# Designing Boolean Functions and Digital Sequences for Cryptology and Communications



## **Miroslav Marinov Dimitrov**

Supervisor: Prof. Tsonka Baicheva

Institute of Mathematics and Informatics Bulgarian Academy of Sciences Department "Mathematical Foundations of Informatics"

this dissertation is submitted for the awarding of educational and scientific degree philosophiae doctor in professional area 4.6 informatics and computer science

Sofia 2023

## Acknowledgements

I would like to express my deepest appreciation to my supervisor prof. D.Sc. Tsonka Baicheva for the invaluable patience, feedback, and constructive criticism. I cannot begin to express my thanks for her editing help, late-night feedback sessions, and moral support. I would also like to extend my deepest gratitude to Ph.D. Nikolay Nikolov for the countless interesting conversations regarding the challenges addressed in this thesis and for bringing my attention to the PSL problem in the first place. I'm deeply indebted to prof. Bernhard Esslinger from the university of Siegen for the editing help, support, and trust he invested in me. I'm extremely grateful to the hardware parts he gratuitously sent me to build a mini GPU grid, which successfully solved some of the problems regarding the rotated binary sequences. I am also grateful to Ph.D. Georgi Ivanov who motivated me to start my Ph.D. journey through his recommendations to prof. D.Sc. Tsonka Baicheva. Special thanks to Ph.D. Violeta Andreeva for her unwavering support. Last but not least, I am thankful to my family, especially my parents, who sparked the love of mathematics in me, to my wife Geri, and our wonderful princess Mariah, for the inspiration and emotional support.

# **Table of contents**

| Li | st of f | igures                                                                   | vii  |  |  |
|----|---------|--------------------------------------------------------------------------|------|--|--|
| Li | st of t | ables                                                                    | ix   |  |  |
|    | List    | of algorithms                                                            | xi   |  |  |
| Pr | eface   |                                                                          | xiii |  |  |
|    | 0.1     | Scientific contributions                                                 | xiii |  |  |
|    | 0.2     | Publications related with the thesis                                     | XV   |  |  |
|    | 0.3     | Talks                                                                    | xvi  |  |  |
|    | 0.4     | Citations (last updated on 20.11.2022)                                   | xvi  |  |  |
| 1  | Intr    | oduction                                                                 | 1    |  |  |
| 2  | Vect    | or Boolean Functions and Cryptography                                    | 7    |  |  |
|    | 2.1     | Boolean Functions                                                        | 7    |  |  |
|    | 2.2     | Vector Boolean Functions (S-boxes)                                       | 8    |  |  |
|    | 2.3     | Cryptographic Properties of Some Popular S-boxes                         | 12   |  |  |
|    | 2.4     | Design Strategies for Constructing S-boxes                               | 12   |  |  |
|    | 2.5     | Nonlinearity Optimization Using SAT Solvers                              | 17   |  |  |
|    |         | 2.5.1 Skipjack (Case $S_k$ )                                             | 31   |  |  |
|    |         | 2.5.2 Kuznyechik (Case $K_k$ )                                           | 32   |  |  |
|    |         | 2.5.3 The ACNV problem                                                   | 32   |  |  |
| 3  | Ont     | the S-box Reverse Engineering                                            | 35   |  |  |
|    | 3.1     | Introduction and motivation                                              | 35   |  |  |
|    | 3.2     | S-box spectrography                                                      | 36   |  |  |
|    | 3.3     | 3.3 Automatic spectral analysis of S-box LAT, DDT, XORT, ACT spectras 43 |      |  |  |

| 4  | Bina        | ry Sequences and Their Autocorrelation                                      | 47  |  |  |
|----|-------------|-----------------------------------------------------------------------------|-----|--|--|
|    | 4.1         | Efficient Generation of Low Autocorrelation Binary Sequences                | 48  |  |  |
|    | 4.2         | 2 On the Generation of Long Binary Sequences with Record-Breaking PSL       |     |  |  |
|    |             | Values                                                                      | 52  |  |  |
|    | 4.3         | Hybrid Constructions of Binary Sequences with Low Autocorrelation Sidelobes | 60  |  |  |
|    |             | 4.3.1 Using $\mathscr{A}$ as an m-sequences extension                       | 71  |  |  |
|    |             | 4.3.2 Using $\mathscr{A}$ as an Legendre-sequences extension                | 72  |  |  |
|    |             | 4.3.3 On the Aperiodic Autocorrelations of Rotated Binary Sequences         | 73  |  |  |
| 5  | Bina        | ry Sequences and the Merit Factor Problem                                   | 81  |  |  |
|    | 5.1         | On the Skew-Symmetric Binary Sequences and the Merit Factor Problem .       | 81  |  |  |
|    |             | 5.1.1 On the Bernasconi Conjecture                                          | 104 |  |  |
|    |             | 5.1.2 New Classes of Binary Sequences with High Merit Factor                | 109 |  |  |
|    |             | 5.1.3 Algorithm for Finding Binary Sequences with Arbitrary Length and      |     |  |  |
|    |             | High Merit Factor                                                           | 119 |  |  |
|    | 5.2         | Using Aperiodic Autocorrelation functions for an S-box reverse engineering  | 122 |  |  |
| Re | eferen      | ces                                                                         | 125 |  |  |
| Aj | opend       | ix A S-box Characteristics and Collisions                                   | 135 |  |  |
|    | A.1         | Detailed characteristics of popular S-boxes                                 | 135 |  |  |
|    | A.2         | Collisions search by using absolute LAT spectra                             | 139 |  |  |
|    | A.3         | Collisions search by using absolute transposed LAT spectra                  | 146 |  |  |
|    | A.4         | Collisions search by using DDT spectra                                      | 146 |  |  |
|    | A.5         | Collisions search by using transposed DDT spectra                           | 147 |  |  |
|    | A.6         | Collisions search by using ACT spectra                                      | 148 |  |  |
| Aj | opend       | ix B Binary Sequences                                                       | 151 |  |  |
|    | <b>B.</b> 1 | Shotgun Hill climbing results                                               | 151 |  |  |
|    | B.2         | Reached optimal PSL solutions                                               | 163 |  |  |
|    | B.3         | Revised Shotgun Hill climbing results                                       | 165 |  |  |
|    |             | B.3.1 Revised Shotgun Hill climbing results for longer binary sequences .   | 178 |  |  |
|    | <b>B</b> .4 | New Classes of Binary Sequences with High (RECORD) Merit Factor             | 179 |  |  |

