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The Ph.D. thesis considers three applications of boundary value problems in physico-
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• to calculate the distribution of the electrostatic potentials in two immiscible fluid
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to the flat interface between them;

• to compute the drag force, acting on a spherical colloidal particle, which is attached
to a flat interface between two incompressible viscous fluids and translates along
it with constant velocity;

• to clarify the effect of interfacial rheology (tangential mobility and immobility of
interfaces) on the motion of a long bubble in a narrow cylindrical capillary under
the simultaneous action of gravity and Poiseuille flow.

The dissertation is written in English on 160 pages and contains 27 figures and a table. It
includes an introduction, three chapters, corresponding to the three applications considered,
a conclusion, an appendix, and a bibliography of 142 sources. Three additional materials
are attached to the work, which give information on the topics “Tensors in curvilinear
coordinates”, “Electrostatics” and “Continuum fluid mechanics”.
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1. Introduction

A complex fluid (three-dimensional phase) is fluid, which is not Newtonian or the sur-
face tension on its material interfaces (two-dimensional phases) is not constant. Examples
for complex fluids are foams, emulsions, melts, biological cells, tissues and liquids, etc.,
which have applications in the chemical, pharmaceutical and oil industry, everyday life and
medicine. In continuum mechanics, a complex fluid is modelled by the mass, momentum
and energy balance equations, which are not closed. To close the physicochemical models
and to introduce a mathematical formulation of the respective problems, the natural scien-
tists assume different semi-empirical laws (linear or nonlinear) to relate the stress and strain
tensors. Even in the simplest linear rheological case of Newtonian fluids, the Navier–Stokes
equations for incompressible fluids become of a fourth order (the elimination of the pressure
leads to nonlinear partial differential equations, which contain bi-Laplacian of the velocity
vector). For typical applications, the bulk fluids are incompressible but the material in-
terfaces are not — they can deform, take different complex shapes and have considerably
different rheological behavior, which is affected by the adsorbed surfactants, polymers or
particles, by the properties of the biological membranes, etc. Generally, the appearance of
interfaces leads to complex boundary value problems. To construct adequate rheological
models, the experimentalists need simplified mathematical models and fast numerical pro-
cedures to fit the obtained data and to extract information about the rheological parameters
(e.g. the surface dilatational and shear viscosity and elasticity, yield stress, etc.).

In the thesis, we consider three different applications of the boundary value problems
in the case of linear or strongly nonlinear models of the second or higher orders. The
first problem (Chapter 2) is related to the interaction between large protein molecules and
colloid particles (particles of micron or submicron sizes), both of which are attached to the
interface between two fluids. For small sizes (below 3 microns), the proteins and colloids
(termed as particles) interact with van der Waals, electrostatic and capillary forces. Except
for the van der Waals interactions, the electrostatic and capillary forces arise because of the
surface charge density of particles and their three-phase contact angles. Due to the small
particle volumes, the gravity is negligible and, therefore, the deformation of the interface is
a result of the electrostatic pressure distribution along the interface and related to it electro-
dipping force. The strategy for computer modeling is to solve the respective problem for flat
interface, to calculate the electrostatic pressure distribution and the electro-dipping force; to
use the calculated distribution in the normal stress boundary condition in order to compute
the interfacial deformation; etc. From experimental viewpoint, the first two steps are the
most important.

The second problem (Chapter 3) is a part of two very complex tasks. The first one is to
predict the two-dimensional ordering of a large number of molecules and colloidal particles,
which float at the surface between two fluids, and the drag forces, which act on them due
to their Brownian motion under the action of van der Waals, electrostatic and capillary
forces. The second task is related to the fact that there is no direct microscopic method
to measure the value of the three-phase contact angle. The recently developed optical trap
method uses laser beams to manipulate colloidal particles at the interfaces and biological
membranes. From the lateral velocity of a particle and the applied optical tweezer force, the
experimentalists measure the drag force of the colloidal particle (tracer). Thus, one needs a
fast and precise numerical method to calculate the drag force for a given three-phase contact
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angle and to use this procedure for fitting of experimental data in order to obtain the most
probable value of the three-phase contact angle.

One of the most difficult problems in physicochemical and biological modeling is to obtain
the shape of material interfaces in static and dynamic regimes. The complex shapes, the
stability and instability of interfaces and their interactions with other material objects are
of general importance for the description of their physicochemical properties. One example
is considered in Chapter 4 — a motion of a long bubble through a cylindrical capillary
under the action of pressure gradients (Poiseuille flow) and gravity. The bubble surface can
be: free, i.e. tangentially mobile interface — classical formulation; tangentially immobile
but deformable, e.g. the model of biological membranes, surfactant laden interfaces, etc.
The analytical solutions of the classical problems (free surfaces) for the gravity- and for
the pressure-driven motion in the case of very small bubble velocity are known as the
Bretherton problems [1.1]. The only formulas that extend the validity of the Bretherton
formulas and are applicable in the case of bubble with a free surface under the action of
pressure, are published in Refs. [1.2, 1.3]. Again, this problem is a part of more complex
computations, e.g. a motion of drops and bubbles in a rock porous medium in the oil
recovery problems or the motion of biological inclusions in the human veins. Due to the fact
that the available numerical calculations are very time consumable, it is difficult (and in the
most cases impossible) these calculations to be generalized to complex fluids and material
interfaces.

The thesis is organized as follows. The respective problems are described in Chapters
2, 3 and 4, which contain an abstract, literature review, a description of the problem, a
method for its solution, detail conclusions and cited references. In fact, these chapters
correspond to our publications but do not reproduce them directly. The chapters include
detailed mathematical calculations and algorithm descriptions, which are not included in
the publications due to the restricted volume. The actuality of the considered problems,
new elements in their treatment from physicochemical and mathematical aspects, compared
to the available results in the literature, and the main strategies for solving the problems are
written in Chapter 5, where our claims are summarized in three points. Finally, because of
the possible identical references, cited after different chapters, the list of all used references
is added. The thesis contains an appendix and three supplementary materials.

References

[1.1] F. Bretherton, J. Fluid Mech. 10, 166–188 (1961).
[1.2] J. Ratulowski, H.-C. Chang, Phys. Fluids A - Fluid 1, 1642–1655 (1989).
[1.3] W. Kolb, R. Cerro, Phys. Fluids A - Fluid 5, 1549–1567 (1993).
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2. Effect of the ionic strength on
the electro-dipping force

2.1 Literature overview

The prediction of the properties of dielectric particles at fluid–fluid interfaces is of a crucial
importance for the characterization of a particle monolayer, formation of particle-stabilized
emulsions, which have a wide application in cosmetics, food industry, biomedical field, etc.

In this chapter, we model a small particle (of radius less than 2–3 microns), attached
to the flat interface between water and nonpolar fluid. We assume that there are surface
charges at the particle–nonpolar phase boundary [2.1]. In the idealized case of water phase
with infinite dielectric permittivity, this problem was solved semi-analytically, using the
Mehler–Fock integral transform [2.2]. Our aim in the present study is to analyze the more
realistic case of water phase with finite dielectric constant and to calculate the distribution
of the electrostatic potentials in all of the phases. The implemented numerical scheme of
second order with respect to space and numerical time computes the distribution of the
electrostatic potentials in the case of a flat surface, which is an essential step in order to
calculate the electro-dipping force.

