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I. INTRODUCTION

In recent decades, considerable scienti�c interest has been shown in the so-called
fractional calculus, which allows integration and di�erentiation of arbitrary order,
not necessarily integer. This is largely due to the applications of fractional calculus
to the mathematical modeling of a number of processes with memory in di�erent
�elds such as physics, biology, even sociology.

The �rst ideas about fractional calculus date back to the end of the 17th century
and are associated with the name of Gottfried Leibniz. Almost three centuries later,
fractional calculus began to be used intensively to describe the evolution of various
real systems using fractional evolution equations, i.e. evolution equations in which
integer time or space derivatives are replaced by fractional order operators. They are
used to model anomalous di�usion, heat transfer in materials with memory, waves
in viscoelastic media, etc.

For modeling of some complex systems, it turns out to be more appropriate to use
generalizations of classical fractional derivatives, for example fractional derivatives
of distributed order or more general integro-di�erential operators of convolutional
type. This leads to a large variety of generalized fractional evolution equations, which
gives rise to the need to organize the multitude of such equations and to �nd ways
of investigating, solving and classifying them.

Very useful in this regard is the so-called subordination principle. In general, this
principle consists of the following: given two Cauchy problems (P ) and (P∗), the
problem (P ) is called subordinate to the problem (P∗) if it is solvable whenever (P∗)
is solvable and the solution u(x, t) of (P ) is represented by the solution u∗(x, t) of
(P∗) by the integral relation

u(x, t) =

∫ ∞
0

ϕ(t, τ)u∗(x, τ) dτ,

where the kernel ϕ(t, τ) is a probability density with respect to τ ≥ 0 when t > 0 is
considered as a parameter, i.e.

ϕ(t, τ) ≥ 0,

∫ ∞
0

ϕ(t, τ) dτ = 1. (0.1)

By solvability of the problem we mean that it is well-posed, i.e. there exists a unique
solution that depends continuously on the initial conditions.

The subordination principle makes it possible to represent the solutions of complex
equations through the solutions of simpler classical equations and is a useful tool for
proving the solvability of the problem, �nding estimates for the solution, establishing
its asymptotic behavior and other properties. In addition, the subordination principle
establishes a �hierarchy� among the variety of generalized fractional evolution equa-
tions, which is important for the correct classi�cation and evaluation of the physical
meaning of the corresponding mathematical models.

The present dissertation is devoted to the study of the subordination principle
for generalized fractional evolution equations. A methodology has been developed
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that allows establishing a subordination dependence between two equations and
thus helps to classify these equations into two main groups: equations describing
subdi�usion and di�usion-wave equations. A number of speci�c equations found in
the scienti�c literature are studied.

The main mathematical tools that are used in the conducted research are the
theory of operators and special functions of fractional calculus, the Laplace transform
technique and the theory of Bernstein functions and special classes of functions
related to them.

II. STRUCTURE AND BRIEF OVERVIEW OF THE DISSERTATION

The dissertation contains 200 pages. It consists of an Introduction, eight chapters
(divided into 31 sections), Concluding remarks, Bibliography and Index. The Biblio-
graphy contains 110 titles. The theorems are numbered with two numbers, the �rst
being the number of the chapter, and the second being the serial number in the chap-
ter itself. The numbering of formulas, de�nitions, statements, remarks, examples and
�gures follows the same principle. The text is in English.

The dissertation is the result of the author's research conducted over the past
seven years (2015-2021). It is based on 11 papers published during this period: [B1]-
[B11] given in Section III of this abstract.

Next we give a short overview of the dissertation work, as for each chapter we
will note which of the publications are used.

The Introduction contains the motivation for the research conducted, giving
examples of di�erent types of subordination principles.Chapter 1 contains notations,
de�nitions, and basic properties of the fractional integration and di�erentiation
operators, the Laplace transform, Mittag-Le�er functions, and some Wright-type
functions. In Chapter 2, after an introduction to the theory of Bernstein func-
tions and Volterra integral equations, we prove two general subordination theorems.
Chapter 3 ([B5] and [B9]) is devoted to a detailed study of the subordination
principle for evolution equations with fractional derivatives in time and in space. As
an application, integral representations for the fundamental solution are obtained,
as well as some explicit representations by means of special functions. The rest of
the dissertation deals with generalized evolution equations with fractional operators
in time. To demonstrate the important role of the subordination principle in the
study of these equations, in Chapter 4 ([B10]) Je�rey's fractional heat equation is
considered. In Chapter 5 ([B1], [B2] and [B3]) results are obtained for subdi�usion
equations of distributed order and for more general equations with memory kernels.
Useful estimates in the scalar case are derived. In Chapter 6 ([B6]) the multinomial
Mittag-Le�er function is studied, which is related to the solution of relaxation
equations with several time derivatives of di�erent (fractional) orders. The last two
chapters deal with equations describing phenomena that are intermediate between
di�usion and wave propagation. In Chapter 7 ([B4] and [B7]) an open problem
concerning the interpretation of the fundamental solution of di�usion-wave equa-
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tions of distributed order as a probability density is discussed and partially solved.
This property of the fundamental solution is important both for the physical meaning
of the model and for establishing subordination relation with respect to the wave
equation. In Chapter 8 ([B4], [B8] and [B11]) equations describing wave propaga-
tion in viscoelastic media with completely monotone relaxation moduli are considered.
Generalized fractional Maxwell and Zener models are considered, as well as a new
model with a relaxation modulus that is represented by a fcompletely monotone
binomial Mittag-Le�er function. The particular case of a fractional Je�rey model is
studied in detail and the physical meaning of the subordination formula is discussed.
The dissertation ends with a summary of the main scienti�c contributions.

III. PUBLICATIONS ON WHICH THE DISSERTATION IS BASED

[B1] E. Bazhlekova (2015), Completely monotone functions and some classes of
fractional evolution equations. Integral Transforms and Special Functions, 26 (9)
737-752; IF: 0.528 � Q3 (Web of Science) � 30 points.
Cited 16 times in Scopus

[B2] E. Bazhlekova (2015), Subordination principle for a class of fractional order
di�erential equations. Mathematics (MDPI), 3 (2) 412-427; èíäåêñèðàíà â Web of
Science è Scopus � 12 points.
Cited 13 times in Scopus

[B3] E. Bazhlekova (2018), Estimates for a general fractional relaxation equation
and application to an inverse source problem. Mathematical Methods in the Applied
Sciences, 41 (18) 9018-9026; IF: 1.533 � Q2 (Web of Science) � 40 points.
Cited 4 times in Scopus

[B4] E. Bazhlekova (2018), Subordination in a class of generalized time-fractional
di�usion-wave equations. Fractional Calculus and Applied Analysis, 21 (4) 869-900;
IF: 3.514 � Q1(Web of Science) � 50 points.
Cited 19 times in Scopus

[B5] E. Bazhlekova (2019), Subordination principle for space-time fractional evolution
equations and some applications. Integral Transforms and Special Functions, 30 (6)
431-452;IF: 0.705 � Q3 (Web of Science) � 30 points.
Cited 8 times in Scopus

[B6] E. Bazhlekova (2021), Completely monotone multinomial Mittag-Le�er type
functions and di�usion equations with multiple time-derivatives. Fractional Calculus
and Applied Analysis, 24 (1) 88-111; IF: 3.17 � Q1(Web of Science) � 50 points.
Cited 3 times in Scopus

[B7] E. Bazhlekova, I. Bazhlekov (2018), Subordination approach to multi-term time-
fractional di�usion-wave equations. Journal of Computational and Applied Mathema-
tics (Elsevier), 339, 179-192; IF: 1.883 � Q1(Web of Science) � 50 points.
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Cited 14 times in Scopus

[B8] E. Bazhlekova, I. Bazhlekov (2018), Complete monotonicity of the relaxation
moduli of distributed-order fractional Zener model. AIP Conference Proceedings,
2048, art.no. 050008; SJR: 0.182 � 20 points.
Cited 3 times in Scopus

[B9] E. Bazhlekova, I. Bazhlekov (2019), Subordination approach to space-time
fractional di�usion. Mathematics (MDPI), 7(5) art.no. 415; IF: 1.747 � Q1 (Web
of Science) � 50 points.
Cited 7 times in Scopus

[B10] E. Bazhlekova, I. Bazhlekov (2020), Transition from di�usion to wave propaga-
tion in fractional Je�reys-type heat conduction equation. Fractal and Fractional
(MDPI), 4(3), art.no. 32; IF: 3.313 � Q1(Web of Science) � 50 points.
Cited 3 times in Scopus

[B11] E. Bazhlekova, S. Pshenichnov (2021), Wave propagation in viscoelastic half-
space with memory functions of Mittag-Le�er type. International Journal of Applied
Mathematics, 34(3) 423-440; SJR: 0.268 � Q3 (Scopus) � 20 points.

