[2n − 2(2n − 1) + (2n − 2)]+
+g((2n − 2)2−n)[2n − 1 − 2(2n − 2) + (2n − 3)]+
+g((2n − 3)2−n)[2n − 2 − 2(2n − 3) + (2n − 4)] + · · ·+
+g(2 · 2−n)[3 − 4 + 1]+
+g(2−n)[2 − 2]+
+g(0) = g(0) = 1

This proves Lemma 3.1. �

The functions gn
i (t) = max{1 − 2ni−1t, 0} (1 ≤ i ≤ 2n) and their sym-

metric images with respect to
1

2
,

g̃n
i (t) = gn

2n−i(1 − t) = max{(2n − i)−12n(t− 1) + 1, 0} (0 ≤ i ≤ 2n − 1)

play an important role in the following computations.

Corollary 3.2. For every n ≥ 1

M ∩ Ball(Kn) ⊂ 2conv{{gn
i }

2n

i=1, {g̃n
i }

2n−1
i=0 }(3.5)

and
Ball(Kn) ⊂ 2conv{{±gn

i }
2n

i=1, {±g̃n
i }

2n−1
i=0 }.(3.6)

P r o o f. First note that the function 1 = gn
2n + g̃n

0 . Let f ∈M ∩Ball(Kn)
and assume that min{f(t) : 0 ≤ t ≤ 1} = β = f(t0). Then ‖f−β1‖ = ‖f‖−β and
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f = β1 + g + h where g(t) = f(t)− β if 0 ≤ t ≤ t0, g(t) = 0 if t0 ≤ t ≤ 1, h(t) =
f(t) − β if t0 ≤ t ≤ 1 and h(t) = 0 if 0 ≤ t ≤ t0. Clearly, |β| + ‖g + h‖ ≤ 1.
if g is not identically 0 then g(0) = ‖g‖ 6= 0 and g(0)−1g is a member of the
set An defined in Lemma 3.1. If h 6= 0 then h(1) = ‖h‖ 6= 0 and the function

h(1)−1h is a symmetric image of a member of An with respect to the point t =
1

2
.

By Lemma 3.1, g(0)−1g is a convex combination of {gn
i }

2n

i=1 and h(1)−1h is a

convex combination of {g̃n
i }

2n−1
i=0 hence f = β1 + g(0)

2n
∑

i=1
αig

n
i + h(1)

2n−1
∑

i=0
βig̃

n
i

with β ≥ 0, αi ≥ 0, βi ≥ 0 and β+
2n
∑

i=1
g(0)αi +

2n−1
∑

i=0
h(1)βi = β+g(0)+h(1) ≤ 2.

This proves (3.5).

By the definition of ‖ ‖, each f ∈ Ball(Kn) is a convex combination of
some f1 and −f2 with f1, f2 ∈M ∩ Ball(Kn) therefore, (3.5) implies (3.6).

This proves Corollary 3.2. �

4. The structure of ∆n. Recall that, by (2.3), the subspace ∆n =
[ψj ]

2n

j=0 is isometric to the dual of Kn (under the norm ‖ ‖). For each n ≥ 1 and

1 ≤ i ≤ 2n−1 let w̃n
i = δ(i2−n)−

1

2
δ((i−1)2−n)−

1

2
δ((i+1)2−n). Put w̃n

0 = δ(0)

and w̃n
2n = δ(1) then, as is easily checked ∆n = [w̃n

i ]2
n

i=0.

Proposition 4.1. For every n ≥ 1,

d(∆n, ℓ
2n+1
∞ ) ≤ 8.

P r o o f. We wish to estimate

∥

∥

∥

∥

2n
∑

i=0
aiw̃

n
i

∥

∥

∥

∥

from above and from below.

This is done in two steps. We start with the computation of 〈w̃n
i , g

n
j 〉, 〈w̃

n
i , g̃

n
j 〉

and ‖w̃n
i ‖.

Lemma 4.2. For all 1 ≤ i ≤ 2n − 1, 1 ≤ j ≤ 2n and 0 ≤ h ≤ 2n − 1

〈w̃n
i , g

n
j 〉 = −(2i)−1δi,j, 〈w̃n

i , g̃
n
h〉 = −[2(2n − i)]−1δi,h

‖w̃n
0 ‖ = 〈w̃n

0 , g
n
2n〉 = 1, ‖w̃n

2n‖ = 〈w̃n
2n , g̃n

0 〉 = 1

(4.1)

and
1

2
max{i−1, (2n − i)−1} ≤ ‖w̃n

i ‖ ≤ max{i−1, (2n − i)−1}.