2.2 Mathematical formulation of the problem

A spherical charged dielectric particle of radius R and dielectric constant εp is attached
to the interface between nonpolar (oil, air) and water phases with dielectric constants εn
and εw, respectively (see Fig. 2.1). The particle position is determined by the three-phase
contact angle α and the radius of the three-phase contact line is rc = R sinα. There are
no adsorbed charges at the particle–water, Spw, and nonpolar–water phase surfaces, Snw,
while the particle–nonpolar phase interface Spn contains charges of constant surface charge
density, σpn [2.3], which induce electrostatic potentials in the volumes.

Figure 2.1: Sketch of a particle at the interface between water and nonpolar phases.
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Figure 2.2: Rectangular numerical domains in modified toroidal coordinates.

Then, the dimensionless potentials φj , scaled with rcσpn/(ε0εn), are modelled as solu-
tions of the Laplace equations in the volumes, Vj , i.e.:

∇2φw = 0 in Vw, ∇2φn = 0 in Vn, ∇2φp = 0 in Vp, (2.1)

where ε0 is the dielectric permittivity in vacuum, and the subscripts “p”, “n” and “w” denote
the particle, the nonpolar and water phases, respectively. At the dividing boundaries, we
apply the tangential boundary conditions:

φp = φw at Spw, φp = φn at Spn, φn = φw at Snw (2.2)

and the normal boundary conditions

εwnn · ∇φw = n · ∇φn at Snw, (2.3)

εwnnp · ∇φw = εpnnp · ∇φp at Spw, (2.4)

εpnnp · ∇φp − np · ∇φn = 1 at Spn, (2.5)

where np is the outer unit normal to the particle surface, n is the unit normal to Snw,
pointing at the nonpolar phase, and the dielectric parameters εpn and εwn are defined as

εpn =
εp
εn
, εwn =

εw
εn
. (2.6)

Finally, the electrostatic potentials vanish at infinity.
The problem is axissymetric and, therefore, its solution depends only on the axial dis-

tance r and axial coordinate z. Thus, the complex dielectric phases domains (Fig. 2.1) are
transformed into rectangles (Fig. 2.2) by introducing modified toroidal coordinates τ and
σ as follows:

r =
1− τ2

h
, z =

2τ sinσ

h
, h(τ, σ) = 1 + τ2 − 2τ cosσ. (2.7)

Then, the positions of the interfaces are σ = 0 and σ = 2π from both sides of Snw; σ = π−α
at Spn; σ = 2π−α at Spw. The axis of revolution corresponds to τ = 1 and the three-phase
contact line—to the pole, A+, where τ = 0.
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Using the general formulae for the Laplace operator and directional derivatives in mod-
ified toroidal coordinates, we get

L0[φw] = 0, L0[φn] = 0, L0[φp] = 0, (2.8)

where the operator L0 is defined via the formula

L0[φ] =
h3

4τ (1− τ2)

∂

∂τ

[
τ
(
1− τ2

)
h

∂φ

∂τ

]
+

h3

4τ2
∂

∂σ

(
1

h

∂φ

∂σ

)
. (2.9)

At the dividing boundaries Snw, Spw, Spn, the boundary conditions have the form

φn|σ=0 = φw|σ=2π ,
∂φn

∂σ

∣∣∣∣
σ=0

= εwn
∂φw

∂σ

∣∣∣∣
σ=2π

, (2.10)

φp|σ=2π−α = φw|σ=2π−α , εpn
∂φp

∂σ

∣∣∣∣
σ=2π−α

= εwn
∂φw

∂σ

∣∣∣∣
σ=2π−α

, (2.11)

φn|σ=π−α = φp|σ=π−α ,
∂φn

∂σ

∣∣∣∣
σ=π−α

− εpn
∂φp

∂σ

∣∣∣∣
σ=π−α

=
2τ

h
. (2.12)

Due to the axial symmetry of the problem, the following boundary conditions:

∂φn

∂τ

∣∣∣∣
τ=1

=
∂φp

∂τ

∣∣∣∣
τ=1

=
∂φw

∂τ

∣∣∣∣
τ=1

= 0 (2.13)

are added at the axis of revolution. At the pole A+, the potentials are defined to be zero

φn = φp = φw = 0 for τ = 0 (2.14)

due to linearity of the problem. The physical potentials are computed by subtracting from
the dimensionless φl their value at infinity.

2.3 Asymptotic behaviour of the model at the three-
phase contact line

To compute the electro-dipping force with high accuracy, we investigate the asymptotic
behaviour of the model equations in the close vicinity of the three-phase contact line (for
τ → 0). Thus, we search for the solution of the problem (2.8)– (2.12) in the form

φi = τν [Ac
i cos(νσ) +As

i sin(νσ)] , i = n, p, w, (2.15)

where 0.5 < ν < 1 and Ac
i and As

i are unknown constants. The substitution of these
solutions into the boundary conditions (2.10)– (2.12) leads to a homogeneous system of six
linear equations for Ac

i and B
c
i . This system has a nontrivial solution, when its determinant

is equal to zero. Thus, we arrive to the following equation for the singularity parameter, ν:

2εpn(1− εwn)
2

(1 + εpn)(1 + εwn)(εpn + εwn)
− sin2(νπ) =

(1− εpn)(1− εwn)

(1 + εpn)(1 + εwn)
cos2(να) +

(1− εwn)(εpn − εwn)

(1 + εwn)(εpn + εwn)
cos2 [ν(π − α)] . (2.16)
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Figure 2.3: Dependence of singularity parameter ν on the contact angle α and ratio εwn:
(a) εpn = 4; (b) εpn = 0.25. Dashed lines show the idealized case, studied in [2.2].

The solutions of equation (2.16) for two different ratios εpn at different values of εwn are
shown in Fig. 2.3. When εwn → ∞, from (2.16) it follows the model case, studied in
[2.2]. The singularity in the model case, depicted with dashed lines in Fig. 2.3, is stronger
than that in all other cases. Moreover, the values of ν increase with the decrease of the
ratio between dielectric constants of water and nonpolar phase, εwn. This effect is more
pronounced for larger values of εwn and more hydrophilic particles.