# List of figures

| 2.1  | Automata representation of S-box generation categories.                                  | 14  |
|------|------------------------------------------------------------------------------------------|-----|
| 2.2  | Coordinate decomposition of a (5,5) S-box LAT                                            | 15  |
| 2.3  | Columns of interest of a (5,5) S-box LAT                                                 | 16  |
| 2.4  | An optimized S-box $S_c(8,8)$ using Algorithm 1, having ACNV of 114.0                    | 18  |
| 2.5  | Automata representation of the optimization process                                      | 30  |
| 2.6  | An optimized S-box $S_c(8,8)$ with ACNV of 116.0 using SAT techniques                    | 34  |
| 3.1  | Some spectra channels of Rijndael S-box                                                  | 36  |
| 3.2  | Some spectra channels of Anubis and Clefia S-boxes                                       | 37  |
| 3.3  | Some spectra channels of CMEA and Crypton S-boxes                                        | 38  |
| 3.4  | Some spectra channels for CS and CSS S-boxes                                             | 39  |
| 3.5  | Some spectra channels for Enocoro, Fantomas, FLY and Fox S-boxes                         | 40  |
| 3.6  | Some spectra channels for Iceberg, Iraqi, iScream, Khazad, Lilliput and                  |     |
|      | Picaro S-boxes                                                                           | 41  |
| 3.7  | Some spectra channels for Safer, Scream, SKINNY and SNOW3G S-boxes                       | 42  |
| 3.8  | Some spectra channels for Twofish S-boxes                                                | 43  |
| 3.9  | Some spectra channels for Whirlpool, Zorro and ZUC $S_0$ S-boxes $\ldots$                | 44  |
| 3.10 | Some XORT spectra channels for BelT S-box                                                | 45  |
| 4.1  | An overview of the shotgun hill climbing algorithm results                               | 52  |
| 4.2  | A visual interpretation of the sidelobe calculation process, for a binary                |     |
|      | sequence with length 8                                                                   | 54  |
| 4.3  | Comparison to other state of the art algorithms known in literature                      | 60  |
| 4.4  | A complete map of the optimal PSL values of all the Legendre sequences                   |     |
|      | with lengths less than 432100, with or without rotation                                  | 79  |
| 5.1  | A linear regression made to all the $(n, \mathbb{Q})$ pairs from Table 5.3. The equation |     |
|      | representing the linear fit is $\mathbb{Q} = 0.001578787n - 1.546093$                    | 108 |

| 5.2 | A quadratic regression of all $(n, \mathbb{T})$ measurements. The equation representing |     |
|-----|-----------------------------------------------------------------------------------------|-----|
|     | the quadratic fit is $\mathbb{T} = 177.2867 - 0.0562043n + 0.000002340029n^2$           | 109 |
| 5.3 | Anomalies detected in various S-boxes' side lobes spectra                               | 123 |

# List of tables

| 2.1  | DLUT example of a randomly-generated bijective (3,3) S-box                        | 11  |
|------|-----------------------------------------------------------------------------------|-----|
| 2.2  | Statistics for (8,8) Sboxes generated by using $T_1$                              | 13  |
| 4.1  | Reached PSL values compared to known results from m-sequences exhaus-             |     |
|      | tive search                                                                       | 60  |
| 4.2  | A comparison between SHC and HC                                                   | 62  |
| 4.3  | Efficiency and comparison of various triplets $(\alpha, \mathbb{T}, 100)$         | 65  |
| 4.4  | Efficiency and comparison of various triplets $(\alpha, \mathbb{T}, 256)$         | 65  |
| 4.5  | Efficiency and comparison of various triplets $(\alpha, \mathbb{T}, 500)$         | 66  |
| 4.6  | Efficiency and comparison of various triplets $(\alpha, \mathbb{T}, 1024)$        | 66  |
| 4.7  | Efficiency and comparison of various triplets $(\alpha, \mathbb{T}, 2048)$        | 67  |
| 4.8  | Efficiency and comparison of various triplets $(\alpha, \mathbb{T}, 4096)$        | 67  |
| 4.9  | Time required to find better PSL values compared to known results from            |     |
|      | m-sequences exhaustive search                                                     | 70  |
| 4.10 | Time required for $\mathscr{A}$ to reach smaller PSL values, when launched from a |     |
|      | rotated Legendre sequence with length 235747 and rotation value 60547             | 73  |
| 4.11 | GPU algorithm vs CPU NumPy naive approach                                         | 78  |
| 4.12 | Optimum PSL values achieved during the exhaustive search                          | 79  |
| 5.1  | A comparison between the memory required by the tau table and the memory          |     |
|      | required by the proposed in-memory flip algorithm.                                | 99  |
| 5.2  | An example of a skew-symmetric binary sequence with length 449 and a              |     |
|      | record merit factor found by Algorithm 9. The sequence is presented in HEX        |     |
|      | with leading zeroes omitted.                                                      | 104 |
| 5.3  | The number of quakes used throughout our experiments                              | 108 |
| 5.4  | A list of unique partitions in $\mathbb{R}^6_{21}$                                | 117 |
| 5.5  | Some partitions with optimal and normalized potentials                            | 118 |
| 5.6  | A list of used operators acting on binary sequences                               | 122 |
|      |                                                                                   |     |

| A.1          | S-boxes overview.                                                              | 135 |
|--------------|--------------------------------------------------------------------------------|-----|
| A.2          | Collisions search by using absolute LAT spectra                                | 139 |
| A.3          | Collisions search by using absolute transposed LAT spectra                     | 146 |
| A.4          | Collisions search by using DDT spectra                                         | 146 |
| A.5          | Collisions search by using transposed DDT spectra                              | 147 |
| A.6          | Collisions search by using ACT spectra (some results are omitted)              | 148 |
| <b>B</b> .1  | An overview of the shotgun hill climbing algorithm results                     | 151 |
| B.2          | Reached optimal solutions                                                      | 163 |
| B.3          | An overview of the revised shotgun hill climbing algorithm results             | 165 |
| B.4          | An overview of the revised shotgun hill climbing algorithm results for longer  |     |
|              | binary sequences                                                               | 178 |
| B.5          | A list of binary sequences with record merit factor values and lengths between |     |
|              | 172 and 237                                                                    | 179 |
| B.6          | A list of binary sequences with record merit factor values and lengths between |     |
|              | 238 and 278                                                                    | 180 |
| <b>B</b> .7  | A list of binary sequences with record merit factor values and lengths between |     |
|              | 279 and 312                                                                    | 181 |
| <b>B.8</b>   | A list of binary sequences with record merit factor values and lengths between |     |
|              | 313 and 345                                                                    | 182 |
| B.9          | A list of binary sequences with record merit factor values and lengths between |     |
|              | 346 and 380                                                                    | 183 |
| <b>B</b> .10 | A list of binary sequences with record merit factor values and lengths between |     |
|              | 381 and 414                                                                    | 184 |
| <b>B</b> .11 | A list of binary sequences with record merit factor values and lengths between |     |
|              | 415 and 441                                                                    | 185 |
| B.12         | A list of binary sequences with record merit factor values and lengths between |     |
|              | 442 and 464                                                                    | 186 |
| <b>B</b> .13 | A list of binary sequences with record merit factor values and lengths between |     |
|              | 465 and 485                                                                    | 187 |
| <b>B</b> .14 | A list of binary sequences with record merit factor values and lengths between |     |
|              | 486 and 505                                                                    | 188 |
| B.15         | A list of binary sequences with record merit factor values and lengths between |     |
|              | 506 and 527                                                                    | 189 |
| B.16         | A list of binary sequences with record merit factor values of lengths 573,     |     |
|              | 1006, 1007, 1008, 1009 and 1010                                                | 190 |

