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Chapter 1

Introduction

The classical and new fluid materials have a wide application in the chemical, food and
beverage, and pharmaceutical technologies. They are used for a production of emulsions
and foams, drugs with a controllable release, detergents, coating formulations, cosmetic
products [1.1, 1.2]. Similar systems find applications also in drug delivery, oilfield industry,
turbulent drag-reduction applications, medicine, and environmental protection [1.3, 1.4].
The wide applications and the competition between the companies-producers have led to
improvements in the properties of the formulations concerning washing action, skin and eye
irritation action, stability and durability, biodegradability, tolerance to hard water, etc., and
the design of new fluid materials with preliminary defined rheological properties. For these
applications, it is required to have a mathematical description of the materials and processes.
There are two main approaches for doing that — molecular dynamics, which describes all
molecules in a fluid and their interactions, and fluid dynamics, which assumes that the fluid
is continuous, i.e. it neglects the spaces between the molecules. Molecular dynamics requires
much more computing power, which makes it inapplicable for three-dimensional problems.
Due to this fact, we describe the fluids in this work in the frame of fluid dynamics.

In continuous mechanics, fluid motion is based on the mass, momentum and moment,
and energy balance equations. For example, the general mass balance equation, which is
based on the fact that mass is not created nor destroyed, has the form [1.5]

∂ρ

∂t
+∇ · v = 0, (1.1)

where t is time, ∇ is the spatial gradient operator, ρ is the mean mass density, and v is the
mass average velocity vector. In most applications, Eq. (1.1) is not sufficient to describe
the problem, since the average velocity of the fluid is usually sought. Due to that fact,
the general momentum balance equation, which is analog to the Newton second law for
continuous medium, is added to the description [1.5, 1.6]:

∂

∂t
(ρv) +∇ · (ρvv −P−Pb) = 0, (1.2)

where P is the material stress tensor, and Pb is the tensor potential of the body force vector
f per unit volume, i.e. f ≡ ∇·Pb. The force, f , can be known (e.g. the gravity force), or the
result from another type of interaction (e.g. the electrostatic force, which is described by the
Maxwell electrostatic tensor Pb [1.7] and becomes a solution of the respective electrostatic
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Chapter 1. Introduction

problem). Note that the system (1.1) and (1.2) is not closed for known Pb. In order to close
it, additional information about the material stress tensor P, which depends on the type of
fluid, is required.

Rheology [1.8] studies the semi-empirical relationships between the material stress tensor
P and other system parameters (constitutive relations), which describe the special properties
of the fluids. For example, the constitutive relationship for Newtonian fluids states that there
is a linear relationship between stress T and strain, i.e.

T = −pI+
(
ξ − 2η

3

)
(∇ · v)I+ η

[
∇v + (∇v)T

]
, (1.3)

where p is the pressure and I is the identity tensor. There are many fluids, which do not obey
the Newtonian constitutive law. These fluids are called complex fluids. Examples of complex
fluids are some special kinds of magnetic liquids, liquid crystals, blood and biological tissues.
For them, the stress tensor, P, is not even symmetric [1.9]. In most cases, P is a symmetric
tensor — there are no micro-moments, acting on the fluid element (a consequence of the
angular momentum balance equation). In the case of typical physicochemical applications,
the continuum media are incompressible (the fluid density is a constant) and because of the
small sizes of the investigated objects, the velocities of motion are so slow that the bulk
fluids are Newtonian and the inertia term in Eq. (1.2) is negligible [1.10, 1.11]. The result
of these simplifications is the well-known Stokes problem:

∇ · v = 0, ∇p = η∆v + f , (1.4)

where p is the pressure, η is the dynamic shear viscosity, and ∆ is the Laplace operator.
From the mathematical viewpoint, Eq. (1.4) leads to ∆p = 0 and to the fourth order partial
differential equations for the velocity components, ∆(∆v) = 0. In the physicochemical and
biological applications, the complex fluids are multicomponent and the distribution of each
species follows the diffusion-convection equations with already calculated velocity field.

The main difference between classical hydrodynamics of multicomponent systems and the
physicochemical approach is in the physical description of the boundaries between two phases
[1.12, 1.13]. In classical hydrodynamics, the boundary is treated as a mathematical dividing
surface, while from the physicochemical aspect — it is two-dimensional material continuum,
which has all attributes of the material phases (dilatational elasticities and viscosities, 2D
pressure called surface tension, surface charge density, etc.). Moreover, depending on the
concrete type of the interfaces, two-dimensional continuum can be not fluid — for example,
cell membranes, particle-laden interfaces, interfaces with adsorbed surfactants, proteins or
polymers, etc. In addition, the three-phase contact lines represent one-dimensional material
continuum with special properties (e.g. line tension, line charge density, etc.). The next
important difference between three-dimensional phases and interfaces is that one- and two-
dimensional phases are very deformable and compressible.

The forces, acting on the material interfaces, are not isotropic. Instead of the classical
kinematic boundary conditions, the interfacial stress tensor, σ, obeys the momentum balance
equation:

∇s · σ = n· < P+Pb > (1.5)

at the dividing surface, where n is the unit normal vector,∇s is the surface gradient operator,
and < · · · > means the difference between stress and force tensors from both sides of the
contiguous 3D phases. Analogous to the volume metrics, semi-empirical laws are needed to
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Chapter 1. Introduction

relate the interfacial stress tensor with the physical properties of the 2D continuum media.
Note that the whole behavior of the bulk flows depends on the specific properties of the
bound and dividing surfaces. For example, the flow over the solid surface (tangentially
immobile with no-slip boundary condition) has considerably different properties than that
over a free surface (fully mobile interface) at which there is not tangential friction (e.g. pure
water/air interface).

The theoretical description of the interfacial rheological laws is quite difficult because of
the complex mathematical tasks related to the appearance of deformable surfaces, adjusted
volumes, singularities at the three-phase contact lines, etc. [1.14]. Moreover, the molecular
dynamic simulations use a large number of molecules or nanoparticles at the interface, which
move under the action of intermolecular, electric and drag forces. From the viewpoint of
chemical and biological applications [1.14], these problems are deeply related to the two-
dimensional ordering and crystallization of particles and proteins. The sizes of nanoparticles,
protein molecules and polymers are small so that they are called in the literature colloidal
particles to distinguish them from solid particles with sizes larger than 3 µm, which are not
Brownian and for them the gravity and the density difference with the fluid are important.
Finally, the mathematical description of the shape of interfaces leads additionally not only
to the boundary problem but to a more difficult boundary value problem because physically
the respective capillary profiles must be closed — the shape of bubbles, drops, red blood
cells, etc. are closed and represent only one stable solution of the respective generalized
Laplace equations of capillarity [1.15].

The aim of this thesis is to consider three applications of the boundary value problems in
the case of linear or strongly nonlinear models of the second or higher orders. The first two
of them are related to the properties of colloidal particles, attached to the interfaces. For the
computer modeling of the multi-particle problems, fast and precise computer modules for
calculation of the forces, acting on an individual colloidal particle are needed. One of them
is the calculation of the electro-dipping force, acting on the colloidal particle, accounting
for the dielectric constants of all different media. In the literature, this problem is solved
in a particular case of one fully conductive phase. The second problem is to calculate the
drag force, acting on the individual colloidal particle, which is attached to the interface and
translates along it. This problem is solved in the literature, using the two-vorticity-one-
velocity formulation but the applied numerical algorithm is slow and the singularity at the
three phase contact line is not isolated. The third aim is to clarify the effect of interfacial
rheology (tangential mobility and immobility of interfaces) on the motion of long bubble
in a narrow cylindrical capillary under simultaneous action of gravity and Poiseuille flow.
We must compare our calculations with available experimental data in order to prove their
validity and range of applications. In the particular case of very small velocity of motion, the
analytical approximations in the literature for the gravity motion and for the pressure-driven
motion separately are known as the classical Bretherton problem.

The solutions to the three problems could be used as a part of highly complex procedures.
An application of the first problem is to calculate the electro-dipping force at a curved
surface, which could be done by computing consecutively the distribution of the electrostatic
potentials in the presence of a flat surface; how the electrostatic components of pressure
tensor deform the flat surface; the electric field in the presence of the deformed surface; etc.
The solution to the second problem could be applied for determining the contact angle of
micron particles (finding the contact angle for which the best fit of experimental data for
the drag coefficient is obtained) and for solving the two-dimensional crystallization problem
(which is transformed to a problem for ordering of many moving particles and for each of
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Chapter 1. Introduction

them the drag coefficient is computed). The solution to the third problem could be used to
obtain fluid parameters of a long bubble moving in a capillary, using an image of a bubble.

All the described applications require repeated solving of the problems, considered in
the present work. In this regard, both the accuracy of the calculations and their speed are
of utmost importance. Since implemented computer programs can be used by practitioners,
they must run on a laptop or personal computer. Due to these requirements, we use differ-
ent transformations of the first two problems (related both to the form of the differential
equations and to the geometry of the problems), which greatly simplify the problems to be
solved and, thus, reduce the computational time. Finally, the general problem of a long bub-
ble in a tube under the action of gravity and Poiseuille flow is solved under the assumption
of the small thickness of the film layer. To achieve sufficient accuracy for different values
of the parameters, it is necessary to perform not a small number of calculations by hand.
Although the numerical methods used to solve the considered problems require an one-time
execution of a large number of calculations by hand, we consider that they are consistent
with the objectives of the present study, stated above.

The thesis is organized as follows. The respective problems are described in Chapters 2,
3 and 4, which contain an abstract, literature review, a description of the problem, a method
for its solution, detail conclusions and cited references. In fact, these chapters correspond to
our publications but do not reproduce them directly. The chapters include detailed mathe-
matical calculations and algorithm descriptions, which are not included in the publications
due to the restricted volume. The actuality of the considered problems, new elements in
their treatments from physicochemical and mathematical aspects, compared to the avail-
able results in the literature, and the main strategies for solving the problems are written in
Chapter 5, where our claims are summarized in three points. Finally, because of the possi-
ble identical references, cited after different chapters, the list of all used references is added.
The thesis contains an appendix and three supplementary materials, which give information
on the topics “Tensors in curvilinear coordinates”, “Electrostatics” and “Continuum fluid
mechanics”.
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Chapter 2

Effect of the ionic strength on
the electro-dipping force

In this chapter, we compute the potential distributions, acting on a dielectric particle,
attached to the boundary between water and nonpolar fluid. This calculation is important
for the characterization of the surface charge density of micron-size objects and their three-
phase contact angles [2.1]. The problem was solved semi-analytically, using the Mehler–
Fock transformation in the idealized case, when one of the phases has an infinite dielectric
permittivity [2.2]. In the current work, we consider the more realistic case of finite dielectric
permittivity of the polar phase. Moreover, we propose a numerical method for calculating
the distribution of the electrostatic potential in the three phases. An expression for the
singularity parameter at the three-phase contact line is analytically derived. In all of the
studied cases, the singularity is weaker than that in the simplified case, studied in [2.2].
The obtained results show that: i) the electrostatic potential distribution is close to that
in the model case for micron-size particles, large values of the ionic strength and dielectric
constant of the polar phase; ii) the force, arising from the electrostatic field in the polar
phase, cannot be neglected for small (nano-size) particles and low ionic strengths.

The results, included in this chapter, are published in

• G. Lyutskanova-Zhekova, K. Danov, Effect of Ionic Strength on the Electro-Dipping
Force. In Proceedings of the 9th International conference on Numerical Methods
and Applications NMA, Borovets, Bulgaria, 20–24 August 2018; Lecture Notes in
Computer Science Volume, SJR: 0.427 (2019). DOI: 10.1007/978-3-030-10692-8 49.

2.1 Literature overview

The prediction of the properties of dielectric particles at fluid–fluid interfaces is of a crucial
importance for the characterization of a particle monolayer [2.1, 2.3], formation of particle-
stabilized emulsions [2.2, 2.4, 2.5] and colloidosomes [2.6, 2.7], which have a wide application
in cosmetics [2.4], food industry [2.8], enhanced oil recovery [2.9], biomedical field [2.10],
etc.

We consider a particle, which is attached to the boundary between two dielectric fluid
phases. In the absence of electrostatic effects, the position of the particle is determined
by the contact angle. For electrically charged particles, attached to the water–nonpolar
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2.2. Mathematical formulation of the problem

interface, an electrodipping force occurs [2.11]. It pushes the particle in the direction of
the water phase, which has a greater dielectric constant [2.11]. For micron-sized particles,
the effect of electric force is more pronounced than that of gravity [2.11]. Moreover, the
deformation of the interface around the particle due to gravity is negligible for particles of
radius smaller than 2–3 microns [2.1].

In the current work, we model a small particle (of radius less than 2–3 microns), which
is attached to the flat interface between water and nonpolar fluid. We assume that there
are surface charges at the particle–nonpolar phase (their existence is established due to
the electrostatic repulsion between particles at the oil–water interface [2.11, 2.12]). In the
idealized case of water phase with infinite dielectric permittivity, this problem was solved
semi-analytically, using the Mehler-Fock transformation [2.2]. The effect of an external
electric field, applied to the particle, was discussed in [2.13]. Our aim in the present study
is to analyze the effect of water phase with a finite value of the dielectric constant and
to calculate the distribution of the electrostatic potentials in all the phases. We solve the
Laplace equations in complex physical domains, using modified toroidal coordinates. The
developed numerical scheme, which is of second-order with respect to space and numerical
time, allows fast and precise calculations.

Finding the distribution of the electrostatic potentials in the case of a flat surface is an
essential step in order to compute the electrodipping force in the case of a deformed surface.
The main idea is the following. First, one computes the distribution of the electrostatic
potentials in the presence of flat surface. Second, one calculates how the electrostatic com-
ponents of pressure tensor affect the surface deformation. The third step is to calculate the
electric field in the presence of the deformed surface and so on. This is, in general, a rather
complex numerical problem, and so we limit ourselves in the current work to the first step,
i.e. to compute the distributions of the electrostatic potentials in the case of flat surface.

The current chapter is structured as follows. We formulate the problem in Sec. 2.2
and nondimensionalize it in Sec. 2.3. In Sec. 2.4, one formulates the problem into modified
toroidal coordinates. This formulation transforms the complex geometry of the problem into
rectangles. Next, the asymptotic behaviour of the model near the three-phase contact line
is investigated in Sec. 2.5. The numerical method and algorithm for finding the potential
distributions are presented in Sec. 2.6, while the numerical results are described in Sec. 2.7.

2.2 Mathematical formulation of the problem

A spherical charged dielectric particle of radius R and dielectric constant εp is attached
to the interface between nonpolar (oil, air) and water phases with dielectric constants εn
and εw, respectively (Fig. 2.1). The particle position is determined by the three-phase
contact angle α (see Fig. 2.1) and, therefore, the radius of the three-phase contact line is
rc = R sinα.

There are surface charges at particle–nonpolar phase boundary (their existence is proven
in [2.14, 2.15]). In [2.11], Danov and coworkers found out the values of surface charge density
for oil-water and air–water interface (in the case of glass particles) are constant (independent
of the specific experiment). Thus, in this work, we shall consider surface charges of constant
surface charge density σpn at the particle–nonpolar fluid surface Spn. These charges induce
electrostatic potentials φn, φw and φp in the nonpolar phase, in the water phase and in the
particle, respectively. The potentials, φj , are modelled as solutions of the Laplace equations
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Chapter 2. Effect of the ionic strength

Figure 2.1: Sketch of a particle at the interface between water and nonpolar phases.

(see Supplementary material T, Sect. T.4.1) in the volumes, Vj , i.e.:

∇2φw = 0 in Vw, ∇2φn = 0 in Vn, ∇2φp = 0 in Vp. (2.1)

In order to close the problem, we add boundary conditions at the dividing surfaces. The
tangential boundary conditions (see Supplementary material T, Sect. T.5.1) state that all
potentials are continuous functions at the dividing boundaries:

φp = φw at Spw, φp = φn at Spn, φn = φw at Snw, (2.2)

where Spw and Snw are the particle–water and nonpolar–water phase boundaries, respec-
tively. At the boundaries between water and dielectric phases, Spw and Snw, there are no
adsorbed charges, therefore, the normal boundary conditions (see Supplementary material
T, Sect. T.5.2) read

εwn · ∇φw = εnn · ∇φn at Snw, (2.3)

εwnp · ∇φw = εpnp · ∇φp at Spw, (2.4)

where np is the outer unit normal vector to the particle surface and n is the unit normal to
Snw, pointing at the nonpolar phase (Fig. 2.1). At the charged part of the particle surface,
Spn, we apply the electrostatic normal boundary condition

ε0 (εpnp · ∇φp − εnnp · ∇φn) = σpn at Spn, (2.5)

where ε0 is the dielectric permittivity in vacuum. Finally, the electrostatic potentials vanish
at infinity. More information about the derivation of the model could be found in Supple-
mentary material T.

2.3 Dimensionless formulation of the problem

It is appropriate to introduce a cylindrical coordinate system Orθz with axis of revolution
Oz and the radial, vertical and polar coordinates, r, z and θ, respectively, see Fig. 2.1.
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2.4. Formulation of the problem in toroidal coordinates

Then, for numerical calculations, it is convenient to reformulate the problem (2.1)–(2.5) in
a dimensionless form by introducing the following dimensionless operators and variables:

r =
r

rc
, z =

z

rc
, ∇ = rc∇, ∇

2
= r2c∇2, φj =

φjε0εn
rcσpn

, j = p, n, w (2.6)

and the dielectric ratios1

εpn =
εp
εn
, εwn =

εw
εn
, (2.7)

see Eq. (2.5). By substituting the dimensionless expressions (2.6) and (2.7) in the considered
problem, (2.1)–(2.5), we obtain

∇2
φw = 0 in Vw, ∇

2
φn = 0 in Vn, ∇

2
φp = 0 in Vp, (2.8)

φn = φw, εwnn · ∇φw = n · ∇φn at Snw (2.9)

φp = φw, εwnnp · ∇φw = εpnnp · ∇φp at Spw (2.10)

φp = φn, εpnnp · ∇φp − np · ∇φn = 1 at Spn. (2.11)

In the next computations, we skip the bars for notation simplicity.

2.4 Formulation of the problem in toroidal coordinates

The problem (2.8)–(2.11) is axissymetric and, therefore, the solution is independent of θ
(see Fig. 2.2). Thus, we consider only the half-plane θ = 0. Next, the complex dielectric
phases domains (Fig. 2.2) is transformed into rectangles (Fig. 2.3) by introducing modified
toroidal coordinates τ and σ:

r =
1− τ2

h
, z =

2τ sinσ

h
, h(τ, σ) = 1 + τ2 − 2τ cosσ, (2.12)

see Supplementary material S, Sect. S.5.7. Let us denote the unit vectors of the local basis
by eτ and eσ and the positions of the interfaces are σ = 0 and σ = 2π from both sides of
Snw; σ = π − α at Spn; σ = 2π − α at Spw (see the definition of σ, Eq. (S.284), and Figs.
S.10 and S.11 in the Supplementary Material S).

The axis of revolution corresponds to τ = 1 and the three-phase contact line—to the
pole, A+, where τ = 0 (see Fig. S.9 in the Supplementary Material S). For τ = 1 and σ = 0,
the transformation is singular.

Using the fact that the solution in independent of θ and the formulae for gradient in
toroidal coordinates and Laplacian in toroidal coordinates, Eqs. (S.377) and (S.379) in the
Supplementary Material S, one obtains

∇2φ =
h3

4τ (1− τ2)
∂

∂τ

[
τ
(
1− τ2

)
h

∂φ

∂τ

]
+

h3

4τ2
∂

∂σ

(
1

h

∂φ

∂σ

)
, (2.13)

np · ∇φ = − h

2τ

∂φ

∂σ
at Spn, np · ∇φ =

h

2τ

∂φ

∂σ
at Spw, (2.14)

n · ∇φ =
h

2τ

∂φ

∂σ
at Snw, (2.15)

1From physical perspective, it is known that εwn > εpn and the ratio εwn/εpn is between 15 and 80.
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Chapter 2. Effect of the ionic strength

Figure 2.2: A toroidal coordinate system (τ, σ), in which the physical domains are trans-
formed into rectangles.

Figure 2.3: Rectangular numerical domain in toroidal coordinates.
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2.5. Asymptotic behaviour of the model

see Fig. 2.2. From the latter, we obtain the dimensionless formulation of the considered
problem for the electrostatic potentials. In the volumes, we apply the equations (2.8):

L0[φw] = 0, L0[φn] = 0, L0[φp] = 0, (2.16)

where the operator L0 is defined via the formula

L0[φ] =
h3

4τ (1− τ2)
∂

∂τ

[
τ
(
1− τ2

)
h

∂φ

∂τ

]
+

h3

4τ2
∂

∂σ

(
1

h

∂φ

∂σ

)
, (2.17)

see Eq. (2.17). At the dividing boundaries Snw, Spw, Spn, the boundary conditions have
the form

φn|σ=0 = φw|σ=2π ,
∂φn

∂σ

∣∣∣∣
σ=0

= εwn
∂φw

∂σ

∣∣∣∣
σ=2π

, (2.18)

φp|σ=2π−α = φw|σ=2π−α , εpn
∂φp

∂σ

∣∣∣∣
σ=2π−α

= εwn
∂φw

∂σ

∣∣∣∣
σ=2π−α

, (2.19)

φn|σ=π−α = φp|σ=π−α ,
∂φn

∂σ

∣∣∣∣
σ=π−α

− εpn
∂φp

∂σ

∣∣∣∣
σ=π−α

=
2τ

h
, (2.20)

see Eqs. (2.9)–(2.11). In order to close the problem, we have to add boundary conditions
at the axis of revolution and at the three-phase contact line. We assume that the bulk
equations holds true at the axis of revolution. Thus, the boundary conditions are obtained
by finding the leading order of the equations L0[φ] = 0 for τ → 1, i.e.

L0[φl] = −
2τ2h2

4τ(1− τ2)
∂φl

∂τ
+ · · · = − (2− 2 cosσ)2

4(1− τ)
∂φl

∂τ
+ · · · = 0, l = n,p,w. (2.21)

Then, the following boundary conditions:

∂φn

∂τ

∣∣∣∣
τ=1

=
∂φp

∂τ

∣∣∣∣
τ=1

=
∂φw

∂τ

∣∣∣∣
τ=1

= 0 (2.22)

are added at the axis of revolution, τ = 1. From physical viewpoint, these boundary
conditions are trivial because of the axial symmetry of the problem.

Due to the fact that the electrostatic potentials are defined up to an additive constant
(see Supplementary material T), we could choose instead the potentials to be zero at infinity
(one of the boundaries in the Cartesian coordinates), the potentials to be zero at the pole
A+, i.e.

φn = φp = φw = 0 for τ = 0. (2.23)

In such a way, one obtains a simple boundary condition at the three-phase contact line.
Then, the physical electrostatic potential, which has a zero value at infinity, is obtained by
subtracting the calculated potential at infinity from φl, l = n, p, w.

2.5 Asymptotic behaviour of the model

The electro-dipping force Fel could be computed by integrating the electrostatic pressure
pel, exerted at the fluid–fluid interface [2.11], multiplied by the radial coordinate, i.e.:

Fel = −2π
∞∫

rc

r · pel(r)dr. (2.24)
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In [2.11], the following simple semiempirical expression for the electric pressure pel:

pel =
A

(r − rc)1−η
r5+η

(2.25)

is obtained, where A and η are constants, 0 < η < 1. Therefore, the integral (2.24) is singular
at r = rc and 0 < η < 1. The type of the singularity is essential in order to obtain high
accuracy of the numerical integration.

Due to this fact, we shall investigate the asymptotic behaviour of the model equations
in the close vicinity of the three-phase contact line (for τ → 0) in the current section. In
order to do that, we are looking for the solution of the problem (2.16)- (2.20) in the form

φi = τνΦi (σ) +O
(
τν+1

)
, i = n, p, w. (2.26)

Substituting the latter in Eq. (2.17), we obtain

∇2φi =
h3νΦi

4τ(1− τ2)
∂

∂τ

[
τν

(
1− τ2

)
h

]
+
h3τν

4τ2
∂

∂σ

(
1

h

∂Φi

∂σ

)
+ ...

=
h3νΦi

4τ(1− τ2)

[
ντν−1 − (ν + 2)τν+1

h
− (τν − τν+2)(2τ − 2 cosσ)

h2

]
+
h3τν−2

4

(
−2τ sinσ

h2
∂Φi

∂σ
+

1

h

∂2Φi

∂σ2

)
+ ...

=
h2τν−2

4

{
∂2Φi

∂σ2
+

ν2Φi

1− τ2

}
+O(τν−1), i = n, p, w. (2.27)

Then, for small values of τ , the leading order problem has the following form

∂2Φi

∂σ2
+ ν2Φi = 0, i = n, p, w. (2.28)

Therefore, the leading order solutions of Eqs. (2.8) for τ → 0, φ0
i , are

φ0
i = τν [Ac

i cos(νσ) +As
i sin(νσ)] , i = n, p, w, (2.29)

where Ac
i and As

i are unknown constants, which are found as a solution of system of six
linear equations, obtained from the boundary conditions. For computational convenience,
we reformulate the boundary conditions (2.18)– (2.20) as follows:

φn|σ=0 = φw|σ=0 ,
∂φn

∂σ

∣∣∣∣
σ=0

= εwn
∂φw

∂σ

∣∣∣∣
σ=0

, (2.30)

φn|σ=π−α = φp|σ=π−α ,
∂φn

∂σ

∣∣∣∣
σ=π−α

− εpn
∂φp

∂σ

∣∣∣∣
σ=π−α

=
2τ

h
, (2.31)

φp|σ=2π−α = φw|σ=−α , εpn
∂φp

∂σ

∣∣∣∣
σ=2π−α

= εwn
∂φw

∂σ

∣∣∣∣
σ=−α

(2.32)

by considering σ to be in the interval [−α, 2π − α] instead of [0, 2π]. Due to the fact
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2.5. Asymptotic behaviour of the model

0 < η < 1, the leading order boundary conditions acquire the form:

φ0
n

∣∣
σ=0

= φ0
w

∣∣
σ=0

,
∂φ0

n

∂σ

∣∣∣∣
σ=0

= εwn
∂φ0

w

∂σ

∣∣∣∣
σ=0

, (2.33)

φ0
n

∣∣
σ=π−α

= φ0
p

∣∣
σ=π−α

,
∂φ0

n

∂σ

∣∣∣∣
σ=π−α

= εpn
∂φ0

p

∂σ

∣∣∣∣∣
σ=π−α

, (2.34)

φ0
p

∣∣
σ=2π−α

= φ0
w

∣∣
σ=−α

, εpn
∂φ0

p

∂σ

∣∣∣∣∣
σ=2π−α

= εwn
∂φ0

w

∂σ

∣∣∣∣
σ=−α

. (2.35)

Substituting the general form of the solutions (2.29) in Eq. (2.33), one gets

Ac
n = Ac

w, A
s
n = εwnA

s
w. (2.36)

We conclude from Eq. (2.34) that

Ac
n cos[ν(π − α)] +As

n sin[ν(π − α)] = Ac
p cos[ν(π − α)] +As

p sin[ν(π − α)], (2.37)

Ac
n sin[ν(π − α)]−As

n cos[ν(π − α)] = εpn
{
Ac

p sin[ν(π − α)]−As
p cos[ν(π − α)]

}
. (2.38)

One adds Eq. (2.37), multiplied by εpn cos[ν(π−α)], to Eq. (2.38), multiplied by sin[ν(π−α)]
and obtains

εpnA
c
p = Ac

n

{
εpn cos

2[ν(π − α)] + sin2[ν(π − α)]
}
+
As

n

2
(εpn − 1) sin[2ν(π − α)]

=
Ac

w

2
{εpn + 1 + (εpn − 1) cos[2ν(π − α)]}

+
εwnA

s
w

2
(εpn − 1) sin[2ν(π − α)]. (2.39)

Multiplying Eq. (2.37) by εpn sin [ν (π − α)], Eq. (2.38) by − cos [ν (π − α)] and adding
them, one gets

εpnA
s
p =

Ac
n

2
(εpn − 1) sin[2ν(π − α)] +As

n

{
εpn sin

2[ν(π − α)] + cos2[ν(π − α)]
}

=
Ac

w

2
(εpn − 1) sin[2ν(π − α)]

+
εwnA

s
w

2
{εpn + 1− (εpn − 1) cos[2ν(π − α)]} . (2.40)

Using Eq. (2.35), we obtain

Ac
p cos[ν(2π − α)] +As

p sin[ν(2π − α)] = Ac
w cos(να)−As

w sin(να), (2.41)

εpn
{
−Ac

p sin[ν(2π − α)] +As
p cos[ν(2π − α)]

}
= εwn[A

c
w sin(να) +As

w cos(να)] . (2.42)

Adding Eq. (2.41), multiplied by εpn cos[ν(2π−α)], and Eq. (2.42), multiplied by− sin[ν(2π−
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α)], we conclude that the following equation:

εpnA
c
p =

Ac
w

2
{εpn 2 cos(να) cos[ν(2π − α)]︸ ︷︷ ︸

cos(2νπ)+cos[2ν(π−α)]

−εwn 2 sin(να) sin[ν(2π − α)]︸ ︷︷ ︸
− cos(2νπ)+cos[2ν(π−α)]

}

+
As

w

2
{−εpn 2 sin(να) cos[ν(2π − α)]︸ ︷︷ ︸

sin(2νπ)−sin[2ν(π−α)]

−εwn 2 cos(να) sin[ν(2π − α)]︸ ︷︷ ︸
sin(2νπ)+sin[2ν(π−α)]

}

=
Ac

w

2
{(εpn + εwn) cos(2νπ) + (εpn − εwn) cos[2ν(π − α)]}

+
As

w

2
{− (εpn + εwn) sin(2νπ) + (εpn − εwn) sin[2ν(π − α)]} . (2.43)

holds true. Analogously, multiplying Eq. (2.41) by εpn sin [ν (2π − α)], Eq. (2.42) by
cos [ν (2π − α)] and adding them, one gets

εpnA
s
p =

Ac
w

2
{εpn 2 cos(να) sin[ν(2π − α)]︸ ︷︷ ︸

sin(2νπ)+sin[2ν(π−α)]

+εwn 2 sin(να) cos[ν(2π − α)]︸ ︷︷ ︸
sin(2νπ)−sin[2ν(π−α)]

}

+
As

w

2
{−εpn 2 sin(να) sin[ν(2π − α)]︸ ︷︷ ︸

− cos(2νπ)+cos[2ν(π−α)]

+εwn 2 cos(να) cos[ν(2π − α)]︸ ︷︷ ︸
cos(2νπ)+cos[2ν(π−α)]

}

=
Ac

w

2
{(εpn + εwn) sin(2νπ) + (εpn − εwn) sin[2ν(π − α)]}

+
As

w

2
{(εpn + εwn) cos(2νπ)− (εpn − εwn) cos[2ν(π − α)]} . (2.44)

Using Eqs. (2.39), (2.40), (2.43) and (2.44), we obtain the following system:

Ac
w

2
{(εpn + εwn) cos(2νπ) + (1− εwn) cos[2ν(π − α)]− 1− εpn}

+
As

w

2
{− (εpn + εwn) sin(2νπ) + εpn (1− εwn) sin[2ν(π − α)]} = 0. (2.45)

Ac
w

2
{(εpn + εwn) sin(2νπ) + (1− εwn) sin[2ν(π − α)]}

+
As

w

2
{(εpn + εwn)cos(2νπ) + εpn(εwn − 1)cos[2ν(π − α)]− εwn(1 + εpn)} = 0. (2.46)

This system has a nontrivial solution, when its determinant is equal to zero, i.e.

(εpn + εwn)
2
cos2(2νπ) + εpn (εpn + εwn) (εwn − 1) cos[2ν(π − α)] cos(2νπ)

− εwn (1 + εpn) (εpn + εwn) cos(2νπ)

+ (1− εwn) (εpn + εwn) cos(2νπ) cos[2ν(π − α)]

− εpn (1− εwn)
2
cos2[2ν(π − α)]− εwn (1− εwn) (1 + εpn) cos[2ν(π − α)]

− (1 + εpn) (εpn + εwn) cos(2νπ)− εpn (εwn − 1) (1 + εpn) cos[2ν(π − α)]

+ εwn (1 + εpn)
2
+ (εpn + εwn)

2
sin2(2νπ)− εpn (1− εwn)

2
sin2[2ν(π − α)]

+ (1− εwn) (εpn + εwn) sin(2νπ) sin[2ν(π − α)]
− εpn (εpn + εwn) (1− εwn) sin[2ν(π − α)] sin(2νπ) = 0. (2.47)
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2.5. Asymptotic behaviour of the model

Figure 2.4: Dependence of singularity parameter ν on the contact angle α and ratio εwn: a)
εpn = 4; b) εpn = 0.25. Dashed lines show the model case (εw >> εn, εp), studied in [2.2].

Eq. (2.47) acquires the form

(εpn + εwn)
2 − εpn (1− εwn)

2
+ εwn (1 + εpn)

2

− (1 + εwn) (1 + εpn) (εpn + εwn) cos(2νπ)︸ ︷︷ ︸
1−2 sin2(νπ)

− (1 + εpn) (1− εwn) (εwn − εpn) cos[2ν(π − α)]︸ ︷︷ ︸
2 cos2[ν(π−α)]−1

+ (1− εwn) (εpn + εwn) (1− εpn) cos[2νπ − (2νπ − 2να)]︸ ︷︷ ︸
2 cos2(να)−1

= 0. (2.48)

Dividing the latter by 2 (1 + εwn) (1 + εpn) (εpn + εwn), we arrive to the following equation
for the singularity parameter ν:

2εpn(1− εwn)
2

(1 + εpn)(1 + εwn)(εpn + εwn)
− sin2(νπ) =

(1− εpn)(1− εwn)

(1 + εpn)(1 + εwn)
cos2(να) +

(1− εwn)(εpn − εwn)

(1 + εwn)(εpn + εwn)
cos2 [ν(π − α)] . (2.49)

Equation (2.49) has an infinite number of positive roots for fixed values of the dielectric
ratios εpn and εwn and we are interested in the smallest positive one. It is found for two
different ratios εpn by applying the bisection method in the interval [0, 1]. The results are
shown in Fig. 2.4. The following conclusions can be drawn from it. The values of ν increase
with the decrease of the ratio between the dielectric constants of water and nonpolar phase,
εwn. This effect is more pronounced for larger values of εwn and for smaller values of the
contact angle (more hydrophilic particles).
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Finally, we consider the limiting case εwn → +∞. For it, one gets

2εpn
1 + εpn

− sin2(νπ) =
εpn − 1

εpn + 1
cos2(να) + cos2[ν(π − α)], (2.50)

2εpn
1 + εpn

− 1− cos(2νπ)

2
=
εpn − 1

εpn + 1
− εpn − 1

εpn + 1
sin2(να) +

1 + cos[2ν(π − α)]
2

, (2.51)

εpn − 1

εpn + 1
sin2(να) = sin(να) sin[ν(2π − α)] (2.52)

sin(να) = 0 or
εpn − 1

εpn + 1
sin(να)− sin[ν(2π − α)] = 0. (2.53)

The smallest positive solution of the first equation is π/α ≥ 1, while that of the second is
smaller than 1 due to the following statements:

f(0) = 0, f ′(0) =
εpn − 1

εpn + 1
α− (2π − α) = 2(α− π)− 2

εpn + 1
α < 0, (2.54)

f(1) =
2εpn
εpn + 1

sinα > 0, (2.55)

where f(η) is

f(η) =
εpn − 1

εpn + 1
sin(να)− sin[ν(2π − α)]. (2.56)

Then, we conclude that the value of the singularity parameter ν is a direct consequence of
the equation

εpn − 1

εpn + 1
sin(να)− sin[ν(2π − α)] = 0, (2.57)

which is derived in the model case (εwn → +∞) in [2.2]. Then, the model case, studied in
[2.2], follows from Eq. (2.49), when εwn → +∞. The results for the model case are depicted
with dashed lines in Fig. 2.4. Note that the singularity in Eq. (2.25) for finite εwn is always
weaker than that in the model case (εwn → +∞). This result is expected due to the fact
that the electrostatic potential on the fluid–fluid interface in the model case is zero.

2.6 Numerical method

2.6.1 Transforming the elliptical problem to parabolic one. D’Yakonov
scheme.

Instead of solving the considered elliptical problem, we introduce numerical time t and solve
the following parabolic problem:

∂φl

∂t
= T [φl] + S[φl], φl ∈ Vl, 0 < t ≤ T, l = n, p, w (2.58)

φl(τ, σ, 0) = φl0(τ, σ), l = n, p, w (2.59)
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with applied boundary conditions (2.18)– (2.20), (2.22), (2.23), where T [.] and S[.] are the
following operators:

S[φ] = h
∂

∂σ

(
1

h

∂φ

∂σ

)
, (2.60)

T [φ] =
hτ

1− τ2
∂

∂τ

[
τ(1− τ2)

h

∂φ

∂τ

]
, (2.61)

which acts in τ− and in σ-direction, respectively. It is well-known fact that the solution
of a parabolic problem with appropriate boundary conditions, applied at the boundaries,
approaches the solution of an elliptical problem with the same boundary conditions for
T →∞ regardless of the initial condition. Therefore, we solve the parabolic problem, using
the alternating direction implicit method (ADIM) [2.16–2.18], and obtain the sought-out
solution for long enough time. The main advantage of this approach is that it could be
done computationally efficient — it requires only O(N2 lnN) instead of O(N3) operations
compared to the traditional methods for directly solving the elliptic partial differential
equations, where N2 is the number of points for which the solution is computed [2.19].

In order to solve the considered problem, we discretize its rectangular domain by intro-
ducing a mesh

ω = ωτ × (ωn ∪ ωp ∪ ωw)× ωt, (2.62)

where ωτ , ωn, ωp, ωw and ωt are defined as

ωτ = {τi = iδτ , δτ = 1/N, i = 0, 1, · · · , N} , (2.63)

ωn = {σn,j = jδn, δn = (π − α)/Nn, j = 0, 1, · · · , Nn} , (2.64)

ωp = {σp,j = π − α+ jδp, δp = π/Np, j = 0, 1, · · · , Np} , (2.65)

ωw = {σw,j = 2π − α, jδw, δw = α/Nw, j = 0, 1, · · · , Nw} , (2.66)

ωt = {tk = kδt, δt = T/M, k = 0, 1, · · · ,M} . (2.67)

Let us denote the exact solution of the considered problem at a point (τi, σl,j , tk) by

φl|kij , l =n, p, w and the approximate one at the same point by ϕl|kij , l =n, p, w. Then,
we use the Crank-Nicolson method [2.20]:

φl|k+1
ij − φl|kij

δt
= T [φl]

∣∣∣k+1/2

ij
+ S [φl]

∣∣∣k+1/2

ij
+O

(
δ2t
)
, (2.68)

where T [φl]
∣∣k+1/2

ij
and S [φl]

∣∣k+1/2

ij
denote the values of operators T [φl] and S[φl] at a point

(τi, σl,j , tk + δt/2). Taking into account the following second-order approximation formula
with a step length δx [2.20]:

d

dx

(
p
du

dx

)∣∣∣∣
i

=
1

δx
·
[
pi+1/2 ·

ui+1 − ui
δx

− pi−1/2 ·
ui − ui−1

δx

]
+O

(
δ2x
)

=
1

δ2x
·
[
pi+1/2 (ui+1 − ui)− pi−1/2 (ui − ui−1)

]
+O

(
δ2x
)
, (2.69)

we approximate the differential operators S and T with the difference operators S̃ and T̃ as
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follows:

S̃
[
ϕl|kij

]
=
hij
δl

[
1

hi,j+1/2
·
ϕl|ki,j+1 − ϕl|ki,j

δl
− 1

hi,j−1/2
·
ϕl|ki,j − ϕl|ki,j−1

δl

]
, (2.70)

T̃
[
ϕl|kij

]
=

hijτi
δτ (1− τ2i )

·

τi+1/2

(
1− τ2i+1/2

)
hi+1/2,j

·
ϕl|ki+1,j − ϕl|ki,j

δτ

−
τi−1/2

(
1− τ2i−1/2

)
hi−1/2,j

·
ϕl|ki,j − ϕl|ki−1,j

δτ

 (2.71)

for l = n, p, w, where

hij = h(τi, σl,j), τi±1/2 = τi ±
δτ
2
, σj±1/2 = σj ±

δl
2
, l = n, p, w. (2.72)

Approximating the differential operators T and S with the difference operators T̃ and S̃,
one gets

φl|k+1
ij − φl|kij

δt
= T̃

[
φl|k+1/2

ij

]
+ S̃

[
φl|k+1/2

ij

]
+O

(
δ2t + δ2l + δ2τ

)
, l = n, p, w. (2.73)

The operators at time t+δt/2 in the right-hand side of equations (2.73) are replaced by their
mean values of the neighboring symmetric time levels, keeping the second-order precision
with respect to time:

φl|k+1
ij − φl|kij

δt
=

1

2

{
T̃
[
φl|kij

]
+ T̃

[
φl|k+1

ij

]
+ S̃

[
φl|kij

]
+ S̃

[
φl|k+1

ij

]}
+O

(
δ2t + δ2l + δ2τ

)
, l = n, p, w. (2.74)

Due to the fact that the operators T̃ and S̃ are linear, we conclude that the following
equation:

δφl|k+1
ij − δt

2
T̃
[
δφl|k+1

ij

]
− δt

2
S̃
[
δφl|k+1

ij

]
= δtT̃

[
φl|kij

]
+ δtS̃

[
φl|kij

]
+O

(
δ2t + δ2l + δ2τ

)
, l = n, p, w (2.75)

holds true, where δφl|k+1
ij is

δφl|k+1
ij = φl|k+1

ij − φl|kij , l = n, p, w. (2.76)

Then, the left-hand side of Eq. (2.75) is written as a product of two operators(
U − δt

2
S̃

)(
U − δt

2
T̃

)[
δφl|k+1

ij

]
= δtT̃

[
φl|kij

]
+ δtS̃

[
φl|kij

]
+O

(
δ2t + δ2l + δ2τ

)
, (2.77)

where U is the unit operator. Discarding the local truncation error, one obtains the difference
scheme: (

U − δt
2
S̃

)(
U − δt

2
T̃

)[
δϕl|k+1

ij

]
= δtT̃

[
ϕl|kij

]
+ δtS̃

[
ϕl|kij

]
, (2.78)
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where δϕl|k+1
ij is defined as follows:

δϕl|k+1
ij = ϕl|k+1

ij − ϕl|kij , l = n, p, w. (2.79)

Finally, the process of solving of this system of equations is reduced to the following algo-
rithm. As a first step, one solves the system of equations:(

U − δt
2
S̃

)[
ψl|k+1

ij

]
= δtT̃

[
ϕl|kij

]
+ δtS̃

[
ϕl|kij

]
, l = n, p, w (2.80)

with appropriate boundary conditions, applied for ψl|k+1
ij . Second, one solves the system of

equations: (
U − δt

2
T̃

)[
δϕl|k+1

ij

]
= ψl|k+1

ij , l = n, p, w (2.81)

with respective boundary conditions, applied for δϕl|k+1
ij at the three-phase contact line

and at the axis of revolution. Finally, ϕl|k+1
ij is obtained, using Eq. (2.79). This method is

known in the literature as D’Yakonov scheme. It belongs to the class of alternating direction
implicit methods, which reduce the problem of solving a parabolic problem to solving two
linear systems with banded matrices in a case of two-dimensional problem [2.18].