2.4 Numerical method

Instead of solving the considered elliptical problem, we introduce numerical time t and solve
the following parabolic problem:

∂φl

∂t
= T [φl] + S[φl], φl ∈ Vl, 0 < t ≤ T, l = n, p, w, (2.17)

φl(τ, σ, 0) = φl0(τ, σ), l = n, p, w (2.18)

with applied boundary conditions (2.10)– (2.14), where T [.] and S[.] are the following oper-
ators:

T [φ] =
hτ

1− τ2
∂

∂τ

[
τ(1− τ2)

h

∂φ

∂τ

]
, S[φ] = h

∂

∂σ

(
1

h

∂φ

∂σ

)
. (2.19)

We introduce a mesh ω = ωτ × (ωn ∪ ωp ∪ ωw)×ωt, where ωτ , ωn, ωp, ωw, ωt are defined as

ωτ = {τi = iδτ , δτ = 1/N, i = 0, 1, · · · , N} , (2.20)

ωn = {σn,j = jδn, δn = (π − α)/Nn, j = 0, 1, · · · , Nn} , (2.21)

ωp = {σp,j = π − α+ jδp, δp = π/Np, j = 0, 1, · · · , Np} , (2.22)

ωw = {σw,j = 2π − α, jδw, δw = α/Nw, j = 0, 1, · · · , Nw} , (2.23)

ωt = {tk = kδt, δt = T/M, k = 0, 1, · · · ,M} . (2.24)

Let us denote the approximate solution of the considered problem at a point (τi, σl,j , tk) by

ϕl|kij , l =n, p, w, the standard second-order approximations of the differential operators S
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and T by S̃ and T̃ , and

δϕl|k+1
ij = ϕl|k+1

ij − ϕl|kij , l = n, p, w. (2.25)

We solve the problem (2.17)–(2.18), (2.10)– (2.14), using the D’Yakonov method, which
belongs to the class of alternating direction implicit methods (ADIM). First, one solves(

U − δt
2
S̃

)[
ψl|k+1

ij

]
= δtT̃

[
ϕl|kij

]
+ δtS̃

[
ϕl|kij

]
, l = n, p, w (2.26)

with appropriate boundary conditions, applied for ψl|k+1
ij at the particle surface and at the

fluid-fluid interface. Then, one solves the system:(
U − δt

2
T̃

)[
δϕl|k+1

ij

]
= ψl|k+1

ij , l = n, p, w (2.27)

with respective boundary conditions, applied for δϕl|k+1
ij at the three-phase contact line and

at the axis of revolution. Finally, ϕl|k+1
ij is obtained, using Eq. (2.25).

The main issue in the ADIM arises from the complexity of the boundary conditions. In
order to have a second-order scheme with respect to t, one should take a special care of the
form of the boundary conditions. The boundary conditions at the particle surface, at the
fluid–fluid interface and at the axis of revolution are obtained by extending the definition
of the operators S and T to hold on the dividing boundaries, assuming the validity of
the Laplace equations in their close vicinity. The boundary conditions at the three-phase
contact line are approximated directly. At the axis of revolution, we replace the boundary
conditions (2.13) with equations (2.27), in which S and T are approximated by

S̃[ϕl|kNj ] =
1− cosσj

δ2σ
·

[
ϕl|kN,j+1 − ϕl|kN,j

1− cosσj+1/2
−
ϕl|kN,j − ϕl|kN,j−1

1− cosσj−1/2

]
, j = 1, Nl − 1, (2.28)

T̃ [ϕl|kNj ] =
−7 ϕl|kNj + 8 ϕl|kN−1,j − ϕl|kN−2,j

δ2τ
, j = 1, Nl − 1. (2.29)

Next, the normal boundary condition (2.10) is replaced by equation (2.26), in which one
approximates the operators T and S by

T̃ [ϕn|ki0] =
τi(1− τi)

δτ (1 + τi)
·

[
τi+1/2(1 + τi+1/2)

1− τi+1/2
·
ϕn|ki+1,0 − ϕn|ki,0

δτ

−
τi−1/2(1 + τi−1/2)

1− τi−1/2
·
ϕn|ki,0 − ϕn|ki−1,0

δτ

]
, (2.30)

S̃[ϕn|ki0] =
1

δn + εwnδw
·
−7 ϕn|ki0 + 8 ϕn|ki1 − ϕn|ki2

2δn

+
εwn

δn + εwnδw
·
−7 ϕw|kiNw

+ 8 ϕw|ki,Nw−1 − ϕw|ki,Nw−2

2δw
, i = 0, N. (2.31)

The normal boundary conditions (2.11) and (2.12) are approximated analogously.
Because of the boundary conditions, the linear system in the τ -direction is described

by a pentadiagonal matrix. Due to the periodicity of the solution at Snw, the respective
matrix of the system in the σ-direction is a pentadiagonal with two additional non-zero
elements at the end of its first row and at the beginning of its last row. We developed a
direct elimination numerical method to solve a linear system of the considered type.
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(a) εpn = 0.874 and εwn = 17.2 (b) εpn = 2 and εwn = 40

Figure 2.4: Distribution of the electrostatic potentials for α = 90◦.

2.5 Numerical results

To achieve good precision of the numerical calculations, we discretize each numerical domain
by introducing a 100× 100 uniform mesh. The time step δt is set to the minimum of δτ , δn,
δp and δw. The CPU time for computation of the potential distributions on a laptop with
processor Intel Core i5-4200H is less than a second for any contact angle α ∈ (0◦, 180◦).

Figs. 2.4b and 2.5b correspond to experimental system parameters εpn = 2 and εwn = 40
[2.1] and Figs. 2.4a and 2.5a — to the system parameters εpn = 0.874 and εwn = 17.2.

Fig. 2.4 shows the distribution of the physical potentials in the numerical domains for
three-phase contact angle α = 90◦. The considerably higher dimensionless potentials are
obtained for larger values of the dielectric constant of the nonpolar phase. At the coordinate
lines, σ = 0 (Snw) and σ = 3π/2 (Spw), the electrostatic potentials are considerably lower
than those at coordinate line σ = π/2 (Spn). As it can be expected, the maxima of the
electrostatic potentials are at the cross-section of the particle–nonpolar interface and the
axis of revolution. In both cases, the dielectric constant of water is so high that the water
phase suppresses the penetration of the electric field in polar phase.

The calculations in [2.1, 2.2] are performed, assuming zero values of the potentials at
the boundaries of the polar fluid. The magnitude of the electro-dipping force decreases if
the electrostatic potentials at these boundaries are different than zero. Fig. 2.5 shows the
distribution of the surface potentials along the boundaries (solid lines correspond to Spn;
dashed lines — to Spw; dot–dashed lines — to Snw). The increase in the three-phase contact
angle (more hydrophobic particles) leads to higher potentials because there are more charges,
adsorbed at the particle–nonpolar fluid interface. It is important to note that the surface
potentials at the particle–water boundary are different from zero. Thus, the boundary Spw

also contributes to the electro-dipping force. For α = 45◦ and α = 90◦, this contribution is
small, while for α = 135◦—it is not negligible. Increasing dielectric constant of the nonpolar
phase εn, the electrostatic potential at boundary Spw increases.
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(a) εpn = 0.874 and εwn = 17.2 (b) εpn = 2 and εwn = 40

Figure 2.5: Distribution of potentials along the interfaces for α = 45◦, α = 90◦ and α = 135◦.

2.6 Conclusion

The proposed effective numerical algorithm, based on the ADIM, enables us to do fast and
precise calculation of the electrostatic distributions, generated from a charged dielectric
particle, attached to the nonpolar–water interface. For faster calculations, we transform
the complex dielectric phase domains into rectangles, using a modification of the toroidal
coordinates. The resulting systems in the respective directions of ADIM are solved, using a
direct elimination method.