Each impact factor, impact rank or quartile refers to the year of publication of the
respective article. The points are calculated according to the rules for professional
area 4.5 Mathematics in the Regulations on the Conditions and Order for Acquiring
Scienti�c Degrees and Occupying Academic Positions at the Bulgarian Academy of
Sciences. For each article we give the corresponding number of citations found in
the Scopus database, excluding self-citations.

Of the presented 11 publications, 8 are in journals with Impact Factor (total IF:
16.4). From them 5 are in Q1 (250 points), 1 in Q2 (40 points), 2 in Q3 (60 points) -
a total of 350 points. Publications that are in journals with SJR: 2 � 40 points. One
publication is in a publication indexed on Web of Science and Scopus, but without
IF/SJR for the year of publication - 12 points. Total of all dissertation publications:
402 points.

The citations of the above publications found in the Scopus database are 90. They
carry a total of 540 points (6 points per citation according to the BAS Regulations).

Of the publications, 6 are written by the author alone and 5 are co-authored with
one author. The analytical results in all publications are obtained by the dissertation
author. The contribution of the co-authors in publications [B7]-[B11] consists in the
de�nition of the mathematical model, numerical computations and visualization
of the results. In articles [B9] and [B10] the contributions of individual authors
are explicitly stated. In the dissertation, only results obtained by the author are
described. The only exception is the presented �gures (Figures 4.1, 7.1-7.3 and 8.1).
They are given in order to visualize the behavior of the analytically derived solutions
and are not considered as a contribution of the dissertation.

None of the above publications have been used in other dissertations or procedures
of the authors. All 11 articles were published after the completion of the last

5



procedure of the dissertation author (which was for the occupation of the academic
position of associate professor in 2014).

IV. CONTENTS AND MAIN RESULTS

We will present the content and main results of the dissertation by chapter.

1 Fractional calculus operators and special functions

Chapter 1, consisting of 5 sections, contains preliminary information. Fractional
integration and di�erentiation operators are de�ned, as well as some special functions
closely related to fractional calculus. Their main properties are given.

The sets of positive integers, real and complex numbers are denoted by N, R, C,
respectively; N0 = N ∪ {0}, R+ = (0,∞), C+ = {z ∈ C, <z > 0}.

Let X be a Banach space. For −∞ ≤ a < b ≤ +∞ we denote by C([a, b];X) the
space of continuous functions f : [a, b] → X. The space of functions f : R+ → X
that are Bochner integrable on any interval [0, τ ], τ > 0 is denoted by L1

loc(R+;X).
For brevity, L1

loc(R+) := L1
loc(R+;R).

The Laplace transform of a function f ∈ L1
loc(R+;X) is de�ned as follows

L{f(t)}(s) = f̂(s) =

∫ ∞
0

e−stf(t) dt, Res > 0.

Let α > 0 and m− 1 < α ≤ m, m ∈ N. We de�ne

ωα(t) =
tα−1

Γ(α)
, t > 0, α > 0, (1.1)

where Γ(·) denotes the Gamma function. Furthermore, we put ω0(t) = δ(t) where δ
is the Dirac delta function.

For u : R+ → X we de�ne fractional Riemann-Liouville derivative of order α by
the identity [15, 25]

(Dα
t u)(t) =

dm

dtm

∫ t

0

ωm−α(t− τ)u(τ) d tau, t > 0.

The Caputo fractional derivative is de�ned by the identity [15, 25]

(CD
α

t u)(t) =

∫ t

0

ωm−α(t− τ)u(m)(τ) dτ, t > 0.

For α = m ∈ N, we have Dm
t = CD

m
t = dm

dtm
.

The Mittag-Le�er function is an entire function de�ned by the following series
expansion [12, 15, 20]

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α > 0, β ∈ R, z ∈ C. (1.2)
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In particular, we denote Eα(z) := Eα,1(z).
The Prabhakar function (or Mittag-Le�er function with three parameters) is an

entire function de�ned as follows [27, 10]

Eδ
α,β(z) =

∞∑
k=0

(δ)k
k!

zk

Γ(αk + β)
, z ∈ C, α ∈ R+, β, δ ∈ R, (1.3)

where (δ)k denotes the Pochhammer symbol

(δ)k =
Γ(δ + k)

Γ(δ)
= δ(δ + 1) . . . (δ + k − 1), k ∈ N, (δ)0 = 1. (1.4)

In the special case δ = 1 we obtain Eα,β(z) = E1
α,β(z).

The Mainardi function (also called M-Wright function) is an entire Wright-type
function de�ned by the series [20, 12]

Mγ(z) =
∞∑
n=0

(−z)n

n!Γ(−γn+ 1− γ)
, 0 < γ < 1, z ∈ C. (1.5)

It is related to the Mitag-Le�er function Eγ(·) by the identity

L{Mγ(τ)}(s) =

∫ ∞
0

e−sτMγ(τ) dτ = Eγ(−s), 0 < γ < 1. (1.6)

The function Lγ(·) de�ned by its Laplace transform as follows

L{Lγ(τ)}(s) =

∫ ∞
0

e−sτLγ(τ) dτ = exp(−sγ), 0 < γ < 1, (1.7)

is called L�evy extremal stable density [9, 21, 22]. It is related to the Mainardi function
by the equality [20, 26]

Lγ(z) = γz−γ−1Mγ

(
z−γ
)
, 0 < γ < 1, z ∈ C\(−∞, 0]. (1.8)

A function de�ned on R+ is said to be one-sided probability density function
when it satis�es the conditions

ϕ(τ) ≥ 0, τ ≥ 0;

∫ ∞
0

ϕ(τ) dτ = 1. (1.9)

The functions Mγ(τ) and Lγ(τ) are one-sided probability densities.
Detailed information on fractional calculus and Mittag-Le�er functions is contained

in the monographs [12, 15, 25]. An overview of special functions related to fractional
calculus can be found in [16, 17].

2 Introduction to subordination principle

In Chapter 2 (4 sections), we �rst give the de�nitions and basic properties of
Bernstein functions and related special classes of functions that play an important
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role in the thesis. In order to have a uni�ed approach to the variety of evolution
equations containing fractional derivatives, we use the theory of abstract Volterra
equations, a brief introduction to which is given next. Finally, we prove two general
subordination theorems that will be used later in the dissertation.

2.1 Bernstein functions

Four special classes of functions play an essential role in this thesis: the classes of
completely monotone functions (CMF), Bernstein functions (BF), Stiltes functions
(SF), and complete Bernstein functions (CBF). The last class is also found in the
literature under other names, for example Nevanlinna functions. In the dissertation
we use the terminology in the monograph [30].

In the following de�nitions of the function φ we assume φ : R+ → R. A function
φ is called a completely monotone function (CMF) if it is in�nitely di�erentiable
and

(−1)nφ(n)(t) ≥ 0, t > 0, n ∈ N0. (2.1)

According to Bernstein's Theorem, a function is completely monotone if and only
if it can be represented as the Laplace transform of a non-negative (generalized)
function.

The class BF of Bernstein functions consists of all functions φ ≥ 0, such that
φ′(t) ∈ CMF .

The class of Stiltjes functions ( SF ) consists of all functions [18]

φ(s) =
a

s
+ b+

∫ ∞
0

e−sτψ(τ) dτ, s > 0, (2.2)

where a, b ≥ 0, ψ ∈ CMF and the Laplace transform of ψ exists for every s > 0.
A function φ is called complete Bernstein function (φ ∈ CBF) if and only if

φ(s)/s ∈ SF , s > 0.
The inclusions SF ⊂ CMF and CBF ⊂ BF hold.
Elementary examples of Stiltjes functions and complete Bernstein functions are

as follows:
sα ∈ SF , sα ∈ CBF , α ∈ [0, 1].

Functions de�ned in this way have a number of interesting properties [30]. A
selection of properties that are essentially used in the thesis are given in Section 2.1.

2.2 Abstract Volterra integral equations

Let X be a Banach space with norm ‖.‖ and let A : D(A)→ X be a closed linear
densely de�ned operator.