In the considered problem, the domain consists of three rectangular subdomains, which
are discretized with different steps. In order to apply the method for this problem, we
write the equations in the subdomains around dividing boundaries and use the boundary
conditions to modify the operators T and S so that they become valid at the interfaces as
well. Thus, the obtained problem in sigma direction is cyclic and has no boundary conditions
and the one in tau direction is the one described by Eq. (2.81).

Thus, the sigma problem is cyclic and has no boundary conditions, but for the one on
the tau is the original one.

2.6.2 Approximation of the boundary conditions

In order to have a second-order scheme with respect to t, one should take a special care of
the form of the boundary conditions. The boundary conditions at the particle surface, at the
fluid–fluid interface and at the axis of revolution are obtained by extending the definition
of the operators S and T to hold on the dividing boundaries, see Eqs. (2.60), (2.61). The
boundary conditions at the three-phase contact line are approximated directly.

At the three-phase contact line

At the three-phase contact line (τ = 0), we apply the following boundary conditions:

ϕl|k+1
0j = 0, j = 0, Nl, k = 0,M − 1, l = n, p, w, (2.82)

see Eq. (2.23).

At the axis of revolution

The boundary conditions at the axis of revolution are obtained by assuming the validity of
the Laplace equations in the close vicinity of the axis of revolution [2.18, 2.21]. Then, one
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expands the definitions of the operators T and S, Eqs. (2.60) and (2.61), as follows:

lim
τ→1

T [φl] = lim
τ→1

(
τ
∂φl

∂τ
− 2τ3

1− τ2
∂φl

∂τ
− τ2 ∂φl

∂τ
+ τ2

∂2φl

∂τ2

)
= lim

τ→1

∂φl

∂τ

τ − 1
+
∂2φl

∂τ2

∣∣∣∣
τ=1

= 2
∂2φl

∂τ2

∣∣∣∣
τ=1

, (2.83)

lim
τ→1

S[φl] = (1− cosσ)
∂

∂σ

(
1

1− cosσ
· ∂φl

∂σ

)
. (2.84)

The differential operator S is approximated by difference operator S̃ as follows:

S̃[ϕl|kNj ] =
1− cosσj

δ2σ
·

[
ϕl|kN,j+1 − ϕl|kN,j

1− cosσj+1/2
−
ϕl|kN,j − ϕl|kN,j−1

1− cosσj−1/2

]
, j = 1, Nl − 1 (2.85)

at τ = 1, see Eq. (2.69). Using the following approximation:

u′′(x) =
−7u(x) + 8u(x± δx)− u(x± 2δx)

2δ2x
∓ 3

δx
u′(x) +O(δ2x). (2.86)

and taking into account the boundary conditions (2.22) and equation (2.83), we conclude

T̃ [ϕl|kNj ] =
−7 ϕl|kNj + 8 ϕl|kN−1,j − ϕl|kN−2,j

δ2τ
, j = 1, Nl − 1. (2.87)

Therefore, we replace the boundary conditions (2.22) with equations (2.81), in which the
operators T̃ and S̃ are given by the formulas (2.85) and (2.87). The result is a modified
boundary condition in relaxed form.

At the nonpolar–water surface

At the fluid–fluid interface, the form of the operators S and T are simplified as follows:

S[φl] =
∂2φl

∂σ2
, T [φl] =

τ(1− τ)
1 + τ

∂

∂τ

[
τ(1 + τ)

1− τ
∂φl

∂τ

]
. (2.88)

The differential operator T is approximated with the difference one T̃ at the internal points
of the boundary Snw, using the formula

T̃ [ϕn|ki0] =
τi(1− τi)
δτ (1 + τi)

·

[
τi+1/2(1 + τi+1/2)

1− τi+1/2
·
ϕn|ki+1,0 − ϕn|ki,0

δτ

−
τi−1/2(1 + τi−1/2)

1− τi−1/2
·
ϕn|ki,0 − ϕn|ki−1,0

δτ

]
. (2.89)

For T̃ [ϕn|kN0], we use formula (2.87). Next, we shall approximate the operator S at the
boundary Spn. Using Eqs. (2.86) and (2.88), we obtain the following forms of the operator
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S on the both sides of the interface Spn:

S[φn] =
−7φn(τ, 0) + 8φn(τ, δn)− φn(τ, 2δn)

2δ2n
− 3

δn
· ∂φn

∂σ

∣∣∣∣
σ=0+

+O
(
δ2n
)
, (2.90)

S[φw] =
−7φw(τ, 2π) + 8φw(τ, 2π − δw)− φw(τ, 2π − 2δw)

2δ2w

+
3

δw
· ∂φw

∂σ

∣∣∣∣
σ=2π−

+O
(
δ2w

)
. (2.91)

Multiplying the second equation by εwnδw/(δn + εwnδw), the first one by δn/(δn + εwnδw)
and adding them, we conclude

S[φn] =
1

δn + εwnδw
· −7φn(τ, 0) + 8φn(τ, δn)− φn(τ, 2δn)

2δn

+
εwn

δn + εwnδw
· −7φw(τ, 2π) + 8φw(τ, 2π − δw)− φw(τ, 2π − 2δw)

2δw

+
3

δn + εwnδw

[
− ∂φn

∂σ

∣∣∣∣
σ=0+

+ εwn
∂φw

∂σ

∣∣∣∣
σ=2π−

]
︸ ︷︷ ︸

0 (see Eq. (2.18))

+O
(
δ2n + δ2w

)
= S[φw]. (2.92)

Finally, one gets the following approximation for the differential operator S at the boundary
Swn:

S̃[ϕn|ki0] =
1

δn + εwnδw
·
−7 ϕn|ki0 + 8 ϕn|ki1 − ϕn|ki2

2δn

+
εwn

δn + εwnδw
·
−7 ϕw|kiNw

+ 8 ϕw|ki,Nw−1 − ϕw|ki,Nw−2

2δw

= S̃[ϕw|kiNw
], i = 0, N. (2.93)

Thus, the second boundary condition in equations (2.18) is replaced by equation (2.80), in
which the operators T̃ and S̃ are given by Eqs. (2.89) and (2.93).

At the particle–water surface

The operator T is approximated by T̃ , which has the form Eq. (2.71), at the internal nodes
of Spn and Eq. (2.87) at the intersection of the Spw and the axis of revolution.

Analogously to the computations for nonpolar–water interface, the operator S is ex-
tended in a close vicinity of the dividing surface Spw as follows:

S[φp] =
∂2φp

∂σ2
− 1

h

∂h

∂σ

∂φp

∂σ
=
∂2φp

∂σ2
− 2τ sinσ

h

∂φp

∂σ
at σ = σpw − 0, (2.94)

S[φw] =
∂2φw

∂σ2
− 1

h

∂h

∂σ

∂φw

∂σ
=
∂2φw

∂σ2
− 2τ sinσ

h

∂φw

∂σ
at σ = σpw + 0, (2.95)
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where σpw = 2π − α. Applying the formula (2.86) in the latter, one gets

S[φp] =
−7φp(τ, σpw) + 8φp(τ, σpw − δp)− φp(τ, σpw − 2δp)

2δ2p

+

(
3

δp
− 2τ sinσpw

h

)
∂φp

∂σ

∣∣∣∣
σ=σpw−0

+O(δ2p), (2.96)

S[φw] =
−7φw(τ, σpw) + 8φw(τ, σpw + δw)− φw(τ, σpw + 2δw)

2δ2w

−
(

3

δw
+

2τ sinσpw
h

)
∂φw

∂σ

∣∣∣∣
σ=σpw+0

+O(δ2w). (2.97)

Next, let the functions ap(τ) and aw(τ) are defined as

ap(τ) = εpn

(
3

δp
+

2τ sinα

1 + τ2 − 2τ cosα

)−1

, aw(τ) = εwn

(
3

δw
− 2τ sinα

1 + τ2 − 2τ cosα

)−1

. (2.98)

Then, adding Eq. (2.96), multiplied by ap(τ)/[ap(τ) + aw(τ)], to Eq. (2.97), multiplied by
aw(τ)/[ap(τ) + aw(τ)], we obtain

S[φp] =
ap(τ)

ap(τ) + aw(τ)
· −7φp(τ, σpn) + 8φp(τ, σpn − δp)− φp(τ, σpn − 2δp)

2δ2p

+
aw(τ)

ap(τ) + aw(τ)
· −7φw(τ, σpn) + 8φw(τ, σpn + δw)− φw(τ, σpn + 2δw)

2δ2w

+O(δ2p + δ2w) = S[φw], (2.99)

see Eq. (2.19). Finally, one gets the following approximation:

S̃[ϕp|kiNp
] =

ap (τi)

ap (τi) + aw (τi)
·
−7 ϕp|kiNp

+ 8 ϕp|ki,Np−1 − ϕp|ki,Np−2

2δ2p

+
aw (τi)

ap (τi) + aw (τi)
·
−7 ϕw|ki0 + 8 ϕw|ki1 − ϕw|ki2

2δ2w
= S̃[ϕw|ki0], i = 0, N. (2.100)

At the particle–nonpolar surface

The operator T is approximated by T̃ , which has the form Eq. (2.71) at the internal nodes
and Eq. (2.87) at the intersection of the Spn and the axis of revolution.

Analogously to the computations for the nonpolar–water surface, it follows from equa-
tions (2.60) and (2.86) that the finite difference representations of the operator S in the
close vicinity of the boundary Spn are

bn(τ)S[φn] =
−7φn(τ, σpn) + 8φn(τ, σpn − δn)− φn(τ, σpn − 2δn)

2δ2n
bn(τ)

+
∂φn

∂σ

∣∣∣∣
σ=σpn−0

+O(δ2n), (2.101)

bp(τ)S[φp] =
−7φp(τ, σpn) + 8φp(τ, σpn + δp)− φp(τ, σpn + 2δp)

2δ2p
bp(τ)

− εpn
∂φp

∂σ

∣∣∣∣
σ=σpn+0

+O(δ2p), (2.102)
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where σpn := π − α and the functions bn(τ) and bp(τ) are defined as

bn(τ) =

(
3

δn
− 2τ sinα

1 + τ2 + 2τ cosα

)−1

, bp(τ) = εpn

(
3

δp
+

2τ sinα

1 + τ2 + 2τ cosα

)−1

. (2.103)

The linear combination of equations (2.101) and (2.102) with coefficients bn/(bn + bp) and
bp/(bn + bp) along with the boundary conditions (2.20) leads to the final expression for the
finite difference form of the operator S at the boundary Spn:

S[φ] =
bn(τ)

bn(τ) + bp(τ)
· −7φn(τ, σpn) + 8φn(τ, σpn − δn)− φn(τ, σpn − 2δn)

2δ2n

+
bp(τ)

bn(τ) + bp(τ)
· −7φp(τ, σpn) + 8φp(τ, σpn + δp)− φp(τ, σpn + 2δp)

2δ2p

+
1

bn(τ) + bp(τ)
· 2τ
h

+O(δ2n + δ2p). (2.104)

Finally, we approximate the differential operator S at this dividing boundary by

S̃[ϕn|kiNn
] =

bn(τi)

bn(τi) + bp(τi)
·
−7 ϕn|kiNn

+ 8 ϕn|ki,Nn−1 − ϕn|ki,Nn−2

2δ2n

+
bp(τi)

bn(τi) + bp(τi)
·
−7 ϕp|ki0 + 8 ϕp|ki1 − ϕp|ki2

2δ2p

+
1

bn(τi) + bp(τi)
· 2τi
1 + τ2i + 2τi cosα

= S̃[ϕp|ki0], i = 0, N. (2.105)

At the singularity point

For τ = 1 and σ = 0, the toroidal transformation is singular. In toroidal coordinates, one
reaches the triple point τ = 1 and σ = 0, using two boundaries: the axis of revolution and
the fluid–fluid interface. At the axis of revolution, the definition of the operator S for σ → 0
is

lim
σ→0

(1− cosσ)
∂

∂σ

(
1

1− cosσ
· ∂φl

∂σ

)
= lim

σ→0

[
∂2φl

∂σ2
− sinσ

1− cosσ

∂φl

∂σ

]
=
∂2φl

∂σ2

∣∣∣∣
σ=0

− lim
σ→0

∂φl

∂σ

sin
(
σ
2

) , (2.106)

see Eq. (2.84). The value of φl for τ = 1 and σ = 0 is a constant due to the fact that the
physical value of the potentials at infinity is a constant. Then, we conclude that

∂φl

∂σ

∣∣∣∣
σ=0

= 0 (2.107)

and, therefore,

lim
σ→0

(1− cosσ)
∂

∂σ

(
1

1− cosσ
· ∂φl

∂σ

)
=
∂2φl

∂σ2

∣∣∣∣
σ=0

− 2 lim
σ→0

∂2φl

∂σ2

cos
(
σ
2

) = −∂φ
2
l

∂σ2
(2.108)
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At the water–nonpolar interface, the definition of the operator T for τ → 1 is

T [φl] = lim
τ→1

τ(1− τ)
1 + τ

∂

∂τ

[
τ(1 + τ)

1− τ
∂φl

∂τ

]
= lim

τ→1
τ

[
τ2 − 2τ − 1

τ2 − 1

∂φl

∂τ
+ τ

∂2φl

∂τ2

]
=
−2
2

lim
τ→1

∂φl

∂τ

τ − 1
+
∂2φl

∂τ2

∣∣∣∣
τ=1

= 0. (2.109)

Then, we use Eq. (2.107) as a boundary condition in the infinity point in σ-direction.
Finally, the boundary condition (2.22) is approximated as

3 ϕn|k+1
N0 − 4 ϕn|k+1

N−1,0 + ϕn|k+1
N−2,0 = 0 (2.110)

and Eq. (2.107) — as

−3 ϕn|k+1
N0 + 4 ϕn|k+1

N1 − ϕn|k+1
N2 = 0, (2.111)

3 ϕw|k+1
NNw

− 4 ϕw|k+1
N,Nw−1 + ϕw|k+1

N,Nw−2 = 0, (2.112)

using the second-order formula [2.22]

u′(x) = ±3u(x)− 4u(x∓ δx) + u(x∓ 2δx)

2δx
+O(δx

2). (2.113)

2.6.3 Algorithm

The algorithm for finding the distribution of the electrostatic potentials is presented in Alg.
1. The main idea of algorithm is the following. We solve the problem in the σ direction and
obtain the values of ψl|kij , l =n, p, w. Next, the values of the functions ψl|kij , l =n, p, w,
at the axis of revolution are obtained. Next, three τ−directional problems are solved and
the values ϕl|kij + 1, l =n, p, w are obtained. For stopping criterion, an error estimate is
used.

Next, we specify the different τ and σ-directional problems that are solved. The σ-
directional problem (S) acquires the form:

• At the volumes (Eqs. (2.70) and (2.71)):(
U − δt

2
S̃

)[
ψn|k+1

ij

]
= δtS̃

[
ϕn|kij

]
+ δtT̃

[
ϕn|kij

]
, j = 1, Nn − 1; (2.114)(

U − δt
2
S̃

)[
ψp|k+1

ij

]
= δtS̃

[
ϕp|kij

]
+ δtT̃

[
ϕp|kij

]
, j = 1, Np − 1; (2.115)(

U − δt
2
S̃

)[
ψw|k+1

ij

]
= δtS̃

[
ϕw|kij

]
+ δtT̃

[
ϕw|kij

]
, j = 1, Nw − 1; (2.116)

• At the nonpolar–water boundary Snw (Eqs. (2.93) and (2.89)):(
U − δt

2
S̃

)[
ψw|k+1

iNw

]
= δtS̃

[
ϕw|kiNw

]
+ δtT̃

[
ϕw|kiNw

]
, (2.117)(

U − δt
2
S̃

)[
ψn|k+1

i0

]
= δtS̃

[
ϕn|ki0

]
+ δtT̃

[
ϕn|ki0

]
, (2.118)
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Algorithm 1 Compute the electrostatic distributions

1: procedure ComputeDistributions(N,Nn, Np, Nw, α)
2: Compute the lengths of the steps δn, δp, δw, δτ , δt; ▷ (2.63)–(2.67);
3: Set the values of ϕn, ϕp, ϕw to 0 at the initial moment of time (k = 0);
4:

5: for k ← 0 to 200 do
6:

7: for i← 1 to N − 1 do
8: Solve a σ-directional problem (S) for ψw, ψn and ψp;
9: end for

10:

11: Solve a σ-directional problem (S1);
12:

13: for j ← 1 to Nn − 1 do
14: Solve a τ -directional problem (Tn);
15: end for
16:

17: for j ← 1 to Np − 1 do
18: Solve a τ -directional problem (Tp);
19: end for
20:

21: for j ← 1 to Nw − 1 do
22: Solve a τ -directional problem (Tw);
23: end for
24:

25: Compute the values ϕn, ϕp, ϕw at the next moment of time; ▷ Eq. (2.79)
26: end for
27: end procedure

• At the particle–nonpolar boundary Spn (Eqs. (2.105) and (2.71)):(
U − δt

2
S̃

)[
ψn|k+1

iNn

]
= δtS̃

[
ϕn|kiNn

]
+ δtT̃

[
ϕn|kiNn

]
, (2.119)(

U − δt
2
S̃

)[
ψp|k+1

i0

]
= δtS̃

[
ϕp|ki0

]
+ δtT̃

[
ϕp|ki0

]
; (2.120)

• At the particle–water boundary Spw (Eqs. (2.100) and (2.71)):(
U − δt

2
S̃

)[
ψp|k+1

iNp

]
= δtS̃

[
ϕp|kiNp

]
+ δtT̃

[
ϕp|kiNp

]
, (2.121)(

U − δt
2
S̃

)[
ψw|k+1

i0

]
= δtS̃

[
ϕw|ki0

]
+ δtT̃

[
ϕw|ki0

]
; (2.122)

The σ-directional problem (S1), computing the values of the potentials at the axis of revo-
lution τ = 1, is defined as:
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• In the volumes (Eqs. (2.70) and (2.87)):(
U − δt

2
S̃

)[
ψn|k+1

Nj

]
= δtS̃

[
ϕn|kNj

]
+ δtT̃

[
ϕn|kNj

]
, j = 1, Nn − 1; (2.123)(

U − δt
2
S̃

)[
ψp|k+1

Nj

]
= δtS̃

[
ϕp|kNj

]
+ δtT̃

[
ϕp|kNj

]
, j = 1, Np − 1; (2.124)(

U − δt
2
S̃

)[
ψw|k+1

Nj

]
= δtS̃

[
ϕw|kNj

]
+ δtT̃

[
ϕw|kNj

]
, j = 1, Nw − 1; (2.125)

• At τ = 1 and Snw (Eq. (2.111) and (2.112)):

−3 ψn|k+1
N0 + 4 ψn|k+1

N1 − ψn|k+1
N2 = 0; (2.126)

3 ψw|k+1
NNw

− 4 ψw|k+1
N,Nw−1 + ψw|k+1

N,Nw−2 = 0; (2.127)

• At τ = 1 and Spn (Eqs. (2.105) and (2.87)):(
U − δt

2
S̃

)[
ψn|k+1

NNn

]
= δtS̃

[
ϕn|kNNn

]
+ δtT̃

[
ϕn|kNNn

]
, (2.128)(

U − δt
2
S̃

)[
ψp|k+1

N0

]
= δtS̃

[
ϕp|kN0

]
+ δtT̃

[
ϕp|kN0

]
; (2.129)

• At τ = 1 and Spw (Eqs. (2.100) and (2.87)):(
U − δt

2
S̃

)[
ψp|k+1

NNp

]
= δtS̃

[
ϕp|kNNp

]
+ δtT̃

[
ϕp|kNNp

]
; (2.130)(

U − δt
2
S̃

)[
ψw|k+1

N0

]
= δtS̃

[
ϕw|kN0

]
+ δtT̃

[
ϕw|kN0

]
; (2.131)

The τ -directional problem (Tn) has the form:

• At the volumes (Eqs. (2.71)):(
U − δt

2
T̃

)[
δϕn|k+1

ij

]
= ψn|k+1

ij , i = 1, N − 1, (2.132)

• At the contact line (Eq. (2.82)):

δϕn|k+1
0j = 0. (2.133)

• At the axis of revolution τ = 1 and σ ̸= 0 (Eq. (2.87)):(
U − δt

2
T̃

)[
δϕn|k+1

Nj

]
= ψn|k+1

Nj , (2.134)

• At the infinity point (Eq. (2.110)):

3 δϕn|k+1
N0 − 4 δϕn|k+1

N−1,0 + δϕn|k+1
N−2,0 = 0. (2.135)
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2.7. Numerical results

(a) εpn = 0.874 and εwn = 17.2 (b) εpn = 2 and εwn = 40

Figure 2.5: Distribution of the electrostatic potentials in numerical domains for contact
angle α = 90◦

Analogously, the τ -directional problem (Tp) and (Tw) are defined. Note that we solve two
linear systems on each time step. Because of the boundary conditions, the considered
algorithm reduces the matrix of the linear algebraic system in the τ -direction to a five-
diagonal matrix. The respective matrix of the system in the σ-direction is again with five
non-zero diagonals, but because of the periodicity of the solution at Snw its first row contains
two more elements at the end and the last row contains two more elements at the beginning.
We implemented a direct elimination numerical method in order to solve these systems.

Finally, in order to compute the distribution of the electrostatic potentials after long
enough time, you need to save only the information in the current and the previous moment
of time.

2.7 Numerical results

To achieve good precision of the numerical calculations, we discretize each numerical domain
by introducing a 100 × 100 uniform mesh (see Section 2.6). Due to the fact that the σ-
coordinate curve is a circle, which degenerates into the pole A+ for τ →∞ (see Fig. S.9 in
the Supplementary material S), then we could work with an uniform mesh over the spacial
domain in toroidal coordinates. The time step is chosen to be equal to the minimum of
δτ , δn, δp and δw. The computation of the potential distributions is fast. The CPU time
on a laptop with processor Intel Core i5-4200H is less than a second for any contact angle
α ∈ (0◦, 180◦) and an 100× 100 uniform mesh in each of the domains.

The illustrative figures (Fig. 2.5b and 2.6b) correspond to experimental system parame-
ters εpn = 2 and εwn = 40 [2.11]. If the oil phase has a larger dielectric constant (for example,
castor oil with εn = 4.54), then the system parameters are εpn = 0.874 and εwn = 17.2 (Figs.
2.5a and 2.6a, respectively).

Fig. 2.5 shows the distribution of the physical potentials in the numerical domains
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(a) εpn = 0.874 and εwn = 17.2 (b) εpn = 2 and εwn = 40

Figure 2.6: Distribution of potentials along the interfaces for different values of contact
angle α

for three-phase contact angle α = 90◦. The considerably higher dimensionless potentials
are well illustrated for larger values of the dielectric constant of the nonpolar phase. At
the coordinate lines, σ = 0 (Snw) and σ = 3π/2 (Spw), the electrostatic potentials are
considerably lower than those at coordinate line σ = π/2 (Spn). As it can be expected,
the maxima of the electrostatic potentials are at the cross-section of the particle–nonpolar
interface and the axis of revolution. In both cases, the dielectric constant of water is so high
that the water phase suppresses the penetration of the electric field in the polar phase.

The calculations in [2.2, 2.11] are performed, assuming zero values of the potentials at
the boundaries of the polar fluid. The magnitude of the electro-dipping force decreases if
the electrostatic potentials at these boundaries are different than zero. Fig. 2.6 shows the
distribution of the surface potentials along the boundaries (solid lines correspond to Spn;
dashed lines — to Spw; dot–dashed lines — to Snw). The increase in the three-phase contact
angle (more hydrophobic particles) leads to higher potentials because of the more charges,
adsorbed at the particle–nonpolar fluid interface. The effect of the water phase becomes
more pronounced. It is important to note that the surface potentials at the particle–water
boundary are different from zero. Thus, the boundary Spw also contributes to the electro-
dipping force. For α = 45◦ and α = 90◦ this contribution is small, while for α = 135◦—it
is not negligible. The weak singularities at the three-phase contact line (τ = 0) correspond
to those depicted in Fig. 2.4. If the dielectric constant of the particle phase, εp, is smaller
than that of the nonpolar phase, εn, then the electric field penetration inside the particle
phase is more effective and the electrostatic potential at boundary Spw is higher.

2.8 Conclusion

The proposed effective numerical algorithm, based on the ADIM, enables us to do fast and
precise calculation of the electrostatic distributions, generated from a charged dielectric
particle, attached to the nonpolar–water interface. For faster calculations, we transform
the complex dielectric phase domains into rectangles, using a modification of the toroidal
coordinates. The resulting systems in the respective directions of ADIM are solved, using a
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direct elimination method.
The numerical results show the effect of the three-phase contact angle and the di-

electric properties of the phases on the induced electric fields and the magnitude of the
electro-dipping force. Generally, the decrease of the ratios of the dielectric constants of the
particle and nonpolar phase, εp/εn, and that of water and nonpolar phase, εw/εn, leads
to the more pronounced penetration of the electric field and higher surface potentials at
the particle–water and nonpolar fluid–water boundaries. The magnitude of the potentials
(electro-dipping force) is larger for more hydrophobic particles. The calculations generalize
known results — the idealized case of a thin electric double layer in water [2.11], where
the dielectric constants of the particle and the nonpolar phase are assumed to be negligible
with respect to the constant of water, and the idealized case of water phase with infinite
dielectric permittivity [2.2].
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Chapter 3

Motion of a spherical particle,
attached to the interface
between two viscous fluids

In this chapter, we compute the drag force, acting on a particle, attached to the boundary
between two viscous fluids. This calculation is important for the production of 2D-ordered
micro- and nano-layers, which are applied in the production of solar panels, charge-coupled
devices (CCDs) and bio-memory chips. The problem was solved semi-analytically for water–
air interface and three-phase contact angle α ≤ 90◦, using the Mehler–Fock transformation
[3.1]. We propose a numerical method, based on the gauge formulation of the Stokes equa-
tions for two viscous fluids. This method is applicable for calculating the velocity field, the
pressure and the drag force coefficient for all values of the three-phase contact angle and
the fluid viscosities. The weak singularity of the solutions at the three-phase contact line
is studied and the respective phase diagram is drawn. The isolation of the singularity type
helps us to construct an efficient second-order numerical scheme, based on the alternat-
ing direction implicit method. The problem is solved numerically for different three-phase
contact angles and ratios of the fluid viscosities.

The results, included in this chapter, are published in

• G. Lyutskanova-Zhekova, K. Danov, Motion of a Spherical Particle Attached to the
Interface Between Two Viscous Fluids, Progress in Industrial Mathematics (2019).
DOI: 10.1007/978-3-030-27550-1 12.

3.1 Literature overview

The 2D layers of micro- and nano-particles [3.2, 3.3], attached to interfaces, are related to the
production of antireflective surface coverages in solar panels [3.4, 3.5], microlense structures
in CCD technologies [3.6] and structures for bioengineering and biosensing applications
[3.7, 3.8]. The quality of these layers depends on the values of the contact angle, α, and the
mobility of particles at interfaces. For small particles, α is measured from the translational
motion of individual particles, attached to fluid–fluid interfaces [3.9].
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Chapter 3. Motion of a spherical particle

In the current work, we calculate the drag coefficient of a spherical particle, located at a
flat interface between two viscous fluids and moving parallel to it. If one of the fluid phases
is air, the problem has a semi-analytical solution in terms of the Mehler–Fock integral
transformation [3.1], which is valid only for particles more immersed in the fluid phase
(α ≤ 90◦). Analytical approximations for the drag and diffusion coefficient of a spherical
particle, attached to a flat interface between two immiscible fluids, are constructed for the
case of a vanishing viscosity ratio between the fluid phases [3.10]. The general problem is
solved in [3.11], using the two-vorticity-one-velocity formalism. A major drawback of the
proposed method in [3.11] is that it is slow and, therefore, it cannot be used in the most of
the practical applications.

The aim of the present study is to develop a fast and effective numerical method for
calculating the velocity field, the pressure and the drag coefficient in the case of two fluid
phases with arbitrary viscosities and three-phase contact angles 0 < α < 180◦. The problem
is solved, using similar method to this in [3.11] but we use the gauge approach instead of
the two-vorticity-one-velocity formalism. This leads to fast and efficient method for solving
the problem.

Solving this problem in an efficient way is an important task due to the following reasons.
First, these calculations could be used to determine the contact angle of micron particles.
These particles are so small that they do not deform the surface, to which they are attached.
Moreover, one could see their movement with a microscope but not them in detail. Therefore,
the speed of a micron particle is measured thought experiment and using this information,
the particle contact angle is computed. The only way to do that for the time being is
by using parametric identification. This method requires repeated calculations of the drag
force for different values of the contact angle to obtain the best fit of the experimental data
for the drag coefficient. Second, an efficient algorithm for computation of the drag force
is needed in order to solve the two-dimensional crystallization problem. This problem is
transformed to a problem for ordering of many moving particles, which is solved, using the
drag force coefficient for each particle. Moreover, an efficient algorithm is needed because the
number of particles is great and they have different contact angles. Due to above presented
applications, the solution of the presented above problem is an important task.

The current chapter is structured as follows. We formulate the problem in Sec. 3.2 and
nondimensionalize it in Sec. 3.4. In Sec. 3.5, one transforms the problem into a convenient
form for numerical modeling. In Sec. 3.6, the asymptotic solutions at the three-phase
contact line are found in order to have a good approximation for the drag force, which has
a singularity at τ = 0. Finally, the numerical method and algorithm for finding the drag
force, and the results are presented in Sec. 3.7.

3.2 Mathematical formulation of the problem

A small spherical particle of radius R is attached to the interface between two infinite
incompressible viscous fluids (Fig. 3.1) and moves parallel to the fluid interface with known
constant velocity V . The particle position is determined by the three-phase contact angle
α, see Fig. 3.1. For small capillary numbers, the perturbations of the dividing surface due
to the particle motion are sufficiently small so that the surface is flat. Thus, the three-phase
contact line is a circumference of radius rc = R sinα. Its center is chosen to be an origin of
a Cartesian coordinate system with unit basis vectors ex, ey, and ez, where ey points at the
direction of the particle movement and ez is normal to the fluid–fluid interface, pointing at
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3.2. Mathematical formulation of the problem

the upper fluid phase (see Fig. 3.1).

Figure 3.1: Sketch of a spherical particle, attached to the plane interface between two fluids.

The translation of the particle causes the fluid motion, which is assumed to be so slow so
that the inertia terms in the Navier–Stokes equations can be neglected. Thus, we describe
the sought-out local velocities vm for both phases as solutions of the Stokes equations, i.e.

∇ · vm = 0, m = 1, 2, (3.1)

∇pm = ηm∇2vm, m = 1, 2, (3.2)

where pm is the pressure, ηm is the dynamic viscosity, ∇ is the spatial gradient and subscripts
“1” and “2” denote the upper and lower phases, respectively.

In order to close the obtained system of partial differential equations, we need to apply
the respective boundary conditions. The no-slip boundary conditions at the particle surface,
Sp, state

vm = V ey at Sp, m = 1, 2, (3.3)

see Eq. (U.77) in the Supplementary material U. The kinematic boundary conditions at the
non-perturbed interface z = 0 are

v1 = v2, v1 · ez = 0, v2 · ez = 0 at z = 0, (3.4)

see Eqs. (U.79), (U.81) in the Supplementary Material U. The interface is assumed to have
no surface elasticity, diffusivity, viscosity, etc., then, the dynamic boundary condition at
interface z = 0 has the form:

ez · (T1 −T2) = 0 at z = 0, (3.5)
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Chapter 3. Motion of a spherical particle

where T1 and T2 are the bulk stress tensors, see (U.93) in the Supplementary Material
U. Taking into account that the fluids are incompressible Newtonian, then the following
constitutive relations:

Tm = −pmI+ ηm

[
∇vm + (∇vm)

T
]
, m = 1, 2 (3.6)

hold true, see Section U.4 in the Supplementary Material U. Substituting Eqs. (3.6) in the
general dynamic boundary condition (3.5), we obtain

−p1ez + η1ez ·
[
∇v1 + (∇v1)

T
]
= −p2ez + η2ez ·

[
∇v2 + (∇v2)

T
]
, (3.7)

−p1ez + 2η1
∂v1

∂z
= −p2ez + 2η2

∂v2

∂z
at z = 0, (3.8)

see Eqs. (S.69), (S.211) in the Supplementary Material S. In order to remove the unknown
pressures from the dynamic boundary condition, we take the vector product of Eq. (3.8)
with ez and obtain

η1
∂v1

∂z
× ez = η2

∂v2

∂z
× ez at z = 0, (3.9)

Finally, the physical values of vm, m = 1, 2, and pm, m = 1, 2, vanish at large distances
from the particle, i.e.

lim
ρ→∞

vm = 0, lim
ρ→∞

pm = 0, m = 1, 2, (3.10)

where ρ denotes the length of the radius vector and it is computed as follows:

ρ =
√
x2 + y2 + z2. (3.11)

3.3 Exact solution of the problem

Let us introduce a cylindrical coordinate system r, φ, and z with center, coinciding with the
center of the three-phase contact line, and unit basis vectors er, eφ and ez (see Fig. 3.1). In
the considered coordinate system, the exact solution of the Stokes problem (3.1) and (3.2)
with boundary conditions (3.3) and (3.10), which describes the movement of a particle in
an unbounded fluid m of viscosity ηm, is

vstmr =
3V

4
· R

3(z −R cosα)2 sinφ

[r2 + (z −R cosα)2]
5/2
− 3V

4
· R(z −R cosα)2 sinφ

[r2 + (z −R cosα)2]
3/2

− V

2
· R3 sinφ

[r2 + (z −R cosα)2]
3/2

+
3V

2
· R sinφ

[r2 + (z −R cosα)2]
1/2

, m = 1, 2, (3.12)

vstmφ =
V

4
· R3 cosφ

[r2 + (z −R cosα)2]
3/2

+
3V

4
· R cosφ

[r2 + (z −R cosα)2]
1/2

, m = 1, 2, (3.13)

vstmz = −3V

4
· R

3r(z −R cosα) sinφ

[r2 + (z −R cosα)2]
5/2

+
3V

4
· Rr(z −R cosα) sinφ

[r2 + (z −R cosα)2]
3/2

, m = 1, 2, (3.14)

pstm =
3V ηm
2R

· R2r sinφ

[r2 + (z −R cosα)2]
3/2

, m = 1, 2, (3.15)
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see [3.12]. For three-phase contact angle α = 90◦, i.e. the center of the coordinate system
coincides with the center of the particle, one gets

vstmr = −3V

4
· Rz2 sinφ

(r2 + z2)
3/2

(
1− R2

r2 + z2

)
+
V

2
· R sinφ

(r2 + z2)
1/2

(
1

3
− R2

r2 + z2

)
, (3.16)

vstmφ =
V

4
· R3 cosφ

(r2 + z2)
3/2

+
3V

4
· R cosφ

(r2 + z2)
1/2

, (3.17)

vstmz = −3V

4
· R

3rz sinφ

(r2 + z2)
5/2

+
3V

4
· Rrz sinφ

(r2 + z2)
3/2

, (3.18)

pstm =
3V ηm
2R

· R2r sinφ

(r2 + z2)
3/2

, (3.19)

for both phases. Note that these equations give the exact solution of our problem both
for equal or different viscosities of the fluid phases in the case of α = 90◦. We shall prove
this statement in the next lines. First, the kinematic boundary conditions (3.4) hold true.
Second, the dynamic boundary condition (3.9) acquires the form:

η1

(
− eφ

∂v1r
∂z

∣∣∣∣
z=0

+ er
∂v1φ
∂z

∣∣∣∣
z=0

)
= η2

(
−eφ

∂v2r
∂z

∣∣∣∣
z=0

+ er
∂v2φ
∂z

∣∣∣∣
z=0

)
. (3.20)

Due to the facts

∂vmr

∂z

∣∣∣∣
z=0

= 0,
∂vmφ

∂z

∣∣∣∣
z=0

= 0, m = 1, 2, (3.21)

we conclude that the dynamic boundary condition (3.9) holds true.

3.4 Dimensionless formulation of the problem

The dimensionless form of the problem is obtained by introducing the following new vari-
ables:

x =
x

rc
, y =

y

rc
, z =

z

rc
, ρ =

ρ

rc
, ∇ = rc∇, ∇

2
= r2c∇2, (3.22)

vm =
vm

V
, pm =

rcpm
ηmV

, µm =
ηm

η1 + η2
, m = 1, 2. (3.23)

Then, by substituting Eqs. (3.22) and (3.23) in the considered problem (3.1)– (3.4) and
(3.9), we obtain the respective Stokes problem

∇ · vm = 0, m = 1, 2, (3.24)

∇pm = ∇2
vm, m = 1, 2, (3.25)

with the following boundary conditions:

• no-slip boundary conditions:

vm = ey at Sp, m = 1, 2; (3.26)
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• kinematic boundary conditions:

v1 = v2, v1 · ez = 0, v2 · ez = 0 at z = 0; (3.27)

• dynamic boundary conditions:

µ1
∂v1

∂z
× ez = µ2

∂v2

∂z
× ez at z = 0; (3.28)

• boundary conditions at infinity:

lim
ρ→∞

vm = 0, lim
ρ→∞

pm = 0, m = 1, 2. (3.29)

For simplicity of notations, we shall skip the bars in the subsequent computations.

3.5 Transforming the model in a convenient form for
numerical modelling

In the current section, we transform the model in a form, which is convenient for numerical
modelling (see Fig. 3.2). First, the problem is reformulated, using the gauge method. The
main idea of the method is to transform the original system, which consists of six second-
order and two first-order partial differential equations, to a system of eight elliptic partial
differential equations. Secondly, we simplify the 3D problem to the 2D one, taking into
account the fact that the considered problem contains only the first mode with respect to
the Fourier transform. Next, the partial differential equations in the system are uncoupled
by introducing new variables. Finally, a modification of the toroidal coordinates is used in
order to transform the complex geometry of the problem into rectangles.

3.5.1 Gauge formulation of the problem

Solving the Navier–Stokes equations (and in particular the Stokes equations) is not a
straight-forward task. In support of this thesis, Langtangen and coworkers [3.13] described
the main issues that arise from using a naive approach for this problem and the most com-
mon numerical strategies to solve the problem. Generally speaking, the main challenge is to
maintain the incompressibility constraint during the iterative processes [3.14]. In order to
solve this issue, we use the gauge formulation of the problem [3.15, 3.16], which introduces
a vector, wm, and a scalar, ξm, potentials by using the following definition:

vm = wm −∇ξm, m = 1, 2. (3.30)

The substitution of the expression for the vector vm (3.30) into the continuity equation
(3.24) leads to the Poisson equation

∇2ξm = ∇ ·wm, m = 1, 2, (3.31)

and into the momentum balance equation (3.25) — to the following:

∇pm = ∇2vm = ∇2 (wm −∇ξm) = ∇2wm −∇2(∇ξm), m = 1, 2, (3.32)

∇2wm = ∇(pm +∇2ξm), m = 1, 2. (3.33)
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3.5. Transforming the model in a convenient form for numerical modelling

Figure 3.2: Schematic representation of the transformations, which are applied to the con-
sidered problem

Taking into account that the definition (3.30) introduces four new variables and gives only
three equations between them, one adds the constraint

pm = −∇2ξm, m = 1, 2, (3.34)

which leads to a significant simplification of the momentum balance equation:

∇2wm = 0, m = 1, 2. (3.35)

Thus, the Stokes problem (3.24), (3.25) is reduced to a well-defined system of elliptic partial
differential equations (3.31), (3.35). Moreover, the vector equation (3.35) could be solved
separately and, then, one could obtain ξm from Eq. (3.31). Finally, one obtains vm and pm,
using (3.30) and (3.34). The main disadvantage of the gauge method is that the reformula-
tion of the problem increases the number of degrees of freedom and additional self-consistent
boundary conditions for the vector and scalar potential have to be added to the problem.
In our case, we specify the following additional boundary conditions:

ξm = 0 at Sp, m = 1, 2, (3.36)

ξ1 = ξ2, µ1
∂ξ1
∂z

= µ2
∂ξ2
∂z

at z = 0. (3.37)

Note that Eq. (3.36) has already been used in the literature [3.15], while Eq. (3.37) is
original to our knowledge. Moreover, the boundary conditions match the physical picture
and they simplify significantly the form of the kinematic and dynamic boundary conditions
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in cylindrical coordinates, see Eqs. (3.44)–(3.45). This formulation of the problem has two
important advantages from numerical viewpoint. First, the problem consists of eight elliptic
partial differential equations with well-defined boundary conditions. Second, all vector and
scalar potentials are regular functions of r and z in the closed numerical domains, including
the three-phase contact line. The pressure functions is possible to have weak singularities
at the three-phase contact line for some values of the central angles and viscosities, while
the vector and scalar potentials do not.