# **List of Algorithms**

| 1  | An algorithm for an S-box ACNV optimization                                         | 17  |
|----|-------------------------------------------------------------------------------------|-----|
| 2  | Shotgun Hill Climbing algorithm for PSL optimization                                | 50  |
| 3  | An algorithm for an in-memory flip inside a binary sequence                         | 55  |
| 4  | An algorithm for long binary sequences PSL optimization                             | 58  |
| 5  | The Shotgun Hill Climbing revisited kernel                                          | 63  |
| 6  | A GPU algorithm for extracting the minimum PSL value of <i>B</i> , and all possible |     |
|    | rotations of $B$                                                                    | 76  |
| 7  | An algorithm for in-memory flip of skew-symmetric binary sequence in                |     |
|    | linear time and memory complexities                                                 | 94  |
| 8  | Lightweight flip probing of skew-symmetric binary sequences in linear both          |     |
|    | time and memory complexities                                                        | 101 |
| 9  | Heuristic algorithm, with tau table reduction, searching for binary skew-           |     |
|    | symmetric sequences with a high merit factor.                                       | 102 |
| 10 | Pseudo-code of the helper function pickBestNeighbor                                 | 103 |
| 11 | A heuristic algorithm, with a tau table, unordered set, and hashing routines        |     |
|    | reduced, for searching long skew-symmetric binary sequences with a high             |     |
|    | merit factor. Both the time and memory complexity of the algorithm are $O(n)$ .     | 107 |
| 12 | An algorithm for searching skew-symmetric and pseudo-skew-symmetric                 |     |
|    | binary sequences with arbitrary lengths and high merit factors                      | 120 |

# Preface

## 0.1 Scientific contributions

The main scientific contributions could be summarized as follows:

- 1. A rich collection of popular S-boxes is analyzed in great detail.
- 2. It is shown that the majority of chaos-based S-boxes are vulnerable to linear cryptanalysis. A simple and lightweight algorithm is proposed, which significantly outperforms all previously published chaos-based S-boxes, in those cryptographic terms, which they utilize for comparison.
- 3. By introducing some new definitions like couplings, coordinate decomposition, degree of descendibility, and CELAT, the S-box nonlinearity optimization problem is projected to a satisfiability problem, which could be attacked by using SAT solvers.
- 4. By applying the SAT solver it is shown that  $8 \times 8$  bijective S-boxes with all eight coordinates having the maximal nonlinearity value of 116 do exist.
- 5. A strategy of analyzing various spectra channels to detect hidden patterns and anomalies in S-boxes is proposed.
- 6. A simple and efficient algorithm based on a heuristic search by shotgun hill climbing to construct binary sequences with small peak sidelobe levels (PSL) is proposed. The algorithm successfully revealed binary sequences of lengths between 106 and 300 with record-breaking PSL values.
- 7. By using some useful properties, the aforementioned algorithm time and memory complexities are reduced to  $\mathcal{O}(n)$ . This allowed us to reach record-breaking PSL values for less than a second. Moreover, the efficiency range of the algorithm is further extended to binary sequences of longer lengths.

- 8. A detailed comparison and fine-grain analysis of the proposed algorithms is performed. By using the insights of this analysis, a heuristic algorithm is proposed, which successfully reached all the optimal PSL values known in the literature, which was previously discovered by an exhaustive search. This was achieved by using a low-cost mid-range computer station, while the time required to reach the optimal PSL value for most of the lengths is less than a second.
- 9. A GPU efficient algorithm addressing the well-known computational problem of finding the lowest possible PSL among the set of a binary sequence *B* and all binary sequences generated by rotations of *B* is proposed. The problem is projected to a perfectly balanced parallelizable algorithm. By using the algorithm, the search space of all m-sequences with lengths 2<sup>n</sup> − 1, for 18 ≤ n ≤ 20 is successfully exhausted. Furthermore, a complete list of all PSL-optimal Legendre sequences for lengths up to 432100 is revealed. A conjecture is made, that all PSL-optimal Legendre sequences, with or without rotations, and with lengths N greater than 235723, are strictly greater than √N.
- 10. Some useful mathematical properties related to the flip operation of the skew-symmetric binary sequences are discovered, which could be exploited to significantly reduce the memory complexity of state-of-the-art stochastic Merit Factor (MF) optimization algorithms from  $O(n^2)$  to O(n), without degrading their time complexity. As a proof of concept, a lightweight algorithm was constructed, which could optimize pseudo-randomly generated skew-symmetric binary sequences with long lengths (up to  $10^5 + 1$ ) to skew-symmetric binary sequences with a MF greater than 5. This contradicts the Bernasconi conjecture, that a stochastic search procedure will not yield MF higher than 5 for long binary sequences (sequences with lengths greater than 200).
- 11. A new class of finite binary sequences with even lengths with alternate autocorrelation absolute values equal to 1, called pseudo skew-symmetric class, is found. It is shown that the MF values of the new class are closely related to the MF values of adjacent classes of Golay's skew-symmetric sequences.
- 12. Sub-classes of sequences based on the partition number problem, as well as the notion of potentials, measured by helper ternary sequences, are proposed. Binary sequences with MF records for binary sequences with many lengths less than 225, and all lengths greater than 225, are revealed. Two extremely hard search spaces of lengths 573 and 1009 are also attacked. It was estimated that a state-of-the-art stochastic solver requires

respectively 32 and 46774481153 years to reach MF values of 6.34, while the required time from the proposed algorithm to reach such MF values is just several hours.

13. Using aperiodic autocorrelation functions for the S-box reverse engineering problem is proposed.

### **0.2** Publications related with the thesis

- 1. Dimitrov, Miroslav M. "On the design of chaos-based S-boxes." IEEE Access 8 (2020): 117173-117181, **IF:3.367, Q2**.
- Dimitrov, Miroslav, Tsonka Baitcheva, and Nikolay Nikolov. "Efficient generation of low autocorrelation binary sequences." IEEE Signal Processing Letters 27 (2020): 341-345, IF:3.109, Q2.
- Dimitrov, Miroslav, Tsonka Baitcheva, and Nikolay Nikolov. "On the generation of long binary sequences with record-breaking PSL values." IEEE Signal Processing Letters 27 (2020): 1904-1908, IF:3.109, Q2.
- 4. Dimitrov, Miroslav. "On the aperiodic autocorrelations of rotated binary sequences." IEEE Communications Letters 25.5 (2020): 1427-1430, **IF:3.436**, **Q2**.
- Dimitrov, Miroslav, Tsonka Baicheva, and Nikolay Nikolov. "Hybrid Constructions of Binary Sequences With Low Autocorrelation Sideobes." IEEE Access 9 (2021): 112400-112410, IF:3.476, Q2.
- Dimitrov, Miroslav M. "A Framework for Fine-Grained Nonlinearity Optimization of Boolean and Vectorial Boolean Functions." IEEE Access 9 (2021): 124910-124920, IF:3.476, Q2.
- Iliev, M., Nikolov, N., Dimitrov, M. and Bedzhev, B. "Genetic algorithm for synthesis of binary signals with optimal autocorrelation." 2020 International Conference on Information Technologies (InfoTech). IEEE, 2020.
- Dimitrov, Miroslav. "On the Skew-Symmetric Binary Sequences and the Merit Factor Problem." arXiv preprint arXiv:2106.03377 (2021).
- 9. Dimitrov, Miroslav. "New Classes of Binary Sequences with High Merit Factor." arXiv preprint arXiv:2206.12070 (2022).