Let α > 0 and m− 1 < α ≤ m, m ∈ N. We consider the Cauchy problem for the
fractional evolution equation:

CD
α

t u(t) = Au(t), t > 0,

u(0) = v ∈ X, u(k)(0) = 0, k = 1, 2, . . . ,m− 1.
(2.3)
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In the scalar case when X = R and the operator A is simply multiplication by a
constant, A = −λ, λ > 0, the solution of (2.3) is given by the Mittag-Le�er function:
u(t) = u(0)Eα(−λtα). It describes fractional (slow) relaxation for α ∈ (0, 1) and
damped oscillations for α ∈ (1, 2).

The classical Cauchy problem for a �rst-order equation is a special case of (2.3)
with α = 1:

u′(t) = Au(t), t > 0; u(0) = v ∈ X, (2.4)

and for α = 2, the Cauchy problem for a second-order equation is obtained

u′′(t) = Au(t), t > 0; u(0) = v ∈ X, u′(0) = 0. (2.5)

Consider the abstract Volterra integral equation

u(t) =

∫ t

0

k(t− τ)Au(τ) dτ + f(t), t > 0, (2.6)

with kernel k(t) ∈ L1
loc(R+).

Let us note that (2.3) can be rewritten as a Volterra integral equation with kernel
k(t) = ωα(t), where the function ωα(t) is de�ned in (1.1). The more general equations
considered in the dissertation also have an equivalent representation in the form of
an integral equation (2.6). Therefore, for their study we use the theory of abstract
Volterra equations developed in the monograph [28]. We will �rst give some basic
de�nitions.

De�nition 2.1. A function u ∈ C(R+;X) is called a strong solution of the equation
(2.6) if u ∈ C(R+;D(A)) and (2.6) is ful�lled on R+.

De�nition 2.2. The problem (2.6) is called well-posed if for each v ∈ D(A) there
exists a unique strong solution u(t; v) of

u(t) = v +

∫ t

0

k(t− τ)Au(τ) dτ, t > 0, v ∈ D(A), (2.7)

and from {vn} ⊂ D(A), vn → 0 follows u(t; vn) → 0 in X, uniformly on every
compact interval.

Let the problem (2.6) be well posed. Then the solution operator S(t) for (2.6) is
de�ned as usual:

S(t)v = u(t; v), v ∈ X, t ≥ 0.

The solution operator S(t) is called bounded if there exists a constant C ≥ 1 such
that

‖S(t)‖ ≤ C for all t ≥ 0.

De�nition 2.3. The solution operator S(t) is called a bounded analytic solution
operator with angle θ0 ∈ (0, π/2] if the function S(·) has an analytic continuation
S(z) to the sector | arg z| < θ0 which is bounded on every subsector | arg z| ≤ θ where
θ < θ0.
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In the case when the classical problem (2.4) is well-posed, the solution operator
S1(t) is a strongly continuous (C0-) semigroup. The operator A is said to generate
C0 - semigroup. In the case of problem (2.5), the solution operator S2(t) is a strongly
continuous cosine operator function [2].

2.3 General subordination theorems

The next two general subordination theoremsâ are proven in Section 2.4.

Theorem 2.1. Let the Cauchy problem (2.3) be well-posed for some α, 0 < α ≤ 2,
and have a bounded solution operator Sα(t). For the kernel k(t) of the Volterra

integral equation (2.6) we assume that k(t) ∈ L1
loc(R+), the Laplace transform k̂(s)

exists for s > 0, k̂(s) 6= 0 and the function g(s) = (k̂(s))−1 satis�es the condition

g(s)1/α ∈ CBF , s > 0. (2.8)

Then problem (2.6) is also well-posed and has a bounded solution operator S(t) which
is related to Sα(t) by the identity

S(t) =

∫ ∞
0

ϕ(t, τ)Sα(τ) dτ, t > 0, (2.9)

where

ϕ(t, τ) =
1

2πi

∫ c+i∞

c−i∞

g(s)1/α

s
exp

(
st− τg(s)1/α

)
ds, c > 0.

The subordination kernel ϕ(t, τ) is a one-sided probability density with respect to
τ ≥ 0 (for t > 0 considered as a parameter), i.e.

ϕ(t, τ) ≥ 0,

∫ ∞
0

ϕ(t, τ) dτ = 1. (2.10)

Let us note that Theorem 2.1 is based on the following representation for the
Laplace transform of the kernel ϕ(t, τ)

ϕ̂(s, τ) =
g(s)1/α

s
exp

(
−τg(s)1/α

)
, s, τ > 0. (2.11)

From the condition (2.8) it follows ϕ̂(s, τ) ∈ CMF with respect to s > 0 (if τ is
considered as a parameter), which by Bernstein's theorem is equivalent to ϕ(t, τ) ≥
0. This observation is essential for the studies in the dissertation. The goal is to �nd
the (smallest) α for which (2.8) is satis�ed (let us keep in mind that if (2.8) is satis�ed
for some α = al∗, it is also ful�lled for every α > α∗). More generally, Theorem 2.1
reduces the question of subordination to a problem of Bernstein functions.

In the second theorem, we consider the case when the subordinated operator of
the solution is bounded analytic and de�ne the sector of analyticity.

Theorem 2.2. Let the conditions of Theorem 2.1 be satis�ed and

| arg{g(s)1/β}| ≤ | arg s|, 0 < β < α, s ∈ C\(−∞, 0]. (2.12)
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Then S(t) is a bounded analytic operator of angle

θ∗ = min

{(
α

β
− 1

)
π

2
,
π

2

}
. (2.13)

If, moreover, Sα(t) is a bounded analytic operator of angle φ0 ∈ (0, π/2] then the
angle of S(t) is

θ0 = min

{
α

β
φ0 +

(
α

β
− 1

)
π

2
, fracπ2

}
. (2.14)

3 Space-time fractional evolution equations

Chapter 3 (consisting of 5 sections) is devoted to the subordination principle for
the fractional di�erential equation with the Caputo time-derivative of order β ∈
(0, 1) and operator −(−A)α, α ∈ (0, 1), where A generates a C0 - semigroup in
a Banach space. Some properties of the subordination kernel are established and
representations by the Mainardi functionMβ and the L�evy extremal stable densities
Lα are derived. The sector of analyticity of the solution operator is found, taking
into account the asymptotic behavior of the subordination kernel. Subordination
formulae are applied to the multidimensional space-time fractional di�usion equation
to obtain integral representations for the fundamental solutions as well as closed-
form solutions in some special cases.

Consider the problem

CD
β

t u(t) = −(−A)αu(t), t > 0; u(0) = v ∈ X; 0 < α, β ≤ 1, (3.1)

where the operator A generates C0 - a semigroup in Banach spaceX and the operator
−(−A)α is de�ned by Balakrishnan's formula [6, 31]

(−A)αv =
sinαπ

π

∫ ∞
0

λα−1(λ− A)−1(−Av) dλ, v ∈ D(A). (3.2)

In this chapter, we use a two-index notation Sα,β(t) for the solution operator of (3.1).
According to the assumptions made about the operator A, the classical problem (2.4)
is well-posed with corresponding solution operator S1,1(t).

3.1 Subordination formula

By successively applying two known results for subordination in space and in
time ([31] and [7]), the following theorem is derived.