3.5.2 From three-dimensional to two-dimensional problem

Next, we introduce a cylindrical coordinate system r, φ, and z with unit basis vectors er,
eφ and ez (see Fig. 3.1). In it, the problem in terms of vector and scalar potentials, Eqs.
(3.31), (3.35), has the following coordinate form:

1

r

∂

∂r

(
r
∂wmr

∂r

)
+

1

r2
∂2wmr

∂φ2
+
∂2wmr

∂z2
− 2

r2
∂wmφ

∂φ
− wmr

r2
= 0, m = 1, 2, (3.38)

1

r

∂

∂r

(
r
∂wmφ

∂r

)
+

1

r2
∂2wmφ

∂φ2
+
∂2wmφ

∂z2
+

2

r2
∂wmr

∂φ
− wmφ

r2
= 0, m = 1, 2, (3.39)

1

r

∂

∂r

(
r
∂wmz

∂r

)
+

1

r2
∂2wmz

∂φ2
+
∂2wmz

∂z2
= 0, m = 1, 2, (3.40)

1

r

∂

∂r

(
r
∂ξm
∂r

)
+

1

r2
∂2ξm
∂φ2

+
∂2ξm
∂z2

=
1

r

∂ (rwmr)

∂r
+

1

r

∂wmφ

∂φ
+
∂wmz

∂z
, m = 1, 2, (3.41)

see Eqs. (S.350)– (S.352) in the Supplementary Material S. Next, we obtain the form of the
boundary conditions in cylindrical coordinates as follows:

• No-slip boundary conditions. For the no-slip boundary conditions (3.26), one gets

sinφer + cosφeφ = vm = wm −∇ξm, m = 1, 2, (3.42)

see Eqs. (3.30), (S.342) –(S.344) in the Supplementary Material S. Then, the coordi-
nate form of Eq. (3.42) is

wmr −
∂ξm
∂r

= sinφ, wmφ −
1

r

∂ξm
∂φ

= cosφ, wmz −
∂ξm
∂z

= 0, m = 1, 2, (3.43)

see Eq. (S.348) in Supplementary material S.

• Kinematic boundary conditions. Using Eq. (3.30), the kinematic boundary con-
dition v1 = v2, see Eq. (3.27), acquires the form

w1 −∇ξ1 = w2 −∇ξ2. (3.44)

Then, one gets the form of the kinematic boundary conditions along the r direction:

w1r = w1r −
∂ξ1
∂r

= w2r −
∂ξ2
∂r

= w2r, (3.45)

see Eq. (3.37). Analogously, the kinematic boundary conditions along the φ- and z−
directions acquire the form

w1φ = w2φ, w1z −
∂ξ1
∂z

= 0, w2z −
∂ξ2
∂z

= 0 at z = 0, (3.46)

see Eq. (3.27).
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• Dynamic boundary conditions. First, we simplify the expression ∂vm

∂z × ez as
follows:

∂vm

∂z
× ez = −∂vmr

∂z
eφ +

∂vmφ

∂z
er

= −
(
∂wmr

∂z
− ∂2ξm
∂r∂z

)
eφ +

(
∂wmφ

∂z
− 1

r

∂2ξm
∂φ∂z

)
er, m = 1, 2, (3.47)

see Eqs. (3.30), (S.348). Using Eqs. (3.9), (3.37), (3.47), we obtain the following
coordinate form of the dynamic boundary conditions (3.9):

µ1
∂w1r

∂z
= µ2

∂w2r

∂z
, µ1

∂w1φ

∂z
= µ2

∂w2φ

∂z
. (3.48)

• Boundary conditions at infinity. From the Stokes solution (3.12)– (3.15), one
obtains the following expressions for the dimensionless gauge scalar and vector poten-
tials:

wst
mr = − 3

2 sin3 α

(z − cotα)2 sinφ

[r2 + (z − cotα)2]5/2
+

1

sin3 α

sinφ

[r2 + (z − cotα)2]3/2

+
3

2 sinα

sinφ

[r2 + (z − cotα)2]1/2
, (3.49)

wst
mφ = − 1

2 sin3 α

cosφ

[r2 + (z − cotα)2]3/2
+

3

2 sinα

cosφ

[r2 + (z − cotα)2]1/2
, (3.50)

wst
mz =

3

2 sin3 α

r(z − cotα) sinφ

[r2 + (z − cotα)2]5/2
, (3.51)

ξstm =
3

4 sinα

r sinφ

[r2 + (z − cotα)2]1/2
− 3

4 sin3 α

r sinφ

[r2 + (z − cotα)2]3/2
(3.52)

for both phases (m = 1, 2). Note that the vector potential vanishes at large distances
from the particle surface, while the scalar potential has the following finite value:

ξstm →
3 sinφ

4 sinα
at r →∞ and z = const, m = 1, 2. (3.53)

• Additional boundary conditions. The additional boundary conditions have the
same form as Eqs. (3.36), (3.37).

In cylindrical coordinates (r, φ, z), the Fourier expansion of the solution with respect to
the polar angle, φ, contains only the first Fourier mode [3.1, 3.11]. Thus, the components
of the vector and scalar potentials can be presented as

wmr = amr(r, z) sinφ, wmφ = amφ(r, z) cosφ, m = 1, 2, (3.54)

wmz = amz(r, z) sinφ, ξm = bm(r, z) sinφ, m = 1, 2, (3.55)

where amr, amφ, amz and bm are the amplitudes of the Fourier modes of the general solution.
Therefore, the three-dimensional problem is reduced to the following two-dimensional system
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of eight partial differential equations in cylindrical coordinates:

1

r

∂

∂r

(
r
∂amr

∂r

)
+
∂2amr

∂z2
− 2amr

r2
+

2amφ

r2
= 0, m = 1, 2, (3.56)

1

r

∂

∂r

(
r
∂amφ

∂r

)
+
∂2amφ

∂z2
+

2amr

r2
− 2amφ

r2
= 0, m = 1, 2, (3.57)

1

r

∂

∂r

(
r
∂amz

∂r

)
+
∂2amz

∂z2
− amz

r2
= 0, m = 1, 2, (3.58)

1

r

∂

∂r

(
r
∂bm
∂r

)
+
∂2bm
∂z2

− bm
r2

=
1

r

∂

∂r
(ramr)−

amφ

r
+
∂amz

∂z
, m = 1, 2. (3.59)

The system is closed with the respective boundary conditions for the amplitudes of the first
Fourier modes, i.e.

• Boundary conditions at the particle surface (see Eqs. (3.43) and (3.36)):

amr −
∂bm
∂r

= 1, amz −
∂bm
∂z

= 0 at Sp, m = 1, 2, (3.60)

bm = 0, amφ = amφ −
bm
r

= 1 at Sp, m = 1, 2; (3.61)

• Kinematic boundary conditions and condition for equality of the scalar
potentials at the fluid–fluid interface (see Eqs. (3.45), (3.46) and (3.37)):

a1r = a2r, a1φ = a2φ, b1 = b2 at z = 0, (3.62)

amz −
∂bm
∂z

= 0 at z = 0, m = 1, 2; (3.63)

• Dynamic boundary conditions and condition for the derivatives of the
scalar potentials at the fluid–fluid interface (see Eqs. (3.48) and (3.37)):

µ1
∂a1r
∂z

= µ2
∂a2r
∂z

, µ1
∂a1φ
∂z

= µ2
∂a2φ
∂z

, µ1
∂b1
∂z

= µ2
∂b2
∂z

at z = 0. (3.64)

• Boundary conditions at infinity: Vector potentials vanish at large distances from
the particle surface, while the following relation:

bstm →
3

4 sinα
at r →∞ and z = const, m = 1, 2. (3.65)

holds for the scalar potentials.

3.5.3 Uncoupling the bulk equations of the problem

From numerical viewpoint, it is convenient to uncouple the bulk equations of the considered
PDE system (3.56)–(3.59). Obviously, the third equation in the system, Eq. (3.58), is not
related to the others. Next, adding Eqs. (3.56), (3.57), one gets

1

r

∂

∂r

[
r
∂ (amr + amφ)

∂r

]
+
∂2 (amr + amφ)

∂z2
= 0, m = 1, 2. (3.66)
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Analogously, subtracting Eq. (3.57) from Eq. (3.56), the following equation

1

r

∂

∂r

[
r
∂ (amr − amφ)

∂r

]
+
∂2 (amr − amφ)

∂z2
− 4

r2
(amr − amφ) = 0, m = 1, 2 (3.67)

holds true. Next, we shall reformulate Eq. (3.59) in two steps. First, we revise the first two
terms of the right hand side of Eq. (3.59) as follows:

1

r

∂

∂r
(ramr)−

amφ

r
=
amr

r
− amφ

r
+
∂amr

∂r
=

1

2

[
∂

∂r

(
r
∂amr

∂r

)
+
∂2 (ramr)

∂z2

]
+
∂amr

∂r

=
1

2

{
∂

∂r

[
∂(ramr)

∂r
− amr

]
+
∂2 (ramr)

∂z2

}
+
∂amr

∂r

=
1

2

{
r

r

∂

∂r

[
∂(ramr)

∂r

]
+
∂2 (ramr)

∂z2

}
+

1

2

∂amr

∂r

=
1

2

{
1

r

∂

∂r

[
r
∂(ramr)

∂r

]
− 1

r

∂(ramr)

∂r
+
∂2 (ramr)

∂z2

}
+

1

2

∂amr

∂r

=
1

2

{
1

r

∂

∂r

[
r
∂(ramr)

∂r

]
+
∂2 (ramr)

∂z2
− ramr

r2

}
, m = 1, 2, (3.68)

see Eq. (3.56). Second, we find an appropriate expression for the last term in the right hand
side of Eq. (3.59):

∂amz

∂z
=
z

2

[
1

r

∂

∂r

(
r
∂amz

∂r

)
+
∂2amz

∂z2
− amz

r2

]
+
∂amz

∂z

=
1

2

{
1

r

∂

∂r

[
r
∂ (zamz)

∂r

]
+ z

∂2amz

∂z2
− amzz

r2

}
+
∂amz

∂z

=
1

2

{
1

r

∂

∂r

[
r
∂ (zamz)

∂r

]
+

∂

∂z

(
z
∂amz

∂z

)
− ∂amz

∂z
− zamz

r2

}
+
∂amz

∂z

=
1

2

{
1

r

∂

∂r

[
r
∂ (zamz)

∂r

]
+
∂2 (zamz)

∂z2
− 2

∂amz

∂z
− zamz

r2

}
+
∂amz

∂z

=
1

2

{
1

r

∂

∂r

[
r
∂ (zamz)

∂r

]
+
∂2 (zamz)

∂z2
− zamz

r2

}
, m = 1, 2, (3.69)

using Eq. (3.58). Substituting Eqs. (3.68), (3.69) in (3.59), we obtain

1

r

∂

∂r

[
r
∂

∂r

(
bm −

ramr

2
− zamz

2

)]
+

∂2

∂z2

(
bm −

ramr

2
− zamz

2

)
− 2bm − ramr − zamz

2r2
= 0, m = 1, 2. (3.70)

Then, instead of solving Eqs. (3.56), (3.57), (3.58) and (3.59) with respect to amr, amφ,
amz and bm, one could obtain the solution of the problem by solving Eqs. (3.66), (3.67),
(3.58) and (3.70) with respect to the following new variables:

um0 =
1

4
(amr + amφ), um1 =

1

2
amz, um2 =

1

4
(amr − amφ), m = 1, 2, (3.71)

bm1 = bm −
1

2
(ramr + zamz) , m = 1, 2. (3.72)
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Using the new variables (3.71) and (3.72), the problem is considerably simplify to the fol-
lowing homogeneous system of uncoupled partial differential equations:

L0[um0] = 0, L1[um1] = 0, L2[um2] = 0, L1[bm1] = 0, m = 1, 2, (3.73)

where the dimensionless Laplace operators Ln have the following form:

Ln[u] =
1

r

∂

∂r

(
r
∂u

∂r

)
+
∂2u

∂z2
− n2u

r2
, n = 0, 1, 2. (3.74)

Using the inverse transformations

amr = 2(um0 + um2), amφ = 2(um0 − um2), amz = 2um1, m = 1, 2, (3.75)

bm = bm1 + r (um0 + um2) + zum1, m = 1, 2, (3.76)

one obtains the boundary conditions of the problem in the terms of the new variables:

• Boundary conditions at the particle surface (see Eqs. (3.60) and (3.61)):

2 (um0 + um2)−
∂

∂r
[bm1 + r (um0 + um2) + zum1] = 1 at Sp, m = 1, 2, (3.77)

2um1 −
∂

∂z
[bm1 + r (um0 + um2) + zum1] = 0 at Sp, m = 1, 2, (3.78)

um0 − um2 =
1

2
, bm1 + r (um0 + um2) + zum1 = 0 at Sp, m = 1, 2; (3.79)

• Kinematic boundary conditions and condition for equality of the scalar
potentials at the fluid–fluid interface z = 0. Substituting Eq. (3.75) in the
kinematic boundary conditions (3.62), one obtains

u10 + u12 = u20 + u22 at z = 0, (3.80)

u10 − u12 = u20 − u22 at z = 0. (3.81)

Adding Eq. (3.80) to Eq. (3.81) and subtracting Eq. (3.81) from Eq. (3.80), we
conclude that

u10 = u20, u12 = u22 at z = 0. (3.82)

Next, one obtains the form of the boundary condition b1 = b2 at z = 0:

b11 + r (u10 + u12) = b21 + r (u20 + u22) at z = 0, (3.83)

b11 = b21 at z = 0, m = 1, 2, . (3.84)

see Eqs. (3.62) and (3.82). Finally, we conclude that the boundary condition Eq.
(3.63) is transformed as

um1 −
∂bm1

∂z
− r ∂

∂z
(um0 + um2) = 0 at z = 0, m = 1, 2, (3.85)

using the derivative ∂bm/∂z at z = 0:

∂bm
∂z

=
∂bm1

∂z
+ r

∂

∂z
(um0 + um2) + um1 at z = 0. (3.86)
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• Dynamic boundary conditions and condition for the derivatives of the
scalar potentials at the fluid–fluid interface. Analogously to the derivation of
the kinematic boundary conditions (3.62), we obtain the following form of the dynamic
boundary conditions in the terms of the new variables:

µ1
∂u10
∂z

= µ2
∂u20
∂z

, µ1
∂u12
∂z

= µ2
∂u22
∂z

at z = 0. (3.87)

Finally, we write the additional condition for the derivatives of scalar potentials in
terms of the new variables

µ1
∂b11
∂z

+ µ1u11 = µ2
∂b21
∂z

+ µ2u21 at z = 0, (3.88)

see Eqs. (3.87) and (3.86). Using Eqs. (3.75), (3.63) and (3.64), we conclude that

2µ1u11 = µ1a1z = µ1
∂b1
∂z

= µ2
∂b2
∂z

= µ2a2z = 2µ2u21 at z = 0. (3.89)

Then, the boundary condition (3.64) acquires the form:

µ1
∂b11
∂z

= µ2
∂b21
∂z

at z = 0, (3.90)

see Eqs. (3.88) and (3.89).

• Boundary conditions at infinity: Potentials vanish at large distances from the
particle surface because

bstm1 = lim
r→∞

bm1 = lim
r→∞

[
bm −

1

2

(
rwmr

sinφ
+ z

wmz

sinφ

)]
=

3

4 sinα
− 3

4 sinα
= 0, (3.91)

see Eqs. (3.49), (3.51) and (3.65).

3.5.4 Formulation of the problem in toroidal coordinates

To construct an efficient numerical scheme, the complex geometry of the problem (Fig. 3.3)
is transformed into rectangles (Fig. 3.4), introducing modified toroidal coordinates τ and σ
as follows:

r =
1− τ2

h
, z =

2τ sinσ

h
, (3.92)

where h(τ, σ) = 1 + τ2 − 2τ cosσ is the normalized metric coefficient (see Section S.5.5).
The axis of revolution corresponds to τ = 1 and the three-phase contact line — to the

pole, A+, where τ = 0. The position of the fluid–fluid interface in toroidal coordinates is
described by the equation σ = 0, while that of the particle surface — by σ = αm, m = 1, 2,
where αm is defined as

αm =

{
α, at the upper part of the particle,
α− π, at the lower part of the particle.

, (3.93)

see Fig. 3.1. The derivatives of the toroidal coordinates with respect to the radial and
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Chapter 3. Motion of a spherical particle

Figure 3.3: Toroidal coordinate τ and σ, which are convenient for numerical calculations.
The position of the contact line coincides with the pole, A+; the fluid-fluid interface corre-
sponds to σ = 0, the upper particle surface — to σ = α, and the lower one — to σ = α−π.

Figure 3.4: Rectangular numerical domain in toroidal coordinates.
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3.5. Transforming the model in a convenient form for numerical modelling

vertical coordinates are

∂σ

∂r
= − (1− τ2) sinσ

2τ
,

∂τ

∂r
=

(1 + τ2) cosσ − 2τ

2
, (3.94)

∂σ

∂z
=

(1 + τ2) cosσ − 2τ

2τ
,

∂τ

∂z
=

(1− τ2) sinσ
2

, (3.95)

see Eqs. (S.315)–(S.318) in the Supplementary Material S. Then, we obtain the following
expressions for the partial derivatives with respect to r and z:

∂

∂r
=
∂σ

∂r

∂

∂σ
+
∂τ

∂r

∂

∂τ
= − (1− τ2) sinσ

2τ

∂

∂σ
+

(1 + τ2) cosσ − 2τ

2

∂

∂τ
, (3.96)

∂

∂z
=
∂σ

∂z

∂

∂σ
+
∂τ

∂z

∂

∂τ
=

(1 + τ2) cosσ − 2τ

2τ

∂

∂σ
+

(1− τ2) sinσ
2

∂

∂τ
. (3.97)

Substituting the expressions for the vector and scalar potentials (3.54) and (3.55) in the
general form for Laplacian in toroidal coordinates, Eq. (S.379), one obtains the following
expressions for the Laplace operators, Ln, (n = 0, 1, 2), in toroidal coordinates:

Ln[u] =
h3

4τ(1− τ2)
∂

∂τ

[
τ(1− τ2)

h

∂u

∂τ

]
+

h3

4τ2
∂

∂σ

(
1

h

∂u

∂σ

)
− n2h2

(1− τ2)2
u, n = 0, 1, 2. (3.98)

The functions in the system of partial differential equations are dependent on each other
because of the boundary conditions.

Boundary conditions at the particle surface

Using the fact

∂bm
∂τ

∣∣∣∣
σ=αm

= lim
∆τ→0

bm(αm, τ +∆τ)− bm(αm, τ)

∆τ

= lim
∆τ→0

0− 0

∆τ
= 0 at Sp, m = 1, 2, (3.99)

we conclude that the boundary conditions (3.77) and (3.78) in toroidal coordinates have the
form:

um2 +

(
1− τ2

)
sinσ

8τ

∂bm
∂σ

= 0 at Sp, m = 1, 2, (3.100)

um1 −
(
1 + τ2

)
cosσ − 2τ

4τ

∂bm
∂σ

= 0 at Sp, m = 1, 2, (3.101)

see Eq. (3.79). Then, one eliminates ∂bm ∂σ from Eq. (3.101) and the boundary condition
(3.78) is replaced by the following:

2
[
(1 + τ2) cosσ − 2τ

]
um2 +

[
(1− τ2) sinσ

]
um1 = 0 at Sp, m = 1, 2. (3.102)

In Eq. (3.100), we substitute bm with the respective expression in toroidal coordinates and
obtain

um2 +
(1− τ2) sinσ

8τ

∂

∂σ

[
bm1 +

1− τ2

h
(um0 + um2) +

2τ sinσ

h
um1

]
= 0. (3.103)
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Boundary conditions at the fluid–fluid interface

At the fluid–fluid interface (σ = 0), the partial derivative with respect to z could be simplified
considerably as follows:

∂

∂z

∣∣∣∣
σ=0

=
∂σ

∂z

∣∣∣∣
σ=0

∂

∂σ
+
∂τ

∂z

∣∣∣∣
σ=0

∂

∂τ
=

(1− τ)2

2τ

∂

∂σ
, (3.104)

see Eq. (3.97). Then, we obtain the form of the boundary condition (3.85) in toroidal
coordinates:

um1 −
(1− τ)2

2τ

∂bm1

∂σ
− 1− τ2

1 + τ2 − 2τ

(1− τ)2

2τ

∂

∂σ
(um0 + um2) = 0, m = 1, 2 (3.105)

at σ = 0. Moreover, the boundary conditions (3.87) and (3.90) have the form

(1− τ)2

τ

(
µ1
∂u12
∂σ
− µ2

∂u22
∂σ

)
= 0,

(1− τ)2

τ

(
µ1
∂u10
∂σ
− µ2

∂u20
∂σ

)
= 0, (3.106)

(1− τ)2

τ

(
µ1
∂b11
∂σ
− µ2

∂b21
∂σ

)
= 0. (3.107)

Boundary conditions at the axis of revolution

In order to close the problem in the rectangular region, we have to add boundary conditions
at the axis of revolution and at the three-phase contact line. At the axis of revolution
(τ = 1), it follows from the definitions of the operators (3.98) and the form of the bulk
equations (3.73) that the boundary conditions acquire the form

∂um0

∂τ
= 0, m = 1, 2, (3.108)

um1 = 0, um2 = 0, bm1 = 0, m = 1, 2. (3.109)

We shall prove this statement in the next lines. In the case n ̸= 0, the leading order of the
Laplace operator Ln for τ → 1 is

Ln[u] = −
n2h2

(1− τ2)2
u+ · · · , n = 0, 1, 2, (3.110)

see Eq. (3.98). Then, taking into account the form of the bulk equations (3.73), we conclude
that Eqs. (3.109) hold true. In the case n = 0, the leading order of the equation L0[um0] = 0
for τ → 1 is

L0[um0] = −
2τ2h2

4τ(1− τ2)
∂um0

∂τ
+ · · · = 0, m = 1, 2. (3.111)

Then, we obtain Eq. (3.108).

Boundary conditions at the three-phase contact line

In toroidal coordinates, the three phase contact line is a boundary of the numerical domain
given by τ = 0 (see Fig. 3.3). Therefore, some boundary conditions have to be added on

53



3.5. Transforming the model in a convenient form for numerical modelling

it. If we use a similar method to that, presented in the previous section (for the axis of
revolution), we obtain

∂2um0

∂σ2
= 0, m = 1, 2, (3.112)

which is not useful boundary condition. Due to the fact that the point A+ (with cylindrical
coordinates r = 1, z = 0) lies on the particle surface, we shall use the following two simple
boundary conditions:

um0 − um2 =
1

2
, bm1 + um0 + um2 = 0, m = 1, 2, (3.113)

see equation (3.79). They correspond to the no-slip boundary conditions for the velocity
component φ and the additional boundary condition on the particle surface. Therefore, in
order to close the problem, we shall obtain boundary conditions for the τ - and σ-velocity
components. Expressions for them in terms of velocity components vmr and vmz are pre-
sented below:

vmτ =
(1 + τ2) cosσ − 2τ

h
vmr +

(1− τ2) sinσ
h

vmz, m = 1, 2, (3.114)

vmσ = − (1− τ2) sinσ
h

vmr +
(1 + τ2) cosσ − 2τ

h
vmz, m = 1, 2, (3.115)

see Eqs. (S.375) and (S.376) in the Supplementary Material S. Therefore, the respective
expressions for the vector potential components are

vmτ =
(1 + τ2) cosσ − 2τ

h
wmr +

(1− τ2) sinσ
h

wmz

− (1 + τ2) cosσ − 2τ

h

∂ξm
∂r
− (1− τ2) sinσ

h

∂ξm
∂z

, m = 1, 2; (3.116)

vmσ = − (1− τ2) sinσ
h

wmr +
(1 + τ2) cosσ − 2τ

h
wmz

+
(1− τ2) sinσ

h

∂ξm
∂r
− (1 + τ2) cosσ − 2τ

h

∂ξm
∂z

, m = 1, 2, (3.117)

see Eq. (S.348). Next, we simplify the sum of the last two terms in the expression for vmτ

as follows:

− (1 + τ2) cosσ − 2τ

h

∂ξm
∂r
− (1− τ2) sinσ

h

∂ξm
∂z

= −
[
(1 + τ2) cosσ − 2τ

h

∂σ

∂r
+

(1− τ2) sinσ
h

∂σ

∂z

]
∂ξm
∂σ

−
[
(1 + τ2) cosσ − 2τ

h

∂τ

∂r
+

(1− τ2) sinσ
h

∂τ

∂z

]
∂ξm
∂τ

= −

{[
(1 + τ2) cosσ − 2τ

]2
2h

+

[
(1− τ2) sinσ

]2
2h

}
∂ξm
∂τ

= −h
2

∂ξm
∂τ

, m = 1, 2 (3.118)
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and those — for vmσ as follows:

(1− τ2) sinσ
h

∂ξm
∂r
− (1 + τ2) cosσ − 2τ

h

∂ξm
∂z

= +

[
(1− τ2) sinσ

h

∂σ

∂r
− (1 + τ2) cosσ − 2τ

h

∂σ

∂z

]
∂ξm
∂σ

+

[
(1− τ2) sinσ

h

∂τ

∂r
− (1 + τ2) cosσ − 2τ

h

∂τ

∂z

]
∂ξm
∂τ

= −

{[
(1 + τ2) cosσ − 2τ

]2
2hτ

+

[
(1− τ2) sinσ

]2
2hτ

}
∂ξm
∂σ

= − h

2τ

∂ξm
∂σ

, m = 1, 2, (3.119)

see Eqs. (3.94), (3.95) and (S.371). Using Eqs. (3.116)– (3.119), we obtain the following
simplified expressions:

vmτ =
(1 + τ2) cosσ − 2τ

h
wmr +

(1− τ2) sinσ
h

wmz −
h

2

∂ξm
∂τ

, m = 1, 2, (3.120)

vmσ = − (1− τ2) sinσ
h

wmr +
(1 + τ2) cosσ − 2τ

h
wmz −

h

2τ

∂ξm
∂σ

, m = 1, 2. (3.121)

These expressions, written for the Fourier modes, are

vmτ =

[
(1 + τ2) cosσ − 2τ

h
amr +

(1− τ2) sinσ
h

amz −
h

2

∂bm
∂τ

]
sinφ, m = 1, 2, (3.122)

vmσ =

[
− (1− τ2) sinσ

h
amr +

(1 + τ2) cosσ − 2τ

h
amz −

h

2τ

∂bm
∂σ

]
sinφ, m = 1, 2. (3.123)

At the three phase contact line (τ = 0), we get

amr cosσ + amz sinσ −
1

2

∂bm
∂τ

= lim
τ→0

vmτ at τ = 0, m = 1, 2, (3.124)

−amr sinσ + amz cosσ −
1

2

∂2bm
∂σ∂τ

= lim
τ→0

vmσ at τ = 0, m = 1, 2. (3.125)

Taking into account that the pole A+ lies at the line z = 0, we conclude that the no-slip
boundary conditions (3.43) hold true at A+. Then, Eqs. (3.116) and (3.117) have the form

vmτ |τ=0 = cosσ

(
wmr −

∂ξm
∂r

)
+ sinσ

(
wmz −

∂ξm
∂z

)
= cosσ sinφ, m = 1, 2, (3.126)

vmσ|τ=0 = cosσ

(
wmz −

∂ξm
∂z

)
− sinσ

(
wmr −

∂ξm
∂r

)
= − sinσ sinφ, m = 1, 2 (3.127)

at the three-phase contact line τ = 0. Therefore, we obtain

amr cosσ + amz sinσ −
1

2

∂bm
∂τ

= cosσ at τ = 0, m = 1, 2, (3.128)

−amr sinσ + amz cosσ −
1

2

∂2bm
∂σ∂τ

= − sinσ at τ = 0, m = 1, 2. (3.129)
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Using the definitions (3.75) and (3.76), one transforms these conditions to the following
ones:

[2 (um0 + um2)− 1] cosσ + 2um1 sinσ

=
1

2

∂

∂τ

[
bm1 +

1− τ2

h
(um0 + um2) +

2τ sinσ

h
um1

]
, (3.130)

− [2 (um0 + um2)− 1] sinσ + 2um1 cosσ

=
1

2

∂2

∂σ∂τ

[
bm1 +

1− τ2

h
(um0 + um2) +

2τ sinσ

h
um1

]
, (3.131)

which hold at the three-phase contact line for both phases. Finally, from equations (3.113),
we obtain the following two boundary conditions at the three-phase contact line:

8um2 cosσ + 4um1 sinσ =
∂

∂τ

[
bm1 +

1− τ2

h
(um0 + um2) +

2τ sinσ

h
um1

]
, (3.132)

−8um2 sinσ + 4um1 cosσ =
∂2

∂σ∂τ

[
bm1 +

1− τ2

h
(um0 + um2) +

2τ sinσ

h
um1

]
(3.133)

for m = 1, 2.

3.5.5 Convenient form for numerical modelling

We solve the following problem:

L0[um0] = 0, L1[um1] = 0, L2[um2] = 0, L1[bm1] = 0, m = 1, 2, (3.134)

where Ln[u] are defined, using Eq. (3.98). For the first Fourier modes in terms of the
new functions, umj and bm1, (m = 1,2 and j = 0, 1, 2), we apply the following boundary
conditions:

• Boundary conditions at the upper (σ = α) or at lower part of the particle
surface (σ = α− π):

2
[
(1 + τ2) cosσ − 2τ

]
um2 +

[
(1− τ2) sinσ

]
um1 = 0, m = 1, 2, (3.135)

um2 +
(1− τ2) sinσ

8τ

∂bm
∂σ

= 0, m = 1, 2, (3.136)

um0 − um2 =
1

2
, bm1 +

1− τ2

h
(um0 + um2) +

2τ sinσ

h
um1 = 0, m = 1, 2, (3.137)

see Eqs. (3.102), (3.103) and (3.79). In the latter, bm is defined as follows:

bm(τ, σ) = bm1 +
1− τ2

h
(um0 + um2) +

2τ sinσ

h
um1, m = 1, 2. (3.138)

• Boundary conditions at the fluid–fluid interface (σ = 0, τ ̸= 1):

u10 = u20, u12 = u22, b11 = b21, (3.139)

um1 −
(1− τ)2

2τ

∂bm1

∂σ
− 1− τ2

2τ

∂

∂σ
(um0 + um2) = 0, m = 1, 2, (3.140)

µ1
∂u10
∂σ

= µ2
∂u20
∂σ

, µ1
∂u12
∂σ

= µ2
∂u22
∂σ

, µ1
∂b11
∂σ

= µ2
∂b21
∂σ

, (3.141)

see Eqs. (3.82), (3.84), (3.105)– (3.107);
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• Boundary conditions at the axis of revolution (τ = 1):

∂um0

∂τ
= 0, um1 = 0, um2 = 0, bm1 = 0, m = 1, 2, (3.142)

see Eqs. (3.108) and (3.109);

• Boundary conditions at the three-phase contact line (τ = 0):

um2 =
1

8

(
∂bm
∂τ

cosσ − ∂2bm
∂σ∂τ

sinσ

)
, m = 1, 2, (3.143)

um1 =
1

4

(
∂bm
∂τ

sinσ +
∂2bm
∂σ∂τ

cosσ

)
, m = 1, 2, (3.144)

um0 = um2 +
1

2
, bm1 = −um0 − um2, m = 1, 2, (3.145)

see Eqs. (3.132), (3.133), (3.113) and (3.138).

• Boundary conditions at infinity (τ = 1, σ = 0):

um0(1, 0) = um1(1, 0) = um2(1, 0) = bm1(1, 0) = 0, m = 1, 2, (3.146)

see Eqs. (3.148) and (3.149).

Note that the boundary conditions of the problem are consistent. More concretely, the
following conditions:

um0 =
1

2
, um1 = 0, um2 = 0, bm1 = 0, m = 1, 2 (3.147)

hold at the points (0, αm). Next, the boundary conditions (3.143) –(3.145) are valid also
at the points (0, αm), m = 1, 2. Moreover, at the particle surface, they represent the limit
of the boundary conditions (3.135)–(3.137) for τ → 0 and at the fluid-fluid interface, they
become limits of the boundary conditions (3.140) for τ → 0.

Finally, in toroidal coordinates one reaches the triple point τ = 1 and σ = 0, using two
boundaries — the axis of revolution and the fluid-fluid interface. Because of the definition
of functions, one has

um0 = um1 = um2 = bm1 = 0 at τ = 1 and σ → 0, m = 1, 2, (3.148)

um0 = um1 = um2 = bm1 = 0 at σ = 0 and τ → 1, m = 1, 2. (3.149)

3.6 Asymptotic solutions at the three-phase contact line

The Stokes equations are singular with respect to pressure at the three-phase contact line
(τ = 0). Moreover, there is a singularity in the formula for the drag coefficient:

Fy = −4πV R sinα

η1 1∫
0

∂u10
∂σ
· 1− τ

2

τh
dτ + η2

1∫
0

∂u20
∂σ
· 1− τ

2

τh
dτ


+ 2πV R sinα [η2u21(π − α)− η1u11(π − α)] , (3.150)

see Eq. (A.49) in Appendix A. In order to have a good approximation for the drag coefficient,
we investigate the asymptotic behaviour of the model in the close vicinity of the three-phase
contact line (for τ → 0).
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3.6.1 Toroidal coordinates

In order to do that, we consider the problem (3.56)–(3.64). Using the definition of the
modified toroidal coordinates, Eq. (3.92), one obtains the following problem:

L0[amr]−
2h2amr

(1− τ2)2
+

2h2amφ

(1− τ2)2
= 0, m = 1, 2, (3.151)

L0[amφ] +
2h2amr

(1− τ2)2
− 2h2amφ

(1− τ2)2
= 0, m = 1, 2, (3.152)

L0[amz]−
h2amz

(1− τ2)2
= 0, m = 1, 2, (3.153)

L0[bm]− h2bm

(1− τ2)2
=

1

r

∂

∂r
(ramr)−

amφ

r
+
∂amz

∂z
, m = 1, 2, (3.154)

where L0 has the form (3.98). Using Eqs. (3.93), (3.96), (3.97), (3.104) and the formula

∂bm
∂τ

∣∣∣∣
σ=αm

= lim
∆τ→0

bm(τ +∆τ, αm)− bm(τ, αm)

∆τ
= 0 at Sp, m = 1, 2, (3.155)

we conclude that the problem is closed with the following boundary conditions:

• Boundary conditions at the particle surface:

amr +

(
1− τ2

)
sinαm

2τ
· ∂bm
∂σ

= 1 at Sp, m = 1, 2, (3.156)

amz −
(1 + τ2) cosαm − 2τ

2τ
· ∂bm
∂σ

= 0 at Sp, m = 1, 2, (3.157)

amφ = 1, bm = 0 at Sp, m = 1, 2. (3.158)

• Kinematic boundary conditions and condition for equality of the scalar potentials at
the fluid–fluid interface:

a1r = a2r, a1φ = a2φ, b1 = b2 at σ = 0, (3.159)

amz −
(1− τ)2

2τ
· ∂bm
∂σ

= 0 at σ = 0, m = 1, 2, (3.160)

• Dynamic boundary conditions and condition for the derivatives of the scalar potentials
at the fluid–fluid interface:

µ1
∂b1
∂σ

= µ2
∂b2
∂σ

at σ = 0, (3.161)

µ1
∂a1r
∂σ

= µ2
∂a2r
∂σ

, µ1
∂a1φ
∂σ

= µ2
∂a2φ
∂σ

at σ = 0, (3.162)

3.6.2 Leading order problem

The leading order expansions of Eqs. (3.151)-(3.153) are the same and, then, we are search-
ing for amr, amφ and amz in the form:

amr = 1 + τλa0mr (σ) +O
(
τλ+1

)
, m = 1, 2, (3.163)

amφ = 1 + τλa0mφ (σ) +O
(
τλ+1

)
, m = 1, 2, (3.164)

amz = τλa0mz (σ) +O
(
τλ+1

)
, m = 1, 2, (3.165)

58



Chapter 3. Motion of a spherical particle

taking into account the boundary conditions (3.156)- (3.158). Substituting these expressions
in L0[·], we obtain the leading order problem:

∂2a0mi

∂σ2
+ λ2a0mi = 0, m = 1, 2, i = r, φ, z, (3.166)

see Eq. (2.27). Therefore, the leading order expansions of the solutions for amr, amφ and
amz are

a0mr = 1 + τλ [Ac
mr cos(λσ) +As

mr sin(λσ)] , m = 1, 2, (3.167)

a0mφ = 1 + τλ
[
Ac

mφ cos(λσ) +As
mφ sin(λσ)

]
, m = 1, 2, (3.168)

a0mz = τλ [Ac
mz cos(λσ) +As

mz sin(λσ)] , m = 1, 2, (3.169)

where Ac
mr, A

s
mr, A

c
mφ, A

s
mφ, A

c
mz and As

mz are unknown constants.

Next, we shall find the general leading order solution of Eq. (3.154). In order to do that,
we use the relation between the derivatives in cylindrical and in toroidal coordinates

∂

∂r
=
∂τ

∂r

∂

∂τ
+
∂σ

∂r

∂

∂σ
=

1

2

(
cosσ

∂

∂τ
− sinσ

τ

∂

∂σ

)
+ · · · (3.170)

∂

∂z
=
∂τ

∂z

∂

∂τ
+
∂σ

∂z

∂

∂σ
=

1

2

(
sinσ

∂

∂τ
+

cosσ

τ

∂

∂σ

)
+ · · · , (3.171)

see Eqs. (3.96) and (3.97). Using (3.170) and (3.171), the right hand side of Eq. (3.154) is
simplified as follows:

1

r

∂

∂r
(ramr)−

amφ

r
+
∂amz

∂z
=

1

2

(
amr

r
− amφ

r
+
∂amr

∂r
+
∂amz

∂z

)
=

1

2

(
cosσ

∂amr

∂τ
− sinσ

τ

∂amr

∂σ
+ sinσ

∂amz

∂τ
+

cosσ

τ

∂amz

∂σ

)
+ · · · . (3.172)

Substituting the general solutions for amr and amz in the the latter, we obtain

cosσ
∂amr

∂τ
− sinσ

τ

∂amr

∂σ
= λτλ−1 cosσ [Ac

mr cos(λσ) +As
mr sin(λσ)]

− λτλ−1 sinσ [−Ac
mr sin(λσ) +As

mr cos(λσ)] +O(τλ)

= λτλ−1Ac
mr [cosσ cos(λσ) + sinσ sin(λσ)]

+ λτλ−1As
mr [sin(λσ) cosσ − sinσ cos(λσ)] +O(τλ)

= λτλ−1 {Ac
mr cos [(λ− 1)σ] +As

mr sin [(λ− 1)σ]}+O(τλ), (3.173)

sinσ
∂amz

∂τ
+

cosσ

τ

∂amz

∂σ
= λτλ−1 sinσ [Ac

mz cos(λσ) +As
mz sin(λσ)]

+ λτλ−1 cosσ [−Ac
mz sin(λσ) +As

mz cos(λσ)] +O(τλ)

= λτλ−1As
mz [sinσ sin(λσ) + cosσ cos(λσ)]

+ λτλ−1Ac
mz [sinσ cos(λσ)− sin(λσ) cosσ] +O(τλ)

= λτλ−1 {As
mz cos [(λ− 1)σ]−Ac

mz sin [(λ− 1)σ]}+O(τλ). (3.174)
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3.6. Asymptotic solutions at the three-phase contact line

Then, Eq. (3.154) has the form

L0[bm]− h2bm

(1− τ2)2
=

1

2
λτλ−1 (Ac

mr +As
mz) cos[(λ− 1)σ]

+
1

2
λτλ−1(As

mr −Ac
mz) sin[(λ− 1)σ] +O(τλ), m = 1, 2. (3.175)

Due to the fact that the right-hand side of the latter is of the order of τλ−1, we are searching
for bm in the form:

bm = τλ+1b0m(σ) +O(τλ+2), m = 1, 2. (3.176)

Substituting this expression in Eq. (3.175), we obtain the following leading order equation
for b0m:

1

4

[
∂2b0m
∂σ2

+ (λ+ 1)2b0m

]
=
λ

2
(Ac

mr +As
mz) cos[(λ− 1)σ]

+
λ

2
(As

mr −Ac
mz) sin[(λ− 1)σ], m = 1, 2. (3.177)

The general solution of the homogeneous equation is

Bc
m cos[(λ+ 1)σ] +Bs

m sin[(λ+ 1)σ], m = 1, 2, (3.178)

where Bc
m and Bs

m are unknown constants. A particular solution of Eq. (3.177) is searched
in the form:

C1 cos[(λ− 1)σ] + C2 sin[(λ− 1)σ], m = 1, 2. (3.179)

Substituting this expression in Eq. (3.177), we obtain

C1λ cos[(λ− 1)σ] + C2λ sin[(λ− 1)σ] =
λ

2
(Ac

mr +As
mz) cos[(λ− 1)σ]

+
λ

2
(As

mr −Ac
mz) sin[(λ− 1)σ], m = 1, 2. (3.180)

Using the method of undetermined coefficients, one concludes that the particular solution
of the problem (3.177) in the form (3.179) is

1

2
(Ac

mr +As
mz) cos[(λ− 1)σ] +

1

2
(As

mr −Ac
mz) sin[(λ− 1)σ], m = 1, 2. (3.181)

Therefore, the leading order expression for bm, denoted by b0m, has the form

b0m = τλ+1

{
Bc

m cos [(λ+ 1)σ] +Bs
m sin[(λ+ 1)σ] +

Ac
mr +As

mz

2
cos[(λ− 1)σ]

+
As

mr −Ac
mz

2
sin[(λ− 1)σ]

}
, m = 1, 2. (3.182)

Then, we obtain the problem (3.167)– (3.169) and (3.182). In it, there are sixteen unknown
constants, which are found, using the following sixteen boundary conditions:
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Chapter 3. Motion of a spherical particle

• Boundary conditions at the particle surface:

a0mr +
sinαm

2τ
· ∂b

0
m

∂σ
= 1 at Sp, m = 1, 2, (3.183)

a0mz −
cosαm

2τ
· ∂b

0
m

∂σ
= 0 at Sp, m = 1, 2, (3.184)

a0mφ = 1, b0m = 0 at Sp, m = 1, 2, (3.185)

• Kinematic boundary conditions and condition for equality of the scalar potentials at
the fluid–fluid interface:

a01r = a02r, a
0
1φ = a02φ, b

0
1 = b02 at σ = 0, (3.186)

a0mz −
1

2τ
· ∂b

0
m

∂σ
= 0 at σ = 0, m = 1, 2, (3.187)

• Dynamic boundary conditions and condition for the derivatives of the scalar potentials
at the fluid–fluid interface:

µ1
∂b01
∂σ

= µ2
∂b02
∂σ

at σ = 0, (3.188)

µ1
∂a01r
∂σ

= µ2
∂a02r
∂σ

, µ1

∂a01φ
∂σ

= µ2

∂a02φ
∂σ

at σ = 0, (3.189)

3.6.3 Leading order solution for a0mφ

Substituting the general solution for a0mφ, Eq. (3.168), in the kinematic boundary condition,
Eq. (3.186), and in the dynamic boundary condition, Eq. (3.189), we conclude that

Ac
1φ = Ac

2φ, (3.190)

µ1A
s
1φ = µ2A

s
2φ. (3.191)

Let us introduce new constants As
φ and Ac

φ, using the following relations:

Ac
φ = Ac

1φ = Ac
2φ, A

s
1φ = µ2A

s
φ, A

s
2φ = µ1A

s
φ. (3.192)

Thus, the general solution for a0mφ, m=1,2, has the following form:

a0mφ = 1 + τλ
[
Ac

φ cos(λσ) + µ3−mA
s
φ sin(λσ)

]
, m = 1, 2. (3.193)

Using the no-slip boundary conditions a0mφ = 1, Eq. (3.185), at Sp, we conclude that the
following equations:

Ac
φ cos(λα) + µ2A

s
φ sin(λα) = 0, (3.194)

Ac
φ cos [λ(α− π)] + µ1A

s
φ sin [λ(α− π)] = 0 (3.195)

hold true. This system has always a trivial solution (Ac
φ = As

φ = 0) and it has also non-
trivial solutions in case the determinant of the system is 0, i.e.