The numerical results show the effect of the three-phase contact angle and the dielec-
tric properties on the induced electric fields and the magnitude of the electro-dipping force.
Generally, the decrease of the ratios of the dielectric constants of the particle and nonpolar
phase, εp/εn, and that of water and nonpolar phase, εw/εn, leads to the more pronounced
penetration of the electric field and higher surface potentials at the particle–water and
nonpolar fluid–water boundaries. The magnitude of the potentials is larger for more hy-
drophobic particles. The calculations generalize known results — the idealized case of a
thin electric double layer in water [2.1], where the dielectric constants of the particle and
the nonpolar phase are assumed to be negligible with respect to the constant of water, and
the idealized case of water phase with infinite dielectric permittivity [2.2].
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3. Motion of a spherical particle,
attached to the interface between
two viscous fluids

3.1 Literature overview

The two-dimensional layers of micro- and nano-particles, attached to interfaces, are related
to the production of antireflective surface coverages in solar panels, charge-coupled devices,
and bio-memory chips. The quality of these layers depends on the values of the contact
angle, α, and the mobility of particles at the interfaces. For small particles, α is measured
from the translational motion of individual particles, attached to fluid–fluid interfaces.

In the current work, we calculate the drag coefficient of a spherical particle, located
at a flat interface between two viscous fluids and moving parallel to it. If one of the fluid
phases is air, the problem has a semi-analytical solution in terms of the Mehler–Fock integral
transformation [3.1], which is valid only for particles more immersed in the fluid phase (α ≤
90◦). The general problem is solved in [3.2], using the two-vorticity-one-velocity formalism.
A major drawback of the proposed method in [3.2] is that it is slow. In the present study, we
develop a fast and effective numerical method for the general problem, applying the gauge
method. This algorithm is needed in order to determine experimentally the contact angle
of micron particles and to solve the two-dimensional crystallization problem.

3.2 Mathematical formulation of the problem

A small spherical particle of radius R is attached to the interface between two infinite
incompressible viscous fluids and moves parallel to it with known constant velocity V (see
Fig. 3.1). For small capillary numbers, the perturbations of the dividing surface due to
the particle motion are sufficiently small so that the surface is flat. Thus, the three-phase
contact line is a circumference of radius rc = R sinα, where α is the three-phase contact
angle. The center of the three-phase contact line is chosen to be an origin of a Cartesian
coordinate system with unit basis vectors ex, ey, and ez, where ey points at the direction
of the particle movement and ez is the unit normal to the fluid–fluid interface, pointing at
the upper fluid phase (see Fig. 3.1).

The translation of the particle causes the fluid motion, which is so slow that the iner-
tia terms in the Navier–Stokes equations can be neglected. Then, the dimensionless local
velocity vm (scaled with V ) in the fluid volume Vm is described as a solution of the Stokes
equation, i.e.:

∇ · vm = 0 in Vm, ∇pm = ∇2vm in Vm, m = 1, 2, (3.1)

where ηm is the dynamic viscosity, pm is the dimensionless pressure (scaled with ηmV/rc)
and subscripts “1” and “2” denote the upper and lower phases, respectively.

In order to close the problem, we apply the no-slip boundary conditions at the particle
surface, Sp:

vm = ey at Sp, m = 1, 2, (3.2)
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Figure 3.1: Sketch of a spherical particle, attached to the plane interface between two fluids.

the kinematic and the dynamic boundary conditions at the non-perturbed interface z = 0:

v1 = v2, v1 · ez = 0, v2 · ez = 0 at z = 0, (3.3)

µ1
∂v1

∂z
× ez = µ2

∂v2

∂z
× ez at z = 0, (3.4)

where the dimensionless viscous coefficients are given by µm = ηm/(η1 + η2), m = 1, 2.
Finally, the physical values of vm and pm in both phases vanish at large distances from the
particle.

Next, one transforms the model into a form, which is convenient for numerical modelling.
First, the problem is reformulated, using the gauge method:

vm = wm −∇ξm, pm = −∇2ξm, m = 1, 2. (3.5)

Its main idea is to transform the original system, which consists of six second-order and
two first-order partial differential equations, into one — of eight elliptic partial differential
equations. Second, we simplify the three-dimensional problem to the two-dimensional one,
taking into account the fact that the considered problem contains only the first mode with
respect to the Fourier transform:

wmr = amr sinφ, wmφ = amφ cosφ, wmz = amz sinφ, ξm = bm sinφ, m = 1, 2. (3.6)

Next, the partial differential equations in the system are uncoupled by introducing the
following new variables:

um0 =
amr + amφ

4
, um1 =

amz

2
, um2 =

amr − amφ

4
, bm1 = bm − ramr + zamz

2
(3.7)

for m = 1, 2. In order to transform the complex geometry of the problem into rectangles,
we use the modification of the toroidal coordinates (2.7). Finally, one obtains the following
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problem in terms of the new functions, umj and bm1, (m = 1, 2 and j = 0, 1, 2):

L0[um0] = 0, L1[um1] = 0, L2[um2] = 0, L1[bm1] = 0, m = 1, 2, (3.8)

where Ln[u] are defined as

Ln[u] =
h3

4τ (1− τ2)

∂

∂τ

[
τ
(
1− τ2

)
h

∂u

∂τ

]
+

h3

4τ2
∂

∂σ

(
1

h

∂u

∂σ

)
− n2h2

(1− τ2)
2u. (3.9)

The respective boundary conditions are applied to the problem:

• Boundary conditions at the upper (σ = α) or at lower part of the particle
surface (σ = α− π):

2
[
(1 + τ2) cosσ − 2τ

]
um2 +

[
(1− τ2) sinσ

]
um1 = 0, m = 1, 2; (3.10)

um2 +
(1− τ2) sinσ

8τ

∂

∂σ

[
bm1 +

1− τ2

h
(um0 + um2) +

2τ sinσ

h
um1

]
= 0, m = 1, 2;

(3.11)

um0 − um2 =
1

2
, bm1 +

1− τ2

h
(um0 + um2) +

2τ sinσ

h
um1 = 0, m = 1, 2; (3.12)

• Boundary conditions at the fluid–fluid interface (σ = 0):

u10 = u20, u12 = u22, b11 = b21, m = 1, 2; (3.13)

um1 −
(1− τ)2

2τ

∂bm1

∂σ
− 1− τ2

2τ

∂

∂σ
(um0 + um2) = 0, m = 1, 2; (3.14)

µ1
∂u10
∂σ

= µ2
∂u20
∂σ

, µ1
∂u12
∂σ

= µ2
∂u22
∂σ

, µ1
∂b11
∂σ

= µ2
∂b21
∂σ

, m = 1, 2; (3.15)

• Boundary conditions at the axis of revolution (τ = 1):

∂um0

∂τ
= 0, um1 = 0, um2 = 0, bm1 = 0, m = 1, 2; (3.16)

• Boundary conditions at the three-phase contact line (τ = 0):

um2 =
1

8

(
∂bm
∂τ

cosσ − ∂2bm
∂σ∂τ

sinσ

)
, m = 1, 2, (3.17)

um1 =
1

4

(
∂bm
∂τ

sinσ +
∂2bm
∂σ∂τ

cosσ

)
, m = 1, 2, (3.18)

um0 = um2 +
1

2
, bm1 = −um0 − um2, m = 1, 2, (3.19)

where bm is defined as

bm(τ, σ) = bm1 +
1− τ2

h
(um0 + um2) +

2τ sinσ

h
um1, m = 1, 2; (3.20)