Theorem 3.1. If the operator A generates a bounded C0-semigroup S1,1(t) then the
problem (3.1) is correctly posed and has a bounded solution operator Sα,β(t) which
has the following integral representation

Sα,β(t) =

∫ ∞
0

ψα,β(t, τ)S1,1(τ) dτ, t > 0. (3.3)
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The subordination kernel ψα,β(t, τ) is a one-sided probability density with respect to
τ ≥ 0 (i.e., it satis�es (2.10)). The following relations are satis�ed∫ ∞

0

ψα,β(t, τ)e−λτ dτ = Eβ(−λαtβ), (3.4)

and ∫ ∞
0

ψα,β(t, τ)e−st dt = sβ−1τα−1Eα,α(−sβτα). (3.5)

E�orts are directed next to obtain representations of the subordination kernel
ψα,β(t, τ) and to study its properties as well as those of the subordination operator
Sα,β(t). The following results were obtained:

Theorem 3.2. The subordination kernel is given by the formula

ψα,β(t, τ) = t−β/αKα,β(τt−β/α),

where the function Kα,β has the following representations

Kα,β(r) =

∫ ∞
0

σ−1/αLα(rσ−1/α)Mβ(σ) dσ, (3.6)

Kα,β(r) =

∫ ∞
0

σβ/αLα(rσβ/α)Lβ(σ) dσ, (3.7)

Kα,β(r) = αrα−1
∫ ∞
0

σMα(σ)Mβ(σrα) dσ. (3.8)

Here, Lα is the L�evy extremal stable density (1.7) and Mβ is the Mainardi function
(1.5). Moreover, in the special case α = β it holds

Kα,α(r) =
1

π

rα−1 sinαπ

r2α + 2rα cosαπ + 1
. (3.9)

Theorem 3.3. Let 0 < α ≤ 1, 0 < β ≤ 1, and αβ 6= 1. Then the kernel ψα,β(t, τ)
has the following integral representation

ψα,β(t, τ) =
τα−1

π

∫ ∞
0

rβ−1 (Cβ(r, t)Iα,β(r, τ) + Sβ(r, t)Rα,β(r, τ)) dr, (3.10)

where Cβ(r, t) = cos(rt+ βπ/2), Sβ(r, t) = sin(rt+ βπ/2) and

Iα,β(r, τ) = ={τα−1Eα,α(−ταrβeiβπ/2)} =
∞∑
k=0

(−1)kταk+α−1rβk sin kβπ/2

Γ(αk + α)
,

Rα,β(r, τ) = <{τα−1Eα,α(−ταrβeiβπ/2)} =
∞∑
k=0

(−1)kταk+α−1rβk cos kβπ/2

Γ(αk + α)
.

Theorem 3.4. Let 0 < α, β ≤ 1, αβ 6= 1 and

θ0 = min

{
(2− α− β)π

2β
,
π

2

}
. (3.11)
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Then for each τ > 0 the function ψα,β(t, τ) as a function of t has an analytic
extension in the sector | arg t| < θ0 which is bounded on each subsector | arg t| ≤ θ,
0 < θ < θ0.

The last kernel analyticity result leads to the analyticity of the subordinate
solution over a larger sector in the complex plane, compared to the solution of
the original problem (2.4).

Theorem 3.5. If 0 < α, β ≤ 1, αβ 6= 1 and the operator A generates a bounded
analytic semigroup S1,1(t) of angle φ0 ∈ (0, π/2], then Sα,β(t) is a bounded analytic
solution operator of angle θ0, where

θ0 = min

{
αφ0

β
+

(2− α− β)π

2β
,
π

2

}
. (3.12)

In the limiting case φ0 = 0 ( S1,1(t) is only of class C0 and not an analytic
semigroup) the subordinated solution operator Sα,β(t) is again analytic. From (3.12)
we obtain the analyticity sector of Sα,β(t), which at φ0 = 0 coincides with the
analyticity sector of the kernel (3.11). Therefore, the subordinate solution is always
analytic, regardless of whether the solution of (2.4) has this property.

3.2 Multi-dimensional fundamental solution

Let us apply the subordination formula (3.3) to �nd the solution of the following
basic special case of the abstract Cauchy problem (3.1)

CD
β

t u(x, t) = −(−∆)αu(x, t), t > 0, x ∈ Rn; u(x, 0) = v(x); (3.13)

where 0 < α, β ≤ 1, CD
β
t is the Caputo derivative, and ∆ is the Laplace operator in

Rn. The solution operator Sα,β(t) of the Cauchy problem (3.13) is de�ned by

(Sα,β(t)v)(x) =

∫
Rn

Gα,β,n(y, t)v(x− y) dy, v ∈ X, t > 0, x ∈ Rn,

where Gα,β,n(x, t) is the corresponding Green function (fundamental solution). There-
fore, the subordination formula (3.3) can be written as a relation between Green
functions as follows

Gα,β,n(x, t) =

∫ ∞
0

ψα,β(t, τ)G1,1,n(x, τ) dτ, x ∈ Rn. (3.14)

It is known that [2]

G1,1,n(x, t) =
1

(4πt)n/2
e−|x|

2/4t, x ∈ Rn, t > 0. (3.15)

The formulas (3.14) and (3.15) have been used to obtain representations for the
Green's function Gα,β,n(x, t). Thus, in the special case α = β = 1/2 we obtain the
explicit representation

G1/2,1/2,n(x, t) =
Γ
(
n+1
2

)
2n pin/2+1tn/2

U

(
n+ 1

2
,
n+ 1

2
,
|x|2

4t

)
, x ∈ Rn, (3.16)
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where U is the con�uent Tricomi hypergeometric function ([1], Eq. 13.2.5)

U(a, c, z) =
1

Γ(a)

∫ ∞
0

ξa−1(1 + ξ)c−a−1e−zξ dξ, a > 0, z > 0. (3.17)

From the formulas (3.14) and (3.15), the following integral representations of
Gα,β,n for n = 1, 2, 3 are derived:

Theorem 3.6. Let 0 < α, β ≤ 1 and αβ 6= 1. Then

Gα,β,1(x, t) =
2α

β

tβ

π|x|

∫ ∞
0

sin(|x|σ)σ2α−1Eβ,β(−σ2αtβ) dσ,

Gα,β,2(x, t) = − 1

2π2|x|2

∫ π

0

1

cos2 θ

(
1 +

∫ ∞
0

cos(|x|σ cos θ)Hα,β(σ, t) dσ

)
dθ,

Gα,β,3(x, t) =
1

2π2|x|3

∫ ∞
0

sin(|x|σ)Hα,β(σ, t) dσ.

The function Hα,β is de�ned as follows in terms of Mittag-Le�er functions

Hα,β(σ, t) = µσ2α−1tβ
(
(1 + µ)Eβ, be(−σ2αtβ) + µEβ,β−1(−σ2αtβ)

)
, (3.18)

where µ = 2α/β.

4 Transition from di�usion to wave propagation

In Chapter 4 (consisting of 4 sections)the Je�rey-type fractional heat conduction
equation is studied. It is an evolution equation containing fractional Riemann-
Liouville derivatives in time, which, depending on the model parameters, satis�es
two di�erent subordination principles and, accordingly, two fundamentally di�erent
types of behavior: the di�usion regime and wave propagation regime. Integral represen-
tations for the Green function of the one-dimensional Cauchy problem are derived.
It is shown that the Green function represents a probability density in the spatial
variable that evolves with time. It is unimodal in the di�usion regimee and bimodal
in the wave propagation regime. The considered example illustrates how the principle
of subordination is closely related to the physical properties of a given model.

4.1 Subordination theorems

Consider the equation

(1 + aDα
t )u′(t) = (1 + bDα

t )Au(t), t > 0, (4.1)

with initial conditions u(0) = v and u′(0) = 0, where Dα
t is the Riemann-Liouville

fractional derivative of order α ∈ (0, 1], a, b ≥ 0, and A is a linear closed operator
in a Banach space. When A is the second derivative in space, then (4.1) is the
Je�rey-type fractional heat conduction equation [5], Chapter 7.
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The problem (4.1) is written as a Volterra integral equation (2.7) with a characteri-
stic function

g(s) = (k̂(s))−1 =
s(1 + asα)

1 + bsα
, s > 0,

and for a = b the classical problem (2.4) is obtained. The following properties play
a decisive role in the study:

g(s)/s ∈ SF for a < b; g(s)/s ∈ CBF for a > b.

From them follows:

Proposition 4.1. Let 0 < α ≤ 1 and a, b ≥ 0. Then
√
g(s) ∈ CBF . If we further

assume 0 ≤ a < b, then g(s) ∈ CBF .

This statement together with Theorem 2.1 leads to the following two subordination
theorems.

Theorem 4.1. Let a, b ≥ 0 and 0 < α ≤ 1. Let the operator A generate a bounded
strongly continuous cosine operator function S2(t). Then the problem (4.1) is well-
posed and the solution operator S(t) satis�es the identity

S(t) =

∫ ∞
0

ϕ1(t, τ)S2(τ) dτ, t > 0, (4.2)

where the kernel ϕ1(t, τ) is a one-sided probability density de�ned by means of the
Laplace transform

ϕ̂1(s, τ) =

√
g(s)

s
exp

(
−τ
√
g(s)

)
, s, τ > 0. (4.3)

Theorem 4.2. Let 0 ≤ a < b and 0 < α ≤ 1. Suppose that A generates a bounded
C0-semigroup S1(t). Then the problem (4.1) is well-posed and the solution operator
S(t) satis�es the identity

S(t) =

∫ ∞
0

ϕ2(t, τ)S1(τ) dτ, t > 0.