0 = ∆ = µ1 cos(λα) sin [λ(α− π)]− µ2 sin(λα) cos [λ(α− π)]
= µ1 sin [λ(2α− π)]− sin(αλ) cos [λ(α− π)] . (3.196)

This equation describes a class of possible solutions for the singularity parameter λ.

61



3.6. Asymptotic solutions at the three-phase contact line

3.6.4 The leading order solutions for a0mr and a0mz

Analogously, using the kinematic boundary condition, Eq. (3.186), and the dynamic bound-
ary condition, Eq. (3.189), we conclude that a0mr has the form

a0mr = 1 + τλ [Ac
r cos(λσ) + µ3−mA

s
r sin(λσ)] , m = 1, 2, (3.197)

where Ac
r and As

r are defined as follows:

Ac
r = Ac

1r = Ac
2r, A

s
1r = µ2A

s
r, A

s
2r = µ1A

s
r. (3.198)

Using the boundary conditions (3.187) and (3.188), the following relation

τλµ1A
c
1z = µ1a

0
1z =

µ1

2τ

∂b01
∂z

=
µ2

2τ

∂b02
∂z

= µ2a
0
2z = τλµ2A

c
2z (3.199)

is obtained. Then, the general form of a0mz is

a0mz = τλ [µ3−mA
c
z cos(λσ) +As

mz sin(λσ)] , m = 1, 2, (3.200)

where the constant Ac
z satisfies the conditions

Ac
1z = µ2A

c
z, A

c
2z = µ1A

c
z. (3.201)

The leading order solution for b0m

Substituting the expressions for the constants Ac
mr, A

s
mr and Ac

mz in terms of the new
constants Ac

r, A
s
r and Ac

z in Eq. (3.182), we get

b0m = τλ+1

{
Bc

m cos [(λ+ 1)σ] +Bs
m sin[(λ+ 1)σ] +

Ac
r +As

mz

2
cos[(λ− 1)σ]

+ µ3−m
As

r −Ac
z

2
sin[(λ− 1)σ]

}
, m = 1, 2. (3.202)

Using the kinematic boundary conditions (3.187) and the general definition of a0mz, Eqs.
(3.200) and (3.201), one concludes that

µ3−mA
c
z −

1

2

[
(λ+ 1)Bs

m + µ3−m(λ− 1)
As

r −Ac
z

2

]
= 0, m = 1, 2, (3.203)

µ3−m

2
[(1− λ)As

r + (λ+ 3)Ac
z] = Bs

m(λ+ 1), m = 1, 2. (3.204)

Note that λ > −1. Therefore, we obtain

Bs
m =

µ3−m

2(λ+ 1)
[(1− λ)As

r + (λ+ 3)Ac
z] , m = 1, 2. (3.205)

Substituting the general form of b0m, Eq. (3.202), in the boundary condition b01(τ, 0) =
b02(τ, 0), Eq. (3.186), we obtain

Bc
1 +

Ac
r +As

1z

2
= Bc

2 +
Ac

r +As
2z

2
. (3.206)
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Then, it is convenient to introduce a new constant Bc such that

Bc = Bc
m +

Ac
r +As

mz

2
, m = 1, 2. (3.207)

Therefore, the general form of b0m is

b0m = τλ+1

{(
Bc − Ac

r +As
mz

2

)
cos [(λ+ 1)σ]

+
µ3−m

2

(
Ac

z

λ+ 3

λ+ 1
−As

r

λ− 1

λ+ 1

)
sin[(λ+ 1)σ]

+
Ac

r +As
mz

2
cos[(λ− 1)σ] + µ3−m

As
r −Ac

z

2
sin[(λ− 1)σ]

}
, m = 1, 2. (3.208)

We have already fulfilled the boundary conditions at σ = 0. Next, the boundary condition
(3.184) is replaced by the result from adding Eq. (3.183), multiplied by cosαm, to (3.184),
multiplied by sinαm, i.e.

cosαm · a0mr + sinαm · a0mz = cosαm, m = 1, 2. (3.209)

Substituting obtained expressions for a0mr, a
0
mz, and b

0
m, Eqs. (3.197), (3.200) and (3.202),

in the boundary conditions (3.185), (3.209) and (3.183), we get

(
Bc − Ac

r +As
mz

2

)
cos [(λ+ 1)αm] +

µ3−m

2

(
Ac

z

λ+ 3

λ+ 1
−As

r

λ− 1

λ+ 1

)
sin[(λ+ 1)αm]

+
Ac

r +As
mz

2
cos[(λ− 1)αm] + µ3−m

As
r −Ac

z

2
sin[(λ− 1)αm] = 0, m = 1, 2, (3.210)

Ac
r cosαm cos(λαm) + µ3−mA

s
r cosαm sin(λαm)

+ µ3−mA
c
z sinαm cos(λαm) +As

mz sinαm sin(λαm) = 0, m = 1, 2, (3.211)

2Ac
r cos(λαm) + 2µ3−mA

s
r sin(λαm)

−
(
Bc − Ac

r +As
mz

2

)
(λ+ 1) sinαm sin [(λ+ 1)αm]

+
µ3−m

2
[Ac

z (λ+ 3)−As
r (λ− 1)] sinαm cos[(λ+ 1)αm]

− Ac
r +As

mz

2
(λ− 1) sinαm sin[(λ− 1)αm]

+ µ3−m(λ− 1)
As

r −Ac
z

2
sinαm cos[(λ− 1)αm] = 0, m = 1, 2. (3.212)

The system of equations is simplified, using the redefined constant groups:

Acs
mrz = Ac

r +As
mz, A

+
rz = As

r +Ac
z, A

−
rz = As

r −Ac
z, m = 1, 2. (3.213)
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3.6. Asymptotic solutions at the three-phase contact line

Taking into account the definitions (3.213), we simplify Eq. (3.210) as(
Bc − Acs

mrz

2

)
cos [(λ+ 1)αm] +

µ3−m

2

[
Ac

z −As
r +

2(Ac
z +As

r)

λ+ 1

]
sin[(λ+ 1)αm]

+
Acs

mrz

2
cos[(λ− 1)αm] + µ3−m

A−
rz

2
sin[(λ− 1)αm] = 0, m = 1, 2, (3.214)

Bc cos [(λ+ 1)αm] +
µ3−mA

+
rz

λ+ 1
sin[(λ+ 1)αm]

+Acs
mrz sin(λαm) sinαm − µ3−mA

−
rz sinαm cos(λαm) = 0, m = 1, 2. (3.215)

Eq. (3.211) is simplified as

Ac
r [cosαm cos(λαm)− sinαm sin(λαm)] + µ3−m

A+
rz +A−

rz

2
cosαm sin(λαm)

+ µ3−m
A+

rz −A−
rz

2
sinαm cos(λαm) +Acs

mrz sinαm sin(λαm) = 0, m = 1, 2, (3.216)

Ac
r cos [(λ+ 1)αm] + µ3−m

A+
rz

2
sin[(λ+ 1)αm]

+ µ3−m
A−

rz

2
sin[(λ− 1)αm] +Acs

mrz sinαm sin(λαm) = 0, m = 1, 2. (3.217)

In the redefined constant group (3.213), Eqs. (3.212) become

2Ac
r cos(λαm) + µ3−m

(
A+

rz +A−
rz

)
sin(λαm)

−
(
Bc − Acs

mrz

2

)
(λ+ 1) sinαm sin [(λ+ 1)αm]

+
µ3−m

2

[
A+

rz −A−
rz

2
(λ+ 3)− A+

rz +A−
rz

2
(λ− 1)

]
sinαm cos[(λ+ 1)αm]

− Acs
mrz

2
(λ− 1) sinαm sin[(λ− 1)αm]

+ µ3−m(λ− 1)
A−

rz

2
sinαm cos[(λ− 1)αm] = 0, m = 1, 2, (3.218)

−Bc (λ+ 1) sinαm sin [(λ+ 1)αm] + 2Ac
r cos(λαm)

+
Acs

mrz sinαm

2
{λ sin [(λ+ 1)αm]− λ sin[(λ− 1)αm]}

+
Acs

mrz sinαm

2
{sin [(λ+ 1)αm] + sin[(λ− 1)αm]}

+ µ3−mA
−
rz sinαm

{
sin(λαm)

sinαm
− λ+ 1

2
cos[(λ+ 1)αm] +

λ− 1

2
cos[(λ− 1)αm]

}
+ µ3−mA

+
rz {sin(λαm) + sinαm cos[(λ+ 1)αm]} = 0, m = 1, 2, (3.219)

−Bc sin [(λ+ 1)αm] +
2Ac

r

λ+ 1

cos(λαm)

sinαm
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+
Acs

mrz

λ+ 1
[λ sinαm cos (λαm) + cosαm sin (λαm)]

+
µ3−mA

−
rz

λ+ 1

{
sin(λαm)

sinαm
+ λ sinαm sin(λαm)− cosαm cos(λαm)

}
+
µ3−mA

+
rz

λ+ 1

{
sin(λαm)

sinαm
+ cos[(λ+ 1)αm]

}
= 0, m = 1, 2. (3.220)

Then, we obtain the system

Bc cos [(λ+ 1)αm] +
µ3−mA

+
rz

λ+ 1
sin[(λ+ 1)αm]

− µ3−mA
−
rz sinαm cos(λαm) +Acs

mrz sin(λαm) sinαm = 0, m = 1, 2, (3.221)

Ac
r cos [(λ+ 1)αm] + µ3−m

A+
rz

2
sin[(λ+ 1)αm]

+ µ3−m
A−

rz

2
sin[(λ− 1)αm] +Acs

mrz sinαm sin(λαm) = 0, m = 1, 2, (3.222)

−Bc sin [(λ+ 1)αm] +
2Ac

r

λ+ 1

cos(λαm)

sinαm
+
Acs

mrz

λ+ 1
[λ sinαm cos (λαm) + cosαm sin (λαm)]

− µ3−mA
−
rz

λ+ 1

{
cosαm cos(λαm)− λ sinαm sin(λαm)− sin(λαm)

sinαm

}
+
µ3−mA

+
rz

λ+ 1

{
sin(λαm)

sinαm
+ cos[(λ+ 1)αm]

}
= 0, m = 1, 2. (3.223)

In order to eliminate Acs
mrz, we subtract Eq. (3.222) from Eq. (3.221) and obtain the

equation

(Bc −Ac
r) cos[(λ+ 1)αm]− µ3−m

2

(
λ− 1

λ+ 1
A+

rz +A−
rz

)
sin[(λ+ 1)αm] = 0 (3.224)

for m = 1, 2. Let us denote

X1 = Bc −Ac
r, X2 =

1

2

(
λ− 1

λ+ 1
A+

rz +A−
rz

)
. (3.225)

Then, X1 and X2 are computed by solving the system

X1 cos[(λ+ 1)α]− µ2X2 sin[(λ+ 1)α] = 0, (3.226)

X1 cos[(λ+ 1)(α− π)]− µ1X2 sin[(λ+ 1)(α− π)] = 0. (3.227)

This system has non-zero solutions in case that the determinant of the system is zero.
Therefore, we obtain a second class of solutions for the singularity parameter λ:

µ1 sin[(λ+ 1)(α− π)] cos[(λ+ 1)α] = µ2 sin[(λ+ 1)α] cos[(λ+ 1)(α− π)]. (3.228)

The third class of solutions corresponds to X1 = X2 = 0 and, then, one gets

Bc = Ac
r, A

−
rz = −λ− 1

λ+ 1
A+

rz. (3.229)
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3.6. Asymptotic solutions at the three-phase contact line

By substituting the expressions (3.229) in Eqs. (3.222) and (3.223), the equations are
simplified as follows:

Ac
r cos [(λ+ 1)αm] + µ3−m

A+
rz

λ+ 1
{sin(λαm) cosαm + λ sinαm cos(λαm)}

+Acs
mrz sinαm sin(λαm) = 0, m = 1, 2 (3.230)

Ac
r

{
2 cos(λαm)

sinαm
− (λ+ 1) sin[(λ+ 1)αm]

}
+Acs

mrz [λ cos(λαm) sinαm + sin(λαm) cosαm]

+
µ3−mA

+
rz

λ+ 1

[
2λ cos(λαm) cosαm − (λ2 + 1) sinαm sin(λαm) +

2 sin(λαm)

sinαm

]
= 0, m = 1, 2. (3.231)

From Eqs. (3.230) and (3.231), we eliminate Acs
mrz and derive the following system:

Ac
r [sin(2λαm)− λ sin(2αm)]− µ3−mA

+
rz

λ+ 1

[
cos(2λαm)− λ2 cos(2αm) + λ2 − 1

]
= 0 (3.232)

for m = 1, 2. The explicit form of the system is

Ac
r [sin(2λα)− λ sin(2α)] =

µ2A
+
rz

λ+ 1

[
cos(2λα)− λ2 cos(2α) + λ2 − 1

]
, (3.233)

Ac
r {sin[2λ(α− π)]− λ sin[2(α− π)]}

=
µ1A

+
rz

λ+ 1

{
cos[2λ(α− π)]− λ2 cos[2(α− π)] + λ2 − 1

}
. (3.234)

Therefore, third class of possible solutions is

µ1 [sin(2λα)− λ sin(2α)]
{
cos[2λ(α− π)]− λ2 cos(2α) + λ2 − 1

}
= µ2 {sin[2λ(α− π)]− λ sin(2α)}

[
cos(2λα)− λ2 cos(2α) + λ2 − 1

]
. (3.235)

From the obtained three classes of solutions (3.196), (3.228) and (3.235) only Eq. (3.235)
corresponds to a physical singularity. The other two are result from the fact that we work
in gauge formulation.

3.6.5 Results

The semi-analytical results for water–air interface and α ≤ 90◦ [3.1] show that the solutions
for the pressure are regular at the three-phase contact line (i.e. the pressure is finite). In
the general case, it is possible the functions pm to have a weak singularity at τ = 01 , while
local velocities vm are finite at τ = 0. The pressure function has a stronger than logarithmic
singularity inside the regions, shown in Fig. 3.5, where the singularity parameter λp := λ−1

1Pressure is a physical quantity, which is computed as force divided by area on which it acts. Due to the
continuous nature of medium, one introduces local pressure, which is defined as a limit of the force divided
by the area, when area goes to zero. Practically, whenever there is a contact line, it is possible for the
pressure to have a singularity at it (due to the limit in the definition). At the end, it is important for the
force, (the integral quantity) to be finite.
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Figure 3.5: Lines with fixed values of the singularity parameter, λp

is in the interval (−0.5, 0). Fig. 3.5 shows the dependence of λp on the three-phase contact
angle, α, and viscosity ratio, µ1. Because of the symmetry, the picture is analogous replacing
µ1 with µ2 and α with π−α. One sees that the pressure singularity becomes stronger with
the decrease of viscosity ratio µ1. For example, the dashed line in Fig. 3.5 shows that if
µ1 = 0.1075, then the strongest singularity of λp = −0.1 takes place for values of the central
angle equal to 16.8◦. In all the cases λp > −0.5, so the singularity is weak and the integral
from the pressure over the particle surface converges (the drag force is finite).

3.7 Numerical method and numerical results

3.7.1 Numerical method

In order to solve the problem (3.134)–(3.10), we introduce numerical time t and seek the
stationary solution of the parabolic problem:

∂um

∂t
= T [um] + S[um], um ∈ Dm, m = 1, 2, (3.236)

um(τ, σ, 0) = um,0(τ, σ), m = 1, 2 (3.237)

67



3.7. Numerical method and numerical results

in the region

Dm :=

{
α− π < σ < 0, 0 < τ < 1, 0 < t ≤ T, m = 1
0 < σ < α, 0 < τ < 1, 0 < t ≤ T, m = 2

(3.238)

with appropriate boundary conditions imposed, where

um = (um0, um1, um2, bm1)
T
, m = 1, 2, (3.239)

is a vector of the solutions at the phase m and S[·] and T [·] are the following operators:

S[um] = h
∂

∂σ

(
1

h

∂um

∂σ

)
, T [um] = (T0[um0], T1[um1], T2[um2], T1[bm1])

T , (3.240)

Tp[u] =
hτ

1− τ2
∂

∂τ

[
τ(1− τ2)

h

∂u

∂τ

]
− 4p2τ2

(1− τ2)2
u, p = 0, 1, 2, (3.241)

which act at σ− and τ−direction, respectively. In order to solve the considered problem, we
discretize its rectangular domain by introducing a mesh ω = ωτ × (ωσ1 ∪ ωσ2) × ωt, where
ωτ , ωt are defined by Eqs. (2.63) and (2.67) and ωσ1 and ωσ2 — as follows:

ωσ1 = {σj = jδσ1, δσ1 = α/N1, j = 0, 1, · · · , N1} , (3.242)

ωσ2 = {σj = jδσ2, δσ2 = (π − α)/N2, j = 0,−1, · · · ,−N2} . (3.243)

Let us denote the exact solution of the considered problem at a point (τi, σj , tk) by

u1|kij =
(
u10|kij , u11|

k
ij , u12|

k
ij , b11|

k
ij

)T

for j ≥ 0, (3.244)

u2|kij =
(
u20|kij , u21|

k
ij , u22|

k
ij , b21|

k
ij

)T

for j ≤ 0 (3.245)

and the approximate one — at the same point as

Y1|kij =
(
Y10|kij , Y11|

k
ij , Y12|

k
ij , B11|kij

)T

for j ≥ 0, (3.246)

Y2|kij =
(
Y20|kij , Y21|

k
ij , Y22|

k
ij , B21|kij

)T

for j ≤ 0. (3.247)

In order to solve the considered problem, we use the D’Yakonov scheme [3.17–3.19], which
is presented in Section 2.6.1. First, we solve a problem in the τ -direction:(

U − δt
2
T̃

)[
Y m

∣∣k+1

ij

]
= δtT̃

[
Ym|kij

]
+ δtS̃

[
Ym|kij

]
, m = 1, 2, (3.248)

with boundary conditions, obtained by expanding the operators at the three-phase contact
line, at the axis of revolution and at the the fluid–fluid interface. Next, we solve a σ-
directional problem (

U − δt
2
S̃

)[
δYm|k+1

ij

]
= Y m

∣∣k+1

ij
, m = 1, 2, (3.249)

with appropriately approximated boundary conditions at the surface of the particle, where
δYm|k+1

ij is defined as

δYm|k+1
ij = Ym|k+1

ij − Ym|kij , m = 1, 2. (3.250)
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Extension of the operators S and T

As we mention before, we extend the operators T and S at the three-phase contact line, at
the axis of revolution and at the fluid–fluid as follows. At the three-phase contact line, one
obtains

lim
τ→0

Tp[u] = 0 at τ = 0, s = 0, 1, 2, (3.251)

lim
τ→0

S[u] = lim
τ→0

(
∂2u

∂σ2
− 2τ sinσ

h

∂u

∂σ

)
=

∂2u

∂σ2

∣∣∣∣
τ=0

. (3.252)

At the axis of revolution, one extends the operators T0 and S for um0:

T0[u] = 2
∂2u

∂τ2
at τ = 1, (3.253)

S[u] = (1− cosσ) · ∂
∂σ

(
1

1− cosσ
· ∂u
∂σ

)
at τ = 1, (3.254)

see Eqs. (2.83) and (2.84). For um1, um2 and bm1, the leading order of the equation
Lp[u] = 0, p = 1, 2, is

0 = S[u] + Tp[u] = −
4τ2p2u

(1− τ2)2
+ · · · , p = 1, 2 at τ = 1. (3.255)

Thus, one gets

um1 = um2 = bm1 = 0, m = 1, 2, at τ = 1. (3.256)

Finally, the operators S and T are defined as follows:

S[u] =
∂2u

∂σ2
, Tp[u] =

τ(1− τ)
1 + τ

· ∂
∂τ

[
τ(1 + τ)

1− τ
· ∂u
∂τ

]
− 4p2τ2u

(1− τ2)2
, (3.257)

at the fluid–fluid interface, see Eq. (2.88). We derive a relaxed form of the boundary
conditions on the fluid–fluid interface. Using formula (2.86), we obtain

lim
σ→0+

S[u1q] = lim
σ→0+

∂2u1q
∂σ2

=
−7u1q(τ, 0) + 8u1q(τ, δσ1)− u1q(τ, 2δσ1)

2δ2σ1

− 3

δσ1
· ∂u1q
∂σ

∣∣∣∣
σ=0+

+O
(
δ2σ1

)
; (3.258)

lim
σ→0−

S[u2q] = lim
σ→0−

∂2u2q
∂σ2

=
−7u2q(τ, 0) + 8u2q(τ,−δσ2)− u2q(τ,−2δσ2)

2δ2σ2

+
3

δσ2
· ∂u2q
∂σ

∣∣∣∣
σ=0−

+O
(
δ2σ2

)
. (3.259)
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Multiplying the first equation by µ1δσ1/(µ1δσ1 + µ2δσ2), the second one by µ2δσ2/(µ1δσ1 +
µ2δσ2) and adding them, we conclude that

S[umq] =
µ1

µ1δσ1 + µ2δσ2
· −7u1q(τ, 0) + 8u1q(τ, δσ1)− u1q(τ, 2δσ1)

2δσ1

+
µ2

µ1δσ1 + µ2δσ2
· −7u2q(τ, 0) + 8u2q(τ,−δσ2)− u2q(τ,−2δσ2)

2δσ2

+
3

µ1δσ1 + µ2

[
−µ1

∂u1q
∂σ

∣∣∣∣
σ=0+

+ µ2
∂u2q
∂σ

∣∣∣∣
σ=0−

]
︸ ︷︷ ︸

0 (see Eq. (3.141))

+O
(
δ3σ1 + δ3σ2

)
(3.260)

hold true for q = 0, 2. Analogous computations are valid for bm1. Next, we summarize the
obtained results. For σ ∈ (α− π, α), the definition of Tp is expanded as follows:

Tp[u] =



0, τ = 0;

hτ

1− τ2
∂

∂τ

[
τ(1− τ2)

h
· ∂u
∂τ

]
− 4p2τ2u

(1− τ2)2
, 0 < τ < 1;

2
∂2u

∂τ2
, τ = 1,

p = 0;

0, τ = 1,
p = 1, 2;

(3.261)

and that for S — as:

S[umq] =



−µ1

µ1δσ1 + µ2δσ2
· 7u1q(τ, 0)− 8u1q(τ, δσ1) + u1q(τ, 2δσ1)

2δσ1

−µ2

µ1δσ1 + µ2δσ2
· 7u2q(τ, 0)− 8u2q(τ,−δσ2) + u2q(τ,−2δσ2)

2δσ2
, σ = 0,

q = 0, 2;

∂2umq

∂σ2
, τ = 0,

σ ̸= 0;

h · ∂
∂σ

(
1

h
· ∂umq

∂σ

)
, 0 < τ < 1,

σ ̸= 0;

(1− cosσ) · ∂
∂σ

(
1

1− cosσ
· ∂umq

∂σ

)
, τ = 1,

σ ̸= 0.

(3.262)

One obtains analogous definition for S[bm1].
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The operators Tp and S are approximated with difference operators S̃ and T̃p as follows:

T̃p[Ym|kij ] =



0, i = 0,

−7 Ym|kij + 8 Ym|ki−1,j − Ym|ki−2,j

δ2τ
, i = N,

p = 0;

0, i = N,
p = 1, 2;

hi,jτi
(1− τ2i )δ2τ

·

[
τi+1/2(1− τ2i+1/2)

hi+1/2,j
·
(
Ym|ki+1,j − Ym|ki,j

)
−
τi−1/2(1− τ2i−1/2)

hi−1/2,j
·
(
Ym|ki,j − Ym|ki−1,j

)]

−
4p2τ2i Ym|ki,j
(1− τ2i )2

, i ̸= 0, N ;

(3.263)

S̃[Ymq|kij ] =



− µ1

µ1δσ1 + µ2δσ2
·
7 Y1q|ki0 − 8 Y1q|ki1 + Y1q|ki2

2δσ1

− µ2

µ1δσ1 + µ2δσ2
·
7 Y2q|ki0 − 8 Y2q|ki,−1 + Y2q|ki,−2

2δσ2
, j = 0,

q = 0, 2;

Ymq|ki,j−1 − 2 Ymq|ki,j + Ymq|ki,j+1

δ2σm
, i = 0,

j ̸= N1,−N2;

1− cosσi,j
δ2σm

[
Ymq|ki,j+1 − Ymq|ki,j
1− cosσi,j+1/2

−
Ymq|ki,j − Ymq|ki,j−1

1− cosσi,j−1/2

]
, i = N,
j ̸= 0, N1,−N2;

hij
δ2σm

·

[
Ymq|ki,j+1 − Ymq|ki,j

hi,j+1/2
−
Ymq|ki,j − Ymq|ki,j−1

hi,j−1/2

]
, i ̸= 0, N,

j ̸= 0, N1,−N2;

(3.264)
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S̃[Bm1|kij ] =



− µ1

µ1δσ1 + µ2δσ2
·
7 B11|ki0 − 8 B11|ki1 + B11|ki2

2δσ1

− µ2

µ1δσ1 + µ2δσ2
·
7 B21|ki0 − 8 B21|ki,−1 + B21|ki,−2

2δσ2
, j = 0,

Bm1|ki,j−1 − 2 Bm1|ki,j + Bm1|ki,j+1

δ2σm
, i = 0,

j ̸= N1,−N2;

1− cosσi,j
δ2σm

·

[
Bm1|ki,j+1 − Bm1|ki,j
1− cosσi,j+1/2

−
Bm1|ki,j − Bm1|ki,j−1

1− cosσi,j−1/2

]
, i = N,
j ̸= N1,−N2;

hij
δ2σm

·

[
Bm1|ki,j+1 − Bm1|ki,j

hi,j+1/2
−
Bm1|ki,j − Bm1|ki,j−1

hi,j−1/2

]
, i ̸= 0, N,

j ̸= N1,−N2.

(3.265)

Approximation of the boundary conditions at the particle surface

Due to the fact that the boundary conditions at the particle surface should be applied for
δu, we denote the approximation of δu at (τi, σj , tk) by

δY1|kij =
(
δY10|kij , δY11|

k
ij , δY12|

k
ij , δB11|kij

)T

, for j = 0, N1, (3.266)

δY2|kij =
(
δY20|kij , δY21|

k
ij , δY22|

k
ij , δB21|kij

)T

, for j = −N2, 0, (3.267)

see Eq. (3.250). Then, the non-zero boundary conditions at the particle surface, see Eqs.
(3.137), are presented as follows:

δY10|k+1
iN1
− δY12|k+1

iN1
=

1

2
− Y10|kiN1

+ Y12|kiN1
, i = 1, N − 1, (3.268)

δY20|k+1
i,−N2

− δY22|k+1
i,−N2

=
1

2
− Y20|ki,−N2

+ Y22|ki,−N2
, i = 1, N − 1. (3.269)

For Eq. (3.135), we obtain

2
[(
1 + τ2i

)
cosα− 2τi

]
δY12|k+1

iN1
+
[
(1− τ2i ) sinα

]
δY11|k+1

iN1
= 0, i = 1, N − 1, (3.270)

2
[(
1 + τ2i

)
cosα+ 2τi

]
δY22|k+1

i,−N2
+

[
(1− τ2i ) sinα

]
δY21|k+1

i,−N2
= 0, i = 1, N − 1. (3.271)

Next, the boundary condition (3.137) is approximated as

δB11|k+1
iN1

+
1− τ2i
hi,N1

[
δY10|k+1

iN1
+ δY12|k+1

iN1

]
+

2τi sinα

hi,N1

δY11|k+1
i,N1

= 0, (3.272)

δB21|k+1
i,−N2

+
1− τ2i
hi,−N2

[
δY20|k+1

i,−N2
+ δY22|k+1

i,−N2

]
− 2τi sinα

hi,−N2

δY21|k+1
i,−N2

= 0 (3.273)
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for i = 1, N − 1. Using the formula [3.20]

u′(x) = ±3u(x)− 4u(x∓ δx) + u(x∓ 2δx)

2δx
+O(δ2x), (3.274)

we approximate (3.136) for the upper part of the particle surface (σ = α) as follows:

δY12|k+1
iN1

+

(
1− τ2i

)
sinα

16τiδσ1
·
{
δB11|k+1

i,N1−2 − 4δB11|k+1
i,N1−1 + 3 δB11|k+1

i,N1

+
(
1− τ2i

) [ δY10|k+1
i,N1−2

hi,N1−2
−

4 δY10|k+1
i,N1−1

hi,N1−1
+

3 δY10|k+1
i,N1

hi,N1

]

+
(
1− τ2i

) [ δY12|k+1
i,N1−2

hi,N1−2
−

4 δY12|k+1
i,N1−1

hi,N1−1
+

3 δY12|k+1
i,N1

hi,N1

]

+ 2τi

[
sinσN1−2

hi,N1−2
δY11|k+1

i,N1−2 −
4 sinσN1−1

hi,N1−1
δY11|k+1

i,N1−1 +
3 sinα

hi,N1

δY11|k+1
i,N1

]}
= 0, i = 1, N − 1 (3.275)

and for the lower part of the particle surface as follows: (σ = α− π)

δY22|k+1
i,−N2

+

(
1− τ2i

)
sinα

16τiδσ2
·
{
3 δB21|k+1

i,−N2
− 4δB21|k+1

i,1−N2
+ δB21|k+1

i,2−N2

+
(
1− τ2i

) [3 δY20|k+1
i,−N2

hi,−N2

−
4 δY20|k+1

i,1−N2

hi,1−N2

+
δY20|k+1

i,2−N2

hi,2−N2

]

+
(
1− τ2i

) [3 δY22|k+1
i,−N2

hi,−N2

−
4 δY22|k+1

i,1−N2

hi,1−N2

+
δY22|k+1

i,2−N2

hi,2−N2

]

+ 2τi

[
− 3 sinα

hi,−N2

δY21|k+1
i,−N2

− 4 sinσ1−N2

hi,1−N2

δY21|k+1
i,1−N2

+
sinσ2−N2

hi,2−N2

δY21|k+1
i,2−N2

]}
= 0, i = 1, N − 1. (3.276)

Approximation of the boundary conditions at the fluid–fluid interface

At the fluid–fluid interface, the boundary conditions (3.139) are approximated as follows:

δY10|k+1
i0 = δY20|k+1

i,0 , δY12|k+1
i0 = δY22|k+1

i,0 , δB11|k+1
i0 = δB21|k+1

i,0 , i = 1, N − 1, (3.277)

Eq. (3.140) for m = 1 — as:

δY11|k+1
i0 +

(1− τi)2

4τiδσ1

[
3 δB11|k+1

i,0 − 4 δB11|k+1
i,1 + δB11|k+1

i,2

]
+

1− τ2i
4τiδσ1

[
3 δY10|k+1

i,0 − 4 δY10|k+1
i,1 + δY10|k+1

i,2

]
+

1− τ2i
4τiδσ1

[
3 δY12|k+1

i,0 − 4 δY12|k+1
i,1 + δY12|k+1

i,2

]
= 0, i = 1, N − 1 (3.278)
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and Eq. (3.140) for m = 2 — as:

δY21|k+1
i0 − (1− τi)2

4τiδσ2

[
δB21|k+1

i,−2 − 4δB21|k+1
i,−1 + 3 δB21|k+1

i,0

]
− 1− τ2i

4τiδσ2

[
δY20|k+1

i,−2 − 4δY20|k+1
i,−1 + 3 δY20|k+1

i,0

]
− 1− τ2i

4τiδσ2

[
δY22|k+1

i,−2 − 4δY22|k+1
i,−1 + 3 δY22|k+1

i,0

]
= 0, i = 1, N − 1, (3.279)

see formula (3.274). The boundary conditions for scalar potentials and dynamic boundary
conditions, Eqs. (3.141), are replaced with (3.249), where S̃ is defined, using Eq. (3.264)
and (3.265).

Approximation of the boundary conditions at the contact line

In order to approximate the boundary conditions (3.143) and (3.144) at τ = 0, we find the
values of the function bm as follows:

bm|k+1
ij = Bm1|k+1

ij +
1− τ2i
hi,j

(
Ym0|k+1

i,j + Ym2|k+1
i,j

)
+

2τi sinσj
hi,j

Ym1|k+1
i,j (3.280)

for m = 1, 2. The derivative ∂bm/∂τ at τ = 0 is approximated as

Dτ bm|k+1
0j =

4 bm|k+1
1j − bm|k+1

2j

2δτ
, m = 1, 2 (3.281)

due to the fact that bm|k+1
0j = 0, see (3.145). Next, the approximation of the second mixed

partial derivative at τ = 0 — as:

Dστ bm|k+1
0j =



−3 Dτ b2|k+1
0,−N + 4 Dτ b2|k+1

0,−N+1 − Dτ b2|k+1
0,−N+2

2δσ2
, σ = α− π,

Dτ b2|k+1
0,j+1 − Dτ b2|k+1

0,j−1

2δσ2
, −N2 < j < 0,

Dτ b2|k+1
0,−2 − 4 Dτ b2|k+1

0,−1 + 3 Dτ b2|k+1
0,0

2δσ2
, σ = 0, m = 2,

−3 Dτ b1|k+1
0,0 + 4 Dτ b1|k+1

0,1 − Dτ b1|k+1
0,2

2δσ1
, σ = 0, m = 1,

Dτ b1|k+1
0,j+1 − Dτ b1|k+1

0,j−1

2δσ1
, 0 < j < N1,

Dτ b1|k+1
0,N−2 − 4 Dτ b1|k+1

0,N−1 + 3 Dτ b1|k+1
0,N

2δσ1
, σ = α.

(3.282)
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Then, the approximations of the boundary condition (3.143) and (3.144) have the form:

Ym2|k+1
0j =

1

8

(
Dτ bm|k+1

0j cosσ − Dστ bm|k+1
0j sinσ

)
, m = 1, 2, (3.283)

Ym1|k+1
0j =

1

4

(
Dτ bm|k+1

0j sinσ + Dστ bm|k+1
0j cosσ

)
, m = 1, 2. (3.284)

At the contact line (τ = 0), the boundary conditions (3.145) are approximated as

δYm0|k+1
0j =

1

2
+ Ym2|k+1

0j , j = −N2, N1, (3.285)

δBm1|k+1
0j = − Ym0|k+1

0j − Ym2|k+1
0j , j = −N2, N1. (3.286)

3.7.2 Algorithm

The algorithm for finding the flow velocities is presented in Algorithm 2. It is analogous to
the algorithm for finding the potentials distributions.

Algorithm 2 Compute the velocity fields

1: procedure ComputeVelocities(N)
2: Compute the lengths of the steps δσ1, δσ2, δτ , δt; ▷ (2.63), (2.67), (3.242), (3.242);
3: k → 0;
4: Set the values of Ym, m = 1, 2 to 0 for initial moment of time (k = 0);
5:

6: repeat
7: for j ← −N2 + 1 to −1 do
8: Solve a τ -directional problem (T2) for Y2;
9: end for

10:

11: for j ← 1 to N1 − 1 do
12: Solve a τ -directional problem (T1) for Y1;
13: end for
14:

15: for i← −N + 1 to N − 1 do
16: Solve a σ-directional problem (SI) for δY1 and δY2;
17: end for
18:

19: Compute the values of δYm at the contact line ▷ Eqs. (3.283)–(3.286)
20: Solve a σ-directional problem (S1) for δY10 and δY20 at the axis of revolution;
21: Set the values of δYm1, δYm2 and δBm1 to 0 at the axis of revolution, m = 1, 2;
22:

23: Compute the total error TotalError at time k;
24: Compute the values Ym, m = 1, 2 at the next moment of time; ▷ Eq. (3.250)
25: k → k + 1;
26: until (TotalError > 1 or k <= 100000);
27: end procedure;
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The iteration process stops, when the maximal number of iterations is reached or the
following criterion: ∣∣∣∣∣ Ymq|k+1

ij − Ymq|kij
δ3t

∣∣∣∣∣ ≈ 1 (3.287)

holds true. This criterion is obtained as follows:

0 =
∂umq

∂t

∣∣∣∣t+δt/2

τi,σj

=
Ymq|k+1

ij − Ymq|kij
δt

− δ2t
24

∂3umq

∂t3

∣∣∣∣t+δt/2

τi,σj

+O(δ3t ). (3.288)

Next, we shall specify the different τ and σ-directional problems that are solved. The
τ -directional problem (T1) has the form

• At the phase 1:(
U − δt

2
T̃0

)[
Y 10

∣∣k+1

ij

]
= δtT̃0

[
Y10|kij

]
+ δtS̃

[
Y10|kij

]
, i = 1, N − 1, (3.289)(

U − δt
2
T̃1

)[
Y 11

∣∣k+1

ij

]
= δtT̃1

[
Y11|kij

]
+ δtS̃

[
Y11|kij

]
, i = 1, N − 1, (3.290)(

U − δt
2
T̃2

)[
Y 12

∣∣k+1

ij

]
= δtT̃2

[
Y12|kij

]
+ δtS̃

[
Y12|kij

]
, i = 1, N − 1, (3.291)(

U − δt
2
T̃1

)[
B11

∣∣k+1

ij

]
= δtT̃1

[
B11|kij

]
+ δtS̃

[
B11|kij

]
, i = 1, N − 1; (3.292)

• At the contact line:

Y 10

∣∣k+1

0j
= δtS̃

[
Y10|k0j

]
, (3.293)

Y 11

∣∣k+1

0j
= δtS̃

[
Y11|k0j

]
, (3.294)

Y 12

∣∣k+1

0j
= δtS̃

[
Y12|k0j

]
, (3.295)

B11

∣∣k+1

0j
= δtS̃

[
B11|k0j

]
; (3.296)

• At the axis of revolution:(
U − δt

2
T̃0

)[
Y 10

∣∣k+1

Nj

]
= δtT̃0

[
Y10|kNj

]
+ δtS̃

[
Ym0|kNj

]
, (3.297)

Y 11

∣∣k+1

Nj
= 0, (3.298)

Y 12

∣∣k+1

Nj
= 0, (3.299)

B11

∣∣k+1

Nj
= 0; (3.300)

Analogously, the problem (T2) is defined. Next, the σ-directional problem for the inter-
nal nodes (SI) is written as
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• At the phase 1:(
U − δt

2
S̃

)[
δY10|k+1

ij

]
= Y 10

∣∣k+1

ij
, j = 1, N1 − 1, (3.301)(

U − δt
2
S̃

)[
δY11|k+1

ij

]
= Y 11

∣∣k+1

ij
, j = 1, N1 − 1, (3.302)(

U − δt
2
S̃

)[
δY12|k+1

ij

]
= Y 12

∣∣k+1

ij
, j = 1, N1 − 1, (3.303)(

U − δt
2
S̃

)[
δB11|k+1

ij

]
= B11

∣∣k+1

ij
, j = 1, N1 − 1; (3.304)

• At the phase 2:(
U − δt

2
S̃

)[
δY20|k+1

ij

]
= Y 20

∣∣k+1

ij
, j = 1−N2,−1, (3.305)(

U − δt
2
S̃

)[
δY21|k+1

ij

]
= Y 21

∣∣k+1

ij
, j = 1−N2,−1, (3.306)(

U − δt
2
S̃

)[
δY22|k+1

ij

]
= Y 22

∣∣k+1

ij
, j = 1−N2,−1, (3.307)(

U − δt
2
S̃

)[
δB21|k+1

ij

]
= B21

∣∣k+1

ij
, j = 1−N2,−1; (3.308)

• At the lower part of the particle, the approximations (3.269), (3.271), (3.273) and
(3.276) are used;

• At the interface, we obtain equations (3.249), (3.277)– (3.279) instead of Eqs. (3.141);

• At the upper part of the particle, one uses Eqs. (3.268), (3.270), (3.272), (3.275);

Finally, the problem (S1) is defined as:

• At the phase 1:(
U − δt

2
S̃

)[
δY10|k+1

Nj

]
= Y 10

∣∣k+1

Nj
, j = 1, N1 − 1; (3.309)

• At the phase 2:(
U − δt

2
S̃

)[
δY20|k+1

N,j

]
= Y 20

∣∣k+1

N,j
, j = −N2 + 1,−1; (3.310)

• At the lower part of the particle surface:

δY20|k+1
N,−N2

=
1

2
− Y20|kN,−N2

; (3.311)

• At the infinity point:

δY20|k+1
N0 = 0, δY10|k+1

N0 = 0; (3.312)
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• At the upper part of the particle surface:

δY10|k+1
NN1

=
1

2
− Y10|kNN1

; (3.313)

Note that in order to implement the algorithm, you need the information in the last two
moments of time only. Efficient implementation saves only the data in the current and the
previous moment of time. In order to compute the drag, we use the formula (A.49), which
is derived in Appendix A.