• Boundary conditions at infinity (τ = 1, σ = 0):

um0(1, 0) = um1(1, 0) = um2(1, 0) = bm1(1, 0) = 0, m = 1, 2. (3.21)
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3.3 Asymptotic behaviour of the model at the three-
phase contact line

In order to have a good approximation for the drag coefficient, we investigate the asymptotic
behaviour of the model in the close vicinity of the three-phase contact line (for τ → 0).
Analogously to the computations in the Chapter 2, we obtain the following equation for the
singularity parameter λ:

µ1 [sin(2λα)− λ sin(2α)]
{
cos[2λ(α− π)]− λ2 cos(2α) + λ2 − 1

}
= µ2 {sin[2λ(α− π)]− λ sin(2α)}

[
cos(2λα)− λ2 cos(2α) + λ2 − 1

]
. (3.22)

The pressure function has a stronger than logarithmic singularity inside the regions, shown
in Fig. 3.2, where the singularity parameter λp := λ− 1 is in the interval (−0.5, 0). Fig. 3.2
depicts the dependence of λp on the three-phase contact angle, α, and viscosity ratio, µ1.
Because of the symmetry, the picture is analogous to that, obtained by replacing µ1 with
µ2 and α with π − α. One sees that the pressure singularity becomes stronger with the
decrease of viscosity ratio µ1. Due to the fact λp > −0.5, the singularity is weak and the
drag force, as well as the drag coefficient, are finite.

Figure 3.2: Lines with fixed values of the singularity parameter, λp.

3.4 Numerical results

The problem (3.8)–(3.21) is solved by introducing numerical time and using the D’Yakonov
scheme (see Chapter 2). In Table 3.1, we validate the results by comparing the values of the
drag coefficient, calculated via the proposed method, to the semi-analytic results [3.1] for
α ≤ 90◦ and fluid–air interface. The computations are performed for δσ = 0.017, δτ = 0.05
and different time steps δt. The relative error is less than 1% and the CPU time on a laptop
with processor Intel Core i5-4200H is less than 10 s in all of the studied cases. Fig. 3.3 shows
the pressure distribution for air/water interface for two different values of the three-phase
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Table 3.1: Comparison between the calculated values, using the proposed method, and
analytic values of the drag force coefficient [3.1].

α (◦) δt CPU time (s) appr. drag coeff. exact drag coeff. Rel. error (%)
15 0.10 2.534 1.4306 1.4374 0.473
30 0.15 7.332 1.4013 1.3392 0.612
60 0.45 7.504 1.2522 1.2509 0.104
75 0.60 5.242 1.1473 1.1370 0.906
90 0.60 8.798 0.9916 1.0000 0.840

Figure 3.3: Pressure distribution for air–fluid interfaces: (a) α = 90◦; (b) α = 60◦.

contact angle. It is well illustrated that the pressure maximum for α = 90◦ is at the contact
line, while that for α = 60◦ is shifted along the particle surface inside the fluid phase. The
proposed algorithm decreases the computational time from 10 to 1000 times, compared to
that in [3.2]. The smaller the contact angle is, the faster the proposed approach is.

3.5 Conclusion

The hydrodynamic problem for translation of a spherical particle, attached to a fluid–fluid
interface, is simplified by using the gauge formulation, introduction of appropriate functions
and toroidal coordinates, which reduces the three-dimensional Stokes equations to a two-
dimensional system of eight homogeneous partial differential equations. The problem is
solved, using the D’Yakonov method and reformulating adequately the boundary conditions.
As a result, the numerical time is reduced from 10 to 1000 times, compared to that in [3.2].
From practical viewpoint, these calculations are essential for determination of contact angle
of micron particles and for solving two-dimensional crystallization problem.
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4. Motion of long bubbles in
gravity- and pressure-driven flow
through cylindrical capillaries up
to moderate capillary numbers

4.1 Literature overview

The transport of bubbles and drops through capillaries and porous media plays an important
role in many technological and biological systems: enhanced oil recovery; movement of red
blood cells; pulmonary airway reopeninig; motion of discrete bubbles in porous materials;
biomechanics and microfluidic devices; circulating fluidized bed devices; etc. In some of
these applications (e.g. microfluidics), the dimensionless thickness of the liquid film, h, is
an important design parameter and, therefore, it is essential to find an expression for it.

In the current work, we study the motion of long bubbles in the gravity- and pressure-
driven flows thought cylindrical capillaries. Most of the research considers the two effects
separately and their interplay is not described systematically [4.1]. Therefore, it is conve-
nient to study two simplified cases of the motion of bubbles and drops: in vertical capillaries,
sealed at one end, under the action of gravity; in horizontal tubes through which a fluid is
flowing. Bretherton solved the two simplified cases by using the lubrication approximation
for the flow in the thin layer between the bubble and the capillary [4.2]. Then, he matched
the lubrication approximation with the radius of curvature of the bubble front, correspond-
ing to the capillary radius. The obtained asymptotic expressions are accurate to within
10% for small capillary numbers Ca (Ca < 5.0× 10−3) in the case of pressure-driven flows
and for Bond numbers in the interval (0.842, 1.04) in the case of gravity-driven flows. In
2014, using the Bretherton approach and matching the lubrication approximation solution
with more realistic radius of curvature at the bubble front, Klaseboer et al. [4.3] derive
theoretically an extended expression for dimensionless thickness, which is valid for Ca < 2
in the case of pressure-driven flows.

To extend the region of validity of Bretherton model [4.2], Ratulowski and Chang [4.4]
considered the lubrication solution in cylindrical coordinates. To avoid the ill-defined proce-
dure of matching the lubrication approximation solution with the bubble shape at its front
[4.2, 4.3], the normal stress boundary condition, written in terms of an arc length of the
bubble surface, is used in order to solve the respective boundary value problem for the film
thickness at the cylindrical part of the bubble, h, in [4.4]. This approach leads to a good
theoretical description of the experimental data for the relative increase in the velocity, W ,
for up to 40 times larger capillary numbers (Ca < 0.2) than the applicability region of
the Bretherton formula but still further improvements are needed to explain the significant
deviations at higher capillary numbers. In this work, we generalized the approach, proposed
by Ratulowski and Chang, by keeping not only the zero-order but also the first-order terms
in the lubrication approximation. This method leads to sufficient improvement in the accu-
racy. Moreover, this approach is valid for moderate capillary and Bond numbers and could
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be generalized by introducing complex interfacial rheology and intermolecular forces.

4.2 Mathematical model

Let us consider a cylindrical capillary of radius R, filled with incompressible Newtonian fluid
with dynamic viscosity η and density ρ. Inside the fluid, there is an axisymmetric bubble
with an axis of revolution, coinciding with the axis of revolution of the capillary. The bubble
moves with velocity Vb, parallel to the tube wall, under the action of the Poiseuille flow and
of gravity with acceleration g (see Fig.4.1). The surface of the bubble is a fully mobile (the
shear stress at the bubble surface is zero) or a tangentially immobile surface (the immobile
surface acts as a solid surface).