### 0.3 Talks

- Tsonka Baicheva and Miroslav Dimitrov, "Cryptanalysis on short messages encrypted with M-138 cipher machine", Eighth International Workshop on Optimal Codes and Related Topics, Sofia, 2017.
- Miroslav Dimitrov, Tsonka Baicheva and Georgi Ivanov, "Implementation of RSA Attack Using 2-Dimensional Lattices by Constructing Hypotheses of Keys With Low Hamming Weight", CRYPTACUS, Cryptanalysis in Ubiquitous Computing Systems, Azores, Portugal, 2018.

## 0.4 Citations (last updated on 20.11.2022)

#### On the design of chaos-based S-boxes.

- Ahmed, Fawad, Muneeb Ur Rehman, Jawad Ahmad, Muhammad Shahbaz Khan, Wadii Boulila, Gautam Srivastava, Jerry Chun-Wei Lin, and William J. Buchanan. "A DNA Based Colour Image Encryption Scheme Using A Convolutional Autoencoder." ACM Transactions on Multimedia Computing, Communications and Applications (2022).
- Ali, Asim, Muhammad Asif Khan, Ramesh Kumar Ayyasamy, and Muhammad Wasif. "A novel systematic byte substitution method to design strong bijective substitution box (S-box) using piece-wise-linear chaotic map." PeerJ Computer Science 8 (2022): e940.
- 3. Arun, S. "Intelligent Learning Algorithm for Counterfeiting Side-Channel Attack Using Adaptive Chaotic S-Boxes for AES."SRM Institute of Science and Technology, Department of Computer Science Engineering, PhD Thesis, 2022.
- Aslam, Mazzamal, Saira Beg, Adeel Anjum, Zakria Qadir, Shawal Khan, Saif Ur Rehman Malik, and MA Parvez Mahmud. "A strong construction of S-box using Mandelbrot set an image encryption scheme." PeerJ Computer Science 8 (2022): e892.
- Freyre-Echevarría, Alejandro, Ismel Martínez-Díaz, Carlos Miguel Legón Pérez, Guillermo Sosa-Gómez, and Omar Rojas. "Evolving nonlinear S-boxes with improved theoretical resilience to power attacks." IEEE Access 8 (2020): 202728-202737.

- Freyre-Echevarria, Alejandro. "On the Generation of Cryptographically Strong Substitution Boxes from Small Ones and Heuristic Search." In 10 th Workshop on Current Trends in Cryptology (CTCrypt 2021), p. 112.
- Gonzalez, Francisco, Ricardo Soto, and Broderick Crawford. "Stochastic Fractal Search Algorithm Improved with Opposition-Based Learning for Solving the Substitution Box Design Problem." Mathematics 10, no. 13 (2022): 2172.
- Grassi, Giuseppe. "Chaos in the Real World: Recent Applications to Communications, Computing, Distributed Sensing, Robotic Motion, Bio-Impedance Modelling and Encryption Systems." Symmetry 13, no. 11 (2021): 2151.
- Hongjun Liu, Xingyuan Wang, Mengdi Zhao and Yujun Niu, "Constructing Strong S-Box by 2D Chaotic Map with Application to Irreversible Parallel Key Expansion", International Journal of Bifurcation and Chaos, Vol. 32, No. 11, 2250163 (2022)
- 10. Ibrahim, Saleh, and Alaa M. Abbas. "Efficient key-dependent dynamic S-boxes based on permutated elliptic curves." Information Sciences 558 (2021): 246-264.
- 11. Ibrahim, Saleh, and Alaa M. Abbas. "A novel optimization method for constructing cryptographically strong dynamic S-boxes." IEEE Access 8 (2020): 225004-225017.
- Kang, Man, and Mingsheng Wang. "New Genetic Operators for Developing S-Boxes With Low Boomerang Uniformity." IEEE Access 10 (2022): 10898-10906.
- 13. Lambić, Dragan. "Comments on "On the Design of Chaos-Based S-Boxes"." IEEE Access 9 (2021): 49354-49354.
- Lawnik, Marcin, Lazaros Moysis, and Christos Volos. "Chaos-Based Cryptography: Text Encryption Using Image Algorithms." Electronics 11.19 (2022): 3156.
- Manzoor, Atif, Amjad Hussain Zahid, and Malik Tahir Hassan. "A New Dynamic Substitution Box for Data Security Using an Innovative Chaotic Map." IEEE Access 10 (2022): 74164-74174.
- Musheer Ahmad;Reem Alkanhel;Walid El-Shafai;Abeer D. Algarni;Fathi E. Abd El-Samie;Naglaa F. Soliman, "Multi-Objective Evolution of Strong S-Boxes Using Non-dominated Sorting Genetic Algorithm-II and Chaos for Secure Telemedicine", IEEE Access 10 (2022): 112757 - 112775.

- Prinetto, Paolo Ernesto, and Samuele Yves Cerini. "Empirical Evaluation of the Resilience of Novel S-Box Implementations Against Power Side-Channel Attacks.", Master's Degree Thesis.
- Si, Yuanyuan, Hongjun Liu, and Yuehui Chen. "Constructing keyed strong S-Box using an enhanced quadratic map." International Journal of Bifurcation and Chaos 31, no. 10 (2021): 2150146.
- Soto, Ricardo, Broderick Crawford, Francisco González Molina, and Rodrigo Olivares. "Human behaviour based optimization supported with self-organizing maps for solving the S-box design Problem." IEEE Access 9 (2021): 84605-84618.
- 20. Xu, Ying, Mengdi Zhao, and Hongjun Liu. "Design an irreversible key expansion algorithm based on 4D memristor chaotic system." The European Physical Journal Special Topics (2022): 1-9.
- Zahid, Amjad Hussain, Musheer Ahmad, Ahmed Alkhayyat, Malik Tahir Hassan, Atif Manzoor, and Alaa Kadhim Farhan. "Efficient dynamic S-box generation using linear trigonometric transformation for security applications." IEEE Access 9 (2021): 98460-98475.
- Zhou, Peizhao, Junxiao Du, Kai Zhou, and Shengfei Wei. "2D mixed pseudo-random coupling PS map lattice and its application in S-box generation." Nonlinear Dynamics 103, no. 1 (2021): 1151-1166.