340 M. Zippin

P r o o f. Clearly, ‖w̃n
0 ‖ = ‖δ(0)‖ = 1 = ‖δ(1)‖ = ‖wn

2n‖ and 〈w̃n
0 , g

n
2n〉 =

gn
2n(0) = 1 = g̃n

0 (1) = 〈w̃n
2n , g̃n

0 〉. By (2.2), for each 1 ≤ i ≤ 2n − 1

‖w̃n
i ‖ ≤

1

2
‖δ(i2−n) − δ((i − 1)2−n)‖ +

1

2
‖δ(i2−n) − δ((i + 1)2−n)‖

=
1

2
max{i−1, (2n − i+ 1)−1} +

1

2
max{(i+ 1)−1, (2n − i)−1}.

Therefore ‖w̃n
i ‖ ≤ i−1 if 1 ≤ i ≤ 2n−1 while ‖w̃n

i ‖ ≤ (2n−i)−1 if 2n−1 ≤ i ≤ 2n−1.
Clearly, 〈w̃n

i , g
n
j 〉 = 0 = 〈wn

i , g̃
n
j 〉 whenever i 6= j. If 1 ≤ i ≤ 2n − 1 then

〈w̃n
i , g

n
i 〉 =

〈

−
1

2
δ((i − 1)2−n), gn

i

〉

= −
1

2
gn
i ((i− 1)2−n) = −

1

2
(1 − i−12n(i− 1)2−n) = −(2i)−1.

Since ‖gn
i ‖ = 1, we get, for all 1 ≤ i ≤ 2n−1, that 1 = 〈−(2i)w̃n

i , g
n
i 〉 ≤ ‖ −

(2i)w̃n
i ‖ ≤ 2. Similarly, if 1 ≤ i ≤ 2n − 1 then

〈w̃n
i , g̃

n
i 〉 =

〈

−
1

2
δ((i + 1))2−n), g̃n

i

〉

= −
1

2
g̃n
i ((i + 1)2−n) = −

1

2
[(2n − i)−12n((i+ 1)2−n − 1) + 1]

= −[2(2n − i)]−1.

Again, since ‖g̃i‖ = 1, we have that, for 2n−1 ≤ i ≤ 2n − 1,

1 ≤ 〈−2(2n − i)w̃n
i , g̃

n
i 〉 ≤ ‖ − 2(2n − i)w̃n

i ‖ ≤ 2.

This proves (4.1). �

Let us define

wn
0 = −w̃n

0 = −δ(0), wn
2n = −w̃n

2n = −δ(1)

wn
i = −(2i)w̃n

i if 1 ≤ i ≤ 2n−1

and wn
i = −2(2n − i)w̃n

i if 2n−1 < i ≤ 2n − 1.

In order to complete the proof of Proposition 4.1 we need

Lemma 4.3. For every n ≥ 1 and any sequence {ai}
2n

i=0 of numbers,

1

2
max |ai| ≤ ‖

2n

∑

i=0

aiw
n
i ‖ ≤ 4max |ai|.(4.2)
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P r o o f. By Corollary 3.2, for each w ∈ ∆n

||w|| ≤ 2 max{max{|〈w, gn
i 〉| : 1 ≤ i ≤ 2n},

max{| < w, g̃n
i 〉| : 0 ≤ i ≤ 2n − 1}}.

If w =
2n
∑

i=0
aiw

n
i then, by (4.1),

max{〈w, gn
i 〉| : 1 ≤ i ≤ 2n} =

max{max{| − a0 + ai| : 1 ≤ i < 2n−1},max{| − a0 + ai(2
n − i)i−1| :

2n−1 ≤ i ≤ 2n − 1}} ≤ 2max{|ai| : 0 ≤ i ≤ 2n} while

max{|〈w, g̃n
i 〉| : 0 ≤ i ≤ 2n − 1} =

max{max{| − a2n + ai(2
n − i)−1i| : 1 ≤ i ≤ 2n−1},

max{| − a2n + ai| : 2n−1 < i ≤ 2n}} ≤ 2max{|ai| : 0 ≤ i ≤ 2n}

Therefore ‖w‖ ≤ 4max{|ai| : 0 ≤ i ≤ 2n}. On the other hand, for all 1 ≤ i ≤ 2n

and 0 ≤ j ≤ 2n − 1, ‖gn
i ‖ = ‖g̃n

j ‖ = 1 hence

|a0| = |a0g
n
2n(0) = |a0〈g

n
2n , δ(0)|〉 = |a0〈−g

n
2n , wn

0 〉|

= |〈−gn
2n , w〉| ≤ ‖w‖ and

|a2n | = |a2n g̃n
0 (1)| = |a2n〈g̃n

0 , δ(1)〉| = an
2n〈−g̃n

0 , w̃
n
2n〉|

= |〈−g̃n
0 , w〉| ≤ ‖w‖.

For 1 ≤ i < 2n−1 let vn
i = gn

i − gn
2n and, if 2n−1 ≤ i < 2n, put vn

i = g̃n
i − g̃n

0 .
Then 〈vn

i , w
n
0 〉 = 〈vn

i ,−δ(0)〉 = −vn
i (0) = 0 = −vn

i (1) = 〈vn
i ,−δ(1)〉 = 〈vn

i , w
n
2n〉.