Figure 4.1: An axisymmetric bubble moves in a cylindrical capillary of radius R under the
action of gravity and Poiseuille flow.

We introduce a cylindrical coordinate system (r, φ, z) with a center at the bubble apex
and axis of revolution Oz, pointing in a direction, opposite of the bubble motion (see
Fig. 4.1). First, the problem is axisymmetric and, therefore, the variables depend only
on r and z. Thus, we shall consider the problem in the r-z plane only. Second, due to
the fact this coordinate system is fixed at the bubble apex, the translational velocity of the
bubble is equal to zero and the capillary wall and the whole fluid translate along axis Oz
with velocity Vb.

We scale the mean curvature, the radial and axial coordinates of the bubble with the
capillary radius R, the velocity components — with the bubble velocity Vb and the pressure
— with ηVb/R. The effects of buoyancy and capillary forces are measured, using the Bond
number, Bo, the capillary numbers, Ca and Capm, and the relative increase in the velocity,
W :

Bo =
ρgzR

2

σ
, Ca =

ηVb
σ
, Capm =

ηVpm
σ

, W = 1− Vpm
Vb

, (4.1)

where gz is the z-component of the gravity g, σ is the surface tension of the bubble and
Vpm is the mean speed of the Poiseuille flow.

We model the fluid motion, using the Stokes equations. Then, the dimensionless radial
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component u and axial component v of the fluid velocity satisfy the equations

1

r

∂

∂r
(r u) +

∂v

∂z
= 0, (4.2)

∂p

∂r
=

∂

∂r

[
1

r

∂

∂r
(r u)

]
+
∂2u

∂z2
, (4.3)

∂p

∂z
=

1

r

∂

∂r

(
r
∂v

∂r

)
+
∂2v

∂z2
+
Bo

Ca
. (4.4)

Next, we describe the bubble surface as r = rb(s), z = zb(s), where rb and zb are the radial
and the axial coordinates of the bubble surface and s is the arc length of S, measured from
the bubble apex. Using geometric considerations, the bubble surface S is modelled as

drb
ds

= cos θ, (4.5)

dzb
ds

= sin θ, (4.6)

2H =
dθ

ds
+

sin θ

rb
, (4.7)

where θ is the meniscus running slope angle and H is the dimensionless mean curvature. In
order to close the considered problem, we apply the following boundary conditions:

• no-slip boundary conditions at the capillary wall:

u = 0, v = 1 at r = 1; (4.8)

• inlet/outlet boundary conditions at infinity:

u = 0, v = 1 + vp (r) at |z| → ∞, (4.9)

where vp(r) is the axial coordinate of the Poiseuille velocity profile;

• simple flow rate boundary condition:

2

1∫
rb

rvdr =W ; (4.10)

• tangential stress boundary condition at the bubble surface:

cos(2θ)

(
∂v

∂r
+
∂u

∂z

)
+ sin (2θ)

(
∂v

∂z
− ∂u

∂r

)
= 0 at S; (4.11)

• normal stress boundary condition at the bubble surface:

pb = p− 2 sin2 θ

[
cot2 θ

∂v

∂z
+
∂u

∂r
− cot θ

(
∂v

∂r
+
∂u

∂z

)]
+

2H

Ca
at S. (4.12)
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For free surfaces, the problem consists of Eqs. (4.2)–(4.12). In the case of a tangentially
immobile bubble surface, Eq. (4.11) is replaced by the conditions for surface solidification:

u = 0, v = 0 at S (4.13)

and the normal boundary condition is simplified as follows:

pb = p+
2H

Ca
at S. (4.14)

We assume that the characteristic dimensionless thickness of liquid layer, ε, far from
the bubble apex is a small parameter of the considered problem and, therefore, rescale the
radial coordinate, r, as follows:

r = 1 + εξ. (4.15)

The expansions in series for the radial and the axial components of the fluid velocity and for
the pressure with respect to the small parameter, ε, are sought-out in the following form:

u = εũ0 + ε3ũ2 +O
(
ε4
)
, v = ṽ0 + ε2ṽ2 +O

(
ε3
)
, p =

p̃0
ε2

+ p̃2 +O (ε) . (4.16)

One substitutes the expansions (4.15)–(4.16) in the Stokes problem (4.2)– (4.4), closed
with the no-slip (4.8), the simple flow rate (4.10) and the tangential boundary condition
(4.11) or (4.13). Equating the leading coefficients in each of the equations, we obtain a
system of partial differential equations with boundary conditions. Its solution, the zero-
order approximations for the flow variables u, v and p, is found analytically. Analogously,
one gets the first-order approximations for the flow variables. Next, these approximations
are substituted in the normal stress boundary condition and the following nonlinear system
of four ordinary differential equations for rb, zb, θ and the dynamic pressure difference ps:

drb
ds

= cos θ, (4.17)

dzb
ds

= sin θ, (4.18)

dθ

ds
= −Caps −

sin θ

rb
, (4.19)

dps
ds

= F (rb, θ, ps, Bo, Capm) . (4.20)

is obtained. Using small perturbations around the cylindrical shape of the bubble, the initial
conditions for the problem in the case of long bubbles acquire the form

rb(sin) = rc − δ, zb(sin) = zin, (4.21)

θ(sin) =
π

2
+ λδ, ps(sin) = − 1

Carc
−

(
λ2 +

1

r2c

)
δ

Ca
, (4.22)

where rc is the radius of the cylindrical part of the bubble, δ is the initial value of the shape
perturbation and λ is the real root of the equation

(λrc)
3 + λrc + a = 0. (4.23)
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In the latter, a is computed as follows:

a =


2r2c

[
8Capm +Bo

(
1− r4c + 4r4c ln rc

)]
1− 4r2c + 3r4c − 4r4c ln rc

for free surface;

r2c
(
1− r2c + 2r2c ln rc

) [
8Capm +Bo

(
1− r2c

)2]
(1− r2c )

2
[r2c − 1− (1 + r2c ) ln rc]

for tangentially
immobile surface.

(4.24)

4.3 Regions of validity of parameters

Due to the fact that long bubbles appear only if a > 0, we check when the expressions (4.24)
are positive for 0 < rc < 1 and Ca > 0. The obtained constraints for the ratio Capm/Bo
in the case of free or immobile surfaces are shown in Fig. 4.2. Note that the problem has
no solution for parameter values in the region, enclosed by the solid line (Ca = 0) and the
dashed line (a = 0).

Figure 4.2: Regions of physical parameters for possible elongated bubble profiles in the case
of free or tangentially immobile surface. Solid lines correspond to Ca = 0 and dashed lines
— to a = 0.