#### Efficient generation of low autocorrelation binary sequences

- 23. Anjana, K., and Sayed Abdulhayan. "Analysis of Precoding with Kasami sequence for LTE MIMO." Journal of Pharmaceutical Negative Results (2022): 1228-1234.
- 24. Bošković, Borko, and Janez Brest. "Computational search of long skew-symmetric binary sequences with high merit factors." MENDEL. Vol. 28. No. 2, 2022.
- 25. Boukerma, Sabrina, Khaled Rouabah, SalahEddine Mezaache, and Salim Atia. "Efficient method for constructing optimized long binary spreading sequences." International Journal of Communication Systems 34, no. 4 (2021): e4719.
- 26. Brest, J., and Boskovic, B. (2021). Low Autocorrelation Binary Sequences: Best-Known Peak Sidelobe Level Values. IEEE Access, 9, 67713-67723.

- Kuznetsov, Alexandr, Luca Romeo, Nikolay Poluyanenko, Sergey Kandiy, and Kateryna Kuznetsova. "Optimizing Hill Climbing Algorithm Parameters for Generation of Cryptographically Strong S-Boxes." (2022).
- Miskiv, V. M. V., I. N. Prudyus, S. Ye Fabirovskyy, and M. Pashchuk Yu. "Optimal search for binary skew-symmetric sequences with minimal levels of side lobes." Mathematical Modeling and Computing 7, no. 2 (2020): 410-419.
- 29. Rosli, Siti Julia, Hasliza A. Rahim, Khairul Najmy Abdul Rani, Ruzelita Ngadiran, Wan Azani Mustafa, Muzammil Jusoh, Mohd Najib Mohd Yasin et al. "A Hybrid Modified Sine Cosine Algorithm Using Inverse Filtering and Clipping Methods for Low Autocorrelation Binary Sequences." CMC-Computers, Materials & Continua 71, no. 2 (2022): 3533-3556.
- 30. Sabrina Boukerma, "Etude et Optimisation des Codes Pseudo-Aleatoires pour les Applications a Acces Multiple", Doctorat Science thesis, 2021.
- Vuk, Miha. "Algoritem za iskanje binarnih sekvenc z nizko avtokorelacijo." PhD diss., 2021.
- Xiuping PENG, Hongxiao LI, Shide WANG, Hongbin LIN. Balanced optimal almost binary sequence pairs of period N ≡ 1 (mod4)[J]. Journal on Communications, 2021, 42(12): 163-171.
- Zhou, Zheng, Yue Wu, Xiaofei Yang, and Yicong Zhou. "Neural Style Transfer With Adaptive Auto-Correlation Alignment Loss." IEEE Signal Processing Letters 29 (2022): 1027-1031.

# On the generation of long binary sequences with record-breaking PSL values

- 34. Bošković, Borko, and Janez Brest. "Computational search of long skew-symmetric binary sequences with high merit factors." MENDEL. Vol. 28. No. 2, 2022.
- 35. Brest, Janez, and Borko Bošković. "Low Autocorrelation Binary Sequences: Best-Known Peak Sidelobe Level Values." IEEE Access 9 (2021): 67713-67723.
- Brest, Janez, Borko Boškovic. "Neperiodicna binarna zaporedja z dobrimi avtokorelacijskimi lastnostmi: nizke vrednosti stranskih reznjev." Društvo Slovenska sekcija IEEE. 31-th International Electrotechnical and Computer Science Conference: 355-358.

#### On the aperiodic autocorrelations of rotated binary sequences

- 37. Bošković, Borko, and Janez Brest. "Computational search of long skew-symmetric binary sequences with high merit factors." MENDEL. Vol. 28. No. 2, 2022.
- Brest, Janez, and Borko Bošković. "Low Autocorrelation Binary Sequences: Best-Known Peak Sidelobe Level Values." IEEE Access 9 (2021): 67713-67723.
- Brest, Janez, Borko Boškovic. "Neperiodicna binarna zaporedja z dobrimi avtokorelacijskimi lastnostmi: nizke vrednosti stranskih reznjev." Društvo Slovenska sekcija IEEE. 31-th International Electrotechnical and Computer Science Conference: 355-358.
- 40. Chen, Zhixiong, Zhihua Niu, Yuqi Sang, and Chenhuang Wu. "Arithmetic autocorrelation of binary m-sequences." Cryptologia (2022): 1-10.

## Genetic algorithm for synthesis of binary signals with optimal autocorrelation

41. Li, Ning, Mengdao Xing, Yaxin Hou, Shengwei Zhou, and Guang-Cai Sun. "Ship Focusing and Positioning Based on 2-D Ambiguity Resolving for Single-Channel SAR Mounted on High-Speed Maneuvering Platforms With Small Aperture." IEEE Transactions on Geoscience and Remote Sensing 60 (2022): 1-13.

## Hybrid Constructions of Binary Sequences With Low Autocorrelation Sideobes

- 42. Bošković, Borko, and Janez Brest. "Computational search of long skew-symmetric binary sequences with high merit factors." MENDEL. Vol. 28. No. 2, 2022.
- Brest, Janez, Borko Boškovic. "Neperiodicna binarna zaporedja z dobrimi avtokorelacijskimi lastnostmi: nizke vrednosti stranskih reznjev." Društvo Slovenska sekcija IEEE. 31-th International Electrotechnical and Computer Science Conference: 355-358.

#### On the skew-symmetric binary sequences and the merit factor problem

44. Bošković, Borko, and Janez Brest. "Computational search of long skew-symmetric binary sequences with high merit factors." MENDEL. Vol. 28. No. 2, 2022.

### New Classes of Binary Sequences with High Merit Factor

45. Brest, Janez, Borko Boškovic. "Neperiodicna binarna zaporedja z dobrimi avtokorelacijskimi lastnostmi: nizke vrednosti stranskih reznjev." Društvo Slovenska sekcija IEEE. 31-th International Electrotechnical and Computer Science Conference: 355-358.

# Chapter 1

# Introduction

Boolean functions, vector Boolean functions, or S-boxes, and digital sequences are widely used in various practical fields such as telecommunications, radar technology, navigation, cryptography, measurement sciences, biology, or industry.

S-boxes are one of the most important primitives to be found in modern block ciphers. A weak S-box, in a cryptographic perspective, can be exploited by various attacks like linear cryptanalysis [17], differential cryptanalysis [18], boomerang attack [147], algebraic attacks [34] or others like in [59]. Arguably, one of the most important properties of a given S-box is its nonlinearity. An S-box with high nonlinearity can be achieved by using the finite field inversion method [113]. However, such S-box is closely related to various algebraic structures. As a proactive countermeasure to future algebraic attacks, new ways of generation or optimization of pseudo-random S-boxes are proposed. Some examples of the aforementioned algorithms are published in [32], [85], [107], [108], and [145]. However, heuristically optimization of a given S-boxes could be a resource-consuming task.