The kernel ϕ2(t, τ) is a one-sided probability density de�ned by means of the Laplace
transform

ϕ̂2(s, τ) =
g(s)

s
exp (−τg(s)) , s, τ > 0.

These two theorems show that for a < b the equation (4.1) obeys the �rst-
order equation (2.4), while for a > b it obeys the second-order equation (2.5). This
corresponds to substantially di�erent properties of the solution, as we will see with
the example of the one-dimensional Cauchy problem below.

Since at a > b ≥ 0 the property is satis�ed

g(s)1/(α+1) ∈ CBF , s > 0, (4.4)

then the following more precise result holds in this case:
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Theorem 4.3. Let a > b ≥ 0 and 0 < α ≤ 1. We assume that the Cauchy problem
for the fractional evolution equation (2.3) of order α + 1 is well-posed and has a
bounded solution operator Sα+1(t). Then the problem (4.1) is correctly posed with a
solution operator S(t) satisfying the equality

S(t) =

∫ ∞
0

ϕ(t, τ)Sα+1(τ) dτ, t > 0.

The kernel ϕ(t, τ) is a one-sided probability density de�ned by means of the Laplace
transform

ϕ̂(s, τ) =
g(s)1/(α+1)

s
exp

(
−τg(s)1/(α+1)

)
, s, τ > 0.

In the case of a fractional model, 0 < α < 1, this result is stronger than the one
formulated in Theorem 4.1.

4.2 One-dimensional fundamental solution

As a particular example of (4.1) we consider the task

(1 + aDα
t )

∂

∂t
u(x, t) = (1 + bDα

t )
∂2

∂x2
u(x, t), x ∈ R, t > 0, (4.5)

u(x, 0) = u0(x); lim
t→0+

∂

∂t
u(x, t) = 0, x ∈ R, (4.6)

lim
|x|→∞

u(x, t) = 0, t > 0. (4.7)

Applying Laplace transform in t and Fourier transform in x gives the following
result:

Ĝ(x, s) =

√
g(s)

2s
exp

(
−|x|

√
g(s)

)
, x ∈ R. (4.8)

Let us point out the relation with the subordination kernel, whose Laplace transform
is given in (4.3).

Applying the Laplace transform inversion formula to (4.8) yields an integral
representation for the fundamental solution in terms of elementary functions.

Theorem 4.4. The fundamental solution G(x, t) of the Cauchy problem (4.5)-(4.6)-
(4.7) has the integral representation for x ∈ R\{0} and t > 0:

G(x, t) =
1

2π

∫ ∞
0

exp
(
−|x|K−(r)

) (
K−(r) sin

(
rt− |x|K+(r)

)
+ K+(r) cos

(
rt− |x|K+(r)

)) dr
r
. (4.9)

The functions K±(r) are de�ned by the equalities

K±(r) =
(r

2

)1/2 ((
A2(r) +B2(r)

)1/2 ± A(r)
)1/2

(4.10)
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where

A(r) =
(a− b)rα sin(απ/2)

1 + 2brα cos(απ/2) + b2r2α
,

B(r) =
1 + (a+ b)rα cos(απ/2) + abr2α

1 + 2brα cos(απ/2) + b2r2α
.

The integral representation (4.9) is suitable for numerical computation and visua-
lization of the solution. At a < b a di�usion regime is observed, while at a > b the
behavior has a character of di�usive waves. The observed behavior is analogous
to the behavior of the solution of the fractional di�usion-wave equation (2.3) with
A = ∂2/∂x2, where the di�usion mode is at 0 < α ≤ 1, and the wave mode is at
1 < α ≤ 2.

For brevity, in the rest of the dissertation we call generalized subdi�usion equa-
tions those subordinated to the �rst-order equation (2.4), and equations that are
subordinated to the second-order equation (2.5), but are not generalized subdi�usion
equations, we call generalized di�usion-wave equations.

5 Generalized subdi�usion equations

Chapter 5 (consisting of 4 sections) considers �rst the abstract Cauchy problem
for the time-fractional evolution equations of distributed order with continuous or
discrete distribution over the interval [0, 1]. The special case of problem (4.1) with
a = 0 and b > 0 is studied in detail. Then, the problem with general convolutional
derivative is investigated and two kinds of subordination theorems are established.
The subordination principle in the scalar case is applied to derive useful estimates
for relaxation functions that generalize some results for Mittag�Le�er functions. As
an illustration of the application of these estimates, uniqueness and stability are
proved for an inverse problem.

5.1 Equations with generalized convolutional derivative

The Caputo-type generalized convolutional derivative is introduced in [18] in the
form

(CD(κ)
t f)(t) =

d

dt

∫ t

0

κ(t− τ)f(τ) dτ − κ(t)f(0), t > 0, (5.1)

where κ(t) ∈ L1
loc(R+) is a nonnegative function. For the kernel κ(t), we assume that

its Laplace transform κ̂(s) exists for every s > 0 and

κ̂(s) ∈ SF and lim
s→+∞

sκ̂(s) = +∞, (5.2)

where SF is the class of Stiltjes functions.
We consider the Cauchy problem

CD(κ)
t u(t) = Au(t), t > 0; u(0) = a ∈ X, (5.3)
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where CD(κ)
t is the generalized convolutional derivative (5.1), and A an operator that

generates a bounded C0-semigroup.
Let us note that in the original de�nition of the generalized fractional derivative

in [18] additional restrictions are imposed on the boundary behavior of the function
κ̂(s). To include some practically important equations (such as (4.1) with 0 ≤ a < b
or the discussed in the next chapter (6.1) and (6.2) with α = 1), we assume only
the requirements (5.2). They are su�cient for the general subordination theorem
Theorem 2.1 to hold in the special case α = 1.

The following additional result follows from the Post-Wither formula for the
inversion of the Laplace transform:

Theorem 5.1. If the operator A generates a bounded C0-semigroup and the kernel
κ(t) satis�es (5.2) then the problem (5.3) is well-posed and its solution u(t) has the
representation

u(t) = lim
n→∞

1

n!
(n/t)n+1

n∑
k=0

k∑
p=1

bn,k,p (n/t) (g (n/t)− A)−(p+1) u(0). (5.4)

Here g(s) = sκ̂(s) and the functions bn,k,p(s) ≥ 0 are de�ned as follows

bn,k,p(s) = (−1)n+p
(
n
k

)(
g(s)

s

)(n−k)

ak,p(s)p!, s > 0, (5.5)

where ak,p(s) are de�ned by the recurrence relations

ak+1,p(s) = ak,p−1(s)g
′(s) + a′k,p(s), 1 ≤ p ≤ k + 1, k ≥ 1, (5.6)

ak,0 = ak,k+1 ≡ 0, a1,1(s) = g′(s).

Formula (5.4) summarizes the exponential representation

u(t) = lim
n→∞

(
I − t

n
A

)−n
u(0)

for the solution of the classical Cauchy problem (2.4).

5.2 Relaxation functions

Let us now consider the general relaxation equation with convolutional derivative
(5.1)

CD(κ)
t u(t) + λu(t) = f(t), λ > 0, t > 0; u(0) = a ∈ R. (5.7)

We denote by u(t;λ) and v(t;λ) the solutions corresponding to a = 1, f ≡ 0, and
a = 0, f(t) = δ(t), where δ(t) is the Dirac delta function. The functions u(t;λ) and
v(t;λ) are called relaxation functions.

The solution of (5.7) is presented as follows

u(t) = au(t;λ) +

∫ t

0

v(τ ;λ)f(t− τ) dτ. (5.8)
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In the special case where CD(κ)
t is the Caputo fractional derivative CD

α
t , 0 < α <

1, the relaxation functions are represented by Mittag-Le�er functions: u(t;λ) =
Eα(−λtα) and v(t;λ) = tα−1Eα,α(−λtα). The next two theorems summarize some
properties of these functions.

Theorem 5.2. For the relaxation functions u(t;λ) and v(t;λ) the integral represen-
tations hold

u(t;λ) =

∫ ∞
0

ϕ(t, τ)e−λτ dτ, t > 0, (5.9)

v(t;λ) =

∫ ∞
0

ψ(t, τ)e−λτ dτ, t > 0, (5.10)

where the functions ϕ(t, τ) and ψ(t, τ) satisfy the properties

ϕ(t, τ) ≥ 0, ψ(t, τ) ≥ 0;

∫ ∞
0

ϕ(t, τ) dτ = 1,

∫ ∞
0

ψ(t, τ) dτ = k(t). (5.11)

Here, k(t) is the resolvent kernel of κ(t), i.e. (k ∗ κ)(t) = 1.