3.7.3 Numerical results

In order to validate the results, we compare the values of the drag coefficient, computed
using our method to the semi-analytic results [3.1] for α ≤ 90◦ and fluid–air interface (see
Table 3.1). The computations are performed for δσ = 0.017, δτ = 0.05 and different time
steps δt. The relative error is less than 1% and the CPU time on a laptop with processor
Intel Core i5-4200H is less than 10 s in all studied cases. As it can be expected, the decrease
of the grid size decreases the relative error of the drag coefficient. For example, if α = 15◦

and the rectangular domain is divided by 20× 20 then the relative error is 0.16%, while for
30 × 30—it decreases to 0.017%. The respective CPU time for calculations increases from
4.3s to 11s—it triples by increasing the number of space-discretisation steps by factor of
2.25. Analogous trends hold true for all values of the contact angle.

Table 3.1: Comparison between the calculated values, using the proposed method, and
analytic values of the drag force coefficient [3.1].

α (◦) δt CPU time (s) appr. drag coeff. exact drag coeff. Rel. error (%)
15 0.10 2.534 1.4306 1.4374 0.473
30 0.15 7.332 1.4013 1.3392 0.612
60 0.45 7.504 1.2522 1.2509 0.104
75 0.60 5.242 1.1473 1.1370 0.906
90 0.60 8.798 0.9916 1.0000 0.840

Fig. 3.6 shows the pressure distribution for air/water interface and two values of the
three-phase contact angle. It is well illustrated that the pressure maximum for α = 90◦ is
at the contact line, while that for α = 60◦—it is shifted along the particle surface inside the
fluid phase. Using the proposed numerical method, it is possible to perform a systematic
study for wide ranges of physical parameters. Moreover, the proposed algorithm decreases
the computational time from 10 to 1000 times compared to that in the literature. The
smallest the contact angle is the fastest the proposed approach is.
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Figure 3.6: Pressure distribution for air/fluid interfaces: a) α = 90◦; b) α = 60◦.

3.8 Conclusion

The hydrodynamic problem for the translation of a spherical particle, attached to a fluid–
fluid interface, is simplified using the gauge formulation. The introduction of appropriate
functions and toroidal coordinates reduces the three-dimensional Stokes equations to a two-
dimensional system of eight homogeneous partial differential equations. The system is cou-
pled because of the complex boundary conditions. The problem is solved, using the efficient
alternating direction implicit type second-order numerical scheme and reformulating ade-
quately the boundary conditions. As a result, the method enables us to do fast and precise
calculations of all physical parameters (velocity vector and pressure fields, and drag force
coefficient). Moreover, the numerical time is reduced from 10 to 1000 times, compared to
that in [3.11]. From practical viewpoint, these calculations are introduced as a part of data
processing and/or of two-dimensional ordering problems. Thus, the decrease of the com-
putational time becomes an important step to increase the efficiency of complex numerical
tasks.

References

[3.1] M. Zabarankin. Asymmetric three-dimensional stokes flows about two fused equal
spheres. Proc. R. Soc. A, 463(2085):2329–2349, 2007. DOI: 10.1098/rspa.2007.1872.

[3.2] J. Wu and G.-H. Ma. Recent studies of pickering emulsions: Particles make the
difference. Small, 12(34):4633–4648, 2016. DOI: 10.1002/smll.201600877.

[3.3] H. Jiang, Y. Sheng, and T. Ngai. Pickering emulsions: Versatility of colloidal particles
and recent applications. Current Opinion in Colloid & Interface Science, 49:1–15,
2020. DOI: 10.1016/j.cocis.2020.04.017.

[3.4] N. Shanmugam, R. Pugazhendhi, R. Elavarasan, K. Pitchandi, and N. Das. Anti-
reflective coating materials: A holistic review from pv perspective. Energies, 13:2631,
05 2020. DOI: 10.3390/en13102631.

79

https://doi.org/10.1098/rspa.2007.1872
https://doi.org/10.1002/smll.201600877
https://doi.org/10.1016/j.cocis.2020.04.017
https://doi.org/10.3390/en13102631


References

[3.5] K. Baryshnikova, M. Petrov, V. Babicheva, and P. Belov. Plasmonic and silicon
spherical nanoparticle anti-reflective coatings. Scientific Reports, 6, 08 2015. DOI:
10.1038/srep22136.

[3.6] O. Cayre and V. Paunov. Fabrication of microlens arrays by gel trapping of self-
assembled particle monolayers at the decane-water interface. Journal of Materials
Chemistry, 14, 2004. DOI: 10.1039/b413361g.

[3.7] X. Xing, M. Chen, Y. Gong, Z. Lv, S. Han, and Y. Zhou. Building memory devices
from biocomposite electronic material. Sci Technol Adv Mater., 21(1):100–121, 2020.
DOI: 10.1080/14686996.2020.1725395.

[3.8] T. Hu, X. Mei, Y. Wang, X. Weng, R. Liang, and M. Wei. Two-dimensional nanoma-
terials: fascinating materials in biomedical field. Science Bulletin, 64(22):1707–1727,
2019. DOI: 10.1016/j.scib.2019.09.021.

[3.9] A. Dani, G. Keiser, M. Yeganeh, and C. Maldarelli. Hydrodynamics
of particles at an oil–water interface. Langmuir, 31:13290–13302, 2015.
DOI:10.1021/acs.langmuir.5b02146.

[3.10] A. Dorr, S. Hardt, H. Masoud, and H. Stone. Drag and diffusion coefficients of a
spherical particle attached to a fluid-fluid interface. J. Fluid Mech., 790:607–618,
2016. DOI: 10.1017/jfm.2016.41.

[3.11] K. Danov, R. Dimova, and B. Pouligny. Viscous drag of a solid sphere straddling a
spherical or flat surface. Phys. Fluids, 12:2711–2722, 2000. DOI: 10.1063/1.1289692.

[3.12] G. Stokes. On the effect of the internal friction of fluids on the motion of pendulums.
Trans. Camb. Phil. Soc., 9:8–106, 1851. DOI: 10.1017/CBO9780511702266.002.

[3.13] H. Langtangen, K. Mardal, and R. Winther. Numerical methods for incompress-
ible viscous flow. Advances in Water Resources, 25(8):1125–1146, 2002. DOI:
10.1016/S0309-1708(02)00052-0.

[3.14] D. Kwak and C. Kiris. Methods for solving viscous incompressible flow problems. 01
2011. DOI: 10.1007/978-94-007-0193-9 2.

[3.15] W. E and J.-G. Liu. Gauge method for viscous incompressible flows. Comm. Math.
Sci., 1(2):317–332, 2003. DOI: 10.4310/CMS.2003.v1.n2.a6.

[3.16] D. Brown, R. Cortez, and M. Minion. Accurate projection methods for the incom-
pressible navier-–stokes equations. Journal of Computational Physics, 168(2):464–
499, 2001. DOI: 10.1006/jcph.2001.6715.

[3.17] Y. D’Yakonov. Difference schemes with a “disintegrating” operator for multidi-
mensional problems. USSR Computational Mathematics and Mathematical Physics,
2(4):581–607, 1963. DOI: 10.1016/0041-5553(63)90531-7.

[3.18] N. Yanenko. The Method of Fractional Steps, the Solution of Problems of Mathemati-
cal Physics in Several Variables. Springer Berlin, Heidelberg, 1971. DOI: 10.1007/978-
3-642-65108-3.

80

https://doi.org/10.1038/srep22136
https://doi.org/10.1039/b413361g
https://doi.org/10.1080/14686996.2020.1725395
https://doi.org/10.1016/j.scib.2019.09.021
https://doi.org/10.1021/acs.langmuir.5b02146
http://dx.doi.org/10.1017/jfm.2016.41
https://doi.org/10.1063/1.1289692
https://doi.org/10.1017/CBO9780511702266.002
https://doi.org/10.1016/S0309-1708(02)00052-0
https://doi.org/10.1007/978-94-007-0193-9_2
https://dx.doi.org/10.4310/CMS.2003.v1.n2.a6
https://doi.org/10.1006/jcph.2001.6715
https://doi.org/10.1016/0041-5553(63)90531-7
https://doi.org/10.1007/978-3-642-65108-3
https://doi.org/10.1007/978-3-642-65108-3


Chapter 3. Motion of a spherical particle

[3.19] J. Thomas. Numerical Partial Differential Equations: Finite Difference Methods.
Springer New York, 1995. DOI: 10.1007/978-1-4899-7278-1.

[3.20] C. Gerald and P. Wheatley. Applied numerical analysis. Pearson College Div, 7
edition, 2004.

81

https://doi.org/10.1007/978-1-4899-7278-1


Chapter 4

Motion of long bubbles in
gravity- and pressure-driven
flow through cylindrical
capillaries up to moderate
capillary numbers

In this chapter, we focus our attention to the motion of long bubbles in gravity- and pressure-
driven flows. This problem has a wide range of applications in microfluidics and chemical
microprocessing. For the first time, the problem was solved asymptotically for small values
of the capillary number by Bretherton in 1961 [4.1]. He computed asymptotic expressions,
which describe the dependence of the capillary (Ca) and Bond (Bo) numbers on the system
parameters for low axisymmetric bubble velocities, which are valid only in the ranges 0 <
Ca < 0.005 and 0.84 < Bo < 1.04.

Nowadays, due to the recent advances in technology, there is a renewed interest in the
Bretherton problem. We propose a new generalized lubrication approach, which solves the
problem in a systemic way. As in the Bretherton solution, the fluid is modeled as Stokes
flow but the bubble shape is described, using geometrical considerations and the Young–
Laplace equation of capillarity [4.2]. The latter is the main difference between the proposed
method and the Bretherton solution, which uses an approximation of the bubble curva-
ture instead. The obtained model consists of six differential equations which are coupled,
and appropriate boundary conditions are added in order to close the problem. Assuming
that the characteristic thickness of the liquid layer is a small parameter of the considered
problem, we obtain not only the zero-order approximation of the hydrodynamic problem
in the lubrication approximation, which coincides with the Bretherton solution, but also
the first-order approximation. In such a way, the problem is reduced to a boundary value
problem, consisting of four ordinary differential equations. The applied initial conditions
are computed, using small perturbations around the cylindrical shape of the bubble. The
obtained problem is solved numerically to obtain the film thickness, h, between the bubble
and the capillary and the dependence of the capillary number on the flow parameters and
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magnitude of gravity. The proposed model expands the range of solution applicability 400
and 38 times, respectively (0 < Ca < 2 and 0 < Bo < 7.5). These results are validated
with available experimental data. The model simplicity and its transparency give possibil-
ity to generalize this approach by including new physicochemical properties of liquids and
interfaces.

The results, included in this chapter, are published in

• K. Danov, G. Lyutskanova-Zhekova, S. Smoukov, Motion of long bubbles in gravity-
and pressure-driven flow through cylindrical capillaries up to moderate capillary num-
bers, Physics of fluids 33 (2021), no. 11, IF: 3.521 (2020), Quartile: Q1. DOI:
https://doi.org/10.1063/5.0070619.

4.1 Literature overview

The transport of bubbles and drops through capillaries and porous media plays an im-
portant role in many technological and biological systems: enhanced oil recovery [4.3–4.5];
movement of red blood cells [4.6, 4.7]; pulmonary airway reopeninig [4.8–4.10]; motion of
discrete bubbles in porous materials [4.11]; biomechanics and microfluidic devices [4.12–
4.14]; circulating fluidized bed (CFB) devices [4.15, 4.16]; etc. In some of these applications
(e.g. microfluidics), the dimensionless thickness of the liquid film, h, is an important design
parameter and, therefore, it is essential to find an expression for it. In order to do that,
two different classes of experimental methods could be used — direct (the film thickness is
measured directly) or indirect (the velocity of the bubble is measured directly). Using an
indirect experimental method requires to find a relationship between the bubble velocity,
other flow parameters and h. One way to do that is by using data fitting techniques. The
function type is chosen appropriately, using the data, which is fitted, and some theoreti-
cal considerations. The other approach is to use the fluid mechanics and more precisely
— the Navier–Stokes equations with appropriate boundary conditions applied. If the film
thickness is neglectable with regard to the radius of the tube, the original problem could be
significantly simplified, using the lubrication approach. Depending on the applied assump-
tions, the obtained problem could be simple enough to be solved analytically (analytical
approach) or should be solved, using a numerical method (semi-analytical approach). If the
film thickness is not neglectable, then the full problem should be solved numerically, using
for instance the finite difference, the finite volume or the finite element method.

From experimental and theoretical viewpoint, it is convenient to study two simplified
cases of the motion of bubbles: in vertical capillaries, sealed at one end, under the action
of gravity; in horizontal tubes through which a fluid is flowing. Important dimensionless
parameter, describing the behaviour of these simplified cases, is the capillary number Ca,
which is defined as the ratio between the viscous forces and surface tension forces:

Ca ≡ ηVb
σ
, (4.1)

where η is the liquid dynamic viscosity, Vb is the translational bubble velocity and σ is
the surface tension. In case of long bubbles in vertical tubes, one of the most essential
parameters is the Bond number Bo (the ratio between the gravitational forces and surfaces
tension forces):

Bo ≡ ρgR2

σ
, (4.2)
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while in the case of long bubbles in horizontal tubes, the relative increase of the velocity,
W :

W ≡ 1− Vpm
Vb

(4.3)

plays an important role, where g is the gravity acceleration, ρ is the fluid density, R is the
capillary radius and Vpm is the mean speed of the respective Poiseuille flow. These dimen-
sionless parameters are used in order to find the solution of the two simplified cases. More
concretely, a relationship between the dimensionless parameters Ca, Bo(h) and possibly
other dimensionless groups is sought out in the case of bubbles in vertical tubes, while a
relationship between Ca andW (h) is investigated for bubbles in horizontal capillaries. More
complex cases are also considered in the literature. For example, Zukoski [4.17] presented
experimental data for the more complex case of incline tubes, studied the influence of tube
inclination angle on the rising bubble velocity, and gave qualitative explanations of the flow
behavior.

Two of the earliest studies of long bubbles in vertical tubes are conducted by Gibson [4.18]
and Barr [4.19]. They noticed that if the Bond number is sufficiently small, then the long
bubbles in vertical cylindrical capillaries do not rise at all [4.20]. Systematic experimental
dependencies of the Bond number on the capillary number and other dimensionless groups
(Reynolds, Froude numbers, etc.) are conducted in [4.21–4.27]. Clanet et al. [4.12] showed
experimentally that the Dumitrescu limiting law [4.21], valid in the high-Reynolds-number

domain, can be generalized to V = (8π)
−1/2

(gP )
1/2

, where P is the wetted (inside) perime-
ter of the normal cross-section of cylindrical, rectangular, regular polygons, and toroidal
tubes. The semi-analytical and numerical solutions of the respective hydrodynamic prob-
lems are reported in the literature [4.28–4.34]. The first analytical result for long rising
bubbles at small capillary numbers was derived by Bretherton [4.1]. He solved the hy-
drodynamic problem in the lubrication approximation for flow in the thin layer between
the bubble and the capillary and, then, match the obtained function for the bubble shape
with the solution of the Laplace equation around the bubble front. The derived Bretherton
dependence reads

Bo = 0.842 + 1.25Ca2/9 + 2.24Ca1/3, (4.4)

which is accurate to within 10% in the region 0.842 < Bo < 1.04.
The case of long bubbles in horizontal tubes is studied extensively. Firstly, Fairbrother

and Stubbs [4.35] pointed out that long bubbles in horizontal cylindrical tubes move faster
than the mean speed of the respective Poiseuille flow. Using data fitting techniques, they
were able to propose the following relationship between the film thickness h and capillary
number Ca:

h = 0.5
√
Ca. (4.5)

The latter is valid for 7.5×10−5 < Ca < 0.014. Then, in 1960, Taylor measured the relative
increase of the velocity for small and moderate values of the capillary number, Ca < 2,
[4.36]. The developed new experimental methods [4.16, 4.37–4.44] for the precise measure-
ments of the liquid film thickness and velocity profiles confirm the Taylor experimental data
and clarify the physical picture of the bubble shape and surrounding flow behavior. The
numerical calculations for small and large Reynolds numbers [4.45–4.56] provide information
on the theoretical dependence of W on the system parameters. For example, Langewisch
and Buongiorno [4.54] reported numerical results for 125 combinations of capillary numbers
(0.05 < Ca < 2) and Reynolds numbers (up to 900), which are used therein to construct new
empirical correlations. A pioneering theoretical approach was proposed by Bretherton in
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[4.1]. He matched the lubrication approximation solution of the hydrodynamic problem for
long bubbles with the radius of curvature of the bubble front, corresponding to the capillary
radius, and derived the asymptotic expressions:

W = 2.68Ca2/3, h = 1.34Ca2/3, (4.6)

which are in error by no more than 10% for small capillary numbers, Ca < 5.0×10−3 (more
information could be found in Appendix C in [4.57]). In 2000, Aussillous and Quéré [4.39]
fitted their and the Taylor experimental data with the following empirical formula:

h =
1.34Ca2/3

1 + 1.34kCa2/3
, (4.7)

where k = 2.5. In 2014, using the Bretherton approach and matching the lubrication
approximation solution with the more realistic radius of curvature of the bubble front,
Klaseboer et al. [4.58] derive theoretically Eq. (4.7) with k = 2.79 (see Fig. 4.12 below).
Balestra et al. reported some more complex and accurate empirical expressions [4.59].

In many applications [4.60, 4.61], the used fluids contain surface active substances (sur-
factants, polymers, proteins, etc.), which modify the interfacial rheology of bubbles and
drops. The effects of soluble and insoluble surfactants on the motion of bubbles, propa-
gating through capillaries, are investigated numerically in [4.62–4.73]. In these numerical
studies, the physicochemical properties of the surfactants are modeled below their critical
micelle concentrations (CMC), the surface diffusivity and viscosity are neglected, the sur-
factant solutions are considered as nonionic without added indifferent electrolytes (salts),
and the van der Waals, electrostatic and steric interactions are neglected (see [4.74]). As a
result, the interfacial rheology is accounted for only through the Marangoni effect. Never-
theless, the numerical calculations have shown that even a trace amount of surfactant leads
to immobilization of the interfaces for small and moderate capillary numbers — the fluid
interfaces become tangentially immobile. For surfactant concentrations above the CMC,
the surfactant adsorption is very fast (in order of microseconds) and the surface tension is
constant. Thus, one should expect the measured velocity of the rising bubbles to correspond
to the classical observations for bubbles with free surfaces. The recent experiments with
nanofluids [4.75–4.77], however, have showed differences of two or three orders of magnitude
from these expectations, because of the effects of structural molecular forces. Madec et al.
reported the opposite effect in [4.78] — the bubbles rise faster in dense granular suspensions
as compared to particle-less liquids of the same effective viscosity. For very low values of
Ca, for which the theoretical predictions should be the most precise, the experimental data
again deviate considerably from the theory. Typically, these deviations are attributed to
impurities of the liquids used but another possible explanation of the breakdown of the
Bretherton law can be the wall slippage effect [4.79].

The wide range of different possible physicochemical effects, which affect the motion
of long bubbles and drops in tubes, results in a highly complex problem. We need a rel-
atively simple, fast, transparent, and precise method for calculation of bubble shape and
translational velocity, which can be generalized by introducing new fluid and/or interfa-
cial properties. In the original Bretherton model [4.1], the hydrodynamic problem in the
wetting film close to the wall is solved, using the simplified lubrication approximation for
flow in a thin layer, neglecting the tube curvature, which is valid for planar liquid layers
only. To extend the validity of this approach, Ratulowski and Chang [4.80] considered the
lubrication solution in cylindrical coordinates and Kolb and Cerro [4.81] in tubes of square
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cross section, see Sec. 4.5. To avoid the ill-defined procedure of matching [4.1, 4.58] the
lubrication approximation solution with the bubble shape at its front, the normal stress
boundary condition, written in terms of an arc length of the bubble surface, is used in order
to solve the respective boundary value problem [4.80, 4.81] for the thickness of cylindrical
film part, h, see Sec. 4.6. This approach [4.80] leads to a good theoretical description of
the experimental data for W up to 40 times larger capillary numbers (Ca < 0.2) than the
applicability region of the Bretherton formula, see Sec. 4.7, but still further improvements
are needed to explain the significant deviations at higher capillary numbers.

The effect of buoyancy on the pressure-driven motion of drops and bubbles through
cylindrical capillaries is studied experimentally and numerically in the literature [4.82–4.85].
These publications open wide theoretical and experimental areas with practical applications
and new physical insights.

In this chapter, we investigate theoretically the effect of buoyancy on the pressure-driven
motion of long axisymmetric bubbles with free or tangentially immobile surfaces at small and
moderate capillary numbers. Experimental and theoretical investigations [4.82–4.85] show
that if the bubble lengths are more than two times greater than the capillary diameters, then
well pronounced cylindrical parts in the bubble profiles appear. This criterion is usually used
to separate the long bubbles from short ones. The formulation of the problem is described
in Sec. 4.2. Then, we nondimensionalize the problem and present a strategy for solving
it in Sec. 4.3. In Sec. 4.4, the exact solutions for the cylindrical part of long bubbles are
presented. In Sec. 4.5, we obtain the exact solution of the lubrication approximation of
the hydrodynamic problem in cylindrical coordinates, accounting for the zero- and first-
order approximations (generalized lubrication approximation). These solutions give further
insights into the boundary value problem, arising from the normal stress boundary condition,
and allow us to solve the problem for the wetting film thickness in the cylindrical part, h,
with high accuracy. The method for finding the solution of the boundary value problem is
presented in Sec. 4.6. Finally, Sec. 4.7 summarizes our numerical results, comparing them
to the available experimental data.

4.2 Mathematical model

Let us consider a cylindrical capillary of radius R, filled with incompressible Newtonian
fluid with dynamic viscosity η and density ρ (see Fig. 4.1). Inside the fluid, there is an
axisymmetric bubble with an axis of revolution, coinciding with the axis of revolution of the
capillary. The bubble moves with velocity Vb, parallel to the tube walls, under the action
of the Poiseuille flow (see Appendix U.7) and of gravity with acceleration g. The surface of
the bubble is considered to be a fully mobile (the shear stress at the bubble surface is zero)
or a tangentially immobile surface (the immobile surface acts as a solid surface). For more
information on fully mobile or immobile surfaces, see the schematic presentation of the flow
profiles near the bubble in Fig. 4.2.

In the current work, we shall consider the following three cases:

(A) the tube is placed horizontally and only the effect of the Poiseuille flow is considered.

(B) the tube is placed vertically and only the gravitational force is taken into account.

(C) the tube is placed vertically and the simultaneous action of the Poiseuille flow and
gravity is considered.
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(a) gz > 0, Vpm > 0 (b) gz > 0, Vpm < 0 (c) gz < 0, Vpm > 0

Figure 4.1: An axisymmetric bubble moves in a cylindrical capillary of radius R under the
action of gravity and Poiseuille flow.

It is obvious that the cases (A) and (B) are special cases of the case (C). Thus, we derive a
mathematical model for the general case (C). In order to do that, we introduce a cylindrical
coordinate system (r, φ, z) with a center at the bubble apex and axis of revolution Oz,
pointing in a direction, opposite of the bubble motion (see Fig. 4.1). In this coordinate
system, the variables are independent of φ because the problem is axisymmetric (the region
and the boundary conditions are symmetric with respect to the axis of rotation of the
capillary). Therefore, we consider the problem in the r− z plane only. Let us denote, then,
the r- and z-components of fluid velocity v by u and v, and the z-component of the gravity
g by gz. Another property of this coordinate system is that it is fixed at the bubble apex.
This means that the coordinate system translates with a fixed velocity Vb (see Fig. 4.1) and,
then, the translational velocity of the bubble is equal to zero and the capillary wall and the
whole fluid translate along axis Oz with velocity Vb.

As mentioned previously, a bubble moves in a vertical tube under the simultaneous action
of Poiseuille flow and gravity. On one hand, if only the gravity is considered, the bubble
moves upwards due to buoyancy. On the other hand, taking into account only the action of
Poiseuille flow leads to the conclusion that the bubble moves in the direction of Poiseuille
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Figure 4.2: Schematic presentation of the flow profiles, depending on the type of the bound-
ary conditions, applied at the bubble surface. A velocity profile for a tangentially immobile
surface is shown on the left, while on the right – a profile of a fully mobile surface [4.86].

flow. When both forces act simultaneously on the bubble, there are three main cases, which
are shown in Fig. 4.1. Fig. 4.1a illustrates the case when the buoyancy and Poiseuille flow
point upwards and the bubble rises. If the forces act in opposite directions, the bubble
floats or sinks, depending on which force prevails. If the gravitational force controls the
bubble motion (gz > 0), then the mean z-component of the Poiseuille flow velocity, −Vpm,
is positive and the bubble floats (see Fig. 4.1b). Otherwise, gravity acts in the opposite
direction of the z-axis (gz < 0) and the bubble sinks, see Fig. 4.1c.

4.2.1 Modelling of the fluid motion

First, we shall describe the motion of the Newtonian fluid. We assume that the flow is so
slow that the inertial terms in the Navier–Stokes equations are negligible. Then, the motion
of the fluid can be described by Stokes equations

∇ · v = 0, (4.8)

∇p = η∇2v + ρg, (4.9)

where p is the dynamic pressure, see Eqs. (U.73)–(U.74) in the Supplementary material U.
For axysymmetric problem in cylindrical coordinates, the system has the following form:

1

r

∂

∂r
(ru) +

∂v

∂z
= 0, (4.10)

∂p

∂r
= η

[
∂

∂r

(
1

r

∂

∂r
(ru)

)
+
∂2u

∂z2

]
, (4.11)

∂p

∂z
= η

[
1

r

∂

∂r

(
r
∂v

∂r

)
+
∂2v

∂z2

]
+ ρgz, (4.12)

see Eqs. (U.101)–(U.103) in the Supplementary Material U.
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4.2.2 Boundary conditions

In order to close the system, we add boundary conditions to the problem. More information
for their derivation could be found in Section U.6 and for different types of rheological
relations — in Section U.4 in the Supplementary material U.

No-slip boundary conditions at the walls of the tube

The fluid is moving with velocity 0 there. Because of the choice of the coordinate system
(fixed at the bubble apex), the following boundary conditions:

u = 0, v = Vb at r = R (4.13)

are applied, see Eq. (U.77) in the Supplementary Material U.

Inlet/outlet boundary conditions for |z| → ∞

We assume that the fluid flow is Poiseuille at the large distances from the bubble, i.e.

u = 0, v = Vb + vp(r) at |z| → ∞, (4.14)

where vp(r) is the axial coordinate of the Poiseuille velocity profile, i.e.

vp(r) = −2Vpm
(
1− r2

R2

)
, (4.15)

see (U.124) in the Supplementary material U. Note that Eq. (4.14) follows from the simple
flow rate condition

2

R∫
0

r v(r, z)dr = (Vb − Vpm)R2 at |z| → ∞. (4.16)

Kinematic boundary condition at the bubble surface

The kinematic boundary condition states

v · n = 0 at S, (4.17)

where S denotes the surface of the bubble and n is the unit inward normal to S, see Eq.
(U.79) in the Supplementary material U.

Dynamic boundary condition at the bubble surface

For constant surface tension σ, the tangential and normal boundary conditions have the
form:

n · (P−Pb) · t = 0 (4.18)

and
n · (P−Pb) · n = 2Hσ, (4.19)

where H is the mean curvature of the bubble interface, P is the flow stress tensor and Pb is
the bubble stress tensor, see Eqs. (U.94)–(U.95) in the Supplementary material U. In order
to find the concrete form of the latter, we shall choose the type of rheological relations that
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model the fluids in the problem. We assume that the fluid in the bubble is ideal and, then,
bubble stress tensor is

Pb = −pbI, (4.20)

where I is the identity tensor and pb is the pressure inside the bubble. The fluid in the tube
is assumed to be Newtonian, i.e.

P = −pI+ η
[
∇v + (∇v)T

]
. (4.21)

Then, the components of the pressure tensor Ps := P−Pb in cylindrical coordinates are

Ps,rr = pb − p+ 2η
∂u

∂r
, (4.22)

Ps,rz = Ps,zr = η

(
∂v

∂r
+
∂u

∂z

)
, (4.23)

Ps,zz = pb − p+ 2η
∂v

∂z
, (4.24)

see Eq. (S.349) in the Supplementary Material S.

4.2.3 Surface parametrization. Normal and tangential boundary
conditions

The form of the kinematic and dynamic boundary conditions (4.17)–(4.19) depends on the
surface parameterisation of the bubble. Let us denote by rb and zb the cylindrical coordinates
of the bubble surface and s is the arc length of S, measured from the bubble apex, then the
bubble shape is described by r = rb(s) and z = zb(s). Using geometric considerations, we
conclude that the following differential equations [4.2, 4.87]:

drb
ds

= cos θ,
dzb
ds

= sin θ, (4.25)

model the form of the bubble, where θ is the meniscus running slope angle (see Fig. 4.3).
We compute the mean curvature of the bubble surface, H, [4.2, 4.87] as

2H =
dθ

ds
+

sin θ

rb
(4.26)

and the unit tangential vector t to the surface S as

t = (cos θ, sin θ) . (4.27)

Then, the unit inward normal has the following form:

n =
dt
ds∣∣ dt
ds

∣∣ = (− sin θ, cos θ) . (4.28)

Substituting (4.28) in the kinematic boundary condition (4.17), we obtain the form of the
kinematic boundary condition

v cos θ − u sin θ = 0 at S. (4.29)
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Figure 4.3: Description of the bubble surface: θ is the meniscus running slope angle; t is
the unit tangential vector and n is the unit inward normal vector to the bubble surface.

Substituting (4.27) and (4.28) in (4.18) and (4.19), we obtain the form of the tangential
stress boundary condition

cos (2θ)

(
∂v

∂r
+
∂u

∂z

)
+ sin (2θ)

(
∂v

∂z
− ∂u

∂r

)
= 0 (4.30)

and the normal stress boundary condition

pb = p− 2η sin2 θ

[
cot2 θ

∂v

∂z
+
∂u

∂r
− cot θ

(
∂v

∂r
+
∂u

∂z

)]
+ 2Hσ (4.31)

for fully mobile interfaces at the bubble surface S.
In the case of tangentially immobile bubble surface, the kinematic and tangential bound-

ary conditions are replaced by the conditions of the surface solidifation:

u = 0, v = 0 at S, (4.32)

which assume that the surface of the bubble acts as solid. This considerably simplifies the
normal stress boundary condition (4.31) to

pb = p+ 2Hσ at S. (4.33)

Note that the normal stress boundary conditions (4.31) and (4.33) give a relationship be-
tween the mean curvature of the bubble, the flow characteristics u, v and p, and the bubble
pressure, pb. The latter means that if one approximates u, v and p at the bubble surface S,
it is possible to find the bubble shape as a solution of the system (4.25), (4.26) and (4.31)
(in the case of free surface) or (4.25), (4.26) and (4.33) (in a case of immobile surface) with
appropriate initial conditions, applied at the bubble apex.
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4.2.4 Simple integral flow rate condition as a kinematic boundary
condition

For analytical calculations (see Sec. 4.5), it is more convenient to use the simple integral
flow rate condition

2

R∫
rb

rv (r, zb) dr = (Vb − Vpm)R2. (4.34)

instead of the kinematic boundary condition (4.29). In the next lines, we prove that Eq.
(4.34) follows from the kinematic boundary condition. In order to do that, we consider a
long bubble in a cylindrical tube (see Fig. 4.4). Next, one introduces the following notation:

• Sz = {(r, φ, z) | 0 ≤ r ≤ R, 0 ≤ φ < 2π} or this is the part of the plane z = z, which
is inside the capillary;

• Sb = {(r, φ, zb) | rb ≤ r ≤ R, 0 ≤ φ < 2π} or this is the part of the plane z = zb, which
is inside the capillary and outside the bubble;

• Ss = {(R,φ, z) | 0 ≤ φ < 2π, zb ≤ z ≤ z} or this is surrounding surface of the cylinder
C with bases Sb and Sz;

• S = {(r, φ, z) | (r, φ, z) ∈ S, zb ≤ z < z} or this is the part of the bubble surface,
which is inside the cylinder C;

• nz, nb and ns are the unit normals to Sz, Sb and Ss, pointing out of the cylinder C,
and n is the unit outer normal to the surface S (see Fig. 4.4).

Figure 4.4: Description of the surface Sf = Sz ∪ Sb ∪ Ss ∪ S.

Then, using the mass conservation law and the divergence theorem, we obtain∫∫
Sf

nf · vdS =

∫∫∫
Vf

∇ · vdV =

∫∫∫
Vf

0dV = 0, (4.35)
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where Sf = Sz ∪ Sb ∪ Ss ∪ S is the surface, over which we integrate, nf is the unit outer
normal to Sf and Vf is the volume, surrounded by Sf . Writing the integral

∫∫
Sf

nf · vdS
as a sum of four integrals, we obtain consecutively∫∫

Sz

nz · vdS +

∫∫
Sb

nb · vdS +

∫∫
Ss

ns · vdS −
∫∫
S

n · vdS = 0. (4.36)

We take into account the boundary conditions at the wall of the capillary (4.13) and at the
bubble surface (4.17) in the latter and get∫∫

Sz

vdS −
∫∫
Sb

vdS = 0. (4.37)

Eq. (4.37) is valid for z → +∞. Using this fact, we obtain

lim
z→+∞

2π∫
0

R∫
0

v (r, z) rdrdφ−
2π∫
0

R∫
rb

v (r, zb) rdrdφ = 0, (4.38)

2π

R∫
0

[
Vb − 2Vpm

(
1− r2

R2

)]
rdr − 2π

R∫
rb

v (r, zb) rdrdφ = 0, (4.39)

see Eq. (4.14). Therefore, the following statement:

R∫
rb

v (r, zb) rdrdφ =
VbR

2

2
− 2Vpm

(
R2

2
− R4

4R2

)

=
R2(Vb − Vpm)

2
(4.40)

holds true or equivalently (4.34). Note that (4.34) follows from the continuity equation
(4.10), the no-slip boundary condition (4.13), the boundary condition at z → +∞ (4.14)
and the kinematic condition (4.17).

Other way to prove (4.34) is by proving that

I(z) =

R∫
rb

rv(r, z)dr (4.41)

is a constant for all points (rb, zb) ∈ S. The surface S could be represented as union of non-
intersecting surfaces Sk, in which rb is a function of z. Then, using the continuity equation
(4.10), the no-slip boundary condition (4.13) and the kinematic condition (4.29), we obtain

∂I (rb(z), z)

∂z
=

∂I

∂rb

drb
dz

+
∂I

∂z
= −rbv (rb, z) cot θ +

R∫
rb

r
∂v

∂z
dr =

= −rbv (rb, z) cot θ −
R∫

rb

∂

∂r
(ru) dr =

= −rbv (rb, z)
cos θ

sin θ
−Ru (R, z) + rbu (rb, z) = 0. (4.42)
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The latter holds true for every Sk and then it holds for S. Thus, the integral
∫ R

rb
rvdr is a

constant for all points at S. Also if the integral flow rate condition (4.34) holds true, then
it follows from (4.42) that the kinematic boundary condition (4.29) also holds true.

4.3 Dimensionless form of the problem and general strat-
egy for solving it.

4.3.1 Dimensionless form in the case of free surfaces

In the case of fully mobile bubble surface, we obtain the Stokes problem (4.10)– (4.12)
with applied no-slip boundary conditions at the wall of the capillary (4.13), inlet/outlet
boundary condition (4.14), simple flow rate boundary condition (4.34), tangential (4.30)
and normal boundary condition (4.31) at the bubble surface S, where S is parametrized
by the cylindrical coordinates (rb, zb), which fulfill Eq. (4.25), and the mean curvature is
computed, using (4.26). Next, the model is non-dimensionalized by introducing the following
new dimensionless variables (with bars):

• the radial and axial coordinates are scaled with the capillary radius R

r =
r

R
, z =

z

R
; (4.43)

• the arc length, the radial and axial coordinates of the bubble and the mean curvature
— with the capillary radius R

rb =
rb
R
, zb =

zb
R
, s =

s

R
, H = HR; (4.44)

• the velocity components — with the bubble velocity Vb

u =
u

Vb
, v =

v

Vb
, vp (r) = −2

Vpm
Vb

(
1− r2

)
; (4.45)

• the pressure — with ηVb/R

pb =
pb

ηVb/R
, p =

p

ηVb/R
. (4.46)

The effects of buoyancy and capillary forces are measured, using the Bond number, Bo, the
capillary numbers, Ca and Capm, and the relative increase in the velocity, W :

Bo =
ρgzR

2

σ
, Ca =

ηVb
σ
, Capm =

ηVpm
σ

, W = 1− Vpm
Vb

. (4.47)

Using the non-dimensional variables, we obtain the dimensionless Stokes problem in cylin-
drical coordinates:

1

r

∂

∂r
(r u) +

∂v

∂z
= 0 (4.48)

∂p

∂r
=

∂

∂r

[
1

r

∂

∂r
(r u)

]
+
∂2u

∂z2
(4.49)

∂p

∂z
=

1

r

∂

∂r

(
r
∂v

∂r

)
+
∂2v

∂z2
+
Bo

Ca
, (4.50)

see Eqs. (4.10)– (4.12). The following boundary conditions are applied:
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• boundary condition at the wall of the capillary

u = 0, v = 1 at r = 1; (4.51)

• inlet/outlet boundary conditions for |z| → ∞

u = 0, v = 1 + vp (r) at |z| → ∞; (4.52)

• simple flow rate boundary condition

2

1∫
rb

r vdr = 1− Vpm
Vb

=W ; (4.53)

• tangential stress boundary condition

cos(2θ)

(
∂v

∂r
+
∂u

∂z

)
+ sin (2θ)

(
∂v

∂z
− ∂u

∂r

)
= 0 at S; (4.54)

• normal stress boundary condition

pb = p− 2 sin2 θ

[
cot2 θ

∂v

∂z
+
∂u

∂r
− cot θ

(
∂v

∂r
+
∂u

∂z

)]
+

2H

Ca
at S, (4.55)

where the bubble surface S is computed, using the equations

drb
ds

= cos θ, (4.56)

dzb
ds

= sin θ, (4.57)

2H =
dθ

ds
+

sin θ

rb
. (4.58)

4.3.2 Dimensionless form in the case of tangentially immobile sur-
faces

In the case of tangentially immobile bubble surface, we obtain the Stokes problem (4.10)–
(4.12) with applied boundary conditions at the wall of the capillary (4.13), for |z| → ∞
(4.14), normal boundary condition (4.33) and boundary condition for surface solidification
(4.32) at the bubble surface S. In the non-dimensional variables, the conditions of the
surface solidification (4.32) have the following form:

u = 0, v = 0 at S (4.59)

and the normal boundary condition (4.33) reads

pb = p+
2H

Ca
at S. (4.60)

In the rest of this chapter, we drop the bars for notational convenience.
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Figure 4.5: Description of the main aspects in the strategy for solving of this problem

4.3.3 General strategy

In this subsection, we describe briefly our strategy for solving this problem. We assume
that the characteristic dimensionless thickness of liquid layer, ε, far from the bubble apex is
a small parameter of the considered problem and, therefore, rescale the radial coordinate,
r, as r = 1 + εξ. The expansions in series for the radial and the axial components of
the fluid velocity and for the pressure with respect to the small parameter, ε, are sought-
out in the following form (4.100)–(4.102). One substitutes the expansions (4.88), (4.100)–
(4.102) in the Stokes problem (4.48)– (4.50), closed with the no-slip (4.51), the simple flow
rate (4.53) and the tangential boundary condition (4.54) or (4.59). Equating the leading
coefficients in each of the equations, we obtain a system of partial differential equations with
boundary conditions. Its solution, the zero-order approximations for the flow variables u,
v and p, is found analytically. Analogously, one gets the first-order approximations for the
flow variables. Next, these approximations are substituted in the normal stress boundary
condition and the system (4.196)–(4.199) of four ordinary differential equations for rb, zb,
θ and the dynamic pressure difference ps is obtained (see Section 4.6). Further, we find
appropriate initial conditions at the cylindrical part of the bubble, using small perturbations
around the cylindrical shape of the bubble. Finally, the sought-out film thickness is obtained
as a solution of a boundary value problem (additional conditions, ensuring closure of the
bubble profile, are added) by using an iterative procedure.

4.4 Exact solution for the cylindrical part of long bub-
bles

In the case of long bubbles (bubbles with aspect ratios of bubble lengths to capillary di-
ameters greater than 2), a well pronounced cylindrical part of the bubble shape appears.
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Let us denote by h the dimensionless thickness of the fluid layer and the respective value
of the radial coordinate of the bubble — by rc = 1 − h. In the cylindrical part of the
bubble, the Stokes problem (4.48)– (4.50) with boundary conditions (4.51), (4.54), (4.55)
in the case of fully mobile surfaces and the Stokes problem (4.48)– (4.50) with boundary
conditions (4.51), (4.59), (4.60) in the case of fully immobile surfaces have exact solutions.
The obtained Stokes problems are similar to the problem (U.101)– (U.103) with the follow-
ing differences. First, the problem (4.48)– (4.50) is dimensionless and, secondly, there is an
additional term in (4.50), namely Bo/Ca. Due to these facts, we shall be looking for the
solution of (4.48)– (4.50) in the form

u(r) = 0, v(r) =

(
Ce,1 −

Bo

Ca

)
r2

4
+ Ce,2 ln r + Ce,3, (4.61)

where Ce,1 = dp
dz , Ce,2 and Ce,3 are unknown constants, see Eq. (U.118). Below, we shall

consider the cases of free and tangentially immobile surfaces separately.