Because both 〈gn
2n , wi〉 = 0 = 〈g̃n

0 , wi〉 and ‖vn
i ‖ ≤ 2 for all 1 ≤ i ≤ 2n − 1 we

get that |ai| = |〈vn
i , w〉| ≤ 2‖w‖. This proves (4.2) and completes the proof of

Proposition 4.1 �

Remark 4.4. The biorthogonal functionals of {wn
i }

2n

i=0.

We have established the fact that, for each n ≥ 1, {wn
i }

2n

i=0 is a ba-
sis of ∆n which is 8-equivalent to the unit vector basis of ℓ2

n+1
∞ . While prov-

ing Lemma 4.3 we have, in fact, constructed “natural” biorthogonal functionals
{vn

i }
2n

i=0 of {wn
i }

2n

i=0 in Kn as follows: vn
0 (t) = t − 1, vn

2n(t) = −t, for each 1 ≤
i < 2n−1, vn

i (t) = gn
i (t) − gn

2n(t) = max{−(2n − i)i−1t, t − 1} and for 2n−1 ≤
i < 2n, vn

i (t) = max{−t, i(2n − i)−1(t − 1)}. Note that each of the functions
vn
i (t) is convex and continuous and those vn

i which are not linear vanish at the
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end points. Clearly, 〈vn
i , w

n
j 〉 = δi,j , ‖v

n
i ‖ ≤ 2 for all 0 ≤ i, j ≤ 2n and for every

sequence {bi}
2n

i=0 of numbers

2

2n

∑

i=0

|bi| ≥ ‖

2n

∑

i=0

biv
n
i ‖ ≥

1

4

2n

∑

i=0

|bi|.(4.3)

Note that vn
i = vn+1

2i for all n ≥ 1 and 0 ≤ i ≤ 2n.

5. The structure of the space ∆. Most of the properties of K[0, 1]
stated in the Introduction are based on the following

Theorem 5.1. There exists a metrizable Choquet simplex S such that
∆ is 8-isomorphic to the space A(S) of all affine continuous functions on S.

P r o o f. The theory of L1(µ) preduals makes it possible to show that
∆ ∼ A(S) by studying the structure of ∆ without even knowing what the simplex
S is. By Theorem 5.2 of [2] it suffices to show that there exists a sequence {∆n}

∞
n=1

of subspaces of ∆ with
∞
∪

n=1
∆n = ∆ such that ∆n ⊂ ∆n+1,dim ∆n = 2n + 1 for

each n ≥ 1, and, each ∆n admits a basis {wn
i }

2n

i=0 satisfying the following three
conditions:

wn
0 = wn+1

0 , wn
2n = wn+1

2n+1 and for each 1 ≤ i ≤ 2n − 1,(5.1)

wn
i = wn+1

2i + an
i w

n+1
2i−1 + bni w

n+1
2i+1

where 1 ≥ an
i , b

n
i ≥ 0,

an
1 = bn2n−1 = 1 and an

i + bni−1 = 1 for all 1 ≤ i ≤ 2n − 1(5.2)

hence, there is an w0
0 ∈ ∆ so that, for every n ≥ 1, w0

0 =
2n
∑

i=0
wn

i , and

For every n ≥ 1 and any numbers{ai}
2n

i=0,(5.3)

1

2
max |ai| ≤ ‖

2n

∑

i=0

aiw
n
i ‖ ≤ 4max |ai|.

We will show that the bases {wn
i }

2n

i=0 of ∆n constructed in Section 4 satisfy
the above three conditions. Indeed, for every n ≥ 1 wn

0 = −δ(0) = wn+1
0 and

wn
2n = −δ(1) = wn+1

2n+1 . If 1 ≤ i ≤ 2n − 1 then we have

w̃n
i = δ(i2−n) −

1

2
δ((i − 1)2−n) −

1

2
δ((i + 1)2−n)
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= 2[δ(2i2−n−1) −
1

2
δ(2i − 1)2−n−1 −

1

2
δ((2i + 1)2−n−1)]

= [δ(2i − 1)2−n−1 −
1

2
δ((2i − 2)2−n−1) −

1

2
δ((2i)2−n−1)]

+[δ((2i + 1)2−n−1) −
1

2
δ((2i)2−n−1) −

1

2
δ((2i + 2)w−n−1)]

= 2w̃n+1
2i + w̃n+1

2i−1 + w̃n+1
2i+1.

Therefore, if 1 ≤ i ≤ 2n−1 − 1 then

wn
i = −2iw̃n

i = −(4iw̃n+1
2i + 2iw̃n+1

2i−1 + 2iw̃n+1
2i+1)

= wn+1
2i + (4i− 2)−12iwn+1

2i−1 + (4i+ 2)−12iwn+1
2i+1

= wn+1
2i + (2i− 1)−1iwn+1

2i−1 + (2i + 1)−1iwn+1
2i+1.