Theorem 5.3. For each λ > 0, the functions u(t;λ) and v(t;λ) as functions of t
have an analytic continuation in C+. For t > 0 they have the properties

u(t;λ), v(t;λ) ∈ CMF ; (5.12)

u(0;λ) = 1; 0 < u(t;λ) < 1, v(t;λ) > 0; (5.13)

d

dt
u(t;λ) = −λv(t;λ). (5.14)

Furthermore

u(t;λ) ≤ 1

1 + λ(1 ∗ k)(t)
, (5.15)

where k(t) is the resolving kernel of κ(t), i.e. (k ∗ κ)(t) = 1.
For each λ ≥ λ0 > 0 and t > 0

u(t;λ) ≤ u(t;λ0), v(t;λ) ≤ v(t;λ0), (5.16)

and

C ≤ λ

∫ T

0

v(t;λ) dt < 1, T > 0, (5.17)

where the constant C = 1− u(T ;λ0) > 0 does not depend on λ.

The estimates in Theorem 5.3 are very useful in studying boundary value problems
by applying eigenfunction expansion.

6 Multinomial functions of Mittag-Le�er type

In Chapter 6 (consisting of 3 sections) we continue the study of evolution equa-
tions with several time derivatives of di�erent orders in the interval (0, 1]. The
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main emphasis is now on the Mittag-Le�er multinomial function that appears
in the representation of their solutions. The basic properties of this function and
its Prabhakar-type generalization are investigated. Conditions are found for the
parameters under which the function is completely monotone. Some subordination
equalities are established. As speci�c examples, relaxation functions for equations
with several time derivatives are studied in detail. The obtained results generalize
known properties of the classical Mittag-Le�er function.

6.1 Multinomial Mitag-Le�er function

Various types of multi-index generalizations of the classical Mittag-Le�er function
(1.2) are discussed in the literature (e.g. [16, 17, 24] and the monographs [12, 23]).
One such generalization is the multinomial Mittag-Le�er function

E(µ1,...,µm),β(z1, . . . , zm) =
∞∑
k=0

∑
k1+...+km=k
k1≥0,...,km≥0

k!

k1! . . . km!

∏m
j=1 z

kj
j

Γ
(
β +

∑m
j=1 µjkj

) ,
where zj ∈ C, µj > 0, β ∈ R, j = 1, . . . ,m. This function was introduced in [14, 19],
where it is used to solve multi-term fractional di�erential equations with constant
coe�cients. More precisely, the following function of one variable t is involved in
expressing the solutions:

E(µ1,...,µm),β(t; a1, . . . , am) = tβ−1E(µ1,...,µm),β(−a1tµ1 , . . . ,−amtµm).

Consider the following two multi-term equations: with Caputo derivatives

CDα
t u(t) +

m∑
j=1

bj
CD

αj

t u(t) = Au(t) + f(t), t > 0, (6.1)

and with Riemann-Liouville derivatives

u′(t) = D1−α
t Au(t) +

m∑
j=1

bj D
1−αj

t Au(t) + f(t), t > 0, (6.2)

where 1 ≥ α > α1 > ... > αm > 0, bj > 0, j = 1, ...,m, and A is an operator
generating a C0 semigroup. From Theorem 2.1 we derive the following subordination
result:

Theorem 6.1. If the Cauchy problem (2.3) has a bounded operator of the solution
Sα(t), then the problems (6.1), respectively (6.2), are well-posed and their solution
operators are represented as follows

S(t) =

∫ ∞
0

ϕ(t, τ)Sα(τ) dτ, t > 0.

The kernel ϕ(t, τ) is a one-sided probability density in τ ≥ 0 de�ned by means of the
Laplace transform (2.11), where

g(s) = sα +
m∑
j=1

bjs
αj
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in the case of equation (6.1) and

g(s) =

(
s−α +

m∑
j=1

bjs
−αj

)−1
in the case of equation ( 6.2).

In the scalar case (A = −λ, where λ > 0 is a constant), the solutions of (6.1) and
(6.2) are presented in the form

u(t) = un(t;λ) +

∫ t

0

vn(t− τ ;λ)f(τ) dτ, n = 1, 2,

where n = 1 for equation (6.1), n = 2 for equation (6.2) and

u1(t;λ) = 1− λE(α,α−α1,...,α−αm),α+1 (t;λ, b1, . . . , bm) , (6.3)

v1(t;λ) = E(α,α−α1,...,α−αm),α (t;λ, b1, . . . , bm) , (6.4)

u2(t;λ) = v2(t;λ) = E(α,α1,...,αm),1 (t;λ, λb1, . . . , λbm) . (6.5)

The following representation is obtained as an additional result of the considerations
in this chapter.

Theorem 6.2. Let 0 < α ≤ β ≤ 1, 0 < αj < α, λ > 0, bj > 0, j = 1, . . . ,m. Then

E(α,α1,...,αm),β (t;λ, b1, . . . , bm) =

∫ ∞
0

φ(t, τ)e−λτ dτ, t > 0, (6.6)

where the kernel φ(t, τ) ≥ 0 has the representation

φ(t, τ) = ωβ−α(t) ∗ hα(t, τ) ∗ hα−α1(t, b1τ) ast . . . ∗ hα−αm(t, bmτ).

Here ∗ is the Laplace convolution with respect to the variable t, the function ωα(t)
is de�ned in (1.1) and

hα(t, σ) = σ−1/αLα
(
tσ−1/α

)
,

where Lα(·) is the L�evy stable extremal density (1.7).

6.2 Multinomial Prabhakar function

For brevity we use the vector notation ~µ = (µ1, µ2, . . . , µm).
Multinomial Prabhakar function is de�ned as follows [8]

Eδ
~µ, β(z1, . . . , zm) =

∞∑
k=0

∑
k1+...+km=k
k1≥0,...,km≥0

(δ)k
k1! · · · km!

∏m
j=1 z

kj
j

Γ
(
β +

∑m
j=1 µjkj

) , (6.7)

where zj ∈ C, µj, β, δ ∈ R, µj > 0, j = 1, . . . ,m. Here (δ)k denotes the Pochhamer
symbol (1.4). We set

Eδ(µ1,...,µm),β(t; a1, . . . , am) = tβ−1Eδ
(µ1,...,µm),β(−a1tµ1 , . . . ,−amtµm). (6.8)

Some important results for the function (6.8) are given next.
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Theorem 6.3. The Laplace transform Êδ~µ,β(s;~a) of the function Eδ~µ,β(t;~a) is de�ned
by the equality

Êδ~µ,β(s;~a) := L
{
Eδ~µ,β(t;~a)

}
(s) =

s−β(
1 +

∑m
j=1 ajs

−µj
)δ , s ∈ C+. (6.9)

Based on Theorem 6.3 and the properties of Bernstein functions, the following
complete monotonicity result is proved:

Theorem 6.4. Let 0 < µj ≤ 1, aj > 0, j = 1, . . . ,m, and 0 < µ∗δ ≤ β ≤ 1, where
µ∗ = maxj=1,...,m{µj}. Then

Eδ(µ1,...,µm),β(t; a1, . . . , am) ∈ CMF , t > 0. (6.10)

This is one of the main results in this chapter.
As an example of the application of Prabhakar's functions (6.8) with δ 6= 1, the

moments of the fundamental solutions of the Cauchy problems for equations (6.1)

and (6.2) in the case A =
(
∂
∂x

)2
, x ∈ R.

In the last two chapters, we study the subordination principle for generalized
di�usion-wave equations with fractional time derivatives. Various linear generalizati-
ons of the fractional di�usion-wave equation (2.3) with 1 < α < 2 have been
considered in the literature, the most studied examples being the distributed-order
fractional di�usion-wave equations and various equations modeling the propagation
of waves in viscoelastic media.

7 Distributed-order di�usion-wave equations

Chapter 7 (consisting of 2 sections) is devoted to di�usion-wave equations with
Caputo fractional derivatives whose orders are discretely or continuously distributed
in the interval (0, 2]. We �rst discuss an open problem concerning the interpretation
of the fundamental solution of the corresponding one-dimensional Cauchy problem
as a spatial probability density. Then, the subordination principle for the multi-term
di�usion-wave equation is studied in detail.