4.4.1 Free surfaces

The meniscus running slope angle in the cylindrical part of the bubble is θ = π
2 and, thus,

for fully mobile bubble interface, the tangential boundary condition (4.54) is simplified
considerably

∂v

∂r

∣∣∣∣
r=rc

= 0 (4.62)

and the normal boundary condition (4.55) has the form

pb = p+
1

Ca · rc
for r = rc. (4.63)

From the latter, it follows that Ce,1 = dp
dz = 0 for r = rc. Substituting the general solution

(4.61) in the no-slip boundary condition (4.51), we obtain

Ce,3 = 1 +
1

4

Bo

Ca
(4.64)

or the general solution has the form

u(r) = 0, v(r) = 1 +
Bo

4Ca

(
1− r2

)
+ Ce,2 ln r. (4.65)

Using the simplified form of the tangential boundary condition (4.62), we obtain the exact
solution for the cylindrical part of a fully mobile bubble surface:

v(r) = 1 +
Bo

4Ca

(
1− r2

)
+

Bo

2Ca
r2c ln r. (4.66)

The substitution of the exact solution, Eqs. (4.66), in the integral flow rate condition, Eq.
(4.53), leads to a relationship between the bubble velocity and the physical flow parameters:

W =

1∫
rc

[
2r +

Bo

2Ca

(
r − r3

)
+
Bo

Ca
r2cr ln r

]
dr

= 1− r2c +
Bo

8Ca

(
1− 2r2c + r4c

)
+

Bo

4Ca
r2c

[
r2c (1− 2 ln rc)− 1

]
= 1− r2c +

Bo

8Ca

(
1− 4r2c + 3r4c − 4r4c ln rc

)
(4.67)
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or equivalently

r2cCa = Capm +
Bo

8

(
1− 4r2c + 3r4c − 4r4c ln rc

)
. (4.68)

In the latter, we use the fact∫
r ln rdr =

r2 ln r

2
−

∫
r

2
dr =

r2

4
(2 ln r − 1) . (4.69)

The substitution of Capm = 0 in Eq. (4.68) leads to the Goldsmith and Mason formula
[4.24] for a bubble, on which only gravity acts. Eq. (4.68) gives an exact relationship
between the dimensionless thickness h and capillary number Ca for given values of the
physical numbers Bo and Capm. In the case of small thicknesses of the cylindrical film
layer, h << 1, the asymptotic expansion of Eq. (4.68) reads

Ca =
Capm
r2c

+
Bo

8

(
1

r2c
− 4 + 3r2c − 4r2c ln rc

)
=

(
1 + 2h+ 3h2 + 4h3

)
Capm +

Bo

8

[
1 + 2h+ 3h2 + 4h3

−4 + 3− 6h+ 3h2 − 4

(
−h+

3

2
h2 − h3

3

)]
+O

(
h4

)
= Capm + 2Capmh+ 3Capmh

2 + (Bo+ 6Capm)
2h3

3
+O

(
h4

)
. (4.70)

Due to the fact Ca ≥ 0, we shall look for additional constraints on the values of Capm and
Bo. If the bubble is in rest (Ca = 0), then Capm/Bo can be computed as follows:

Capm
Bo

= −1

8

(
1− 4r2c + 3r4c − 4r4c ln rc

)
. (4.71)

Otherwise, the capillary number Ca is positive (see Def. 4.47) and it follows

Capm +
Bo

8

(
1− 4r2c + 3r4c − 4r4c ln rc

)
> 0. (4.72)

Depending on the sign of Bo, there are two general cases — the Bond number Bo is positive
or negative. If the gravity acts along the z-axis (Bo > 0), then the following inequality:

Capm
Bo

> −1

8

(
1− 4r2c + 3r4c − 4r4c ln rc

)
for Bo > 0 (4.73)

holds true and the point (h,Capm/Bo) lies above the curve (4.71), corresponding to the
bubble at rest (see Fig. 4.6). Moreover, the capillary number Capm could be positive (see
Fig. 4.1a) or negative (see Fig. 4.1b). In case that Bo < 0, then the following inequality:

Capm
Bo

< −1

8

(
1− 4r2c + 3r4c − 4r4c ln rc

)
for Bo < 0 (4.74)

holds true, the point (h,Capm/Bo) is under the curve and the Poiseulle flow acts in direction,
opposite of Oz (Capm > 0), see Fig. 4.6.

This statement follows from the fact that

f1(rc) := 1− 4r2c + 3r4c − 4r4c ln rc (4.75)
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Figure 4.6: Regions of different signs for the Bond number, Bo, depending on the dimen-
sionless wetting film thickness, h, in the case of free surfaces. Solid line corresponds to
Ca = 0.

is positive for rc ∈ (0, 1). In order to prove that let us denote by f2(rc) the following
expression:

f2(rc) := 1− r2c + 2r2c ln rc. (4.76)

Using the fact that f2(rc) decreases for rc ∈ (0, 1) and

f2(rc) > f2(1) = 0 for rc ∈ (0, 1), (4.77)

we conclude that the function f1(rc) decreases for rc ∈ (0, 1) and, thus,

f1(rc) > f1(1) = 0 for rc ∈ (0, 1). (4.78)

4.4.2 Tangentially immobile surfaces

In the case of tangentially immobile surfaces, the normal stress boundary condition (4.60)
is equivalent to (4.63). Then, by substituting the solution (4.65) in the condition for surface
solidification (4.59), the exact solution of the problem in the cylindrical part is obtained in
the form:

u(r) = 0, v(r) = 1 +
Bo

4Ca

(
1− r2

)
−
[
1 +

Bo

4Ca

(
1− r2c

)] ln r

ln rc
. (4.79)

The relationship between the bubble velocity and the physical flow parameters for tangen-
tially immobile surfaces is obtained as follows:
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W =

1∫
rc

{
2r +

Bo

2Ca

(
r − r3

)
− 2

[
1 +

Bo

4Ca

(
1− r2c

)] r ln r
ln rc

}
dr

= 1− r2c +
Bo

8Ca

(
1− 2r2c + r4c

)
+

[
1 +

Bo

4Ca

(
1− r2c

)] [
1− r2c (1− 2 ln rc)

]
2 ln rc

= 1 +
1− r2c
2 ln rc

+
Bo

8Ca

[
1− r4c +

(
1− r2c

)2
ln rc

]
(4.80)

or equivalently

r2c − 1

2 ln rc
Ca = Capm +

Bo

8

[
1− r4c +

(
1− r2c

)2
ln rc

]
. (4.81)

Eq. (4.81) gives an exact relationship between the dimensionless thickness h and capillary
number Ca for given values of the physical numbers Bo and Capm in the case of tangentially
immobile surfaces. For a bubble in rest (Ca = 0), we obtain

Capm
Bo

= −1

8

[
1− r4c +

(
1− r2c

)2
ln rc

]
. (4.82)

Otherwise, in the case Ca > 0, one gets

Capm
Bo

> −1

8

[
1− r4c +

(
1− r2c

)2
ln rc

]
for Bo > 0, (4.83)

Capm
Bo

< −1

8

[
1− r4c +

(
1− r2c

)2
ln rc

]
for Bo < 0, (4.84)

see Fig. 4.7. In order to investigate the sign of the right hand-side of the latter, we introduce
the following function:

f3(rc) := r2c − 1− (1 + r2c ) ln rc. (4.85)

It decreases with the increase of rc for rc ∈ (0, 1), see Eq. (4.77). Thus, it follows

f3(rc) > f3(1) = 0 for rc ∈ (0, 1). (4.86)

Using the latter, we conclude that the right hand-side of (4.84) is negative and, then, Capm
is positive in the case of Bo < 0 (see Fig. 4.7).

Fig. 4.7 shows the regions of positive capillary numbers, Ca > 0, for bubbles with
immobile surfaces. If the gravity acts along the z-axis (Bo > 0), then the Poiseuille flow
in the opposite direction (Capm > 0) always accelerates the bubble motion. The Poiseuille
flow along the z-axis (Capm < 0) decreases the translational bubble velocity, Vb, and the
solid lines in Fig. 4.7 correspond to the bubble in the state of rest. As can be expected, the
gravity decelerates the bubble motion for gz < 0 (Bo < 0). To ensure the bubble translation
with Vb > 0, one should apply an intensive enough pressure gradient to have Capm > 0.
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Chapter 4. Motion of long bubbles

Figure 4.7: Regions of different signs for the Bond number, Bo, depending on the dimen-
sionless wetting film thickness, h, in the case of tangentially immobile surfaces. Solid line
corresponds to Ca = 0.

In the case of small thicknesses of the cylindrical film layer, h << 1, the asymptotic
expansion of Eq. (4.81) reads

Ca =
2 ln rc

(rc + 1) (rc − 1)
Capm −

Bo

4

[
1− r2c +

(
1 + r2c

)
ln rc

]
=

2
[
−h− h2

2 −
h3

3 −
h4

4 +O
(
h5

)]
−2h+ h2

Capm

− Bo

4

{
2h− h2 +

(
2− 2h+ h2

) [
−h− h2

2
− h3

3
+O

(
h4

)]}
=

[
1 + h+

5h2

6
+

2h3

3
+O

(
h4

)]
Capm +

h3

6
Bo+O(h4)

= Capm + Capmh+
5

6
Capmh

2 + (Bo+ 4Capm)
h3

6
+O

(
h4

)
. (4.87)

One sees that the linear term for free bubble surfaces is 2 times greater than that for
immobile interfaces, while that related to the gravity (proportional to h3) is 4 times greater.

4.5 Generalized lubrication approximation

In the lubrication approximation, one assumes that the partial derivatives in z-direction
are smaller than those in the radial direction [4.75, 4.81]. Then, the Stokes problem (4.48),
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(4.49) and (4.50) with the no-slip, the simple flow rate and the tangential boundary condi-
tions could be solved analytically. Obtaining the approximations for the flow variables, the
normal stress boundary condition is used to calculate the bubble shape, which corresponds
to the asymptotic solution of the simplified hydrodynamic problem. Usually one solves only
the zero-order approximation in respective reduced Cartesian coordinate system [4.1] or in
original cylindrical coordinate system [4.80]. Here, the Stokes equations and boundary con-
ditions are formulated in the lubrication approximation including the zero- and first-order
approximations in the following sections. The exact solutions for the zero- and first-order
approximations of the velocity and pressure extend the validity of the expressions for the
flow parameters and increase the accuracy of obtained results, see Section 4.7.1.

4.5.1 Leading-order problem

We assume that the characteristic dimensionless thickness of liquid layer, ε, far from the
bubble apex is a small parameter of the considered problem and, therefore, rescale the radial
coordinate, r, as follows:

r = 1 + εξ, (4.88)

where ξ is the new radial coordinate1. Then, the derivatives ∂
∂r and ∂2

∂r2 are computed:

∂

∂r
=
dξ

dr

∂

∂ξ
=

1

ε

∂

∂ξ
, (4.89)

∂2

∂r2
=

(
dξ

dr

)2
∂2

∂ξ2
=

1

ε2
∂2

∂ξ2
. (4.90)

Due to the change of the radial coordinate, it is important to rescale the velocity components,
depending on the direction, in which they act. Thus, the radial component u (acting in
direction r) is scaled with the small parameter ε and the axial component v (acting in
direction z) is scaled with 1:

û =
u

ε
, v̂ = v. (4.91)

If we choose different scale for the radial component of the velocity, the mass conservation
law would not hold. By substituting (4.91) in (4.48)– (4.50),2 we obtain the following
system:

1

1 + εξ

∂

∂ξ
(rû) +

∂v̂

∂z
= 0, (4.92)

∂p

∂ξ
=

∂

∂ξ

(
1

r

∂

∂ξ
(rû)

)
+ ε2

∂2û

∂z2
, (4.93)

ε2
∂p

∂z
=

1

r

∂

∂ξ

(
r
∂v̂

∂ξ

)
+ ε2

∂2v̂

∂z2
+ ε2

Bo

Ca
. (4.94)

Next, we shall find an appropriate scale for the pressure p:

p̂ = εkp, (4.95)

1We change the variable in such a way in order to ”zoom-in” in the thin film region. In it, the new
variable ξ is in the range [−1, 0].

2Note that system (4.48)– (4.50) is obtained if one finds the dimensionless form of the original problem
by introducing new variables u0 = u/L, v0 = v/R and setting ε to R/L, where u and v are the dimensional
radial and axial components of the velocity and L is the length of the bubble. Therefore, the solution of the
considered problem for small value of the film thickness corresponds to a long bubble (L > R).
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Chapter 4. Motion of long bubbles

using physical considerations. In the current problem, we consider flow, which moves due to
the pressure gradient ∂p

∂z and gravity. The latter means that we cannot neglect the pressure

gradient ∂p
∂z and, therefore, k ≥ 2, see Eq. (4.94). On the other hand, choosing k > 2 leads

to the conclusion ∂p̂
∂ξ = ∂p̂

∂z = 0 or the flow is not moving. Therefore, the appropriate scaling
for p is

p̂ = ε2p. (4.96)

Analogously, the term Bo/Ca, which describes the gravitational force, have to be scaled as

G = ε2
Bo

Ca
. (4.97)

4.5.2 Iteration formulation of the equations

The solution of hydrodynamic problem could be presented in the approximation form

u = u0 + u1 + u2 + · · · , v = v0 + v1 + v2 + · · · , p = p0 + p1 + p2 + · · · , (4.98)

where the subscript “0” denotes the zero-order approximation, “1”—the first correction
term, “2”—the second correction term, etc. Taking into account the leading order of the
variables u, v, p (see Sec. 4.5.1), the zero-order approximations, first and second corrections
uk, vk and pk are defined by the following expressions:

uk = εk+1ũk, vk = εkṽk, pk = εk−2p̃k. (4.99)

Then, the expansions in series for the radial and the axial components of the fluid velocity
and for the pressure with respect to the small parameter, ε, are sought-out in the following
form:

u = εũ0 + ε2ũ1 + ε3ũ2 +O
(
ε4
)
, (4.100)

v = ṽ0 + εṽ1 + ε2ṽ2 +O
(
ε3
)
, (4.101)

p =
p̃0
ε2

+
p̃1
ε

+ p̃2 +O (ε) . (4.102)

In terms of the new variables (4.88), (4.100)–(4.102), the Stokes problem (4.48)– (4.50)
acquires the following form:

1

1 + εξ

∂ [(1 + εξ) ũ0]

∂ξ
+
∂ṽ0
∂z

+ ε

{
1

1 + εξ

∂ [(1 + εξ) ũ1]

∂ξ
+
∂ṽ1
∂z

}
+ ε2

{
1

1 + εξ

∂ [(1 + εξ) ũ2]

∂ξ
+
∂ṽ2
∂z

}
= O

(
ε3
)
, (4.103)

∂p̃0
∂ξ

+ ε
∂p̃1
∂ξ

+ ε2
∂

∂ξ

{
p̃2 −

1

1 + εξ

∂ [(1 + εξ) ũ0]

∂ξ

}
= O

(
ε3
)
, (4.104)

∂p̃0
∂z
− 1

1 + εξ

∂

∂ξ

[
(1 + εξ)

∂ṽ0
∂ξ

]
−G

+ ε

{
∂p̃1
∂z
− 1

1 + εξ

∂

∂ξ

[
(1 + εξ)

∂ṽ1
∂ξ

]}
+ ε2

{
∂p̃2
∂z
− 1

1 + εξ

∂

∂ξ

[
(1 + εξ)

∂ṽ2
∂ξ

]
− ∂2ṽ0

∂z2

}
= O

(
ε3
)
. (4.105)
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4.5. Generalized lubrication approximation

Note that we keep the original form of the operators, acting in the radial direction, in the
system (4.104)–(4.105) for computational convenience.

Next, we shall find the asymptotic expansions of the boundary conditions. Firstly, the
asymptotic expansion of the no-slip boundary conditions (4.51) has the following form:

ũ0 + εũ1 + ε2ũ2 = O
(
ε3
)
, ṽ0 + εṽ1 + ε2ṽ2 = 1 +O

(
ε3
)
at r=1. (4.106)

Analogously, the asymptotic expansion of the simple flow rate condition (4.53) is

1∫
rb

rṽ0dr + ε

1∫
rb

rṽ1dr + ε2
1∫

rb

rṽ2dr =
W

2
+O

(
ε3
)
. (4.107)

Surface parametrization in the new variables

The other boundary conditions depend on the parametrization of the bubble surface. Hence,
the radial coordinate of the bubble profile, rb, is rescaled similarly to Eq. (4.88):

rb = 1 + εξb. (4.108)

In order to compute the expressions for the tangential and normal boundary conditions, we
express cot θ in terms of ε:

cot θ =
cos θ

sin θ
=
drb
dzb

= ε
dξb
dz

. (4.109)

Using the latter, we find the asymptotic expansions of sin2 θ and cos2 θ:

sin2 θ =
1

1 + cot2 θ
=

1

1 + ε2
(

dξb
dz

)2 = 1−
(
dξb
dz

)2

ε2 +O
(
ε3
)
, (4.110)

cos2 θ = 1− sin2 θ =

(
dξb
dz

)2

ε2 +O
(
ε3
)
. (4.111)

Tangential boundary condition in the new variables

The expansion in series of the condition for surface solidification (4.59) has the following
form:

ũ0 + εũ1 + ε2ũ2 = O
(
ε3
)
, ṽ0 + εṽ1 + ε2ṽ2 = O

(
ε3
)
at S, (4.112)

while the expansion — of the tangential stress boundary condition in the case of free surfaces
(4.54) reads

∂ṽ0
∂ξ

+ ε
∂ṽ1
∂ξ

+ ε2
[
∂ũ0
∂z

+
∂ṽ2
∂ξ
− 2

dξb
dz

(
∂ṽ0
∂z
− ∂ũ0

∂ξ

)]
= O

(
ε3
)
at S. (4.113)

The latter is obtained as follows. Firstly, we substitute Eq. (4.88) in Eq. (4.54) and get

cos (2θ)

(
1

ε

∂v

∂ξ
+
∂u

∂z

)
+ sin (2θ)

(
∂v

∂z
− 1

ε

∂u

∂ξ

)
= 0 at S. (4.114)

Multiplying the latter by ε, we obtain(
2 cos2 θ − 1

)(
ε
∂u

∂z
+
∂v

∂ξ

)
+ 2 sin2 θ cot θ

(
ε
∂v

∂z
− ∂u

∂ξ

)
= 0. (4.115)
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Substituting the asymptotic expansions (4.100)–(4.101), (4.109)–(4.111) in Eq. (4.115), one
gets [

2

(
ε
dξb
dz

)2

− 1

]
·
[
ε2
∂ũ0
∂z

+
∂

∂ξ

(
ṽ0 + εṽ1 + ε2ṽ2

)]
+ 2ε2

dξb
dz

(
∂ṽ0
∂z
− ∂ũ0

∂ξ

)
= O

(
ε3
)
at S (4.116)

or equivalently

∂ṽ0
∂ξ

+ ε
∂ṽ1
∂ξ

+ ε2

[
∂ũ0
∂z

+
∂ṽ2
∂ξ
−2dξb

dz

(
∂ṽ0
∂z
− ∂ũ0
∂ξ

)
− 2

(
dξb
dz

)2
∂ṽ0
∂ξ

]
=O(ε3) at S. (4.117)

From the latter, it follows that
∂ṽ0
∂ξ

= 0 at S. (4.118)

Thus, we obtain Eq. (4.113).

Normal boundary condition in the new variables

In terms of the new variables (4.100)–(4.102), the expansion in series of the normal stress
boundary condition acquires the following form:

pb = p0 + p1 + p2 +
2H

Ca
+O (ε) at S (4.119)

in the case of immobile surfaces, see Eq. (4.60), and

pb = p0 + p1 + p2 +
2H

Ca
− 2

∂u0
∂r

+O (ε) at S (4.120)

in the case of free surfaces, see Eq. (4.55). In the next lines, we shall prove that equation
(4.120) holds true. In order to do that, we substitute Eq. (4.88) in Eq. (4.55) and obtain

pb = p+
2H

Ca
− 2 sin2 θ

[
1

ε

∂u

∂ξ
+ cot2 θ

∂v

∂z
− cot θ

(
1

ε

∂v

∂ξ
+
∂u

∂z

)]
at S. (4.121)

Using Eq. (4.102), the latter acquires the form

ε2pb = p̃0 + εp̃1 + ε2
(
p̃2 +

2H

Ca

)
− 2ε sin2 θ

[
∂u

∂ξ
+ ε cot2 θ

∂v

∂z
− cot θ

(
∂v

∂ξ
+ ε

∂u

∂z

)]
at S. (4.122)

Substituting the asymptotic expansions (4.100)–(4.101), (4.110) in (4.122), one concludes

ε2pb = p̃0 + εp̃1 + ε2
(
p̃2 +

2H

Ca

)
− 2ε

[
1 +O(ε2)

](
ε
∂ũ0
∂ξ
− εdξb

dz

∂ṽ0
∂ξ

)
+O(ε3) at S. (4.123)

From the latter and Eq. (4.118), it follows

ε2pb = p̃0 + εp̃1 + ε2
(
p̃2 +

2H

Ca
− 2

∂ũ0
∂ξ

)
+O

(
ε3
)
at S, (4.124)

which is equivalent to Eq. (4.120), see Eq. (4.99).
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4.5.3 Zero-order approximations u0, v0, p0

The zero-order approximation of the Stokes problem (4.103)– (4.105) is

1

1 + εξ

∂ [(1 + εξ) ũ0]

∂ξ
+
∂ṽ0
∂z

= 0, (4.125)

∂p̃0
∂ξ

= 0, (4.126)

∂p̃0
∂z
−G− 1

1 + εξ

∂

∂ξ

[
(1 + εξ)

∂ṽ0
∂ξ

]
= 0. (4.127)

It is more convenient to solve this problem in its original notation. Changing the variables
back to the original ones r, u0, v0, p0, we obtain the problem

1

r

∂

∂r
(ru0) +

∂v0
∂z

= 0, (4.128)

∂p0
∂r

= 0, (4.129)

∂p0
∂z
− 1

r

∂

∂r

(
r
∂v0
∂r

)
− Bo

Ca
= 0. (4.130)

The zero-order approximations of the boundary conditions in the original variables are listed
below:

• the no-slip boundary conditions at the wall:

u0 = 0, v0 = 1 at r=1; (4.131)

• simple flow rate condition3:
1∫

rb

rv0dr =
W

2
; (4.132)

• the tangential stress boundary condition in case of immobile surfaces:

u0 = 0, v0 = 0 at S (4.133)

or in case of free surfaces:
∂v0
∂r

= 0 at S. (4.134)

From (4.129), it is obvious that p0 = p0(z). Then, using Eq. (4.130), the general form of
the velocity along the z-axis v0 is obtained

v0(r, z) =

(
dp0
dz
− Bo

Ca

)
r2

4
+ P0(z) ln r +Q0(z), (4.135)

3Note that the simple flow rate condition is more convenient to use for analytical computations than the
kinematic boundary condition. The main reason is that the kinematic boundary conditions in lubrication
approximation gives a relationship between the zero-order approximations ui and vi, while using the simple
flow rate condition, we could obtain directly an expression for the unknown vi.

106



Chapter 4. Motion of long bubbles

where P0(z) and Q0(z) are unknown functions of z, see Eq. (4.61). Substituting the latter
in the no-slip boundary condition (4.131), we obtain

Q0(z) = 1− 1

4

(
dp0
dz
− Bo

Ca

)
. (4.136)

Hence, an expression for v0(r, z) in the form

v0(r, z) = 1− 1

4

(
dp0
dz
− Bo

Ca

)(
1− r2

)
+ P0(z) ln r. (4.137)

is derived. In order to find P0(z), we substitute the latter in the flow rate condition (4.132)
and obtain consecutively:

W

2
=

1∫
rb

[
r − 1

4

(
dp0
dz
− Bo

Ca

)(
r − r3

)
+ P0(z)r ln r

]
dr

=
1− r2b

2
− 1

16

(
dp0
dz
− Bo

Ca

)(
1− 2r2b + r4b

)
− P0(z)

4

(
1− r2b + 2r2b ln rb

)
. (4.138)

In the latter, we used (4.69). Expressing P0(z) from (4.138), one concludes that

P0(z) =
8
(
1− r2b −W

)
−
(

dp0

dz −
Bo
Ca

) (
1− r2b

)2
4 (1− r2b + 2r2b ln rb)

. (4.139)

holds true. Then, v0(r, z) acquires the form:

v0(r, z) = 1 +
A

4

(
1− r2

)
+
B

4
ln r, (4.140)

where the functions A(z) and B(z) are given by the following definitions:

A(z) =
Bo

Ca
− dp0

dz
, B(z) =

A
(
1− r2b

)2 − 8
(
W − 1 + r2b

)
1− r2b + 2r2b ln rb

. (4.141)

By integrating the continuity equation (4.128) and using (4.69), u0 could be computed as
follows:

u0 = −1

r

∫
r
∂v0
∂z

dr =
1

4r

dA

dz

∫ (
r3 − r

)
dr − 1

4r

dB

dz

∫
r ln rdr

=
1

16

[
dA

dz

(
r3 − 2r

)
− dB

dz
r (2 ln r − 1)

]
+
R0(z)

r
. (4.142)

In order to find the unknown function R0(z), we substitute the obtained result in the no-slip
boundary condition (4.131) and get the following expressions for R0(z):

R0(z) =
1

16

(
dA

dz
− dB

dz

)
(4.143)

and, thus, u0 has the form

u0(r, z) =
dA

dz
·
(
1− r2

)2
16r

− dB

dz
· 1− r

2 + 2r2 ln r

16r
. (4.144)
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Immobile surfaces

In this case, the velocity at the bubble surface is equal to zero, see Eq. (4.133). Using Eqs.
(4.133), (4.140) and (4.141), we obtain

0 = v0 (rb) = 1 +
A

4

(
1− r2b

)
+
A
(
1− r2b )2 − 8(W − 1 + r2b

)
4 (1− r2b + 2r2b ln rb)

ln rb. (4.145)

By expressing A(z) from the latter and substituting it in (4.141), we calculate the derivative
of pressure function p0:

dp0
dz
− Bo

Ca
= −A(z) =

4
[
1− r2b + 2 (1−W ) ln rb

]
(1− r2b ) [1− r2b + (1 + r2b ) ln rb]

. (4.146)

The substitution of the obtained expression, Eq. (4.146), for the function A(z) in the
definition of function B(z), Eq. (4.141), gives an explicit formula for the function B(z)

B(z) = −
4
(
2W − 1 + r2b

)
1− r2b + (1 + r2b ) ln rb

. (4.147)

Free surfaces

In this case, substituting Eq. (4.140) in the zero-order tangential stress boundary condition
(4.134), one obtains

0 =
∂v0
∂r

∣∣∣∣
r=rb

= −2Arb
4

+
A
(
1− r2b

)2 − 8
(
W − 1 + r2b

)
4rb (1− r2b + 2r2b ln rb)

. (4.148)

Analogously to the computation in the case of immobile surfaces, we obtain the following
differential equation:

dp0
dz
− Bo

Ca
= −A(z) =

8
(
1− r2b −W

)
1− 4r2b + 3r4b − 4r4b ln rb

(4.149)

by expressing A(z) from Eq. (4.148). The respective expression for function B(z) follows
from equations (4.141) and (4.149):

B(z) =
16r2b

(
W − 1 + r2b

)
1− 4r2b + 3r4b − 4r4b ln rb

. (4.150)

4.5.4 First correction terms u1, v1, p1

The first correction terms of the Stokes problem (4.103)– (4.105) are obtained similarly to
the zero-order approximation, see Eqs. (4.128)– (4.130). The only difference between the
the computations is that the term Bo/Ca is missing from Eq. (4.130) in the first correction
term. Thus, the general form of v1 is

v1(r, z) =
dp1
dz

r2

4
+ P1(z) ln r +Q1(z), (4.151)

where P1(z) and Q1(z) are unknown functions of z, see Eq. (4.135). In order to find the
unknown functions, we find the first correction terms of the boundary conditions:

108



Chapter 4. Motion of long bubbles

• the no-slip boundary conditions at the wall:

u1 = 0, v1 = 0 at r=1; (4.152)

• simple flow rate condition:
1∫

rb

rv1dr = 0; (4.153)

• the tangential stress boundary condition in case of immobile surfaces:

u1 = 0, v1 = 0 at S (4.154)

or in case of free surfaces:
∂v1
∂r

= 0 at S. (4.155)

Substituting (4.151) in the no-slip boundary condition (4.152), we obtain the following
expression for Q1(z):

Q1(z) = −
1

4

dp1
dz

(4.156)

and then v1(r, z) acquires the form

v1(r, z) = −
1

4

dp1
dz

(
1− r2

)
+ P1(z) ln r. (4.157)

Analogously to finding P0(z), we substitute (4.157) in the flow rate condition (4.153) and
obtain

0 = − 1

16

dp1
dz

(
1− r2b

)2 − P1(z)

4

(
1− r2b + 2r2b ln rb

)
, (4.158)

P1(z) = −
(
1− r2b

)2
4 (1− r2b + 2r2b ln rb)

· dp1
dz

. (4.159)

Then, v1(r, z) acquires the form

v1(r, z) =
A1

4

(
1− r2

)
+
B1

4
ln r, (4.160)

where the functions A1(z) and B1(z) are given by the following definition:

A1(z) = −
dp1
dz

, B1(z) =
A1

(
1− r2b

)2
1− r2b + 2r2b ln rb

. (4.161)

Analogously to the zero-order approximation, we obtain the following expression for u1:

u1(r, z) =
dA1

dz
·
(
1− r2

)2
16r

− dB1

dz
· 1− r

2 + 2r2 ln r

16r
. (4.162)
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Immobile surfaces

In case of immobile surfaces, the velocity at the bubble surface is equal to zero, i.e

0 = v1 (rb) =
A1

4

(
1− r2b

)
+

A1

(
1− r2b

)2
4 (1− r2b + 2r2b ln rb)

ln rb. (4.163)

The latter holds true for all points (rb, zb) on the bubble surface and, thus, A1 ≡ 0. From
Eq. (4.161), it follows that B1 ≡ 0 and, therefore,

u1 = v1 ≡ 0. (4.164)

Using equation (4.161) and (4.164), we obtain the following differential equation:

dp1
dz

= 0, (4.165)

which could be solved directly.

Free surfaces

In the case of free surfaces, substituting general solution (4.160) in the first-order tangential
stress boundary condition (4.155), one obtains

0 =
∂v1
∂r

∣∣∣∣
r=rb

= −A1 rb
2

+
A1

(
1− r2b

)2
4rb (1− r2b + 2r2b ln rb)

. (4.166)

Using similar reasoning to the previous case, one concludes that Eqs. (4.164) and (4.165)
hold also for free surfaces.

4.5.5 Second correction terms u2, v2, p2

The second correction terms are obtained by solving the Stokes problem (4.103), (4.104)
and (4.105)

1

1 + εξ

∂ [(1 + εξ) ũ2]

∂ξ
+
∂ṽ2
∂z

= 0, (4.167)

∂

∂ξ

{
p̃2 −

1

1 + εξ

∂ [(1 + εξ) ũ0]

∂ξ

}
= 0, (4.168)

∂p̃2
∂z
− 1

1 + εξ

∂

∂ξ

[
(1 + εξ)

∂ṽ2
∂ξ

]
− ∂2ṽ0

∂z2
= 0. (4.169)

As we said, it is more convenient to solve this problem in its original variables, i.e. r, u2, v2, p2.
Using them, we obtain the problem

1

r

∂ (ru2)

∂r
+
∂v2
∂z

= 0, (4.170)

∂

∂r

[
p2 −

1

r

∂ (ru0)

∂r

]
= 0, (4.171)

∂p2
∂z
− 1

r

∂

∂r

(
r
∂v2
∂r

)
− ∂2v0

∂z2
= 0. (4.172)

In order to close the system, we add the second correction terms of the boundary conditions,
i.e.
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Chapter 4. Motion of long bubbles

• the no-slip boundary conditions at the wall:

u2 = 0, v2 = 0 at r=1; (4.173)

• simple flow rate condition:
1∫

rb

rv2dr = 0; (4.174)

• the tangential stress boundary condition in case of immobile surfaces:

u2 = 0, v2 = 0 at S (4.175)

or in case of free surfaces:

∂u0
∂z

+
∂v2
∂r
− 2

drb
dz

(
∂v0
∂z
− ∂u0

∂r

)
= 0 at S; (4.176)

By integrating Eq. (4.171) with respect to r, we obtain

p2(r, z) =
1

r

∂

∂r
(ru0) + q2(z), (4.177)

where q2(z) is unknown function of z. Using the continuity equation (4.128), one gets the
following expression for p2:

p2(r, z) = q2(z)−
∂v0
∂z

. (4.178)

Taking into account Eqs. (4.140), (4.172), (4.178), we obtain consecutively

1

r

∂

∂r

(
r
∂v2
∂r

)
=
∂p2
∂z
− ∂2v0

∂z2
=
dq2
dz
− 2

∂2v0
∂z2

=
dq2
dz
− 1

2

d2A

dz2
(
1− r2

)
− 1

2

d2B

dz2
ln r. (4.179)

In order to find an expression for v2, we integrate the latter with respect to r twice

∂

∂r

(
r
∂v2
∂r

)
=
dq2
dz

r − 1

2

d2A

dz2
(
r − r3

)
− 1

2

d2B

dz2
r ln r, (4.180)

∂v2
∂r

=
dq2
dz

r

2
− 1

8

d2A

dz2
(
2r − r3

)
− 1

8

d2B

dz2
(2r ln r − r) + C(z)

r
(4.181)

and finally obtain

v2 =
dq2
dz

r2

4
+

1

32

d2A

dz2
(
r4 − 4r2

)
− 1

8

d2B

dz2
(
r2 ln r − r2

)
+ C(z) ln r +Q2(z), (4.182)

where C(z) and Q2(z) are unknown functions of z, see Eq. (4.69). In order to find Q2(z),
one substitutes (4.182) in the no-slip boundary condition (4.173) and gets the following
expression for Q2:

Q2(z) = −
1

4

dq2
dz

+
3

32

d2A

dz2
− 1

8

d2B

dz2
. (4.183)
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4.5. Generalized lubrication approximation

Using the latter, an expression for v2 is obtained

v2 =
1

4

dq2
dz

(
r2 − 1

)
+

1

32

d2A

dz2
(
r4 − 4r2 + 3

)
− 1

8

d2B

dz2
(
1− r2 + r2 ln r

)
+ C(z) ln r. (4.184)

Substituting the general form of v2, Eq. (4.184), in the simple flow rate condition (4.174),
we get

0 =

{
1

16

dq2
dz

(
r2 − 1

)2
+

1

32

d2A

dz2

(
r6

6
− r4 + 3r2

2

)
−1

8

d2B

dz2

[
r2

2
− r4

4
+
r4

16
(4 ln r − 1)

]
+
C(z)r2

4
(2 ln r − 1)

}∣∣∣∣1
r=rb

= − 1

16

dq2
dz

(
r2b − 1

)2 − 1

192

d2A

dz2
[
r6b − 6r4b + 9r2b − 4

]
+

1

128

d2B

dz2
(
8r2b − 5r4b + 4r4b ln rb − 3

)
− C(z)

4

(
1− r2b + 2r2b ln rb

)
. (4.185)

In the latter, we used∫
rk ln rdr =

1

k + 1

∫
ln rd

(
rk+1

)
=

1

k + 1

(
rk+1 ln r −

∫
rkdr

)
=

rk+1

(k + 1)
2 [(k + 1) ln r − 1] , (4.186)

which is valid for k ̸= −1. Expressing C(z) from equation (4.185), one obtains

C(z) = −
(
1− r2b

)2
4 (1− r2b + 2r2b ln rb)

· dq2
dz

+

(
1− r2b

)2 (
4− r2b

)
48 (1− r2b + 2r2b ln rb)

· d
2A

dz2

− 3− 8r2b + 5r4b − 4r4b ln rb
32 (1− r2b + 2r2b ln rb)

· d
2B

dz2
. (4.187)

Immobile surfaces.

In case of immobile surfaces, the velocity at the bubble surface is equal to zero, i.e. v2 (rb) =
0 (see Eq. (4.175)):

0 = v2 (rb) =
1

4

dq2
dz

[
r2b − 1−

(
1− r2b

)2
1− r2b + 2r2b ln rb

ln rb

]

− d2A

dz2

[
−r4b + 4r2b − 3

32
−

(
1− r2b

)2 (
4− r2b

)
48 (1− r2b + 2r2b ln rb)

ln rb

]

− 1

8

d2B

dz2

[
1− r2b + r2b ln rb +

3− 8r2b + 5r4b − 4r4b ln rb
4 (1− r2b + 2r2b ln rb)

ln rb

]
. (4.188)
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or equivalently

dq2
dz

=
3
(
3− 4r2b + r4b

)
+ 4

(
2 + 2r2b − r4b

)
ln rb

24 [1− r2b + (1 + r2b ) ln rb]
· d

2A

dz2

−
4
(
1− r2b

)2
+

(
3 + 4r2b − 7r4b + 4r4b ln rb

)
ln rb

8 (1− r2b ) [1− r2b + (1 + r2b ) ln rb]
· d

2B

dz2
. (4.189)

Free surfaces.

The tangential stress boundary condition in case of free surfaces, Eq. (4.176), written for
v2 reads:

∂v2
∂r

= 2
drb
dz

(
∂v0
∂z
− ∂u0

∂r

)
− ∂u0

∂z
at S. (4.190)

The substitution of the zero-order solutions (4.140) and (4.144), the general solution (4.184)
and the expression for C(z), Eq. (4.187), in the latter leads to the respective differential
equation for q2:

dq2
dz

=
7− 30r2b + 33r4b − 10r6b + 6r2b

(
1− 6r2b + 3r4b

)
ln rb

12 (1− 4r2b + 3r4b − 4r4b ln rb)
· d

2A

dz2

−
5− 16r2b + 11r4b + 4r2b

(
4− 7r2b

)
ln rb + 24r4b ln

2 rb

8 (1− 4r2b + 3r4b − 4r4b ln rb)
· d

2B

dz2

+

(
1− r2b + 2r2b ln rb

)
2rb (1− 4r2b + 3r4b − 4r4b ln rb)

[(
r2b − 1

) (
1 + 7r2b

)
· dA
dz

+
(
1− r2b − 6r2b ln rb

)
· dB
dz

]
· drb
dz

at S. (4.191)

The obtained solutions of the hydrodynamic problem in the generalized lubrication ap-
proximation are used to solve the boundary value problem for the bubble shape, using the
Ratulowski and Chang approach [4.80].

4.6 Boundary value problem, modeling the shape of
long bubbles

4.6.1 General formulation

As we mentioned before, if approximations of u, v and p at bubble surface S are obtained,
then the bubble shape in the case of free surfaces could be found as a solution of the system
(4.55)–(4.58) with appropriate initial conditions, applied at the bubble apex. In section 4.5,
we found approximations of u, v and p at bubble surface S in the case of small thickness of
the liquid layer, ε. Then, an approximation of the normal stress boundary condition (4.55)
could be obtained in the form

pb = p0 + p1 + q2 −
∂v0
∂z
− 2

∂u0
∂r

+
2H

Ca
at S (4.192)

by substituting Eq. (4.178) in Eq. (4.120) and neglecting the terms of higher order. We have
already computed expressions for u0, Eq. (4.144), and v0 at S, Eq. (4.140). But, in order
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4.6. Boundary value problem

to find expressions for p0 and q2, one shall solve additionally differential equations, whose
right-hand side depends on rb and, therefore, are coupled with the rest of the equations in
the problem, see Eqs. (4.149) and (4.191). As p0 and q2 depend only on the z-coordinate,
then at the bubble surface, z = zb(s), p0 and q2 are functions of the arc length of the bubble
surface s. Using this fact, we differentiate Eq. (4.192) with respect to s:

− 1

Ca

d(2H)

ds
=
dp0
ds

+
dq2
ds
− d

ds

(
∂v0
∂z

+ 2
∂u0
∂r

)
at S (4.193)

and substitute the obtained expressions for u0, v0, dp0/ds and dq2/ds in the right-hand side
of the latter in order to reduce the number of equations in the system. Then one could
solve the system (4.56)– (4.58), (4.193) instead of the problem (4.55)–(4.58) in case of free
surfaces. For tangentially immobile surfaces, Eq. (4.193) is replaced with

− 1

Ca

d(2H)

ds
=
dp0
ds

+
dq2
ds
− d

ds

(
∂v0
∂z

)
at S. (4.194)

A minor issue in Eqs. (4.193) and (4.194) is that the notation d(2H)/ds is not really
convenient. Moreover, the variables, which are usually used in the fluid dynamics models,
are the flow velocity, pressure and density. Thus, we introduce the dimensionless pressure
difference function, ps(s), which accounts for the dynamic pressure contribution at the
bubble surface, and we shall exclude the mean curvature H from Eqs. (4.58), (4.193) and
(4.194). In order to do that, the non-dimensionalized Young–Laplace equation of capillary
is used

2H = −Caps, (4.195)

which gives a relationship between the dynamic pressure difference, the mean curvature of
the bubble and the surface tension4, see [4.2, 4.87]. Thus, the following nonlinear system of
four ordinary differential equations for the bubble shape:

drb
ds

= cos θ, (4.196)

dzb
ds

= sin θ, (4.197)

dθ

ds
= −Caps −

sin θ

rb
, (4.198)

dps
ds

= F (rb, θ, ps, Bo, Capm) , (4.199)

is obtained, where F is the right hand-side of Eqs. (4.193) or (4.194), see Eqs. (4.56) –
(4.58), (4.193)– (4.195). In the next subsections, we shall find the concrete form of the
function F in the case of free surfaces or tangentially immobile surfaces.