4.4 Numerical results

Generally speaking, the system (4.17)– (4.20) models the form of a drop for a given pressure
distribution along the bubble surface. The solution depends on the initial conditions and
describes different types of possible capillary profiles: open or closed capillary curves, curves
with loops, etc (see Fig. 4.3). For example, in the case of a free surface, Bo = 2 and
Capm = 0, the capillary curve has a loop for h = 0.1, the calculated profile is open for
h = 0.2, and only for h = 0.1617, one obtains the real bubble shape (Fig. 4.3a). Analogously,
for Bo = 0 and Capm = 0.5 in the case of free surfaces, the capillary profiles are open for
h = 0.26 and h = 0.29 and the physical solution is obtained for h = 0.2752 (Fig. 4.3b).
These experiments show the variety of the problem solutions but we are interested only in
the physical solution, which corresponds to a closed bubble profile. For given parameters
Bo and Capm, it is computed by varying the dimensionless thickness, h, so that one obtains
a closed profile.
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(a) Bo = 2, Capm = 0. (b) Bo = 0, Capm = 0.5.

Figure 4.3: Calculated capillary profiles for three different values of the dimensionless layer
thickness, h, in the case of a free bubble surface.

(a) Rising bubbles. (b) Taylor bubbles.

Figure 4.4: Comparison between experimental data [4.5–4.7] (symbols) and the theoretical
calculations. Solid line — generalized lubrication approximation; A-line — model, based on
the zero-order lubrication approximation [4.4]; B-line — extended Bretherton model [4.3].

4.4.1 Comparison with experimental data and theoretical results

Fig. 4.4a shows experimental data [4.5] (symbols) for the dimensionless layer thickness of a
long rising bubble in capillary as function of the Bond number (Capm = 0). The calculations
for a free surface (solid blue line) describe excellently the experimental data for all studied
values of the Bond number (Bo ≤ 7.5). The Bretherton asymptotic formula [4.2] (dashed
line in Fig. 4.4a) gives good results for low values of the capillary number, Ca < 3.2×10−4.

In the case of motion of long bubbles under the action only of the Poiseuille flow
(Bo = 0), the comparison between experimental data and numerical calculations are shown
in Fig. 4.4b. The original Bretherton asymptotic solution [4.2] (dashed line) describes ex-
perimental data with accuracy of 10% for low values of the capillary numbers Ca < 5×10−3.
The extended Bretherton model [4.3] (B-line) gives acceptable results for Ca < 0.1. The
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Figure 4.5: Comparison between experimental data [4.1] (symbols) for relative velocity
Vb/Vpm > 0 of long bubbles and the theoretical calculation for fully mobile and immobile
interfaces for fixed Bond number, Bo = 4.6.

model [4.4] (A-line), based on the zero-order lubrication approximation, describes well the
experimental data for Ca < 0.2. The use of the generalized lubrication approximation, which
accounts also for the first-order lubrication approximation, leads to an excellent description
of the experimental data for Ca < 2.0, see Fig. 4.4b.

Fig. 4.5 shows a comparison between experimental data and theoretical calculations for
the relative velocity Vb/Vpm in the case of simultaneous action of the Poiseuille flow and
gravity. The experimental data [4.1] (symbols) are close to the theoretical calculations for
bubbles with free surfaces. The small deviations of the experimental data from the calculated
theoretical line in the case of a bubble with free surface are likely due to trace amounts of
surface-active contaminations in the working fluid [4.1].

4.4.2 Simultaneous action of the Poiseuille flow and gravity

In the literature, there are no systematic experimental data for the long bubble motion under
simultaneous action of the Poiseuille flow and gravity (like those illustrated in Fig. 4.5).
Fig. 4.2 shows that one distinguishes two general cases. The first one corresponds to Bo > 0,
when the Poiseuille flow accelerates the bubble motion for Capm > 0 and decelerates it for
Capm < 0. The experimental data in Fig. 4.5 correspond to Bo > 0 and Capm > 0. Fig. 4.6
summarizes the numerical results for the effect of the Poiseuille flow on the thickness of
cylindrical film layer for positive values of the Bond number and different models for surfaces
(fully mobile and tangentially immobile). The greater values of the threshold Bond number
are interrelated with the increase of the thicknesses of wetting films in cylindrical parts
(Fig. 4.6). Oppositely for Capm > 0, very thin cylindrical liquid layers can be realized. As
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(a) Free surfaces. (b) Tangentially immobile interfaces.

Figure 4.6: Effect of the Poiseuille flow on the thickness of cylindrical film layer.

(a) Free surface model. (b) Tangentially immobile surfaces.

Figure 4.7: Effect of gravity on the bubble translational velocity and on the thickness of
cylindrical film layer, h, in the presence of Poiseuille flow.

it can be expected, the films for tangentially immobile interfaces are thicker than those for
fully mobile surfaces.

The second general case is when the gravity decelerates the bubble motion (Bo < 0 and
Capm > 0, see Fig. 4.2). The numerical results for the dependence of h on the capillary
number, Ca, for both types of bubble interfaces are summarized in Fig. 4.7. The increase
in the magnitude of Bond number, |Bo|, decreases the thickness of the wetting cylindrical
film. Moreover, the bubbles with tangentially immobile interfaces move with the same
translational velocity as those with free surfaces under the action of more intensive Poiseuille
flow.
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4.5 Conclusion

We studied the motion of long axisymmetric bubbles with free and tangentially immobile
interfaces through capillaries, based on the exact solution of the hydrodynamic problem
in cylindrical coordinate system in the frame of the generalized lubrication approximation,
keeping the zero-order terms [4.4] and the first-order terms. As a result the expressions
for the fluid velocity and dynamic pressure are calculated for an arbitrary shape of the
bubble. These quantities are substituted in the normal stress boundary condition to obtain
the boundary value problem in terms of an arc length for the bubble shape. Diagrams for
the necessary conditions for the appearance of long bubbles are constructed (Fig. 4.2). The
implemented method allows fast and precise calculation of the dependence of the capillary
number and the wetting film thickness in the cylindrical part on the system parameters.

The comparisons with available experiments (Figs. 4.4 and 4.5) show the validity of
the proposed approach for moderate capillary, Ca, and Bond, Bo, numbers (Ca < 2 and
Bo < 7.5). When the pressure-driven flow hinders the rising of bubbles, the gravity should
be sufficiently high to ensure bubble motion (Fig. 4.6). A very low applied pressure gradient
in the opposite direction of bubble translation leads to bubble motion and the Bretherton
condition (Bo > 0.842) does not take a place. When the gravity opposes the pressure-driven
bubble motion (Fig. 4.7), the translational velocity decreases for high absolute values of the
Bond number. Generally, in the case of tangentially immobile interfaces, the translational
velocity, Vb, is lower and the wetting film thickness, h, is higher than those, predicted for
free bubble surfaces at given fixed system parameters.
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5. Conclusions and main contri-
butions

5.1 General conclusions

In the literature [5.1, 5.2], the problem for the electrostatic distribution is solved numerically
and analytically (in the terms of Mehler–Fock integral transform) in the case of one fully
conductive bulk phase (water). This simplification leads to the Dirichlet boundary condi-
tions at the particle–water and dielectric phase–water boundaries (the electrostatic potential
at these boundaries is equal to zero). The estimation of the part of the electro-dipping force,
arising from the water phase, shows that the contribution from the water phase is not neg-
ligible and one should account for all dielectric phases simultaneously. In Chapter 2, the
Laplace equations for the electrostatic potentials in all three domains (spherical particle,
upper and lower dielectric phases) are solved with the boundary conditions at all three di-
viding surfaces (continuity of the electrostatic potentials and balance of surface charges).
The numerical solution of this generalized (in fact more realistic) problem gives the answer
to the question for the role of water phase on the electrostatic potential distribution. In
the most cases, some of the physical quantities have weak singularities at the three-phase
contact line (in our case, the derivative of the electrostatic potential that is the electric field
vector). Physically, a weak singularity means that the integral of the respective force, con-
taining these quantities, over the surface has a well-defined finite value. The isolation of the
weak singularity, transformation of the complex numerical domains into rectangles, using
toroidal coordinates, and the application of fast and precise numerical methods become of
a crucial importance for the adequate solution of the problem, described in Chapter 2.