If 2n−1 < i ≤ 2n − 1 then

wn
i = −2(2n − i)w̃n

i = −(4(2n − i)w̃n+1
2i + 2(2n − i)w̃n+1

2i−1

+2(2n − i)w̃n+1
2i+1) = wn+1

2i + (2n+1 − 2i)(2n+2 − 4i+ 2)−1wn+1
2i−1

+(2n+1 − 2i)(2n+2 − 4i− 2)−1wn+1
2i+1

= wn+1
2i + (2n − i)(2n+1 − (2i − 1))−1wn+1

2i−1

+(2n − i)(2n+1 − (2i + 1))−1wn+1
2i+1.

In the case i = 2n−1 we get that

wn
2n−1 = −2nw̃n

2n−1 = −(2n+1w̃n+1
2n + 2nw̃n+1

2n−1 + 2nw̃n+1
2n+1)

= wn+1
2n + 2n(2n+1 − 2)−1wn+1

2n−1 + 2n(2n+2 − 2n+1 − 2)−1wn+1
2n+1

= wn+1
2n + 2n−1(2n − 1)−1wn+1

2n−1 + 2n−1(2n+1 − (2n + 1))−1wn+1
2n+1

= wn+1
2n + 2n−1(2n − 1)−1wn+1

2n−1 + 2n−1(2n − 1)−1wn+1
2n+1.

We have thus proved (5.1) with

an
i = (2i − 1)−1i if 0 ≤ i ≤ 2n−1,

an
i = (2n − i)(2n+1 − (2i− 1))−1 if 2n−1 < i ≤ 2n

bni = (2i + 1)−1i if 0 ≤ i < 2n−1,

and bni = (2n − i)(2n+1 − (2i+ 1))−1 if 2n−1 ≤ i ≤ 2n.

Let us prove (5.2). Clearly,

an
1 = 1 = bn2n−1 and, for 1 ≤ i < 2n−1,

an
i + bni−1 = i(2i − 1)−1 + (i− 1)(2i − 1)−1 = 1.
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If i = 2n−1 then an
2n−1 + bn2n−1−1 = 2n−1(2n − 1)−1 + (2n − 1)−1(2n−1 − 1) = 1.

For 2n−1 < i < 2n − 1 we get that

an
i + bni−1 = (2n − i)(2n+1 − (2i− 1))−1 + (2n − i+ 1)(2n+1 − 2i+ 1)−1 = 1.

Finally, if i = 2n−1 + 1 we have

an
2n−1+1 + bn2n−1 = (2n−1 − 1)(2n − 1)−1 + 2n−1(2n − 1)−1 = 1.

These equalities imply, in view of (5.1), that the element w0
0 = −2δ(

1

2
) =

2n

∑

i=0

wn
i

for all n ≥ 1; this w0
0 is the unit function of A(S). This proves (5.2). Since

condition (5.3) is exactly (4.2), the proof of Theorem 5.1 is complete. �

We now know that ∆ is 8-isomorphic to the space A(S) where the natural
norm of each affine continuous function w(s) is ‖w‖ = max{|w(s)| : s ∈ S}.

Remark 5.2. It is known (see e.g., [2]) that, for each w ∈ A(S)

‖w‖ = sup
n

max{|〈w, vn
i 〉| : 0 ≤ i ≤ 2n} = lim

n
max{|〈w, vn

i 〉| : i ≤ 2n}(5.4)

Since
1

2
‖w‖ ≤ ||w|| ≤ 4‖w‖, we get that, for every f ∈ K[0, 1],

1

4
‖f‖ ≤ ||f || = lim

n

2n

∑

i=0

|〈f,wn
i 〉| ≤ 2‖f‖.(5.5)

Hence, the dual norm ||f || in A(S)∗ = K[0, 1], can be expressed in the form

||f || = lim
n

[|f(0)| + |f(1)|(5.6)

+2
2n−1−1
∑

i=0

i|f(i2−n) −
1

2
f((i− 1)2−n) −

1

2
f((i+ 1)2−n)|

+2
2n−1
∑

i=2n−1

(2n − i)|f(i2−n) −
1

2
f((i− 1)2−n) −

1

2
f((i+ 1)2−n)|

which is (∗)

6. The simplex S. We have used structure theorems in order to show
that ∆ is a space A(S) of all affine continuous functions on some Choquet simplex
S, under the norm ||w|| determined by (5.4). In this space the unit function is
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w0
0 = −2δ(

1

2
). The theory of A(S) spaces suggests a simple way to present the

simplex S itself: S can be identified with the set {f ∈ A(S∗) : ||f || = 〈f,w0
0〉 =

1} equipped with the relative w∗ topology (see e.g., Section 2 of [6]). Before
investigating S we study the properties of some special members of S. Define
the following functions on [0, 1]: v−1(x) = x − 1, v2(x) = −x, v0(x) = x − 1 if
0 < x ≤ 1, v0(0) = 0, v1(x) = −x if 0 ≤ x < 1 and v1(1) = 0. For every

0 < t ≤
1

2
put vt(x) = max{{−t−1(1 − t)x, x − 1} and, if

1

2
< t ≤ 1, let

vt(x) = max{−x, t(1 − t)−1(x− 1)}. Let V = {vt : 0 ≤ t ≤ 1} ∪ {v−1} ∪ {v2}.