Given their significance and importance, the design principles of an S-box construction, especially when implemented in a widely used and critical cryptosystem, should be publicly available and reproducible. However, in some cases, a given S-box generation method is not announced, or worse, misleadingly announced as a pseudo-randomly generated one. The reasons for obfuscating the design of a given S-box are manifold. For example, the initial S-boxes used in the Data Encryption Standard (DES) [55] were originally modified by NSA. The reasons for applying those modifications were not known. However, in [33], D. Coppersmith announces the motivation behind the S-box modifications. It appears that the agency knew about the existence of differential attacks about 20 years before the academic world.

Hiding a given S-box design could be related to some hidden construction, the knowledge of which could be exploited to gain a significant advantage in terms of hardware implementation. For example, as discovered in [21], the S-boxes used in the hash function Streebog and the 128-bit block cipher Kuznyechik, standardized by the Russian Federation, are designed with such a hidden structure. A user knowing this decomposition could implement the given S-box with a significantly smaller hardware footprint, allowing him to reach an up to 8 times faster S-box look-up.

A practical reason for hiding the design of a given S-box could be related to an encapsulated trapdoor as discussed in [128]. Even though the aforementioned trapdoor can be easily detected, as shown in [151], the motivation for finding other trapdoor S-box techniques should not be underestimated. Moreover, the designers of a given S-box could unintentionally create it with a flaw, which further rises the academic attention to the S-box reverse engineering problem.

Finding binary sequences whose aperiodic autocorrelation characteristics are collectively small according to some pre-defined criteria is a famous and well-studied problem. Two such measures are the Peak Sidelobe Level (PSL) and the Merit Factor (MF) value, which was first introduced by Golay in 1972 [60]. However, before Golay's definition, Littlewood [98] studied the norms of polynomials with  $\pm 1$  coefficients on the unit circle of the complex plane.

One of the desirable characteristics a given binary sequence should possess is a low peak sidelobe level. Some well-known constructions of such sequences includes the Barker codes [9], Rudin-Shapiro sequences [129][136], m-sequences [67], Gold codes [66], Kasami codes [84], Weil sequences [130], Legendre sequences [124]. Nevertheless, none of the aforementioned constructions guarantees that the generated binary sequence will possess the lowest possible (optimal) PSL value. Thus, currently, initiating an exhaustive search is the only way to reveal an optimal PSL value for binary sequences of some fixed length. The PSL-optimal values of binary sequences with lengths n greater than 84 are still unknown. This is not surprising, since the cardinality of the search space comprised of all binary sequences with some fixed length rises exponentially.

Golay's publications reveal a dedication to the merit factor problem for nearly twenty years (surveyed in [80]). Since then, a significant number of possible constructions of binary sequences with high merit factors were published. Near-optimal and optimal candidates are found by using heuristic search methods for longer lengths or a more direct approach, like the exhaustive search method, for smaller problem spaces. In [65], the merit factor problem was referenced by Golay as *...challenging and charming*.

The problem of minimizing the merit factor is also known as the "low autocorrelated binary string problem", or the LABS problem. It has been well studied in theoretical physics and chemistry. For example, the LABS problem is correlated with the quantum models of magnetism. Bernasconi predicted that [14] ... stochastic search procedures will not yield merit factors higher than about 5 for long sequences. By long sequences, Bernasconi was referring to binary sequences with lengths greater than 200. Furthermore, in [41] the problem was described as ... amongst the most difficult optimization problems. Since the merit factor problem has resisted more than 50 years of theoretical attacks, a significant number of computational pieces of evidence were collected.

In this thesis, several design strategies for constructing and analyzing Boolean functions, S-boxes, and digital sequences are proposed. In Chapter 2 the preliminaries are provided. In Sections 2.1 and 2.2 some important definitions regarding Boolean and vector Boolean functions are given. Then, in Section 2.3 a rich collection of popular S-boxes is thoroughly analyzed. In general, the S-box construction methods could be divided into four categories as shown in Section 2.4. Then, S-boxes generated by using chaotic functions (CF) are analyzed to measure their actual resistance to linear cryptanalysis. The majority of the published papers using CFs emphasize the average nonlinearity of the S-box coordinates only, ignoring the rest of the S-box components in the process. Thus, integrating such S-boxes in a given cryptosystem should be done with considerable caution. Furthermore, it appears that in the context of the nonlinearity optimization problem the profit of using chaos structures is negligible. During our experiments, by using two heuristic methods and starting from pseudo-random S-boxes, we repeatedly reached S-boxes, which significantly outperform all previously published CF-based S-boxes, in those cryptographic terms, which the aforementioned papers utilize for comparison. Then, in Section 2.5, we project the S-box nonlinearity optimization problem to a satisfiability problem, which could be solved by using SAT solvers. This is achieved by introducing some new definitions like couplings, coordinate decomposition, degree of descendibility, S-box coordinate extended linear approximation table (CELAT), as well as some useful properties and inner connections. The SAT projection revealed that we could successfully construct bijective 8×8 S-boxes from 8 Boolean functions as components, each of which possesses the maximum nonlinearity value of 116. The provided toolbox could serve in cases, where the designer's goal is to increase (or intentionally decrease) the nonlinearity of a given S-box by applying as minimum changes as possible. For example, we demonstrate how the Skipjack S-box, developed by the U.S. National Security Agency (NSA), and the Kuznyechik S-box, developed by the Russian Federation's standardization agency, could be optimized to a higher nonlinearity by tweaking just 4 and 12 bits, respectively (out of 2048).

In Chapter 3, a strategy of analyzing various spectra channels to detect hidden patterns and anomalies in popular S-boxes is discussed. It could serve as a more fine-grained extension to the methods discussed in [119]. More specifically, by applying spectral analysis on various

S-box characteristics, as a linear approximation, difference distribution, and auto-correlation tables, we can detect visual symmetries or anomalies, which could not only serve as proof that the S-box was not generated pseudo-randomly but additionally provides some further information about the inner structure of the S-box, making the complete reverse-engineering of the hidden construction possible  $^1$ .

Chapter 4 addresses the PSL optimization problem. In Section 4.1, a simple and efficient algorithm based on a heuristic search by shotgun hill climbing to construct binary sequences with small peak sidelobe levels is suggested. The algorithm is applied for the generation of binary sequences of lengths between 106 and 300. Improvements are obtained in almost half of the considered lengths while for the rest of the lengths, binary sequences with the same PSL values as reported in the state-of-the-art publications are found. Then, in Section 4.2, a method to generate long binary sequences with low PSL value is proposed. Both the time and memory complexities of the proposed algorithm are reduced to  $\mathcal{O}(n)$ . During our experiments, we repeatedly reach better PSL values than the currently known state of art constructions, such as Legendre sequences, with or without rotations, Rudin-Shapiro sequences or m-sequences, with or without rotations, by always reaching record-breaking PSL values strictly less than  $\sqrt{n}$ . Furthermore, the efficiency and simplicity of the proposed method are particularly beneficial to the lightweightness of the implementation, which allowed us to reach record-breaking PSL values for less than a second. In Section 4.3 we continue our research with the exploration of hybrid algorithms for achieving binary sequences with arbitrary lengths and high PSL values. By combining some of our previous works, together with some mathematical insights, a few hybrid heuristic algorithms were created. During our experiments, and by using the aforementioned algorithms, we were able to find PSL-optimal binary sequences for all those lengths, which were previously found during exhaustive searches by various papers. Then, by using a general-purpose computer, we further demonstrate the effectiveness of the proposed algorithms by revealing binary sequences with lengths between 106 and 300, the majority of which possess record-breaking PSL values. Then, by using some well-known algebraic constructions, we outline a few strategies for finding highly-competitive binary sequences, which could be efficiently optimized, in terms of PSL, by the proposed algorithms. Finally, in Section 4.3.3, a well-known computational problem is finding the lowest possible PSL among the set of a binary sequence B, and all binary sequences generated by rotations of B is discussed. Some useful properties of rotated binary sequences are discovered, which allowed us to project the aforementioned problem to a perfectly balanced parallelizable algorithm. The proposed algorithm, altogether with its graphics processing unit (GPU) implementation,