4The dimensional Young–Laplace equation of capillarity has the form 2H σ = −ps. Its dimensionless
form is obtained by using Eqs. (4.44), (4.46)–(4.47).
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Concrete form of F in the case of tangentially immobile interfaces

In case of tangentially immobile surfaces, we obtain the following expression for the function
F :

dps
ds

=
dp0
dz

sin θ +

(
dq2
dz
− ∂2v0

∂z2

)
sin θ − ∂

∂r

(
∂v0
∂z

)
cos θ at S, (4.200)

see Eqs. (4.194), (4.196)–(4.197). From Eqs. (4.140), (4.144), (4.189), it follows that the

derivatives dq2
dz ,

∂2v0
∂z2 and ∂2v0

∂r∂z have the following form:

dq2
dz

= qA2 ·
d2A

dz2
+ qB2 ·

d2B

dz2
at S, (4.201)

∂2v0
∂z2

=
1− r2b

4
· d

2A

dz2
+

ln rb
4
· d

2B

dz2
at S, (4.202)

∂2u0
∂r∂z

= −rb
2
· dA
dz

+
1

4rb
· dB
dz

at S, (4.203)

where qA2 and qB2 are the coefficients in front of d2A
dz2 and d2B

dz2 in Eq. (4.189). The explicit
expressions for the first and second derivatives of A(z) and B(z) with respect to z are given
below:

dA

dz
=
dA

drb
cot θ,

dB

dz
=
dB

drb
cot θ, (4.204)

d2A

dz2
=

d

dz

(
dA

drb
cot θ

)
=
d2A

dr2b
cot θ +

dA

drb

d (cot θ)

dz

=
d2A

dr2b
cot2 θ − dA

drb

1

sin3 θ

dθ

ds
, (4.205)

d2B

dz2
=
d2B

dr2b
cot2 θ − dB

drb

1

sin3 θ

dθ

ds
, (4.206)

see Eq. (4.196), (4.197). Substituting Eqs. (4.201)–(4.206) in Eq. (4.200), we obtain

F = −as(rb)
Ca

sin θ − bs(rb)

sin2 θ

dθ

ds
+ cs(rb)

cos2 θ

sin θ
, (4.207)

where

as (rb) = −Ca
dp0
dz

, (4.208)

bs (rb) =

(
qA2 −

1− r2b
4

)
dA

drb
+

(
qB2 −

ln rb
4

)
dB

drb
, (4.209)

cs (rb) =

(
qA2 −

1− r2b
4

)
d2A

dr2b
+
rb
2

dA

drb

+

(
qB2 −

ln rb
4

)
d2B

dr2b
− 1

4rb

dB

drb
. (4.210)

After lengthy computations, we obtain the exact form of the functions as (rb), bs (rb) and
cs (rb)

as (rb) = −
4
[(
1− r2b

)
Ca+ 2Capm ln rb

]
(1− r2b ) [1− r2b + (1 + r2b ) ln rb]

−Bo; (4.211)

115



4.6. Boundary value problem

bs (rb) =

(
1− r2b

)2 − 2 (1−W )
(
1− r2b + 2r2b ln rb

)
6rb (1− r2b )

2
[1− r2b + (1 + r2b ) ln rb]

3

×
[
3
(
5r2b − 3

) (
1− r2b

)2
+
(
−13 + 14r2b + 23r4b

) (
1− r2b

)
ln rb

+ 2
(
−3 + 5r2b + 5r4b + 5r6b

)
ln2 rb

]
; (4.212)

cs (rb) =
1

6r2b [1− r2b + (1 + r2b ) ln rb]
4 ·

{
21

(
1 + r2b

) (
1− r2b

)3
+ 12

(
3 + 11r2b + 3r4b

) (
1− r2b

)2
ln rb

+
(
25 + 131r2b + 25r4b

) (
1− r2b

)
ln2 rb

+
(
6 + 52r2b + 28r4b + 52r6b + 6r8b

)
ln3 rb

+
2 (W − 1)

(1− r2b )
3 ·

[
3
(
7− 12r2b + 13r4b

) (
1− r2b

)4
+ 2

(
18 + 7r2b + 4r4b + 67r6b

) (
1− r2b

)3
ln rb

+
(
25 + 14r2b + 228r4b + 122r6b + 187r8b

) (
1− r2b

)2
ln2 rb

+ 2
(
3− 2r2b + 86r4b + 168r6b + 71r8b + 58r10b

) (
1− r2b

)
ln3 rb

− 4r2b (3− 21r2b − 12r4b − 52r6b − 7r8b − 7r10b ) ln4 rb
]}
. (4.213)

The function as (rb) corresponds to the zero-order solution and the value of as (rc) is equal
to zero at the cylindrical part, rb = rc, see Eq. (4.81). Using Eq. (4.81) twice, the derivative
of as at the cylindrical part of the bubble, a′s (rc), is computed as follows:

a′s(rc) =

−4
(
−2Carc + 2Capm

1

rc

)
(1− r2c ) [1− r2c + (1 + r2c ) ln rc]

−
4
[(
1− r2c

)
Ca+ 2Capm ln rc

] (
1− 4r2c + 3r4c − 4r4c ln rc

)
(1− r2c )

2
[1− r2c + (1 + r2c ) ln rc]

2

=
8
(
r2cCa− Capm

)
−Bo

(
1− 4r2c + 3r4c − 4r4c ln rc

)
rc (1− r2c ) [1− r2c + (1 + r2c ) ln rc]

= −

(
1− r2c + 2r2c ln rc

) [
8Capm +Bo

(
1− r2c

)2]
rc (1− r2c )

2
[1− r2c + (1 + r2c ) ln rc]

. (4.214)

Concrete form of F in case of free surfaces

In case of free surfaces, we obtain the following expression for the function F :

dps
ds

=
dp0
dz

sin θ +

(
dq2
dz
− ∂2v0

∂z2
− 2

∂2u0
∂z∂r

)
sin θ −

(
∂2v0
∂r∂z

+ 2
∂2u0
∂r2

)
cos θ at S, (4.215)

see Eqs. (4.193), (4.196), (4.197). Using Eqs. (4.140), (4.144), (4.191), we obtain

dq2
dz

= qA2 ·
d2A

dz2
+ qB2 ·

d2B

dz2
+

(
qA1

dA

dz
+ qB1

dB

dz

)
cot θ, (4.216)
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∂2u0
∂z∂r

=

(
1− r2b

) (
−1− 3r2b

)
16r2b

· d
2A

dz2
− r2b − 1 + 2r2b ln rb

16r2b
· d

2B

dz2
, (4.217)

∂2u0
∂r2

=
1 + 3r4b
8r3b

· dA
dz

+
−1− r2b

8r3b
· dB
dz
, (4.218)

where q1A, q1B , q2A, q2B are the coefficients in front of dA
dz

drb
dz ,

dB
dz

drb
dz ,

d2A
dz2 ,

d2B
dz2 in Eq.

(4.191), respectively. The explicit expression for the derivative of ps with respect to s has
the general form (4.207), where the functions as (rb), bs (rb) and cs (rb) are computed as

as (rb) = −Ca
dp0
dz

, (4.219)

bs (rb) =

(
qA2 +

1− r4b
8r2b

)
dA

drb
+

(
qB2 +

r2b − 1

8r2b

)
dB

drb
, (4.220)

cs (rb) =

(
qA2 +

1− r4b
8r2b

)
d2A

dr2b
+

(
qB2 +

r2b − 1

8r2b

)
d2B

dr2b

+

(
qA1 −

1 + r4b
4r3b

)
dA

drb
+

(
qB1 +

1

4r3b

)
dB

drb
, (4.221)

see Eqs. (4.202)–(4.206), (4.216)–(4.218). After lengthy computations, we obtain the exact
form of the functions as (rb), bs (rb) and cs (rb)

as (rb) = −
8
(
Capm − r2bCa

)
1− 4r2b + 3r4b − 4r4b ln rb

−Bo; (4.222)

bs (rb) =
2

3rb (1− 4r2b + 3r4b − 4r4b ln rb)
3

×
{(

3− 4r2b − 44r4b + 88r6b − 67r8b
) (

1− r2b
)2

+ 4r4b
(
3− 49r2b + 53r4b − 31r6b

) (
1− r2b

)
ln rb

− 96r8b
(
3− 3r2b + r4b

)
ln2 rb

+ 2 (W − 1) ·
[(
3 + 4r2b − 77r4b + 82r6b

) (
1− r2b

)2
+ 4r2b

(
3− 7r2b − 79r4b + 95r6b

) (
1− r2b

)
ln rb

− 24r6b
(
3 + 18r2b − 23r4b

)
ln2 rb − 288r10b ln3 rb

]}
; (4.223)

cs (rb) =
2

3r2b (1− 4r2b + 3r4b − 4r4b ln rb)
4

×
{(
−3 + 53r2b − 168r4b − 4r6b − 141r8b + 407r10b

) (
1− r2b

)3
+ 8r4b

(
18− 105r2b − 70r4b + 71r6b + 98r8b

) (
1− r2b

)2
ln rb

+ 48r8b
(
−25− 27r2b + 3r4b + 21r6b

) (
1− r2b

)
ln2 rb

+ 384r12b
(
−9 + 3r2b + r4b

)
ln3 rb

− 2 (W − 1) ·
[(
3− 73r2b + 235r4b + 205r6b − 490r8b

) (
1− r2b

)3
− 12r2b

(
1 + 17r2b − 134r4b − 43r6b + 187r8b

) (
1− r2b

)2
ln rb

− 8r6b
(
15− 451r2b − 109r4b + 533r6b

) (
1− r2b

)
ln2 rb

+ 576r10b
(
6 + r2b − 6r4b

)
ln3 rb − 1152r14b ln4 rb

]}
. (4.224)
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As it should be, as (rc) = 0 in the cylindrical part of the bubble shape, see Eq. (4.68). The
derivative a′s(rc) has the following form:

a′s(rc) =
16Carc

1− 4r2c + 3r4c − 4r4c ln rc

+
8
(
Capm − r2cCa

) (
−8rc − 8r3c − 16r3c ln rc

)
(1− 4r2c + 3r4c − 4r4c ln rc)

2

=
8rc

[
2Ca+Bo

(
1− r2c + 2r2c ln rc

)]
1− 4r2c + 3r4c − 4r4c ln rc

=
2
[
8Capm +Bo

(
1− r4c + 4r4c ln rc

)]
rc (1− 4r2c + 3r4c − 4r4c ln rc)

. (4.225)

4.6.2 Initial conditions

In order to close the system (4.196)–(4.199), we shall add four initial conditions for the four
unknowns in the system rb, zb, θ and ps. The most natural choice for the initial point is the
bubble apex. Thus, we could add the following initial conditions for the variables rb, zb, θ:

rb(0) = zb(0) = θ(0) = 0, (4.226)

but the initial condition for ps at the bubble apex is not clear. Because of that, we shall
find appropriate initial conditions at the cylindrical part of the bubble. But before focusing
on that, we shall investigate the system (4.196)–(4.199) in detail. First, it is obvious that
Eq. (4.197) is not coupled with the rest of the system. This means that the system (4.196),
(4.198), (4.199) could be solved and, then, the axial coordinate of bubble surface zb could be
found, using numerical integration of Eq. (4.197). Second, changing the initial conditions
for zb leads to translation of the bubble5. Thus, we set the initial condition for zb to
zb(sin) = zin, where zin does not depend on the values of the rest of the initial conditions.

In the next lines, we find appropriate initial conditions for the rest of the variables, i.e.
rb, θ, ps. In order to do that, we write the system (4.196), (4.198), (4.199) in vector form:

du

ds
= F(u) (4.232)

where

u = (rb, θ, ps)
T
, (4.233)

F(u) =
(
cos θ, −Caps −

sin θ

rb
, F (rb, θ, ps, Bo, Capm)

)T

. (4.234)

5 Let us denote by zb,k the solution of the
Cauchy problem:

dzb,k

ds
= sin θ, (4.227)

zb,k(sin) = zk,0, (4.228)

where θ is a known function and zk,0 are known
constants. Then, one obtains

d

ds
(zb,2 − zb,1) = 0, (4.229)

(zb,2 − zb,1)
∣∣
s=sin

= z2,0 − z1,0. (4.230)

The solution of the latter is

zb,2 − zb,1 = z2,0 − z1,0. (4.231)

Thus, changing the initial conditions in the prob-
lem leads to translation of the bubble.
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In the latter, the transpose of u is denoted by uT and the function F has the following form:

F = −as (rb)
Ca

sin θ +
bs (rb)

sin2 θ

(
Caps +

sin θ

rb

)
+ cs (rb)

cos2 θ

sin θ
, (4.235)

see Eqs. (4.200) and (4.198). It is obvious that the considered system of equations (4.232)
has a constant solution

u0 =

(
rc,

π

2
, − 1

Carc

)T

(4.236)

at the cylindrical part of the bubble (F(u0) = 0). Then, the expressions for initial conditions
at the cylindrical part of the bubble are derived, considering small perturbations u1 =
(rb,1, θ1, ps,1)

T
around the cylindrical shape, i.e.:

u = u0 + u1. (4.237)

Let us fix the initial condition for rb,1, i.e.

rb,1(sin) = −δ, (4.238)

where 0 < δ << 1. In the next lines, we shall derive appropriate expressions for the other
conditions in terms of δ. In order to do that, the system (4.232) is linearized around the
exact solution u0, i.e.

du1

ds
= F(u0) +∇F(u0)u1 = ∇F(u0)u1, (4.239)

where ∇ is the gradient operator and it has the following explicit form:

∇F(u0) =

 0 −1 0
1
r2c

0 −Ca
−a′

s(rc)
Ca − bs(rc)

r2c
0 Cabs(rc)

 . (4.240)

Thus, the linear form of the studied system of equations (4.196), (4.198), (4.199) reads

drb,1
ds

= −θ1, (4.241)

dθ1
ds

=
rb,1
r2c
− Caps,1, (4.242)

dps,1
ds

= −a
′
s(rc)

Ca
rb,1 − bs(rc)

dθ1
ds

. (4.243)

Let us recall, that our aim is to find appropriate initial conditions at the cylindrical part of
the bubble. At it, the bubble shape is described well by the the zero-order approximation
and, thus, it is unnecessary to use the correction terms in the linearized system (see Section
4.5). Then, we can neglect bs(rc), which comes from the second-order correction term, see
Eqs. (4.192) and (4.219). Therefore, we obtain the following system:

drb,1
ds

= −θ1, (4.244)

dθ1
ds

=
rb,1
r2c
− Caps,1, (4.245)

dps,1
ds

= −a
′
s(rc)

Ca
rb,1 (4.246)
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Expressing θ1 from Eq. (4.244) and substituting it in Eq. (4.245), we obtain

ps,1 =
1

Ca

(
rb,1
r2c

+
d2rb,1
ds2

)
. (4.247)

Using Eqs. (4.246), (4.247), one gets

1

Ca

(
1

r2c

drb,1
ds

+
d3rb,1
ds3

)
= −a

′
s(rc)

Ca
rb,1, (4.248)

r3c
d3rb,1
ds3

+ rc
drb,1
ds

+ arb,1 = 0, (4.249)

where a is computed as follows:

a = r3ca
′
s(rc) =

2r2c
[
8Capm +Bo

(
1− r4c + 4r4c ln rc

)]
1− 4r2c + 3r4c − 4r4c ln rc

(4.250)

for free surfaces and

a =
r2c

(
1− r2c + 2r2c ln rc

) [
8Capm +Bo

(
1− r2c

)2]
(1− r2c )

2
[r2c − 1− (1 + r2c ) ln rc]

(4.251)

for tangentially immobile surfaces, see Eqs. (4.214) and (4.225). Eq. (4.249) is a third-
order homogeneous differential equation and it has an exact solution. In order to find it, we
compute its characteristic polynomial equation

(λrc)
3 + λrc + a = 0, (4.252)

Due to the fact that the polynomial in Eq. (4.252) is increasing in (−∞,+∞), the cubic
equation has three solutions — one real λ1 and two conjugate complex numbers λ2, λ3 =
a2 ± ia3. The real root could be calculated, using the formula

λ1rc =

[(
a2

4
+

1

27

)1/2

− a

2

]1/3

−

[(
a2

4
+

1

27

)1/2

+
a

2

]1/3

. (4.253)

Then, the general solution of Eq. (4.249) has the form

rb,1(s) = Ci,1e
λ1s + Ci,2e

a2s cos(a3s) + Ci,3e
a2s sin(a3s), (4.254)

where Ci,1, Ci,2 and Ci,3 are unknown constants. There are two general cases for the
solution, depending on the signs of λ1 and a2. If a < 0, then Eq. (4.252) has one positive
real root and two conjugate complex roots with negative real part6. We are looking for
small perturbations of the solutions at the cylindrical part of the bubble, then Ci,1 = 0
(Otherwise, lims→−∞ rb,1(s) = −∞). Then, the obtained solution is a non-physical one —

6Using Vieta’s formulae, we obtain

λ1 + λ2 + λ3 = λ1 + 2a2 = 0, (4.255)

λ1λ2λ3 = λ1

(
a22 + a23

)
= −

a

r3c
. (4.256)

If a < 0, then it follows from Eq. (4.256) that λ1 > 0 (0 < rc < 1). Using Eq. (4.255), we conclude a2 < 0.
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the capillary surface is periodic with an increasing amplitude for s < sin. If a > 0, then Eq.
(4.252) has one negative real root and two conjugate complex roots with positive real part.
Due to the fact that we are looking for small perturbations of the solution, we conclude that
Ci,2 = Ci,3 = 0 and the solution has the form

rb,1(s) = Ci,1e
λ1s. (4.257)

Using (4.238), we obtain
rb,1(s) = −δ eλ1(s−sin). (4.258)

Substituting the latter in Eqs. (4.244) and (4.247), one gets

θ1 = − d

ds

[
−δe−λ1(sin−s)

]
= λδe−λ1(sin−s), (4.259)

ps,1 =
1

Ca

[
−δe−λ1(sin−s)

r2c
− λ21δe−λ1(sin−s)

]
. (4.260)

Thus, the initial conditions for the boundary value problem in the case of long bubbles
acquire the form

rb(sin) = rc − δ, zb(sin) = zin, (4.261)

θ(sin) =
π

2
+ λδ, ps(sin) = −

1

Carc
−

(
λ2 +

1

r2c

)
δ

Ca
, (4.262)

where λ := λ1 is the negative root of equation (4.252) and it is computed via the formula
(4.253), see Eqs. (4.237), (4.238), (4.259), (4.260).

4.6.3 Regions of validity of parameters

As we derive in the previous section, long bubbles appear only if a > 0. In the next lines,
we shall find constraints for the ratio

Capm

Bo in order long bubbles to appear.

Free surfaces

The expression for a in the case of free surfaces is given in Eq. (4.250). From the condition
a > 0, we conclude that

8Capm +Bo
(
1− 4r4c + 4r4c ln rc

)
> 0 for rc ∈ (0, 1), (4.263)

see Eqs. (4.78), (4.250). Moreover, if a = 0, it follows

Capm
Bo

= −1− 4r4c + 4r4c ln rc
8

for Bo ̸= 0. (4.264)

For Bo > 0, the condition a > 0 is equivalent to

Capm
Bo

> −1− 4r4c + 4r4c ln rc
8

(4.265)

and for Bo > 0 — to

Capm
Bo

< −1− 4r4c + 4r4c ln rc
8

. (4.266)
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Taking into account the conditions (4.73)–(4.74) and the following inequality:

−1− 4r4c + 4r4c ln rc
8

< −1− 4r2c + 3r4c − 4r4c ln rc
8

for rc ∈ (0, 1) (4.267)

one obtains the regions of possible solutions of the considered problem in the case of free
surfaces, see Fig. 4.8. If a long bubble appears and gravity acts along the z-axis (Bo >
0), then the point with coordinates h and Capm/Bo lies above the curve (4.71), which
corresponds to a bubble at rest (see Figs. 4.6 and 4.8). In the case that gravity acts against
the z-axis (Bo < 0), a long bubbles appear only if the point (h,Capm/Bo) is under the
curve (4.264) (see Fig. 4.8). For values of the parameters, which correspond to points, lying
between the curves (4.71) and (4.264), there is no solution of the problem.

Figure 4.8: Regions of physical parameters for possible elongated bubble profiles for gz > 0
(Bo > 0) and gz < 0 (Bo < 0) as functions of Capm and dimensionless wetting film thickness
h in the case of free surfaces. Solid lines correspond to Ca = 0 and dashed lines to a = 0.

Immobile surfaces

The expression for a in the case of tangentially immobile surfaces is given in Eq. (4.251).
The condition a > 0 is equivalent to the following inequality:

8Capm +Bo
(
1− r2c

)2
> 0, (4.268)

see Eq. (4.78). The curve

Capm
Bo

= −
(
1− r2c

)2
8

(4.269)

122



Chapter 4. Motion of long bubbles

corresponds to a = 0. Taking into account conditions (4.83)–(4.84) and the following in-
equality:

−
(
1− r2c

)2
8

< −1

8

[
1− r4c +

(
1− r2c

)2
ln rc

]
for 0 < rc < 1, (4.270)

one obtains the regions of the possible solutions (see Fig. 4.9). If the gravity acts along the
z-axis (Bo > 0), then a long bubble appears only if the point (h,Capm/Bo) lies above the
curve (4.82), which corresponds to Ca = 0. For Bo < 0, the existence of the long bubble
for particular values of h and Capm/Bo is verified if and only if the point (h,Capm/Bo) lies
under the curve (4.269).

Figure 4.9: Regions of physical parameters for possible elongated bubble profiles for gz > 0
(Bo > 0) and gz < 0 (Bo < 0) as functions of Capm and dimensionless wetting film thickness
h in the case of tangentially immobile surfaces. Solid lines correspond to Ca = 0 and dashed
lines to a = 0.

4.6.4 Algorithm for finding the bubble shape

Generally speaking, the system (4.196)–(4.199) models the form of a drop for a given pres-
sure distribution along the bubble surface. The solutions depend on the initial conditions
and describe different types of possible capillary profiles: open capillary curves, curves with
loops, etc. We are not interested in all solutions of this problem but in that, which corre-
sponds to a closed bubble profile and, therefore, satisfies the natural boundary conditions at
the bubble apex, see Eq. (4.226). Indeed, if one defines a tentative value of h, then the radial
coordinate is rc = 1− h and the capillary number is calculated as Ca = Ca (Bo,Capm, rc)
from Eqs. (4.68) or (4.81). Hence, for given physical parameters Bo and Capm, the system
of equations (4.196)–(4.199) with the initial conditions, given by Eq. (4.261) and (4.262),
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4.6. Boundary value problem

has a numerical solution, which corresponds to an elongated bubble only for one thickness
of the fluid layer in the cylindrical part, h.

Before focusing on finding the dimensionless thickness of the liquid film, h, we shall
describe briefly how to solve the considered problem for fixed value of h. First, it can
be noticed easily that there is a singularity in the third and the forth equations, (4.198)
and (4.199), for s = 0. The singularity in the third equation is removed easily due to the
following computations:

dθ

ds

∣∣∣∣
s=0

= −Caps(0)− lim
s→0

sin θ

rb

= −Caps(0)− lim
s→0

cos θ dθ
ds

drb
ds

= −Caps(0)−
dθ

ds

∣∣∣∣
s=0

. (4.271)

From the latter, it follows that

dθ

ds

∣∣∣∣
s=0

= −Caps(0)
2

. (4.272)

The singularity at the right hand side in the fourth equation in not removable due to
the fact

lim
rb→0

F (rb, θ, ps, Bo, Capm) = +∞. (4.273)

This result comes from the inaccuracy of the approximation and is not physical phenomena.
Due to this fact, we write the function F as follows:

F = −as(rb)
Ca

sin θ − bs(rb)

sin3 θ
sin θ

dθ

ds
+
cs(rb) cos

2 θ

sin2 θ
sin θ, (4.274)

see Eq. (4.207). In the latter, we shall set sin θ = 1 in the denominators, i.e.

F1 = −as(rb)
Ca

sin θ − bs(rb) sin θ
dθ

ds
+ cs(rb) cos

2 θ sin θ. (4.275)

This approximation, obviously, holds in the cylindrical part of the bubble. Moreover, the
closer we get to the apex of the bubble, the capillary pressure becomes more pronounced
and inaccuracies in solving the hydrodynamic problem effect the solution weakly. Due to
this fact, the approximation F1 is appropriate to use for arbitrary value of θ.

The algorithm for solving the considered problem for fixed value of h in the case of free
surfaces is briefly described in Alg. 3. The main idea of algorithm is pretty straightforward.
We compute the radius of the cylindrical part of the bubble rc, the capillary number Ca
and the parameter a. By using this information, one finds the only negative root of the
polynomial (4.252) and use it to find the initial conditions. Finally, we solve the considered
problem, using the tenth-order Runge-Kutta method with fixed step.

The results from running this procedure for Bo = 2 and Capm = 0 and for Bo = 0
and Capm = 0.5 in the case of free surfaces are illustrated in Fig. 4.10. For Bo = 2 and
Capm = 0, the capillary curve has a loop for h = 0.1, the calculated profile is open for
h = 0.2, and only for h = 0.1617, one obtains the real bubble shape (Fig. 4.10a). In the
second case, for h = 0.26 and h = 0.29, the capillary profiles are open and the physical
solution is obtained for h = 0.2752 (Fig. 4.10b). For all combinations of Bo and Capm (see
Sec. 4.7), the behavior of capillary profiles is similar to this, illustrated in Fig. 4.7.
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Algorithm 3 Compute the bubble profile in the case of free surfaces for fixed h

1: procedure ComputeBubbleProfile(Bo, Capm, h)
2: rc ← 1− h;
3: Ca← Ca(Bo,Capm, rc); ▷ Eq. (4.68)
4: W ← 1− Capm/Ca;
5: a = a(Bo,Capm, rc); ▷ Eq. (4.250)
6: λ1 = λ1(a); ▷ Eq. (4.253)
7: δ ← 0.00001;
8: initialConditions← initialConditions(Ca, rc, δ, λ1); ▷ Eqs. (4.261), (4.262)
9: step← −0.0001;

10:

11: procedure RHS(rb, zb, θ, ps)
12: if rb ≥ 0.001 then

13: return

{
cos θ, sin θ,−Caps −

sin θ

rb
, F1(rb, θ, ps, Ca, Capm,W )

}
; ▷ (4.275)

14: else

15: return

{
cos θ, sin θ,−Caps

2
, 0

}
▷ (4.273) ;

16: end if ;
17: end procedure;
18:

19: RungeKutta17(step,RHS, initialConditions);
20: end procedure;

(a) Bo = 2, Capm = 0. (b) Bo = 0, Capm = 0.5.

Figure 4.10: Calculated capillary profiles for three different values of the dimensionless layer
thickness, h, in the case of free bubble surfaces.

Next, we shall focus our attention on finding the unique value of h, for which the profile
closes (for given values of Bo and Capm). In order to do that, first, we shall state the
criteria for stopping the Runge–Kutta method in the case that the profile does not close for
the current value of h. We use the following stopping criteria:

• rb,next > rb,current;
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• zb,next > zb,current;

• θnext > θcurrent,

where the suffix “next” denotes the next computed approximation and the suffix “current”
— the current one. Using these criteria, we obtain a sequence of bubble profiles for different
values of h. The next step is to investigate how far from closing are these profiles. In order
to do that, we introduce a new function ComputeDist(Bo,Capm, h), which computes the
distance between the end of the profile and the abscissa for given values of Bo, Capm and h.
Having all this in mind, we are ready to present an algorithm for finding the dimensionless
thickness h (see Alg. 4). The main idea of the algorithm is to start with initial guess for
h. Then, we obtain the distance from the end of the bubble profile to the abscissa, using
the function ComputeDist, for the bubble profiles, which have dimensionless thicknesses
h, h(1 − precision) and h(1 + precision). Comparing the obtained results, the next value
of h is chosen to be that one, for which the distance between the end of profile and the
abscissa is the smallest. The algorithm continues, while we cannot find ”better” value for
h. Then, the precision is set higher. In the current implementation (see Alg.4), the value of
h is computed with precision of 0.001%.

Values of the dimensionless thickness h for the closed profiles, depicted in Fig. 4.10, are
computed, using Alg. 4.

Algorithm 4 Compute the value of the dimensionless thickness h

1: procedure FindFilmThickness(Bo, Capm)
2: h← 0.33;
3: precision← 0.1;
4:

5: for i← 1 to 5 do
6: lastRb← ComputeDist(Bo,Capm, h);
7: lastRbL← ComputeDist(Bo,Capm, h(1− precision));
8: lastRbU ← ComputeDist(Bo,Capm, h(1 + precision));
9:

10: while min(lastRb, lastRbL, lastRbU) ̸= lastRb do
11: if min(lastRbL, lastRbU) == lastRbL then
12: h← h(1− precision);
13: else
14: h← h(1 + precision);
15: end if
16:

17: lastRb← min(lastRbL, lastRbU);
18: lastRbL← ComputeDist(Bo,Capm, h(1− precision));
19: lastRbU ← ComputeDist(Bo,Capm, h(1 + precision));
20: end while
21:

22: precision← precision/10;
23: end for
24: end procedure
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4.7 Numerical results

For fixed physical parameters in the regions of possible solutions (Figs. 4.8 and 4.9), the
system of equations (4.196), (4.197), (4.198) and (4.199) with initial conditions (4.261) and
(4.262) is solved numerically, using the explicit tenth-order Runge-Kutta method [4.88]. In
all numerical calculations, the values of the amplitude δ in Eqs. (4.261) and (4.262) is 10−5

and the numerical step in the arc length of the bubble surface is 10−4. For given parameters
Bo and Capm, the dimensionless thickness, h, is varied to obtain the physical bubble shape,
see Fig. 4.10.

4.7.1 Comparison with experimental data

Fig. 4.11 shows experimental data [4.24] (symbols) for the capillary numbers and dimen-
sionless layer thicknesses of long rising bubbles in capillaries as functions of the Bond num-
bers. The authors used pure substances to ensure a constant value of the surface tension.
The calculations for free surfaces (solid blue lines) describe the experimental data for all
studied values of the Bond number (Bo ≤ 7.5) excellently. The Bretherton asymptotic
formulae (dashed lines in Fig. 4.11) give good results for low values of capillary number,
Ca < 3.2× 10−4. Using our approach, the validity of theoretical calculations is experimen-
tally confirmed for Ca < 0.3.

The comparisons between the capillary numbers and dimensionless layer thicknesses,
calculated for tangentially immobile or free interfaces, are shown in Fig. 4.11. It is well
illustrated that the bubble translational velocity decreases and the film thickness, h, in-
creases in the presence of surface-active substances, which generally lead to immobilization
of interfaces.

(a) The Bond number, Bo, vs the capillary num-
ber, Ca.

(b) The Bond number, Bo vs dimensionless
layer thickness, h.

Figure 4.11: Comparison between experimental data for rising bubble [4.24] (symbols) and
the theoretical calculations.

In the case of motion of long bubbles under the action only of the Poiseuille flow (Bo = 0),
the comparison between experimental data and numerical calculations are shown in Fig. 4.12.
The original Bretherton asymptotic solution [4.1] (dashed lines) describes experimental data
with accuracy of 10% for low values of the capillary numbers Ca < 5× 10−3. The extended
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(a) The relative increase of the velocity, W , vs
the capillary number, Ca, [4.36], [4.39].

(b) The film thickness, h, vs the capillary num-
ber, Ca, [4.39].

Figure 4.12: Comparison between experimental data [4.36], [4.39] (symbols) for Taylor bub-
bles and the theoretical calculations. Solid line — generalized lubrication approximation;
A-line — model, based on the zero-order lubrication approximation [4.80]; B-line — ex-
tended Bretherton model [4.58].

Bretherton model [4.58] (B line) gives acceptable results for Ca < 0.1 –– the predicted pa-
rameter W and dimensionless film thickness h are systematically lower than experimental
ones for larger values of the capillary number. The model, based on the zero-order lubrica-
tion approximation [4.80] (A line), describes well the experimental data for Ca < 0.2 but the
calculated values of W and h considerably increase for the case where Ca > 0.2. The use of
the generalized lubrication approximation, which accounts also for the first-order lubrication
approximation, leads to an excellent description of experimental data for Ca < 2.0, see the
blue solid lines in Fig. 4.12 for free surfaces.

The numerical calculations and experimental observations show that there is no pro-
nounced difference between soluble and insoluble surfactants with respect to the film thick-
ness, h, for Ca < 2.0 — the calculated and measured values of h are systematically larger
than those, corresponding to bubbles in pure liquids [4.72]. These results correlate with the
calculated dependencies W (Ca) and h(Ca) in the case of tangentially immobile interfaces
(see Fig. 4.12). For fixed mean velocity Vpm of the Poiseuille flow (fixed values of Capm), the
enlarged viscous friction with tangentially immobile interfaces leads to the translation bubble
velocity, Vb, closer to Vpm and respectively, to lower values of W (Fig. 4.12a). The increased
viscous friction gives rise to the dynamic pressure in the liquid film and the translational
bubble motion takes place for thicker cylindrical parts of the liquid films, h (Fig. 4.12b).

Fig. 4.13 shows the effect of the mean velocity of the Poiseuille flow, Vpm, on the in-
creasing velocity of long bubbles, Vb, for a fixed Bond number, Bo = 4.6. The experimental
data [4.83] (symbols) are close to the theoretical calculations for bubbles with free surfaces.
The calculated dependence Vb/Vpm on Capm for tangentially immobile interfaces predicts
lower values of the relative velocity. At small Capm, there is a large effect of interfacial
rheology (free vs tangentially immobile interfaces) on the relative translational velocity of
bubbles. The small deviations of the experimental data from the calculated theoretical line
in the case of bubbles with free surfaces are likely due to trace amounts of surface-active
contaminations in the working fluid [4.83].
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Figure 4.13: Comparison between experimental data [4.83] (symbols) for relative velocity
Vb/Vpm > 0 vs Capm of long bubbles for fixed Bond number, Bo = 4.6, with the theoretical
calculation for fully mobile and immobile interfaces.

4.7.2 Simultaneous action of the Poiseuille flow and gravity

In the literature, there are no systematic experimental data for the long bubble motion under
simultaneous action of the Poiseuille flow and gravity (like those illustrated in Fig. 4.13).
Figs. 4.8 and 4.9 show that one distinguishes two general cases. The first one corresponds
to Bo > 0, when the Poiseuille flow with Capm > 0 accelerates and that with Capm < 0
decelerates the bubble motion. The experimental data in Fig. 4.13 correspond to Bo > 0
and Capm > 0. Fig. 4.14 summarizes the numerical results for the effect of the Poiseuille
flow on the bubble translational velocity and respective thickness of cylindrical film layer
for positive values of the Bond number and different models for surfaces (fully mobile and
tangentially immobile).

Fig. 4.11 illustrates that for Capm = 0, the gravity should be sufficiently high to ensure
Bo > 0.842 in order to have a motion of long bubbles. Figs. 4.14a and 4.14c show that the
threshold value of Bo increases with the increase of the absolute value of Capm for Capm < 0.
Moreover for tangentially immobile interfaces, these values of Bo are considerably greater.
If the both forces act in one direction (Capm > 0), then the bubble moves and Ca > 0 even
for Bo = 0 (see Fig. 4.12). With the increase of gravity effect (Bo number), the calculated
curves for a given Capm become closer to that, corresponding to Capm = 0 and the effect
of Poiseuille flow becomes less pronounced.

The greater values of the threshold Bond number for Capm < 0 are interrelated with
the increase of the thicknesses of wetting films in cylindrical parts (Figs. 4.14b and 4.14d).
Oppositely for Capm > 0, very thin cylindrical liquid layers can be realized. As it can
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(a) The Bond number, Bo, vs the capillary num-
ber, Ca, for free surfaces.

(b) The film thickness, h, vs the capillary num-
ber, Ca, for free surfaces.

(c) The Bond number, Bo, vs the capillary num-
ber, Ca, for tangentially immobile interfaces.

(d) The film thickness, h, vs the capillary num-
ber, Ca, for tangentially immobile interfaces.

Figure 4.14: Effect of the Poiseuille flow on the bubble translational velocity and respective
thickness of cylindrical film layer.

be expected, the films for tangentially immobile interfaces are thicker than those for fully
mobile surfaces.

The second general case is when the gravity decelerates the bubble motion (Bo < 0
and Capm > 0, see Figs. 4.8 and 4.9). The numerical results for the dependence of Capm
and h on the capillary number, Ca, for both types of bubble interfaces are summarized in
Fig. 4.15 for a wide range of Bond numbers, Bo < 0. It is well illustrated that with the
increase of the magnitudes of Bond number, |Bo|, in order to have the same translational
velocities of bubbles (for given values of Ca), one need to apply more intensive Poiseuille
flows (Figs. 4.15a and 4.15c). Nevertheless, the effect of gravity is relatively weak. For
example, the decrease of Bo from 0 to −45 for Ca = 1 increases Capm: 1.62 times for free
surfaces; 1.50 times for immobile interfaces. The values of Capm, needed to ensure a given
capillary number, are greater for bubbles with tangentially immobile interfaces.

The calculated respective thicknesses h are given in Figs. 4.15b and 4.15d. The increase
of the magnitudes of Bond number, |Bo|, leads to the decrease of the thicknesses of the
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(a) The capillary number, Capm, vs the capil-
lary number, Ca, for free surface model.

(b) The dimensionless film thickness, h, vs the
capillary number, Ca, for free surface model.

(c) The capillary number, Capm, vs the capil-
lary number, Ca, for tangentially immobile sur-
faces.

(d) The film thickness, h, vs the capillary num-
ber, Ca, for tangentially immobile surfaces.

Figure 4.15: Effect of gravity on the bubble translational velocity and on the thickness of
cylindrical film layer, h, in the presence of Poiseuille flow.

wetting cylindrical films. Note that the effect of Bo on h is more pronounced. Indeed, the
decrease of Bo from 0 to −45 for Ca = 1 decreases h: from 0.284 to 0.0988, that is 2.88
times for free surfaces; from 0.461 to 0.1914, that is 2.41 times for immobile interfaces. The
bubbles with tangentially immobile interfaces move with the same translational velocity as
those with free surfaces under the action of more intensive Poiseuille flows and with thicker
wetting films in their cylindrical parts.

4.8 Conclusion

Most of the research reported numerically or experimentally the motion of drops and bubbles
through capillaries in the pressure-driven flow or under the action of gravity separately.
The interplay of the two effects is not described systematically [4.82, 4.83]. In addition, the
physicochemical properties of liquids and interfaces have been restricted to the Marangoni
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effect and bulk diffusivity of soluble and insoluble surfactants, even though small changes in
parameters, such as Gibbs elasticity, surface diffusivity and viscosity can change considerably
the translational velocity of drops and bubbles. The validity of the asymptotic Bretherton
expressions [4.1] has been extended for capillary numbers up to 0.2 in the case of pressure-
driven flows [4.39, 4.58]. The various physicochemical properties of investigated systems
need a simple and transparent approach for modeling the bubble motion, which is valid
for moderate capillary and Bond numbers, and can be generalized by introducing complex
interfacial rheology and intermolecular forces.

We studied the motion of long axisymmetric bubbles with free and tangentially immobile
interfaces through capillaries, based on the exact solution of the hydrodynamic problem in
cylindrical coordinate system in the frame of the generalized lubrication approximation,
keeping the zero-order terms [4.80] and the first-order terms. As a result the expressions
for the fluid velocity and dynamic pressure are calculated for an arbitrary shape of the
bubble. These quantities are substituted in the normal stress boundary condition to obtain
the boundary value problem in terms of an arc length for the bubble shape. Diagrams for
the necessary conditions for the appearance of long bubbles are constructed (Figs. 4.8 and
4.9). The implemented method allows fast and precise calculation of the dependence of
the capillary number and the wetting film thickness in the cylindrical part on the system
parameters.

The comparisons with available experiments (Figs. 4.11, 4.12, and 4.13) show the validity
of the proposed approach for moderate capillary, Ca, and Bond, Bo, numbers, Ca < 2 and
Bo < 7.5.When the pressure-driven flow hinders the rising of bubbles, the gravity should be
sufficiently high to ensure bubble motion (Fig. 4.14). A very low applied pressure gradient
in the opposite direction of bubble translation leads to bubble motion and the Bretherton
condition (Bo > 0.842) does not take a place. When the gravity opposes the pressure-driven
bubble motion (Fig. 4.15), the translational velocity decreases for high absolute values of the
Bond number. Generally, in the case of tangentially immobile interfaces, the translational
velocity, Vb, is lower and the wetting film thickness, h, is higher than those, predicted for
free bubble surfaces at given fixed system parameters.

Experimental and theoretical extension of this work could include the effect of surfactants
with concentrations above the critical micelle concentration and the motion of long bubbles
in nanofluids [4.75, 4.76].
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Chapter 5

Conclusions and main
contributions

5.1 General conclusions

A complex fluid (three-dimensional phase) is fluid, which is not Newtonian or the sur-
face tension on its material interfaces (two-dimensional phases) is not constant. Examples
for complex fluids are foams, emulsions, melts, biological cells, tissues and liquids, etc.,
which have applications in the chemical, pharmaceutical and oil industry, everyday life and
medicine. In continuum mechanics, a complex fluid is modelled by the mass, momentum
and energy balance equations, which are not closed. To close the physicochemical models
and to introduce a mathematical formulation of the respective problems, the natural scien-
tists assume different semi-empirical laws (linear or nonlinear) to relate the stress and strain
tensors. Even in the simplest linear rheological case of Newtonian fluids, the Navier–Stokes
equations for incompressible fluids become of a fourth order (the elimination of the pressure
leads to nonlinear partial differential equations, which contain bi-Laplacian of the velocity
vector). For typical applications, the bulk fluids are incompressible but the material in-
terfaces are not — they can deform, take different complex shapes and have considerably
different rheological behavior, which is affected by the adsorbed surfactants, polymers or
particles, by the properties of the biological membranes, etc. Generally, the appearance of
interfaces leads to complex boundary value problems. To construct adequate rheological
models, the experimentalists need simplified mathematical models and fast numerical pro-
cedures to fit the obtained data and to extract information about the rheological parameters
(e.g. the surface dilatational and shear viscosity and elasticity, yield stress, etc.).

In the thesis, we consider three different applications of the boundary value problems
in the case of linear or strongly nonlinear models of the second or higher orders. The
first problem (Chapter 2) is related to the interaction between large protein molecules and
colloid particles (particles of micron or submicron sizes), both of which are attached to the
interface between two fluids. For small sizes (below 3 microns), the proteins and colloids
(termed as particles) interact with van der Waals, electrostatic and capillary forces. Except
for the van der Waals interactions, the electrostatic and capillary forces arise because of the
surface charge density of particles and their three-phase contact angles. Due to the small
particle volumes, the gravity is negligible and, therefore, the deformation of the interface is
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a result of the electrostatic pressure distribution along the interface and related to it electro-
dipping force. The strategy for computer modeling is to solve the respective problem for flat
interface, to calculate the electrostatic pressure distribution and the electro-dipping force; to
use the calculated distribution in the normal stress boundary condition in order to compute
the interfacial deformation; etc. From experimental viewpoint, the first two steps are the
most important.