Lemma 6.1. (a) For each v ∈ V, ||v|| = 〈v,w0
0〉 = 1 and 〈v,w

n
i 〉 ≥ 0 for

all n ≥ 1 and 0 ≤ i ≤ 2n.
(b) Each v ∈ V is an extreme point of S.

P r o o f. (a) A straightforward computation gives 〈v,w0
0〉 = 〈v,−2δ(

1

2
)〉 =

1 for every v ∈ V . Let us compute the norm ||v||. Since v−1 and v2 are linear,
〈v−1, w

n
i 〉 = 0 = 〈v2, w

n
i 〉 for all n ≥ 1 and 1 ≤ i ≤ 2n − 1, while 〈v−1, w

n
2n〉 =

〈v−1,−δ(1)〉 = 0 = 〈v2,−δ(0)〉 = 〈v2, w
n
0 〉. Therefore, by (5.6), ||v−1||

= |〈v−1, w
n
0 〉| = 〈v−1,−δ(0)〉 = −v−1(0) = 1 and ||v2|| = |〈v2, w

n
2n〉| = 〈v2,−δ(1)〉 =

−v2(1) = 1. Consider v0 and v1: because of the linearity in the half-closed inter-
val, 〈v1, w

n
i 〉 = 0 for n ≥ 1 and all 2 ≤ i ≤ 2n while 〈v2, w

n
i 〉 = 0 if n ≥ 1 and

0 ≤ i ≤ 2n − 2. Since 〈v0, w
n
0 〉 = −v0(0) = 0 = −v1(1) = 〈v1, w

n
2n〉 we get that

||v0|| = |〈v0, w
n
1 〉| = |2v0(2

−n)−v0(2
−n+1)| = |2−n+1−2−2−n+1 +1| = 1. Similarly

one proves that ||v1|| = |〈v1, w
n
2n−1〉| = 1. Consider vt with 0 ≤ t ≤ 1. First note

that if t = i2−n then vt = vn
i and by Remark 4.4, ||vt|| = ||vn

i || = |〈vn
i , w

n
i 〉| = 1. If

0 ≤ t ≤ 1 and t 6= i2−n then pick a numerical sequence t(k) = i(k)2−n(k) which
converges to t. The definition of vt implies that the pointwise limit lim

n
vt(k) = vt.

Therefore 〈vt(k), δ(s)〉 → 〈vt, δ(s)〉, i.e., vt(k) converges to vt in the w∗ topology.
Since ||vt(k)|| = 1, ||vt|| ≤ 1 and because 〈vt, w

0
0〉 = 1 we get that ||vt|| = 1 for all

0 ≤ t ≤ 1. It follows from (5.1) and (5.2) that, for every v ∈ V and n ≥ 1,

1 ≥
2n

∑

i=0

|〈v,wn
i 〉| ≥

2n

∑

i=0

〈v,wn
i 〉

= 〈v,
2n

∑

i=0

wn
i 〉 = 〈v,w0

0〉 = 1 therefore

〈v,wn
i 〉 ≥ 0 for all 0 ≤ i ≤ 2n.

This proves (a).
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(b). Suppose that 0 < t <
1

2
, c > 0 and let g(x) = −ct−1x if 0 ≤ x ≤ t

and g(x) = (1 − t)−1c(x− 1) if t ≤ x ≤ 1. Let us compute ||g||. Let n be so large

that t ≤
1

2
− 2−n+1 and let j be the integer for which (j − 1)2−n < t ≤ j2−n.

Because g is linear in each of the intervals [0, t] and [t, 1], 〈g,wn
i 〉 = 0 for all

0 ≤ i ≤ 2n except possibly for i = j and i = j − 1. Hence

2n
∑

i=0
|〈g,wn

i 〉| = |〈g,wn
j−1〉| + |〈g,wn

j 〉|

= 2(j − 1)|g((j − 1)2−n) −
1

2
g(j − 2)2−n) −

1

2
g(j2−n)|

+2j|g(j2−n) −
1

2
g((j − 1)2−n) −

1

2
g((j + 1)2−n)|

= (j − 1)c(1 − t)−1(j2−nt−1 − 1) + jc(1 − t)−1(1 − 2−nt−1(j − 1))

= (1 − t)−1c.