<sup>&</sup>lt;sup>1</sup>Although the demonstrated anomalies are visible on paper, reading the electronic version is greatly encouraged.

is significantly faster than the existing instruments. We were able to exhaust the search space of all m-sequences with lengths  $2^n - 1$ , for  $18 \le n \le 20$ , and to reveal a complete list of all PSL-optimal Legendre sequences, with or without rotations, for lengths up to 432100 - out of computational reach until now. The numerical experiments suggest that the PSL value of all PSL-optimal Legendre sequences, with or without rotations, and with lengths N greater than 235723, are strictly greater than  $\sqrt{N}$ .

Chapter 5 deals with the Merit Factor (MF) problem. It was conjectured that stochastic search procedures will not yield merit factors higher than 5 for long binary sequences (sequences with lengths greater than 200). Some useful mathematical properties related to the flip operation of the skew-symmetric binary sequences are presented in Section 5.1. By exploiting those properties, the memory complexity of state-of-the-art stochastic MF optimization algorithms could be reduced from  $O(n^2)$  to O(n). As a proof of concept, a lightweight stochastic algorithm was constructed, which can optimize pseudo-randomly generated skew-symmetric binary sequences with long lengths (up to  $10^5 + 1$ ) to skew-symmetric binary sequences with a merit factor greater than 5. An approximation of the required time is also provided. The numerical experiments suggest that the algorithm is universal and could be applied to skew-symmetric binary sequences with arbitrary lengths.

Golay introduced one beneficial class of sequences, called skew-symmetric sequences; finite binary sequences with odd lengths with alternate autocorrelation values equal to 0. Their special construction greatly reduces the computational efforts of finding binary sequences with odd lengths and high MF. Having this in mind, the majority of papers to be found in the literature are focused solely on this class, preferring them over binary sequences with even lengths. In Section 5.1.2, a new class of finite binary sequences with even lengths with alternate autocorrelation values equal to  $\pm 1$  is presented (see also [46]). We show that the MF values of the new class are closely related to the MF values of adjacent classes of skew-symmetric sequences. We further introduce new sub-classes of sequences using the partition number problem and the notion of potentials, measured by helper ternary sequences. Throughout our experiments, MF records for binary sequences with many lengths less than 225, and all lengths greater than 225, are discovered. Binary sequences of all lengths, odd or even, less than  $2^8$  and with MF > 8, and all lengths, odd or even, less than  $2^9$  and with MF > 7, are now revealed. We demonstrate the efficiency of the proposed algorithm by launching it on two extremely hard search spaces of binary sequences of lengths 573 and 1009. The choice of those two specific lengths is motivated by the approximation numbers given in [24], Figure 7, presented during a discussion of how much time the state-of-the-art stochastic solver lssOrel 8 will need to reach binary sequences with the aforementioned lengths and merit factors close to 6.34. It was estimated that finding solutions with a merit

factor of 6.34 for a binary sequence with length 573 requires around 32 years, while for binary sequences with length 1009, the average runtime prediction to reach the merit factor of 6.34 was 46774481153 years. By using the proposed in Section 5.1.2 algorithm, we were able to reach such binary sequences within several hours. Finally, in Section 5.2, a method addressing the S-box reverse engineering problem using spectrography on aperiodic autocorrelation functions is presented.

# Chapter 2

# Vector Boolean Functions and Cryptography

### **2.1 Boolean Functions**

**Definition 2.1.1** (Boolean Function & Truth Tables). Let us define the set  $B = \{0, 1\}$ . A Boolean function f(x) of *n* variables  $x_1, ..., x_n$  is a mapping  $f : B^n \mapsto B$  from *n* binary inputs  $x = (x_1, x_2, \dots, x_n) \in B^n$  to one binary output  $y = f(x) \in B$ . The binary truth table (BTT) of an *n*-variable Boolean function f(x) is the vector of all the consecutive outputs of the Boolean function:

$$[f(x)] = [f(0,0,\dots,0), f(0,0,\dots,1),\dots,f(1,1,\dots,1)]$$

The polarity truth table (PTT) of an *n*-variable Boolean function f(x) is derived from the binary truth table. We define the PTT by  $[\hat{f}(x)] = [1 - 2f(x)]$ . By the definition of the polarity truth table, follows:

$$f(x) = 0 \Leftrightarrow \hat{f}(x) = 1; f(x) = 1 \Leftrightarrow \hat{f}(x) = -1$$

**Definition 2.1.2** (Algebraic Normal Form). The algebraic normal form of an *n*-variable Boolean function f(x), denoted by  $ANF_f$ , is given by the following equation:  $ANF_f = a_0 \oplus a_1x_1 \oplus a_2x_2 \oplus \cdots \oplus a_nx_n \oplus a_{1,2}x_1x_2 \oplus \cdots \oplus a_{1,2,\dots,n}x_1x_2\cdots x_n$ , where the coefficients *a* belongs to *B*.

**Definition 2.1.3** (Algebraic Degree). The algebraic degree of a Boolean function f(x), denoted by deg(f), is equal to the number of variables in the longest item of its  $ANF_f$ .

**Definition 2.1.4** (Hamming Distance). The Hamming distance between two *n*-variable Boolean functions f(x) and g(x), denoted by  $d_H(f,g)$ , represents the number of differing elements in the corresponding positions of their truth tables.

Definition 2.1.5 (Linear Boolean Function). Any *n*-variable Boolean function of the form:

$$l_w(x) = \langle w, x \rangle = w_1 x_1 \oplus w_2 x_2 \oplus \cdots \oplus w_n x_n,$$

where  $w, x \in B^n$ , is called a linear function.

Definition 2.1.6 (Affine Boolean Function). Any *n*-variable Boolean function of the form:

$$l_w(x) = \langle w, x \rangle = w_0 \oplus w_1 x_1 \oplus w_2 x_2 \oplus \cdots \oplus w_n x_n,$$

where  $w_0 \in B$  and  $w, x \in B^n$ , is called an affine function.