7.1 When the fundamental solution is a probability density?

We consider the distributed order equation∫ 2

0

µ(β)CD
β

t u(x, t) dβ =
∂2

∂x2
u(x, t), x ∈ R, t > 0, (7.1)

where µ(β) is a nonnegative function such that

suppµ ∩ (1, 2] 6= ∅.

The Cauchy problem for (7.1) with initial conditions u(x, 0) = v(x) and ut(x, 0) = 0
is studied in [13] with the main focus on the interpretation of the fundamental
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solution G(x, t) as a probability density in x ∈ R (for t > 0 considered as a
parameter), i.e. satisfying:

G(x, t) ≥ 0,

∫ ∞
−∞
G(x, t) dx = 1. (7.2)

The importance of the properties (7.2) for the stochastic interpretation of the equation
(7.1) and for its physical meaning is explained in [11]. At the same time, the
ful�llment of these conditions ensures the existence of subordination for equations of
the type (7.1) with respect to the second-order Cauchy problem. This is so because
of the following relationship between the kernel ϕ(t, τ) in the subordination identity
(7.6) below and the fundamental solution G(x, t):

ϕ(t, τ) = 2G(x, t), at τ = x ≥ 0.

Let us note that G(−x, t) = G(x, t), x ∈ R.
A su�cient condition for the fundamental solution of (7.1) to satisfy properties

(7.2) is g(s)1/2 ∈ CBF , where

g(s) =

∫ 2

0

µ(β)sβ dβ, s > 0. (7.3)

In [13] it is proved that if suppµ ⊆ [1, 2] then g(s)1/2 ∈ CBF and therefore the
properties ( refGGppdd�) are met. At the same time, the question arises whether
this condition for the weight function µ can be relaxed. We prove that the support
of the weight function can be an arbitrary subinterval of [0, 2] with length no more
than 1.

Proposition 7.1. Let suppµ ⊆ [α− 1, α], 1 < α ≤ 2. Then g(s)1/2 ∈ CBF .
Proposition 7.1 applies to both continuous and discrete weight function µ. The

following statement gives a special example of a weight function for which the
condition on its support can be further relaxed. In the considered case, the support
of the weight function can be any subinterval of the interval [0, 2].

Proposition 7.2. Let a > 0 and 0 < α1 < α2 ≤ 2. If µ(β) = aβ for β ∈ [α1, α2]

and µ(β) = 0 for β ∈ (0, α1) ∪ (α2, 2], then g(s)1/2 ∈ CBF .
These two statements partially answer the question posed in [13]. For more

precise results, the cases of continuous and discrete distribution should be considered
separately.

In the rest of this chapter, we study in detail equations with a discrete distribution
of the derivative orders in an interval [α− 1, α], where α ∈ (1, 2].

7.2 Multi-term di�usion-wave equation

Consider the problem

c CD
α

t u(t) +
m∑
j=1

cj
CD

αj

t u(t) = Au(t), u(0) = a ∈ X, u′(0) = 0, (7.4)
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where the operator A generates a strongly continuous cosine function S2(t). For the
parameters α, αj, c, cj, we assume that they satisfy the conditions

α ∈ (1, 2], α > α1 > · · · > αm > 0, α− αm ≤ 1,

c > 0, cj > 0, j = 1, · · · ,m.
(7.5)

Applying the general Theorem 2.1 we obtain the following result:

Theorem 7.1. The problem (7.4) is well-posed and has a bounded solution operator
S(t) which is related to S2(t) by the identity

S(t) =

∫ ∞
0

ϕ(t, τ)S2(τ) dτ, t > 0. (7.6)

The kernel ϕ(t, τ) is a probability density in τ and admits the representation

ϕ(t, τ) =
1

π

∫ ∞
0

exp
(
−τK+(r)

) (
K+(r) sin

(
rt− τK−(r)

)
+ K−(r) cos

(
rt− τK−(r)

)) dr

r
, t, τ > 0, (7.7)

where K±(r) are de�ned as follows

K±(r) =
1√
2

((
A2(r) +B2(r)

)1/2 ± A(r)
)1/2

;

A(r) = crα cos(απ/2) +
m∑
j=1

cjr
αj cos(αjπ/2),

B(r) = crα sin(απ/2) +
m∑
j=1

cjr
αj sin(αjπ/2).

Again, the stronger statement holds true that the solution operator S(t) is subor-
dinated to Sα(t), where α is the largest order of time derivative in the equation
(7.4). In addition, we have the following di�erent propertes in the cases α = 2 and
1 < α < 2:

Theorem 7.2. If 1 < α < 2, then the solution operator S(t) of problem (7.4) is
bounded analytic with angle

θ0 =
(2− α)π

2α
.

If α = 2 then the kernel ϕ(t, τ) in (7.6) satis�es ϕ(t, τ) = 0 for τ > t/
√
c.

8 Wave propagation in linear viscoelastic media

Chapter 8 (consisting of 4 sections) discusses the subordination principle for equa-
tions modeling wave propagation in linear viscoelastic media. Various constitutive
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laws are considered, which are fractional generalizations of some classical models. For
all models, the relaxation modulus is proved to be a completely monotone function.
Problems of wave propagation in a viscoelastic �uid with the fractional Je�rey model
are studied in more detail and some applications of the subordination principle as
well as its physical interpretation are given. The chapter concludes with a brief
comment on the de�nition of the class of generalized fractional di�usion-wave equa-
tions.

The properties of a linear viscoelastic model are de�ned by a linear relationship
between the stress σ and the strain ε. We consider the one-dimensional case where
σ = σ(x, t) and ε = ε(x, t). The relaxation modulus G(t) is de�ned by the identity

σ(x, t) =

∫ t

0

G(t− τ)ε̇(x, τ) dτ, t > 0, (8.1)

where the dot traditionally means the �rst derivative in time.
For a model to make physical sense, the relaxation modulus G(t) must satisfy

the conditions G(t) ≥ 0 and G′(t) ≤ 0. In many cases, it turns out that these two
conditions imply the stronger property G(t) ∈ CMF . In the dissertation, this is
proved for the fractional Maxwell, Je�reys' and Zener generalized fractional laws.

8.1 Distributed-order fractional Zener model

Let us take a closer look at the generalized fractional distributed-order Zener
model, which is de�ned by the constitutive equation [4]∫ 1

0

pσ(α)Dα
t σ(x, t) dα =

∫ 1

0

pε(α)Dα
t ε(x, t) dα, (8.2)

where pσ(α) and pε(α) are nonnegative weight functions. This model is studied in
[5], Chapter 3, without discussing the complete monotonicity of the corresponding
relaxation modulus. Two cases are considered: the multi-term fractional Zener model

N∑
n=0

anD
αn
t σ(x, t) =

N∑
n=0

bnD
αn
t ε(x, t), (8.3)

where 0 ≤ α0 < α1 < · · · < αN < 1, an, bn > 0, n = 0, 1, ..., N, and

a0
b0
≥ a1
b1
≥ · · · ≥ aN

bN
, (8.4)

and the case of power weight functions

pσ(α) = aα, pε(α) = bα, 0 < a < b. (8.5)

We prove the following two theorems, which establish that G(t) ∈ CMF by
means of its representation as the Laplace transform of a nonnegative function.
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Theorem 8.1. If the conditions (8.4) are satis�ed, then the relaxation modulus G(t)
of the model (8.3) is a completely monotone function, which admits the representation

G(t) =
b0
a0

+

∫ ∞
0

e−rtK(r) dr, (8.6)

where

K(r) =
1

πr

∑
0≤i<j≤N(aibj − ajbi)rαi+αj sin (αj − αi)π(∑N

n=0 anr
αn cosαnπ

)2
+ ( sumN

n=0anr
αn sinαnπ)

2
≥ 0. (8.7)

Theorem 8.2. The relaxation modulus G(t) of model (8.2)-(8.5) is a completely
monotone function, which admits the representation

G(t) = 1 +

∫ ∞
0

e−rtK(r) dr, (8.8)

where

K(r) =
(br + 1)(ln b− ln a)

r(ar + 1)
(
ln2(br) + π2

) ge0. (8.9)

8.2 Subordination

Thanks to the property G(t) ∈ CMF , it is possible to formulate a subordination
dependence between the corresponding di�usion-wave equation and the classical
wave equation. This is due to the fact that the propagation of waves in a viscoelastic
medium with relaxation function G(t) is de�ned by an integral equation of the form

u(x, t) =

∫ t

0

k(t− τ)uxx(x, τ) dτ + f(x, t), (8.10)

where k(t) =
∫ t
0
G(τ) dτ . Then for the function g(s) in Theorem 2.1 we have

g(s) = (k̂(s))−1 =
s

Ĝ(s)
. (8.11)

According to the properties of Bernstein functions,G(t) ∈ CMF implies Ĝ(s) ∈ SF .
Therefore, g(s) is the product of two functions of class CBF (s and 1/Ĝ(s)), which
gives g(s)1/2 ∈ CBF . This means that the conditions of the general Theorem 2.1
are ful�lled for α = 2 and the equation (8.10) is subordinated to the classical wave
equation utt = uxx with the same initial and boundary conditions.