It follows that
||g|| = (1 − t)−1c.(6.1)

We are now ready to prove that every v ∈ V is an extreme point of S. First
suppose that t is either −1, 2 or a dyadic fraction t = i2−n with 1 ≤ i < 2n. Then
vt = vn

i for some 0 ≤ i ≤ 2n, which is an extreme point of S by Proposition 3.1
of [6]. It remains to consider t = 0, 1, and 0 < t < 1, t 6= i2−n. Suppose that

0 < t <
1

2
, t 6= i2−n. Let g, h ∈ S and assume that vt =

1

2
(g + h). Recall that,

because ||g|| = 〈g,w0
0〉 = 1 = 〈h,w0

0〉 = ||h||, we have that 〈g,wn
i 〉, 〈h,wn

i 〉 ≥ 0 for
all n ≥ 1 and 0 ≤ i ≤ 2n. Since vt is linear in each of the intervals [0, t] and
[t, 1] g and h must also be linear in these intervals. Similarly, because −vt(0) =
〈vt, w

n
0 〉 = 0 = 〈vt, w

n
2n〉 = −vt(1) also g(0) = h(0) = 0 = h(1) = g(1). Suppose

that g(t) = −c and h(t) = −d for some c, d ≥ 0. Then by (6.1),

1 = ||g|| = (1 − t)−1c and 1 = ||h|| = (1 − t)d

hence c = d = (1 − t)−1 and therefore vt = h = g. This proves that vt is an

extreme point of S if 0 < t <
1

2
. The case

1

2
< t < 1 is proved in a similar

fashion. Let us consider v0 and let v0 =
1

2
(g+h) where g, h ∈ S. Again, because

v0 is linear in (0, 1] so are g and h. Since v0(1) = 0 also −g(1) = 〈g,wn
2n〉 =

0 = 〈h,wn
2n〉 = −h(1). It follows that g(x) = a(x − 1) and h(x) = b(x − 1) for

0 < x ≤ 1. Let g(0) = c and h(0) = d. Then c = g(0) = 〈g, δ(0)〉 = −〈g,wn
0 〉 ≤ 0
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and d = h(0) = 〈h, δ(0)〉 = −〈h,wn
0 〉 ≤ 0. Since 0 = v0(0) =

1

2
(g(0)+h(0)) we get

that c = d = 0. If 0 < x ≤ 1 then x−1 = v0(x) =
1

2
(g(x)+h(x)) =

1

2
(a+b)(x−1).

Hence
1

2
(a+ b) = 1. But, for each n ≥ 1, by (a),

1 ≥ 〈g,wn
1 〉 = −2〈g, δ(2−n) −

1

2
δ(0) −

1

2
δ(2−n+1)〉

= −2g(2−n) + g(2−n+1) = −2a(2−n − 1) + a(2−n+1 − 1) = a.

Similarly, b ≤ 1 and therefore a = b = 1. It follows that v0 = g = h. A similar
argument works for v1. This proves (b) and completes the proof of Lemma 6.1. �

We are now prepared to characterize the extreme boundary ∂S of S which
is the set of extreme points of S.

Lemma 6.2. (a) V = ∂S
(b) ∂S is a w∗ compact set.

P r o o f. (a). In Lemma 6.1 we proved that each v ∈ V is an extreme point
of S. By Proposition 3.4 of [6] each extreme point of S is a w∗ limit of a sequence

v
n(k)
i(k) with 0 ≤ i(k) ≤ 2n(k). We know that every w∗ lim vt(k) with {t(k)} ⊂ [0, 1] is

in V . Hence by Lemma 6.1 (b) V = ∂S. To prove (b), given a numerical sequence
{t(k)} ⊂ [0, 1], pick a converging subsequence {t′(k)} with lim t′(k) = t ∈ [0, 1].
Then the pointwise limit lim

k
vt′(k)(x) = vt(x) hence vt = w∗ lim vt′(k). This proves

(b). �

A metrizable Choquet simplex with a compact set ∂S of its extreme points
is called a Bauer Simplex. For information about Bauer simplices we refer the
reader to Section 4 of [6]. A direct consequence of Lemma 6.2, Theorem 6.1 and
Remark 5.2 is the following

Theorem 6.3. Let F denote the compact metric space [0, 1]∪{−1}∪{2}.
Then the operator T : A(S) → C(F ) defined by

(Tw)(t) = 〈w, vt〉(6.2)

is an isometry of A(S) onto C(F ). The dual surjective isometry T ∗ : C(F )∗ →
K[0, 1] maps the measure µ ∈ C(F )∗ (represented on [0, 1] by the BVN [0, 1]
function µ̃ with µ̃(0) = 0) onto the function f ∈ K[0, 1] defined (see (1.3)) by

f(x) =

1
∫

0

G(x, t)dµ(t) + x(µ({−1}) − µ({2})) − µ({−1})(6.3)
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=















































x(2µ̃(1
2 ) − µ̃(1) + µ({−1}) − µ({2})) − µ({−1}) − µ̃(x) − x

1

2
∫

x

t−1dµ(t)