From a physical viewpoint, the formulation of the model in Chapter 3 is quite clear:
Stokes equation in each of the incompressible fluid phases; continuity of the velocity and
tangential stresses at the flat dividing surface between them; given translational velocity of
the spherical colloidal particle, attached to the interface, with a fixed three-phase contact
angle. One possible numerical approach to solve the problem is the two-vorticities-one-
velocity formulation [5.3]. The reported method is of a second-order in the three-dimensional
domains (with respect to the Stokes equations) but of a first-order in the two-dimensional
domains (with respect to the boundary conditions). As a result, the method is slow and not
convenient for multitask applications. The problem has also an analytical solution in terms
of the Mehler–Fock integral transform for negligible viscosity of one of the fluids (e.g. water–
air interface) and contact angles ≤ 90◦ [5.4]. In fact, this particular case is not realistic and
with a quite restricted application. Nevertheless, the only way to check the validity of a
numerical method and its precision is to use this exact solution of the problem. The main
reason for the difficulties in numerical computations in [5.3] and for the restricted validity
of the analytical solution (contact angles ≤ 90◦) [5.4] is the weak singularity of the pressure
function at the three-phase contact line.

Our approach in Chapter 3 is based on the gauge reformulation of the Stokes problem,
which introduces vector and scalar potentials of the velocity and pressure distributions;
the reduction of the three-dimensional problem in the two-dimensional one for the first
Fourier modes with respect to the polar angle; the transformation of the complex domains
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into rectangles, using a modification of the standard toroidal coordinates. As a result,
the original problem for the bulk fluids is reduced to a system of four partial differential
equations of a second-order for each of the phases. These systems are interrelated with the
boundary conditions at the dividing surfaces. The main difficulty in the gauge formulation
is to introduce self-consistent boundary conditions for the vector and scalar potentials.
The introduced in Chapter 3, new type of boundary conditions resolves this problem and
gives possibility to construct an efficient second-order ADI-type scheme for the numerical
solution, which is fast enough and gives good precision. The asymptotic analysis of the
weak singularity at the three-phase contact line shows the regions of regular and singular
pressure distributions and improves the precision of the calculation for the drag force.

In Chapter 4, we combine the Bretherton idea with the approach in [5.5] and solve
the hydrodynamic problem for the lubrication approximation not only for the zero-order
but also for the first-order approximation of the fluid velocity and pressure. As it can be
expected, this increases the precision of the used approximation solution. One advantage of
this analytical method is its validity for an arbitrary smooth shape of the interface. As a
result, the analytical expressions for the flow characteristics in the case of tangentially mobile
and immobile interfaces are obtained. The normal stress boundary condition, in which the
lubrication approximation solution is substituted, defines the shape of bubble. The obtained
numerical problem is a system of four nonlinear differential equations with one adjustable
parameter, which has to be varied in order to calculate a close capillary profile. From
mathematical and numerical viewpoint, the obtained problem is analogous to the method
known as an axisymmetric drop shape analysis, which is incorporated in many commercial
apparatuses for measurement of the surface tension and the contact angle. The obtained
numerical results describe excellently the available experimental data; expand the validity
of the semi-analytical model by at least two orders of magnitude to moderate capillary and
Bond numbers; explain the complex behavior of the simultaneous action of gravity and
pressure-driven flow; show the principle difference between mobile and immobile interfaces.

5.2 Main contributions

1. The problem for distribution of electrostatic potentials in dielectric media (two immiscible
fluid phases and a spherical colloidal particle, attached to the flat interface between them)
consists of Laplace equations for the functions in the three-dimensional domains, continuity
of these functions and conditions for their normal derivatives at the known two-dimensional
boundaries. The problem is solved numerically, using the developed for this purpose fast
and efficient algorithm. The strategy of computations is based on: the transformation
of the complex domains into rectangles, using appropriate toroidal coordinates; analytical
computation of the weak singularity at the three-phase contact line; implementation of a
self-consistent second-order ADI-type numerical scheme. The results generalize the idealized
case in [5.1], in which the water permeability is assumed to be infinite. In the present study,
we take into account its finite value as well as the simultaneous effect of all dielectric phases.

2. The problem for the translational motion of a spherical colloidal particle, attached to
a flat interface between two incompressible fluids, consists of Stokes equations for the ve-
locity vector and the pressure (in fact bi-Laplacian of the velocity vector is equal to zero)
in the three-dimensional domains, continuity of the velocity and the tangential stresses at
the two-dimensional fluid–fluid interface and a known velocity vector at the particle sur-
face. The problem is solved numerically from 10 to 1000 times faster than by the proposed
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method in method [5.3]. The strategy of computations is based on: the gauge formulation
in terms of vector and scalar potentials of velocity and pressure; transformation of the three-
dimensional problem into the two-dimensional one for the first Fourier mode with respect
to the polar angle; transformation of the complex domains into rectangles, using modified
toroidal coordinates; construction of a second-order ADI-type numerical scheme, taking into
account the original formulation of the two-dimensional boundary conditions; the analytical
calculation of the weak singularity at the three-phase contact line and the isolation of the
pressure singularity, which increases the precision of the drag force calculations.

3. The problem for the gravity- and pressure-driven motion of a long bubble with tangen-
tially mobile (classical case) or immobile interface (biological membrane, surfactant laden
interface, etc.) through a cylindrical capillary is solved semi-analytically. The problem
consists of: Stokes equations in the three-dimensional domain; known Poiseuille velocity
profile at large distances from the bubble; no-slip boundary condition at the capillary wall;
tangential and normal stress boundary conditions at the deformable bubble surface. The
strategy of computations is based on: the exact analytical solution of the Stokes problem
for small slopes of the tangent to the bubble shape, which leads to zero- and first-order
approximations at an arbitrary smooth bubble shape; substitution of the obtained solutions
in the normal stress boundary condition, from which it follows a system of four first order
nonlinear differential equations with respect to the arc length with one adjustable parameter
(the capillary pressure at the bubble apex); the efficient numerical scheme for calculating
the fourth-order boundary value problem for the shape by fitting the adjustable parameter
in order to obtain a closed capillary profile. As a result, the obtained method describes ex-
cellently the available experimental data, increases more than two orders of magnitude the
range of the applicability of the analytical approaches known in the literature, and explain
the complex physical picture of the simultaneous action of gravity and pressure-driven flows
for classical and tangentially immobile interfaces.
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