Therefore, the physical meaning of the subordination formula in this case is that
it splits the solution of the di�usion-wave equation (8.10) into two parts, one (the
probability density) depending only on the parameters of the viscoelastic medium,
and the second (the solution of the classical wave equation) depending only on the
imposed initial and boundary conditions.
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8.3 Generalized di�usion-wave equations

By analogy with the generalized fractional subdi�usion equations discussed in
Chapter 5, it is proposed in the work [29] to use the term generalized di�usion-
wave equations for equations of the form∫ t

0

η(t− τ)
∂2

∂τ 2
u(x, τ) dτ =

∂2

∂x2
u(x, t),

where η̂(s) ∈ SF . This suggestion is based on the fact that the convolutional time
derivative on the left is a generalization of the Caputo derivative of order α ∈ (1, 2)
which corresponds to η̂(s) = sα−2 .

It turns out that this de�nition corresponds exactly to an equation of the form
(8.10) with G(t) ∈ CMF . However, this is only a speci�c class of di�usion-wave
equations, which does not include many equations describing di�usion-wave processes.
At the end of the chapter, examples of equations are given that are not of this type,
but are nevertheless subordinated to the classical wave equation according to the
principle of subordination and therefore describe intermediate processes between
di�usion and wave propagation. One such example is an equation with two fractional
time derivatives of orders α and α1 such that α ∈ (1, 2), α1 ∈ (0, 1), α− al1 ≤ 1.

These observations suggest an extension of the de�nition of a generalized di�usion-
wave equation proposed in [29]. One possible way can be based on the principle of
subordination as follows: generalized di�usion-wave equations are all equations that
are subordinated by the subordination principle to the classical wave equation, but
are not subdi�usion equations.

27



V. SCIENTIFIC CONTRIBUTIONS

In the opinion of the author the main contributions in the dissertation and the
related publications are the following:

• A uni�ed methodology is developed for establishing a subordination relation
between a linear evolution equation of general type and a linear evolution
equation of fractional or integer order. The problem of subordination between
the two equations is reduced to proving that a characteristic function belongs
to the class of complete Bernstein functions.

• Subordination relations are established for a number of equations with fractional
time derivatives that are found in the scienti�c literature. These representations
split the solution into two parts: subordination kernel (a probability density
function, containing all information about the operators acting on time); the
solution of a simpler equation of integer or fractional order (containing informa-
tion about the geometry of the problem: the imposed initial and boundary
conditions).

• The subordination principle for space-time fractional equations is studied (Chap-
ter 3). Di�erent representations of the subordination kernel are obtained and its
properties are studied. The sector of the complex plane is found, in which the
subordinate solution is bounded analytical. Using the subordination identity,
integral representations are derived for the n-dimensional fundamental solution,
n=1,2,3, as well as explicit formulas in some special cases.

• Evolution equations with Je�rey's fractional constitutive law are studied in
detail (Chapter 4 and Section 8.3). Based on this model, the relationship
between the principle of subordination and the physical character of an evolution
equation is shown.

• Subordination dependences are established for the solutions of equations descri-
bing anomalous di�usion (Chapter 5). An explicit approximation formula is
derived that generalizes the exponential formula for C0-semigroups. As an
application of the subordination formula, a useful two-sided estimate for the
solution of the generalized relaxation equation is derived, which is applied in
the study of an inverse problem.

• A multinomial function of Prabhakar type is introduced and studied (Chapter
6). Conditions are found under which the function is completely monotone.
This property allows the multinomial Prabhakar-type function to be used to
propose a model that generalizes known relaxation laws (Section 8.2.4).

• The question of the conditions under which the one-dimensional fundamental
solution of the distributed-order di�usion-wave equation is a probability density
is partially resolved (Section 7.1). The class of admissible weight functions is
extended from functions with support contained in the interval [1,2] to functions
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with support contained in the interval [a,a+1], 0<a? 1. It is proven that in
special cases this condition can be further relaxed.

• The subordination principle for di�usion-wave equations with several time
derivatives of di�erent (fractional) orders is studied in detail (Section 7.2).
An integral representation of the subordination kernel is derived. The cases of
�nite and in�nite propagation speed are considered.

• The relaxation modulus for some generalized fractional viscoelastic models
de�ned in the literature is investigated. The fractional Maxwell, Je�rey, and
distributed-order Zener models are shown to make physical sense if and only if
the corresponding relaxation moduli are completely monotone functions (Section
8.2). This property plays an important role in establishing a subordination
principle for the corresponding wave equations.

• Based on the subordination principle, two main classes of generalized fractional
evolution equations are de�ned: equations describing subdi�usion (subordinated
to the classical di�usion equation) and di�usion-wave equations (subordinated
to the classical wave equation, which are not subdi�usion equations). This
way of classi�cation is physically correct and extends the de�nitions of these
two classes proposed in the literature, allowing some important physically
meaningful models to be covered.

VI. APPROVAL OF THE RESULTS

The results in this dissertation has been presented at more than 10 international
scienti�c conferences, including:

- International Conference on �Fractional Di�erentiation and its Applications�,
Novi Sad, Serbia (2016);

- 8th International conference �Transform Methods & Special Functions�, So�a
(2017);

- �Mathematics Days in So�a� (2017);
- 15th International Conference of Numerical Analysis and Applied Mathematics,

Thessaloniki, Greece (2017);
as well as at the following international forums held in Novi Sad, Serbia:

�Pannonian Mathematical Modelling� (2015), �Applications of Generalized Func-
tions in Harmonic Analysis, Mechanics, Stochastics and PDE� (2017) and �Topics
in Fractional Calculus and Time-Frequency Analysis� (2020).

In addition, the obtained results were reported at the joint seminar �Analysis,
Geometry and Topology� at IMI-BAS (2015), at the annual scienti�c sessions of
the �Analysis, Geometry and Topology� section at IMI-BAS, as well as at the
Mathematical Modeling seminar of FMI-So�a University in 2015, 2017 and 2019.
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Corectness of the results

Di�erent methods were used in the dissertation to con�rm the reliability of
some of the derived analytical formulas. First, it is checked whether there is a
qualitative agreement with the expected behavior of the considered quantity, so that
the obtained formula makes physical sense (for example, the fundamental solution
must always represent a probability distribution, the relaxation modulus must be a
positive and non-increasing function). Second, some of the derived analytical results
have been veri�ed by being used for numerical computations and the obtained
numerical results have been compared to those found by other authors (for example,
results from Chapter 4 have been compared in publication [B10] with results from
the monograph [5]) or with results obtained by another numerical method (see e.g.
the comparisons given in Fig. 8.1). In addition, numerical comparisons with already
known analytical formulas are performed in some particular cases.

Participation in scienti�c projects

The results included in the dissertation were established within the framework of
the following scienti�c projects:

- project of the Scienti�c Research Fund (FNI): �Theoretical and numerical study
of nonlinear mathematical models� (2014-2017);

- project in the frames of the national scienti�c program �Information and commu-
nication technologies for a single digital market in science, education and security�
(2018-2021);

- international project under operational program �Science and education for
intelligent growth�: �Center for excellence in informatics and information and commu-
nication technologies� (2018-2023);

- project of FNI with Russia �Investigation of the dynamic behavior of deformable
bodies taking into account the e�ects of heredity of the material� (2020-2023);

- three projects under a bilateral scienti�c agreement between the Bulgarian
Academy of Sciences and the Serbian Academy of Sciences and Arts: �Mathematical
modeling by integral transform methods, partial di�erential equations, special and
generalized functions� (2012-2016), �Analytical and numerical methods for di�erential
and integral equations and mathematical models of arbitrary (fractional or integer)
order� (2017-2019) and �Operators, di�erential equations and special functions of
fractional calculus - numerical methods and applications� (2020-2022).
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