if 0 ≤ x ≤
1

2

x(2µ̃(
1

2
) − µ̃(1) + µ({−1}) − µ({2})) − µ({−1}) − 2µ̃(

1

2
)+

µ̃(x) + (x− 1)
x
∫

1

2

(1 − t)−1dµ(t) if 1
2 ≤ x ≤ 1

P r o o f. Lemma 6.2 states that ∂S = {vt : 0 ≤ t ≤ 1}∪{v−1}∪{v2} which,
under the topology of S (i.e., the w∗ topology of Ball A(S)∗), is homeomorphic
to F . Since ∂S is compact, S is a Bauer simplex, hence (see e.g., Proposition 2.1
of [6]) the restriction map R : A(S) → C(∂S) defined by (Rw)(t) = 〈w, vt〉 for
all vt ∈ ∂S (t ∈ F ), is an isometry of A(S) onto C(∂S) = C(F ). But, in view of
Lemma 6.2 and (6.2), R = T , which proves the first part of Theorem 6.3. Let us
now consider the dual surjective isometry T ∗ : C(F )∗ → K[0, 1] and put T ∗ = τ .
For each x ∈ [0, 1] we have that

τ(µ)(x) = f(x) = 〈f, δ(x)〉 = 〈T ∗µ, δ(x)〉 = 〈µ, Tδ(x)〉(6.4)

=

∫

F

〈δ(x), vt〉dµ(t) = v−1(x)µ({−1}) + v2(x)µ({2}) +

1
∫

0

〈δ(x), vt〉dµ(t)

= x(µ({−1}) − µ({2}) − µ({−1}) +

1
∫

0

〈δ(x), vt〉dµ(t).

Let us compute 〈δ(x), vt〉. We get that, if 0 < x ≤
1

2
, then

〈δ(x), vt〉 =























x− 1 if 0 ≤ t < x

t−1(t− 1)x if x ≤ t ≤
1

2

−x if
1

2
≤ t ≤ 1

(6.5)
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while, for
1

2
≤ x < 1, we have

〈δ(x), vt〉 =























x− 1 if 0 ≤ t ≤
1

2

(1 − t)−1t(x− 1) if
1

2
≤ t ≤ x

−x if x < t ≤ 1.

(6.6)

Also, 〈δ(0, vt〉 = 0 = 〈δ(1), vt〉 for all 0 ≤ t ≤ 1. Using (6.4) and (6.5) we get for

all 0 ≤ x ≤
1

2
that

τ(µ)(x) = f(x) = x(µ({−1}) − µ({2})) − µ({−1}) +

1
∫

0

G(x, t)dµ(t)

= x(µ({−1}) − µ({2})) − µ({−1})

+(x− 1)µ̃(x) − x

1

2
∫

x

t−1(1 − t)dµ(t) − x(µ̃(1) − µ̃(
1

2
))

= x(µ({−1}) − µ({2}) + 2µ̃(
1

2
) − µ̃(1)) − µ({−1})

−µ̃(x) − x

1

2
∫

x

t−1dµ(t).

If
1

2
≤ x ≤ 1 then, a similar computation yields, by (6.4) and (6.6), the equality

τ(µ)(x) = f(x) = x(µ({−1}) − µ({2})) − µ({−1})

+

1
∫

0

G(x, t)dµ(t) = x(µ({−1}) − µ({2}) + 2µ̃(
1

2
) − µ̃(1))

−2µ̃(
1

2
) − µ({−1}) + µ̃(x) + (x− 1)

x
∫

1

2

(1 − t)−1dµ(t).

Also, τ(µ)(0) = f(0) = 〈δ(x), T ∗µ〉 =
∫

F

〈δ(0), vt〉dµ(t)− = −µ({−1}) while

f(1) =
∫

F

〈δ(1), vt〉δµ(t) = −µ({2}). This proves Theorem 6.3. �
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The properties of the map τ = T ∗.

If µ is a finite positive measure on F then f = τ(µ) is a non(6.7)

positive convex function on [0, 1].

P r o o f. By (6.3), f(x) is the sum of a non positive linear function and
1
∫

0

G(x, t)dµ(t). For each 0 ≤ t ≤ 1, G(x, t) = vt(x), which is a convex function

vanishing at the end points. When µ(t) is a finite positive measure,
1
∫

0

G(x, t)dµ(t)

is also a convex function vanishing at 0 and at 1. �

Conversely , let T ∗µ = f and assume that f is a nonpositive(6.8)

convex function. Then µ is a positive measure on F .

P r o o f. Let n ≥ 1 and pick 0 ≤ i ≤ 2n. Then 〈f,wn
i 〉 = 〈T ∗µ,wn

i 〉 =
∫

F

〈wn
i , vt〉dµ(t). If i = 0 then wn

0 = −δ(0), v−1(t) = t − 1 and vt vanishes at

0. Therefore 0 ≤ 〈f,−δ(0)〉 =
∫

F

〈−δ(0), vt〉dµ(t) = −v−1(0)µ({−1}) = µ({−1}).

Similarly, choosing i = 2n we get that 0 ≤ µ({2}).
For 1 ≤ i ≤ 2n, the definition of vt yields the equality

〈wn
i , vt〉 = (negative constant)[〈δ(i2−n) −

1

2
δ(i − 1)2−n)

−
1

2
〈δ((i + 1)2−n), vt〉] = 0 if either (i+ 1)2−n ≤ t or t ≤ (i− 1)2−n.