In the literature [5.1, 5.2], the problem for the electrostatic distribution is solved nu-
merically and analytically (in the terms of Mehler–Fock integral transform) in the case of
one fully conductive bulk phase (water). This simplification leads to the Dirichlet boundary
conditions at the particle–water and dielectric phase–water boundaries (the electrostatic po-
tential at these boundaries is equal to zero). The estimation of the part of the electro-dipping
force, arising from the water phase, shows that the contribution from the water phase is
not negligible and one should account for all dielectric phases simultaneously. In Chapter 2,
the Laplace equations for the electrostatic potentials in all three domains (spherical parti-
cle, upper and lower dielectric phases) are solved with the boundary conditions at all three
dividing surfaces (continuity of the electrostatic potentials and balance of surface charges).
The numerical solution of this generalized (in fact more realistic) problem gives the answer
to the question for the role of water phase on the electrostatic potential distribution. In
the most cases, some of the physical quantities have weak singularities at the three-phase
contact line (in our case, the derivative of the electrostatic potential that is the electric field
vector). Physically, a weak singularity means that the integral of the respective force, con-
taining these quantities, over the surface has a well-defined finite value. The isolation of the
weak singularity, transformation of the complex numerical domains into rectangles, using
toroidal coordinates, and the application of fast and precise numerical methods become of
a crucial importance for the adequate solution of the problem, described in Chapter 2.

The second problem (Chapter 3) is a part of two very complex tasks. The first one is to
predict the two-dimensional ordering of a large number of molecules and colloidal particles,
which float at the surface between two fluids, and the drag forces, which act on them due
to their Brownian motion under the action of van der Waals, electrostatic and capillary
forces. The second task is related to the fact that there is no direct microscopic method
to measure the value of the three-phase contact angle. The recently developed optical trap
method uses laser beams to manipulate colloidal particles at the interfaces and biological
membranes. From the lateral velocity of a particle and the applied optical tweezer force, the
experimentalists measure the drag force of the colloidal particle (tracer). Thus, one needs a
fast and precise numerical method to calculate the drag force for a given three-phase contact
angle and to use this procedure for fitting of experimental data in order to obtain the most
probable value of the three-phase contact angle. From a physical viewpoint, the formulation
of the model in Chapter 3 is quite clear: Stokes equation in each of the incompressible
fluid phases; continuity of the velocity and tangential stresses at the flat dividing surface
between them; given translational velocity of the spherical colloidal particle, attached to the
interface, with a fixed three-phase contact angle. One possible numerical approach to solve
the problem is the two-vorticities-one-velocity formulation [5.3]. The reported method is of
a second-order in the three-dimensional domains (with respect to the Stokes equations) but
of a first-order in the two-dimensional domains (with respect to the boundary conditions).
As a result, the method is slow and not convenient for multitask applications. The problem
has also an analytical solution in terms of the Mehler–Fock integral transform for negligible
viscosity of one of the fluids (e.g. water–air interface) and contact angles ≤ 90◦ [5.4]. In fact,
this particular case is not realistic and with a quite restricted application. Nevertheless, the
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only way to check the validity of a numerical method and its precision is to use this exact
solution of the problem. The main reason for the difficulties in numerical computations in
[5.3] and for the restricted validity of the analytical solution (contact angles ≤ 90◦) [5.4] is
the weak singularity of the pressure function at the three-phase contact line.

Our approach in Chapter 3 is based on the gauge reformulation of the Stokes problem,
which introduces vector and scalar potentials of the velocity and pressure distributions;
the reduction of the three-dimensional problem in the two-dimensional one for the first
Fourier modes with respect to the polar angle; the transformation of the complex domains
into rectangles, using a modification of the standard toroidal coordinates. As a result,
the original problem for the bulk fluids is reduced to a system of four partial differential
equations of a second-order for each of the phases. These systems are interrelated with the
boundary conditions at the dividing surfaces. The main difficulty in the gauge formulation
is to introduce self-consistent boundary conditions for the vector and scalar potentials.
The introduced in Chapter 3, new type of boundary conditions resolves this problem and
gives possibility to construct an efficient second-order ADI-type scheme for the numerical
solution, which is fast enough and gives good precision. The asymptotic analysis of the
weak singularity at the three-phase contact line shows the regions of regular and singular
pressure distributions and improves the precision of the calculation for the drag force.

One of the most difficult problems in physicochemical and biological modeling is to obtain
the shape of material interfaces in static and dynamic regimes. The complex shapes, the
stability and instability of interfaces and their interactions with other material objects are
of general importance for the description of their physicochemical properties. One example
is considered in Chapter 4 — a motion of a long bubble through a cylindrical capillary
under the action of pressure gradients (Poiseuille flow) and gravity. The bubble surface can
be: free, i.e. tangentially mobile interface — classical formulation; tangentially immobile
but deformable, e.g. the model of biological membranes, surfactant laden interfaces, etc.
The analytical solutions of the classical problems (free surfaces) for the gravity- and for
the pressure-driven motion in the case of very small bubble velocity are known as the
Bretherton problems [5.5]. The only formulas that extend the validity of the Bretherton
formulas and are applicable in the case of bubble with a free surface under the action of
pressure, are published in Refs. [5.6, 5.7]. Again, this problem is a part of more complex
computations, e.g. a motion of drops and bubbles in a rock porous medium in the oil
recovery problems or the motion of biological inclusions in the human veins. Due to the fact
that the available numerical calculations are very time consumable, it is difficult (and in the
most cases impossible) these calculations to be generalized to complex fluids and material
interfaces.

In Chapter 4, we combine the Bretherton idea with the approach in [5.6] and solve
the hydrodynamic problem for the lubrication approximation not only for the zero-order
but also for the first-order approximation of the fluid velocity and pressure. As it can be
expected, this increases the precision of the used approximation solution. One advantage of
this analytical method is its validity for an arbitrary smooth shape of the interface. As a
result, the analytical expressions for the flow characteristics in the case of tangentially mobile
and immobile interfaces are obtained. The normal stress boundary condition, in which the
lubrication approximation solution is substituted, defines the shape of bubble. The obtained
numerical problem is a system of four nonlinear differential equations with one adjustable
parameter, which has to be varied in order to calculate a close capillary profile. From
mathematical and numerical viewpoint, the obtained problem is analogous to the method
known as an axisymmetric drop shape analysis, which is incorporated in many commercial
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apparatuses for measurement of the surface tension and the contact angle. The obtained
numerical results describe excellently the available experimental data; expand the validity
of the semi-analytical model by at least two orders of magnitude to moderate capillary and
Bond numbers; explain the complex behavior of the simultaneous action of gravity and
pressure-driven flow; show the principle difference between mobile and immobile interfaces.

5.2 Main contributions

1. The problem for distribution of electrostatic potentials in dielectric media (two immiscible
fluid phases and a spherical colloidal particle, attached to the flat interface between them)
consists of Laplace equations for the functions in the three-dimensional domains, continuity
of these functions and conditions for their normal derivatives at the known two-dimensional
boundaries. The problem is solved numerically, using the developed for this purpose fast
and efficient algorithm. The strategy of computations is based on: the transformation
of the complex domains into rectangles, using appropriate toroidal coordinates; analytical
computation of the weak singularity at the three-phase contact line; implementation of a
self-consistent second-order ADI-type numerical scheme. The results generalize the idealized
case in [5.1], in which the water permeability is assumed to be infinite. In the present study,
we take into account its finite value as well as the simultaneous effect of all dielectric phases.

2. The problem for the translational motion of a spherical colloidal particle, attached to
a flat interface between two incompressible fluids, consists of Stokes equations for the ve-
locity vector and the pressure (in fact bi-Laplacian of the velocity vector is equal to zero)
in the three-dimensional domains, continuity of the velocity and the tangential stresses at
the two-dimensional fluid–fluid interface and a known velocity vector at the particle sur-
face. The problem is solved numerically from 10 to 1000 times faster than by the proposed
method in method [5.3]. The strategy of computations is based on: the gauge formulation
in terms of vector and scalar potentials of velocity and pressure; transformation of the three-
dimensional problem into the two-dimensional one for the first Fourier mode with respect
to the polar angle; transformation of the complex domains into rectangles, using modified
toroidal coordinates; construction of a second-order ADI-type numerical scheme, taking into
account the original formulation of the two-dimensional boundary conditions; the analytical
calculation of the weak singularity at the three-phase contact line and the isolation of the
pressure singularity, which increases the precision of the drag force calculations.

3. The problem for the gravity- and pressure-driven motion of a long bubble with tangen-
tially mobile (classical case) or immobile interface (biological membrane, surfactant laden
interface, etc.) through a cylindrical capillary is solved semi-analytically. The problem
consists of: Stokes equations in the three-dimensional domain; known Poiseuille velocity
profile at large distances from the bubble; no-slip boundary condition at the capillary wall;
tangential and normal stress boundary conditions at the deformable bubble surface. The
strategy of computations is based on: the exact analytical solution of the Stokes problem
for small slopes of the tangent to the bubble shape, which leads to zero- and first-order
approximations at an arbitrary smooth bubble shape; substitution of the obtained solutions
in the normal stress boundary condition, from which it follows a system of four first order
nonlinear differential equations with respect to the arc length with one adjustable parameter
(the capillary pressure at the bubble apex); the efficient numerical scheme for calculating
the fourth-order boundary value problem for the shape by fitting the adjustable parameter
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in order to obtain a closed capillary profile. As a result, the obtained method describes ex-
cellently the available experimental data, increases more than two orders of magnitude the
range of the applicability of the analytical approaches known in the literature, and explain
the complex physical picture of the simultaneous action of gravity and pressure-driven flows
for classical and tangentially immobile interfaces.

References

[5.1] K. Danov and P. Kralchevsky. Electric forces induced by a charged colloid particle
attached to the water–nonpolar fluid interface. J. Colloid Interface Sci., 298(1):213–
231, 2006. DOI: 10.1016/j.jcis.2005.12.037.

[5.2] P. Petkov, K. Danov, and P. Kralchevsky. Monolayers of charged particles in a langmuir
trough: Could particle aggregation increase the surface pressure? Journal of Colloid
and Interface Science, 462:223–234, 2015. DOI: 10.1016/j.jcis.2015.09.075.

[5.3] K. Danov, R. Dimova, and B. Pouligny. Viscous drag of a solid sphere straddling a
spherical or flat surface. Phys. Fluids, 12:2711–2722, 2000. DOI: 10.1063/1.1289692.

[5.4] M. Zabarankin. Asymmetric three-dimensional stokes flows about two fused equal
spheres. Proc. R. Soc. A, 463(2085):2329–2349, 2007. DOI: 10.1098/rspa.2007.1872.

[5.5] F. Bretherton. The motion of long bubbles in tubes. J. Fluid Mech., 10(2):166–188,
1961. DOI: 10.1017/S0022112061000160.

[5.6] J. Ratulowski and H.-C. Chang. Transport of gas bubbles in capillaries. Phys. Fluids
A - Fluid, 1(10):1642–1655, 1989. DOI: 10.1063/1.857530.

[5.7] W. Kolb and R. Cerro. The motion of long bubbles in tubes of square cross section.
Phys. Fluids A - Fluid, 5(7):1549–1567, 1993. DOI: 10.1063/1.858832.

143

https://doi.org/10.1016/j.jcis.2005.12.037
https://doi.org/10.1016/j.jcis.2015.09.075
https://doi.org/10.1063/1.1289692
https://doi.org/10.1098/rspa.2007.1872
https://doi.org/10.1017/S0022112061000160
https://doi.org/10.1063/1.857530
https://doi.org/10.1063/1.858832


Appendix A

Drag force coefficient

The net drag force F on a particle of radius R, attached on the interface between two
viscous fluids, is calculated by integrating the stress tensor P over the particle volume or as
a surface integral of the normal component of the stress tensor over the particle surface Sp

(divergence theorem), i.e.

F =

∫∫
Sp

P · n dSp, (A.1)

where n is the unit normal vector to the surface Sp, pointing to the fluid phases (see Fig.
3.1). Due to the fact that the drag force depends on fluid 1 at the upper part of the particle
Sp1 and on fluid 2 — at the lower part Sp2, we obtain

F =

∫∫
S1p

P1 · n dS1p +

∫∫
S2p

P2 · n dS2p, (A.2)

where P1 denotes the stress tensor at the upper part of the particle surface and P2 — at
lower part. The stress tensor Pm of the viscous fluid phase m is computed as

Pm = −pmI+ ηm

[
∇v + (∇v)T

]
, (A.3)

where pm is the pressure and ηm is the viscosity of phase m, see Eq. (U.64) in the Supple-
mentary file U.

Next, we parametrize the spherical particle (xs, ys, zs) by using spherical coordinates

xs = R cosφ sin θ, (A.4)

ys = R sinφ sin θ, (A.5)

zs = R cos θ +R cosα, (A.6)

where φ ∈ [0, 2π) is the azimuth angle and θ ∈ [0, π) is the polar angle. Then, the polar
angle changes from 0 to π − α (0 ≤ θ ≤ π − α) along the upper part of the particle surface
and from π − α to π (π − α ≤ θ ≤ π) along the lower one. Therefore, one represents the
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expression for the drag force (A.2) in the following form:

F =

2π∫
0

π−α∫
0

(P1 · n)|n|dθdφ+

2π∫
0

π∫
π−α

(P2 · n)|n|dθdφ

= R2

2π∫
0

π−α∫
0

(P1 · n) sin θdθdφ+R2

2π∫
0

π∫
π−α

(P2 · n) sin θdθdφ, (A.7)

by calculating the length of n:

|n| = | (−R sinφ sin θex +R cosφ sin θey)

× (R cosφ cos θex −R sinφ cos θey −R sin θez) |
= | −R2

(
cosφ sin2 θex + sinφ sin2 θey + sin θ cos θez

)
| (A.8)

= R2 sin θ. (A.9)

Due to the fact that most of the computations in Chapter 3 are done in cylindrical coordi-
nates (r, φ, z), we use cylindrical coordinates in order to simplify the expression under the
integral sign. Taking into account that the particle surface is parameterised by spherical
coordinates, we use the transformation between the standard cylindrical coordinates and
spherical ones:

r = ρ sin θ, φ = φ, z = ρ cos θ +R cosα, (A.10)

where ρ is the radial distance. Then, the parametrization of the sphere in cylindrical coor-
dinates is

r = R sin θ, φ = φ, z = R cos θ +R cosα (A.11)

and the unit normal n has the following coordinate form:

n =
(R cos θer −R sin θez)× eφ
| (R cos θer −R sin θez)× eφ|

= sin θer + cos θez, (A.12)

where er, eφ and ez are the standard basis vectors of the cylindrical coordinate system.
Using the expression for the normal vector, one obtains the components of stress tensor:

(Pm · n)r = Pmrr sin θ + Pmrz cos θ, m = 1, 2, (A.13)

(Pm · n)φ = Pmφr sin θ + Pmφz cos θ, m = 1, 2, (A.14)

(Pm · n)z = Pmzr sin θ + Pmzz cos θ, m = 1, 2. (A.15)

Note that the drag force has y-component Fy, which is calculated from the stress tensor:

(Pm · n)y = (Pm · n)r sinφ+ (Pm · n)φ cosφ, m = 1, 2, (A.16)

see Eq. (S.346). Using formulas (A.7) and (A.16), one gets the formula for drag force
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component Fy

Fy = R2

2π∫
0

π−α∫
0

[(P1rr sin θ + P1rz cos θ) sinφ

+(P1φr sin θ + P1φz cos θ) cosφ] sin θdθdφ

+R2

2π∫
0

π∫
π−α

[(P2rr sin θ + P2rz cos θ) sinφ

+(P2φr sin θ + P2φz cos θ) cosφ] sin θdθdφ, (A.17)

where the cylindrical coordinates of the stress tensor are computed as follows:

Pmrr = −pm + 2ηm
∂vmr

∂r
, m = 1, 2, (A.18)

Pmrz = ηm

(
∂vmr

∂z
+
∂vmz

∂r

)
, m = 1, 2, (A.19)

Pmφr = ηm

(
∂vmφ

∂r
− vmφ

r
+

1

r

∂vmr

∂φ

)
, m = 1, 2 (A.20)

Pmφz = ηm

(
∂vmφ

∂z
+

1

r

∂vmz

∂φ

)
, m = 1, 2. (A.21)

see Eqs. (A.3) and (S.349). Next, we nondimensionalize the variables, using Eqs. (3.22),
(3.23) and

F y =
rcFy

(η1 + η2)R2V
, Pm =

rcPm

V ηm
, ρ =

ρ

rc
. (A.22)

Then, we obtain the following formula for the component F y;

F y = µ1

2π∫
0

π−α∫
0

[(
P 1rr sin θ + P 1rz cos θ

)
sinφ

+
(
P 1φr sin θ + P 1φz cos θ

)
cosφ

]
sin θdθdφ

+µ2

2π∫
0

π∫
π−α

[(
P 2rr sin θ + P 2rz cos θ

)
sinφ

+
(
P 2φr sin θ + P 2φz cos θ

)
cosφ

]
sin θdθdφ, (A.23)

where

Pmrr = −pm + 2
∂vmr

∂r
, m = 1, 2, (A.24)

Pmrz =
∂vmr

∂z
+
∂vmz

∂r
, m = 1, 2, (A.25)

Pmφr =
∂vmφ

∂r
− vmφ

r
+

1

r

∂vmr

∂φ
, m = 1, 2 (A.26)

Pmφz =
∂vmφ

∂z
+

1

r

∂vmz

∂φ
, m = 1, 2. (A.27)
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For notional convenience, we shall skip the bars for all non-dimensional variables except Fy

and ρ for the rest of this chapter. Then, in the gauge formulation, we have

Pmrr = ∇ ·wm + 2
∂vmr

∂r

= 3
∂wmr

∂r
+
wmr

r
+

1

r

∂wmφ

∂φ
+
∂wmz

∂z
− 2

∂2ξm
∂r2

, m = 1, 2, (A.28)

Pmrz =
∂wmr

∂z
+
∂wmz

∂r
− 2

∂2ξm
∂r∂z

, m = 1, 2, (A.29)

Pmφr =
∂wmφ

∂r
− wmφ

r
+

1

r

∂wmr

∂φ
+

2

r2
∂ξm
∂φ
− 2

r

∂2ξm
∂r∂φ

, m = 1, 2, (A.30)

Pmφz =
∂wmφ

∂z
+

1

r

∂wmz

∂φ
− 2

r

∂2ξm
∂φ∂z

, m = 1, 2, (A.31)

see equations (3.30), (3.31), (3.34), (S.348) and (S.350). Using the Fourier amplitudes (3.54)
and (3.55), one simplifies these expressions as follows:

Pmrr =

(
3
∂amr

∂r
+
amr

r
− amφ

r
+
∂amz

∂z
− 2

∂2bm
∂r2

)
sinφ, m = 1, 2, (A.32)

Pmrz =

(
∂amr

∂z
+
∂amz

∂r
− 2

∂2bm
∂r∂z

)
sinφ, m = 1, 2, (A.33)

Pmφr =

(
∂amφ

∂r
− amφ

r
+
amr

r
+

2bm
r2
− 2

r

∂bm
∂r

)
cosφ, m = 1, 2, (A.34)

Pmφz =

(
∂amφ

∂z
+
amz

r
− 2

r

∂bm
∂z

)
cosφ, m = 1, 2. (A.35)

We substitute the expressions (A.32)–(A.35) into the integrals in the right-hand side of
equation (A.23) for the calculation of the drag force and obtain

F y = π(µ1f1 + µ2f2), (A.36)

where the drag force coefficients f1 and f2 correspond to the contributions of the upper and
lower parts of the particle:

f1 =

π−α∫
0

[(
3
∂a1r
∂r

+
2a1r
r
− 2a1φ

r
+
∂a1z
∂z
− 2

∂2b1
∂r2

+
∂a1φ
∂r

+
2b1
r2
− 2

r

∂b1
∂r

)
sin θ

+

(
∂a1r
∂z

+
∂a1z
∂r
− 2

∂2b1
∂r∂z

+
∂a1φ
∂z

+
a1z
r
− 2

r

∂b1
∂z

)
cos θ

]
sin θdθ, (A.37)

f2 =

π∫
π−α

[(
3
∂a2r
∂r

+
2a2r
r
− 2a2φ

r
+
∂a2z
∂z
− 2

∂2b2
∂r2

+
∂a2φ
∂r

+
2b2
r2
− 2

r

∂b2
∂r

)
sin θ

+

(
∂a2r
∂z

+
∂a2z
∂r
− 2

∂2b2
∂r∂z

+
∂a2φ
∂z

+
a2z
r
− 2

r

∂b2
∂z

)
cos θ

]
sin θdθ. (A.38)

Below, we simplify the integrals for the drag force coefficients. From boundary conditions
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(3.60) and (3.61), one concludes

f1 =

π−α∫
0

[(
3
∂a1r
∂r

+
∂a1z
∂z
− 2

∂2b1
∂r2

+
∂a1φ
∂r

+
2b1
r2

)
sin θ

+

(
∂a1r
∂z

+
∂a1z
∂r
− 2

∂2b1
∂r∂z

+
∂a1φ
∂z

+
a1z
r
− 2

r

∂b1
∂z

)
cos θ

]
sin θdθ

=

π−α∫
0

[(
3
∂a1r
∂r

+ 3
∂a1z
∂z

+
∂a1φ
∂r
− 2

∂2b1
∂z2

− 2
∂2b1
∂r2

+
2b1
r2

)
sin θ

+

(
∂a1r
∂z
− ∂a1z

∂r
+
∂a1φ
∂z

+
a1z
r
− 2

r

∂b1
∂z

)
cos θ

]
sin θdθ

=

π−α∫
0

[(
3
∂a1r
∂r

+ 3
∂a1z
∂z

+
∂a1φ
∂r
− 2

∂2b1
∂z2

− 2
∂2b1
∂r2

+
2b1
r2

)
sin θ

+

(
∂a1r
∂z

+
∂a1φ
∂z
− ∂a1z

∂r
− a1z

r

)
cos θ

]
sin θdθ. (A.39)

Further, one uses equation (3.59) to eliminate b1 from Eq. (A.39):

f1 =

π−α∫
0

[(
∂a1r
∂r

+
∂a1z
∂z

+
∂a1φ
∂r

+
2

r

∂b1
∂r
− 2a1r

r
+

2a1φ
r

)
sin θ

+

(
∂a1r
∂z

+
∂a1φ
∂z
− ∂a1z

∂r
− a1z

r

)
cos θ

]
sin θdθ. (A.40)

Taking into account boundary conditions (3.60) and (3.61), we obtain

f1 =

π−α∫
0

[(
∂a1r
∂r

+
∂a1φ
∂r

+
∂a1z
∂z

)
sin θ

+

(
∂a1r
∂z

+
∂a1φ
∂z
− ∂a1z

∂r
− a1z

r

)
cos θ

]
sin θdθ. (A.41)

Substituting the definitions of the numerical functions (3.75) into the right-hand side of
equation (A.41) leads to

f1 = 2

π−α∫
0

[(
2
∂u10
∂r

+
∂u11
∂z

)
sin θ +

(
2
∂u10
∂z
− ∂u11

∂r
− u11

r

)
cos θ

]
sin θdθ. (A.42)

Next, using the nondimensionalized form of transformation (A.10), i.e.

r = ρ sin θ, φ = φ, z = ρ cos θ +
R

rc
cosα, (A.43)

we obtain the following relations:

∂

∂ρ
= sin θ

∂

∂r
+ cos θ

∂

∂z
(A.44)

∂

∂θ
= ρ cos θ

∂

∂r
− ρ sin θ ∂

∂z
. (A.45)
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Due to the fact that we parametrized the surface of the particle, using Eq. (A.10), the
function under the integral sign is evaluated for ρ = R/rc. Therefore, the equation (A.42)
is simplified as follows:

f1 = 2

π−α∫
0

(
2
∂u10
∂ρ

sin θ − rc
R

∂u11
∂θ

sin θ − rcu11
R

cos θ

)
dθ

= 2

2

π−α∫
0

∂u10
∂ρ

sin θdθ − rc
R

π−α∫
0

sin θdu11 −
π−α∫
0

rcu11
R

cos θdθ


= 4

π−α∫
0

∂u10
∂ρ

sin θdθ − 2rcu11 sin θ

R

∣∣∣∣π−α

θ=0

= 4

π−α∫
0

∂u10
∂ρ

sin θdθ − 2rcu11(π − α) sinα
R

. (A.46)

Analogously, we obtain for the drag force coefficient of the lower part of the particle

f2 = 4

π∫
π−α

∂u20
∂ρ

sin θdθ +
2rcu21(π − α) sinα

R
. (A.47)

Then, Fy is computed as

Fy = 4πR2V

η1 π−α∫
0

∂u10
∂ρ

sin θdθ + η2

π∫
π−α

∂u20
∂ρ

sin θdθ


+ 2πV R sinα [η2u21(π − α)− η1u11(π − α)] , (A.48)

see Eqs. (A.22), (A.36), (A.46) and (A.47). Finally, changing variables ρ and θ to the
toroidal coordinates σ and τ , defined by (3.92), we conclude that

Fy = −4πV R sinα

η1 1∫
0

∂u10
∂σ
· 1− τ

2

τh
dτ + η2

1∫
0

∂u20
∂σ
· 1− τ

2

τh
dτ


+ 2πV R sinα [η2u21(π − α)− η1u11(π − α)] . (A.49)
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[38] D. T. Dumitrescu. Strömung an einer Luftblase im senkrechten Rohr. Z. Angew.
Math. Mech., 23(3):139–149, 1943. DOI: 10.1002/zamm.19430230303.

[39] Y. D’Yakonov. Difference schemes with a “disintegrating” operator for multidi-
mensional problems. USSR Computational Mathematics and Mathematical Physics,
2(4):581–607, 1963. DOI: 10.1016/0041-5553(63)90531-7.

152

https://doi.org/10.1016/j.ces.2016.01.020
https://doi.org/10.1021/acs.langmuir.5b02146
https://doi.org/10.1063/1.1289692
https://doi.org/10.1016/j.jcis.2005.12.037
https://doi.org/10.1016/j.jcis.2013.05.015
https://doi.org/10.1021/la0497090
https://doi.org/10.1088/1742-5468/2010/02/l02002
https://doi.org/10.1088/1742-5468/2010/02/l02002
https://doi.org/10.1098/rspa.1950.0023
https://doi.org/10.1016/j.colsurfa.2005.02.038
https://doi.org/10.1103/PhysRevFluids.4.123601
https://doi.org/10.1016/j.cocis.2009.11.001
http://dx.doi.org/10.1017/jfm.2016.41
https://doi.org/10.1002/zamm.19430230303
https://doi.org/10.1016/0041-5553(63)90531-7


List of all references, sorted alphabetically

[40] M. Dzikowski, L. Laniewski-Wollk, and J. Rokicki. Single component multiphase
lattice Boltzmann method for Taylor/Bretherton bubble train flow simulations. Com-
mun. Comput. Phys., 19(4):1042–1066, 2016. DOI: 10.4208/cicp.220115.110915a.

[41] W. E and J.-G. Liu. Gauge method for viscous incompressible flows. Comm. Math.
Sci., 1(2):317–332, 2003. DOI: 10.4310/CMS.2003.v1.n2.a6.

[42] D.A. Edwards, H. Brenner, and D.T. Wasan. Interfacial Transport Processes and
Rheology. Butterworth-Heinemann, Boston, 1991.

[43] S. Ezrahi, E. Tuval, A. Aserin, and N. Garti. Daily applications of systems with
wormlike micelles. In R. Zana and E.W. Kaler, editors, Giant Micelles. Proper-
ties and Applications, pages 515–544. Taylor and Francis, New York, 2007. DOI:
10.1201/9781420007121-18.

[44] F. Fairbrother and A. Stubbs. 119. Studies in electro-endosmosis. Part VI. The
b̈ubble-tubem̈ethod of measurement. J. Chem. Soc., (0):527–529, 1935. DOI:
10.1039/JR9350000527.

[45] T. Feagin. A tenth-order Runge-Kutta method with error estimate. In A. Avidan,
editor, Proceedings of the IAENG Conf. on Scientific Computing, volume 1, page 1,
Hong Kong, 2007. URL: https://sce.uhcl.edu/feagin/courses/rk10.pdf.

[46] J. Feng. Steady axisymmetric motion of a small bubble in a tube with flowing liquid.
Proc. R. Soc. A, 466:549–562, 2010. DOI: 10.1098/rspa.2009.0288.

[47] R. Finn. Equilibrium Capillary Surface. Springer-Verlag, New York, 1986.

[48] D. Gaver, D. Halpern, O. Jensen, and J. Grotberg. The steady motion of a semi-
infinite bubble through a flexible-walled channel. J. Fluid Mech., 319:25–65, 1996.
DOI: 10.1017/S0022112096007240.

[49] C. Gerald and P. Wheatley. Applied numerical analysis. Pearson College Div, 7
edition, 2004.

[50] S. Ghadiali and D. Gaver. The influence of non-equilibrium surfactant dynamics on
the flow of a semi-infinite bubble in a rigid cylindrical capillary tube. J. Fluid Mech.,
478:165–196, 2003. DOI: 10.1017/S002211200200335X.

[51] M. Giavedoni and F. Saita. The axisymmetric and plane cases of a gas phase steadily
displacing a Newtonian liquid—a simultaneous solution of the governing equations.
Phys. Fluids, 9(8):2420–2428, 1997. DOI: 10.1063/1.869360.

[52] A. Gibson. LXXXIV. On the motion of long air-bubbles in a vertical tube. Lond.
Edinb. Dubl. Phil. Mag., 26(156):952–965, 1913. DOI: 10.1080/14786441308635043.

[53] G. Ginley and C. Radke. Influence of soluble surfactants on the flow of long bubbles
through a cylindrical capillary. In J. Borchardt and T. Yen, editors, Oil-field chemistry.
Enhanced recovery and production stimulation, chapter 26, pages 480–501. 1989. DOI:
10.1021/bk-1989-0396.ch026.

[54] H. Goldsmith and S. Mason. The movement of single large bubbles in closed vertical
tubes. J. Fluid Mech., 14(1):42–58, 1962. DOI: 10.1017/S0022112062001068.

153

https://doi.org/10.4208/cicp.220115.110915a
https://dx.doi.org/10.4310/CMS.2003.v1.n2.a6
https://doi.org/10.1201/9781420007121-18
https://doi.org/10.1039/JR9350000527
https://sce.uhcl.edu/feagin/courses/rk10.pdf
https://doi.org/10.1098/rspa.2009.0288
https://doi.org/10.1017/S0022112096007240
https://doi.org/10.1017/S002211200200335X
https://doi.org/10.1063/1.869360
https://doi.org/10.1080/14786441308635043
https://doi.org/10.1021/bk-1989-0396.ch026
https://doi.org/10.1017/S0022112062001068


List of all references, sorted alphabetically

[55] P. Grassia. Motion of an oil droplet through a capillary with charged surfaces. J.
Fluid Mech., 866:721–758, 2019. DOI: 10.1017/jfm.2019.126.

[56] D. Halpern and T. Secomb. The squeezing of red blood cells through capil-
laries with near-minimal diameters. J. Fluid Mech., 203:381–400, 1989. DOI:
10.1017/S0022112089001503.

[57] N. Hammoud, P. Trinh, P. Howell, and H. Stone. Influence of van der Waals forces on
a bubble moving in a tube. Phys. Rev. Fluids, 2(6):063601, 2017. DOI: 10.1103/Phys-
RevFluids.2.063601.

[58] Y. Han and N. Shikazono. Measurement of the liquid film thickness in micro tube slug
flow. Int. J. Heat Fluid Flow, 30(5):842–853, 2009. DOI: j.ijheatfluidflow.2009.02.019.

[59] J. Happel and H. Brenner. Low Reynolds Number Hydrodynamics with Special Appli-
cations to Particulate Media. Prentice-Hall, Englewood Cliffs, New York, 1965.

[60] T. Harmathy. Velocity of large drops and bubbles in media of infinite or restricted
extent. AIChE J., 6(2):281–288, 1960. DOI: 10.1002/aic.690060222.

[61] A. Hazel and M. Heil. The steady propagation of a semi-infinite bubble into a tube
of elliptical or rectangular cross-section. J. Fluid Mech., 470:91–114, 2002. DOI:
10.1017/S0022112002001830.

[62] M. Heil. Finite Reynolds number effects in the Bretherton problem. Phys. Fluids,
13(9):2517–2521, 2001. DOI: 10.1063/1.1389861.

[63] M. Heil. The Bretherton problem in elastic-walled channels: finite Reynolds number
effects. In A. King and Y. Shikhmurzaev, editors, IUTAM symposium on free surface
flows. Fluid mechanics and its application, volume 62, pages 113–120, Dordrecht, 2001.
Springer. DOI: 10.1007/978-94-010-0796-2 14.

[64] G. Hirasaki and J. Lawson. Mechanisms of foam flow in porous media: apparent viscos-
ity in smooth capillaries. Soc. Pet. Eng. J., 25(02):176–190, 1985. DOI: 10.2118/12129-
PA.

[65] S. Hodges, O. Jensen, and J. Rallison. The motion of a viscous drop through a cylin-
drical tube. J. Fluid Mech., 501:279–301, 2004. DOI: 10.1017/S0022112003007213.

[66] M. Hoorfar and A. Neumann. Recent progress in axisymmetric drop shape
analysis (ADSA). Adv. Colloid Interfac. Sci., 121(1):25–49, 2006. DOI:
10.1016/j.cis.2006.06.001.

[67] T. Horozov, R. Aveyard, B. Binks, and J. Clint. Structure and stability of silica particle
monolayers at horizontal and vertical octane-water interfaces. Langmuir, 21(16):7405–
7412, 2005. DOI: 10.1021/la050923d.

[68] T. Horozov, R. Aveyard, J. Clint, and B. Binks. Order-disorder transition in monolay-
ers of modified monodisperse silica particles at the octane-water interface. Langmuir,
19(7):2822–2829, 2003. DOI: 10.1021/la020858x.

154

https://doi.org/10.1017/jfm.2019.126
https://doi.org/10.1017/S0022112089001503
https://doi.org/10.1103/PhysRevFluids.2.063601
https://doi.org/10.1103/PhysRevFluids.2.063601
https://doi.org/10.1016/j.ijheatfluidflow.2009.02.019
https://doi.org/10.1002/aic.690060222
https://doi.org/10.1017/S0022112002001830
https://doi.org/10.1063/1.1389861
https://doi.org/10.1007/978-94-010-0796-2_14
https://doi.org/10.2118/12129-PA
https://doi.org/10.2118/12129-PA
https://doi.org/10.1017/S0022112003007213
https://doi.org/10.1016/j.cis.2006.06.001
https://doi.org/10.1021/la050923d
https://doi.org/10.1021/la020858x


List of all references, sorted alphabetically

[69] M. Hsu, M. Nikolaides, A. Dinsmore, A. Bausch, V. Gordon, X. Chen, J. Hutchin-
son, D. Weitz, and M. Marquez. Self-assembled shells composed of colloidal par-
ticles: fabrication and characterization. Langmuir, 21(7):2963–2970, 2005. DOI:
10.1021/la0472394j.

[70] T. Hu, X. Mei, Y. Wang, X. Weng, R. Liang, and M. Wei. Two-dimensional nanoma-
terials: fascinating materials in biomedical field. Science Bulletin, 64(22):1707–1727,
2019. DOI: 10.1016/j.scib.2019.09.021.

[71] H. Jiang, Y. Sheng, and T. Ngai. Pickering emulsions: Versatility of colloidal particles
and recent applications. Current Opinion in Colloid & Interface Science, 49:1–15,
2020. DOI: 10.1016/j.cocis.2020.04.017.

[72] R. Johnson and A. Borhan. Pressure-driven motion of surfactant-laden drops through
cylindrical capillaries: effect of surfactant solubility. J. Colloid Interf. Sci., 261(2):529–
541, 2003. DOI: 10.1016/S0021-9797(03)00031-6.

[73] E. Klaseboer, R. Gupta, and R. Manica. An extended Bretherton model for long
Taylor bubbles at moderate capillary numbers. Phys. Fluids, 26:032107, 2014. DOI:
10.1063/1.4868257.

[74] W. Kolb and R. Cerro. The motion of long bubbles in tubes of square cross section.
Phys. Fluids A - Fluid, 5(7):1549–1567, 1993. DOI: 10.1063/1.858832.

[75] P. Kralchevsky and K. Nagayama. Particles at Fluid Interfaces and Membranes:
Attachment of Colloid Particles and Proteins to Interfaces and Formation of Two-
Dimensional Areas. Elsevier Science, 2001.

[76] M. Kreutzer, F. Kapteijn, J. Moulijn, C. Kleijn, and J. Heiszwolf. Inertial and inter-
facial effects on pressure drop of taylor flow in capillaries. AIChE J., 51(9):2428–2440,
2005. DOI: 10.1002/aic.10495.

[77] D. Kwak and C. Kiris. Methods for solving viscous incompressible flow problems. 01
2011. DOI: 10.1007/978-94-007-0193-9 2.

[78] C. Lamstaes and J. Eggers. Arrested bubble rise in a narrow tube. J. Stat. Phys.,
167(3):656–682, 2017. DOI: 10.1007/s10955-016-1559-z.

[79] L.D. Landau and E.M. Lifshitz. Fluid Mechanics. Pergamon Press, Oxford, 1984.

[80] L.D. Landau, E.M. Lifshitz, and L.P. Pitaevskii. Electrodynamics of Continuous Me-
dia. Elsevier Butterworth-Heinemann, Oxford, 2004.

[81] D. Langewisch. Application of the polynomial chaos expansion to multiphase CFD: a
study of rising bubbles and slug flow. PhD thesis, Massachusetts Institute of Technol-
ogy, 2004.

[82] D. Langewisch and J. Buongiorno. Prediction of film thickness, bubble velocity, and
pressure drop for capillary slug flow using a CFD-generated database. Int. J. Heat
Fluid Flow, 54:250–257, 2015. DOI: 10.1016/j.ijheatfluidflow.2015.06.005.

[83] H. Langtangen, K. Mardal, and R. Winther. Numerical methods for incompress-
ible viscous flow. Advances in Water Resources, 25(8):1125–1146, 2002. DOI:
10.1016/S0309-1708(02)00052-0.

155

https://doi.org/10.1021/la0472394
https://doi.org/10.1016/j.scib.2019.09.021
https://doi.org/10.1016/j.cocis.2020.04.017
https://doi.org/10.1016/S0021-9797(03)00031-6
https://doi.org/10.1063/1.4868257
https://doi.org/10.1063/1.858832
https://doi.org/10.1002/aic.10495
https://doi.org/10.1007/978-94-007-0193-9_2
https://doi.org/10.1007/s10955-016-1559-z
https://doi.org/10.1016/j.ijheatfluidflow.2015.06.005
https://doi.org/10.1016/S0309-1708(02)00052-0


List of all references, sorted alphabetically

[84] V. Levich. Physicochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs, New
York, 1962.

[85] Y.-C. Li, Y.-C. Liao, T.-C. Wen, and H.-H. Wei. Breakdown of the Bretherton law
due to wall slippage. J. Fluid Mech., 741:200–227, 2014. DOI: 10.1017/jfm.2013.562.

[86] Z. Li, L. Wang, J. Li, and H. Chen. Drainage and lubrication film around stuck bubbles
in vertical capillaries. Appl. Phys. Lett., 115:111601, 2019. DOI: 10.1063/1.5112055.

[87] V. Lotito and T. Zambelli. Approaches to self-assembly of colloidal monolayers: A
guide to nanotechnologists. Adv. Colloid Interfac. Sci., 246:217–274, 2017. DOI:
10.1016/j.cis.2017.04.003.

[88] G. Lyutskanova, K. Mihaylov, and V. Kolev. Axisymmetric drop shape analysis.
In Proceedings of Preparatory Modelling Week, Sofia, Bulgaria, 2015. URL: http:
//pmw2015.fmi.uni-sofia.bg/Documents/Problem_2_Report.pdf.

[89] C. Madec, B. Collin, J. Jerome, and S. Joubaud. Puzzling bubble rise speed in-
crease in dense granular suspensions. Phys. Rev. Lett., 125(6):078004, 2020. DOI:
10.1103/PhysRevLett.125.078004.

[90] M. Magnini, S. Khodaparast, O. Matar, H. Stone, and J. Thome. Dynamics of long
gas bubbles rising in a vertical tube in a cocurrent liquid flow. Phys. Rev. Fluids,
4(2):023601, 2019. DOI: 10.1103/PhysRevFluids.4.023601.

[91] M. Magnini and O. Matar. Morphology of long gas bubbles propagation
in square capillaries. Int. J. Multiphas. Flow, 129:103353, 2020. DOI:
10.1016/j.ijmultiphaseflow.2020.103353.

[92] T. Majeed, M. Kamal, X. Zhou, and T. Solling. A review of foam stabi-
lizers for enhanced oil recovery. Energy Fuels, 35(7):5594–5612, 2021. DOI:
10.1021/acs.energyfuels.1c00035.

[93] R. Manica, E. Klaseboer, and D. Chan. The hydrodynamics of bubble rise and
impact with solid surfaces. Adv. Colloid Interfac., 235:214–232, 2016. DOI:
10.1016/j.cis.2016.06.010.

[94] Z.-S. Mao and A. Dukler. The motion of Taylor bubbles in vertical tubes. I. A numeri-
cal simulation for the shape and rise velocity of Taylor bubbles in stagnant and flowing
liquid. J. Comput. Phys., 91(1):132–160, 1990. DOI: 10.1016/0021-9991(90)90008-O.

[95] Z.-S. Mao and A. Dukler. The motion of Taylor bubbles in vertical tubes – II. Ex-
perimental data and simulations for laminar and turbulent flow. Chem. Eng. Sci.,
46(8):2055–2064, 1991. DOI: 10.1016/0009-2509(91)80164-T.

[96] M. Matin and S. Moghaddam. Thin liquid film formation and evaporation mechanisms
around elongated bubbles in rectangular cross-section microchannels. Int. J. Heat
Fluid Flow, 163:120474, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120474.

[97] A. Morgado, J. Miranda, J. Araújo, and J. Campos. Review on verti-
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