Hence, because f is convex,

0 ≤ 〈f,wn
i 〉 =

∫

F

〈wn
i , vt〉dµ(t) =

1
∫

0

〈wn
i , vt〉dµ(t)

=

(i+1)2−n

∫

(i−1)2−n

〈wn
i , vt〉dµ(t).

Since the integrand is positive (vt is a convex function) and because this inequality
holds for every n ≥ 1 and 1 ≤ i ≤ 2n − 1 we get that the regular measure µ is
positive. �
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7. Construction of the difference g − h = f . The purpose of this
section is to present an algorithm which will construct, for each f ∈ K[0, 1], a
unique pair of non positive convex functions g and h satisfying f = g − h and
||g|| + ||h|| = ||f ||. This is done in the following three steps.

Step 1. A commuting sequence of projections on ∆.
We use the bases {wn

i }
2n

i=0 and their biorthogonal functionals {vn
i }

2n

i=0

described in Remark 4.4. For each n ≥ 1 define the projection Pn of ∆ onto

∆n by Pnw =
2n
∑

i=0
〈w, vn

i > wn
i . Then (5.4) yields the equality ||Pn|| = 1 and, by

(5.1) we get that Pn+1Pn = Pn. Since P ∗
n(∆) = [vn

i ]2
n

i=0 and because (see Remark
4.4) vn

0 = vn+1
0 , vn

2n = vn+1
2n+1 and, for 1 ≤ i ≤ 2n, vn

i = vn+1
2i we have that

P ∗
n+1P

∗
n = P ∗

n . It follows that {Pn}
∞
n=1 is a sequence of commuting projections

on ∆. Moreover, for every w ∈
∞
∪

n=1
∆n, Pmw = w eventually, hence

lim
n→∞

Pnw = w for all w ∈ ∆.(7.1)

It follows from (7.1) that, for every f ∈ ∆∗ and w ∈ ∆

lim
n
〈P ∗

nf, w〉 = 〈f,w〉.(7.2)

Hence {P ∗
n}

∞
n=1 converges to the identity I of ∆∗ in the w∗-strong topology. In

fact, it is easy to see that, for each n ≥ 1, P ∗
n = Q2n , the (2n + 1)th Schauder

basis projection.

Step 2. Obtaining approximating differences of continuous convex func-

tions.

Given f ∈ K[0, 1] with ||f || = 1, let

B(n) = {0 ≤ i ≤ 2n : 〈f,wn
i 〉 ≥ 0} and

C(n) = {0 ≤ i ≤ 2n : 〈f,wn
i 〉 < 0} and consider

the functions un=P ∗
nf=

2n
∑

i=0
〈f,wn

i 〉v
n
i , gn=

∑

i∈B(n)

〈f,wn
i 〉v

n
i and hn=−

∑

i∈C(n)

〈f,wn
i 〉v

n
i .

Since each vn
i is a non positive continuous convex function, so are gn and hn;

moreover, un = gn − hn.
By (5.5), the norm ||gn|| + ||hn|| = ||un|| = ||Pnf || ≤ ||f || = 1.

Step 3. The limit process.

Using the w∗ compactness of Ball(∆∗), by passing to a subsequence
{n(k)} we may assume that g = w∗ lim gn(k) and h = w∗ lim hn(k) exist with
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||g||+ ||h|| ≤ ||f || = 1 and, by (7.3), g−h = w∗ lim(gn(k) −hn(k)) = w∗ limP ∗
n(k)f = f .

As pointwise limits of sequences of non positive convex functions, both g and h
are non positive convex functions with ||g|| + ||h|| = ||f ||. We claim that g and h
are independent of the subsequence {n(k)}. Indeed, if {m(k)} is another sub-
sequence with g̃ = w∗ lim gm(k) and h̃ = w∗ limhm(k) then, again, both g̃ and h̃

are non positive convex functions, f = g̃ − h̃ and ||g̃|| + ||h̃|| = ||f ||. Since K[0, 1] is
order-isometric to C(F )∗, an L1(µ) - space, and because, in L1(µ), the decompo-
sition of each elements into the sum of its positive and negative parts is uniquely
determined, we get by (6.7) and (6.8) that g = g̃ and h = h̃. This concludes the
construction of the difference of convex functions g − h = f .
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Norm. Sup., Paris 28 (1911), 33–62.

[6] Y. Stenfeld. Characterization of Bauer simplieces and some other classes
of Choquet simplices by their representing matrices. Notes in Banach spaces,
University of Texas Press, Austin and London, 1980, 306–358.

[7] M. Zippin. On some subspaces of Banach spaces whose duals are L1 spaces.
Proc. Amer. Math. Soc. 23 (1969), 378–385.

Department of Mathematics

The Hebrew University

Jerusalem

91904 Israel

e-mail: zippin@math.huji.ac.il Received September 10, 2000