**Definition 2.1.7** (Walsh-Hadamard Transform). For an *n*-variable Boolean function f(x), represented by its polarity table  $[\hat{f}(x)]$ , the Walsh-Hadamard transform, or WHT,  $\hat{F}_f : B^n \to Z$ , is defined by:

$$\hat{F}_f(w) = \sum_{x \in B^n} \hat{f}(x) (-1)^{\langle w, x \rangle}$$

**Definition 2.1.8** (Absolute Indicator). For an *n*-variable Boolean function f(x), we denote the absolute indicator of f as  $\Delta_f$ . For all  $u \in F_2^n$ , except the zero vector, write

$$\Delta_f(u) = \sum_x (-1)^{f(x) + f(x+u)}$$

The absolute indicator of f is calculated by

$$\Delta_f = \max_{u} |\Delta_f(u)| \tag{2.1}$$

#### **2.2** Vector Boolean Functions (S-boxes)

**Definition 2.2.1** (Vectorial Boolean Function – Substitution Table – S-box). An *n*-binary input to *m*-binary output mapping  $S : B^n \Leftrightarrow B^m$ , which assigns some  $y = (y_1, y_2, \dots, y_m) \in B^m$  by S(x) = y to each  $x = (x_1, x_2, \dots, x_n) \in B^n$ , is called an (n, m) substitution table (S-box) and is denoted by S(n, m).

**Definition 2.2.2** (Bijective S-box). An S-box S(n,m) is said to be bijective, if it maps each input  $x \in B^n$  to a distinct output  $y = S(x) \in B^m$  and all possible  $2^m$  outputs are present.

**Definition 2.2.3** (S-box Look-up Table – LUT). The look-up table LUT of an S-box S(n,m) is an  $(2^n \times m)$  binary matrix S, which rows consist of all outputs of S(n,m), corresponding to all possible  $2^n$  inputs ordered lexicographically. Since the mapping defined by S(n,m) consists of m Boolean functions  $f_1, f_2, \dots, f_m$ , we could write down  $S_{LUT}$  as follows:

$$S_{LUT} = \begin{bmatrix} f_1(0,0,\dots,0) & f_2(0,0,\dots,0) & \cdots & f_m(0,0,\dots,0) \\ f_1(0,0,\dots,1) & f_2(0,0,\dots,1) & \cdots & f_m(0,0,\dots,1) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(1,1,\dots,0) & f_2(1,1,\dots,0) & \cdots & f_m(1,1,\dots,0) \\ f_1(1,1,\dots,1) & f_2(1,1,\dots,1) & \cdots & f_m(1,1,\dots,1) \end{bmatrix}$$
(2.2)

**Definition 2.2.4** (S-box Coordinates). We define each column of the S(n,m) LUT as a coordinate of S(n,m). Each column represents the truth table of some Boolean function  $f_i$ . If S(n,m) is bijective vectorial Boolean function it follows that n = m and we have exactly n coordinates.

**Definition 2.2.5** (Polarity Look-up Table – PLUT). The polarity look-up table PLUT of an S-box S(n,m), denoted by  $S_{PLUT}$ , is an  $(2^n,m)$  matrix with elements in  $\{-1,1\}$ , where each element on row j and column k, denoted by  $S_{PLUT}[j][k]$ , for  $j = 1, 2, \dots, 2^n$  and  $k = 1, 2, \dots, m$ , is derived from  $S_{LUT}[j][k]$  by

$$S_{PLUT}[j][k] = (-1)^{S_{LUT}[j][k]} = 1 - 2S_{LUT}[j][k]$$

Since the mapping defined by S(n,m) consists of *m* Boolean functions  $f_1, f_2, \dots, f_m$ , we could write down  $S_{PLUT}$  as follows:

$$S_{PLUT} = \begin{bmatrix} \hat{f}_1(0,0,\dots,0) & \hat{f}_2(0,0,\dots,0) & \cdots & \hat{f}_m(0,0,\dots,0) \\ \hat{f}_1(0,0,\dots,1) & \hat{f}_2(0,0,\dots,1) & \cdots & \hat{f}_m(0,0,\dots,1) \\ \vdots & \vdots & \ddots & \vdots \\ \hat{f}_1(1,1,\dots,0) & \hat{f}_2(1,1,\dots,0) & \cdots & \hat{f}_m(1,1,\dots,0) \\ \hat{f}_1(1,1,\dots,1) & \hat{f}_2(1,1,\dots,1) & \cdots & \hat{f}_m(1,1,\dots,1) \end{bmatrix},$$
(2.3)

where  $\hat{f}_i(\alpha) = (-1)^{f_i(\alpha)} = 1 - 2f_i(\alpha)$ .

**Definition 2.2.6** (S-box Extended WHT Spectrum Matrix – EWHTSM). The extended Walsh-Hadamard transform spectrum matrix (EWHTSM) of an S-box S(n,m) is a  $(2^n, 2^m)$  matrix  $\hat{F}_{ExtS}$ , which columns are represented by the Walsh-Hadamard transform spectra  $[\hat{F}_{g_v}(w)]$  of the Boolean functions  $g_v(x) = v_1 f_1(x) \oplus v_2 f_2(x) \oplus \cdots \oplus v_m f_m(x)$ , where w and v are arranged lexicographically respectively in  $B^n$  and  $B^m$ .

$$\hat{F}_{ExtS} = \begin{bmatrix} \hat{F}_{g_0}(0,0,\dots,0) & \cdots & \hat{F}_{g_{2^{m-1}}}(0,0,\dots,0) \\ \hat{F}_{g_0}(0,0,\dots,1) & \cdots & \hat{F}_{g_{2^{m-1}}}(0,0,\dots,1) \\ \vdots & \ddots & \vdots \\ \hat{F}_{g_0}(1,1,\dots,0) & \cdots & \hat{F}_{g_{2^{m-1}}}(1,1,\dots,0) \\ \hat{F}_{g_0}(1,1,\dots,1) & \cdots & \hat{F}_{g_{2^{m-1}}}(1,1,\dots,1) \end{bmatrix}$$
(2.4)

The importance of the S-box extended Walsh-Hadamard transform matrix is to quantitatively describe the distance with a special measure, alike the Hamming distance, between each linear combination of coordinates in the given S-box and each possible linear function.

**Definition 2.2.7** (Linear Approximation Table – LAT). The linear approximation table of an S-box S(n,m), denoted by  $LAT_S$  or  $S_{LAT}$ , is a table with  $2^n$  rows and  $2^m$  columns, which entries are given by:

$$S_{LAT}[X][Y] = LAT_S[X][Y] = 2^{n-1} - d_H(X,Y), \qquad (2.5)$$

where Y is a consequent linear combination of coordinates of the current S-box and X is the consequent linear function with length n.

**Definition 2.2.8** (S-box Nonlinearity). The nonlinearity of an S-box S(n,m), denoted by  $S_{NL}$ , is defined as:

$$S_{NL} = 2^{n-1} - \max(\{|w_i|\}), \qquad (2.6)$$

where  $\{|w_i|\}$  is the set of all absolute values of elements in LAT, except the uppermost left one.

**Definition 2.2.9** (S-box ACNV). The average coordinate nonlinearity value, or  $S_{ACNV}$ , of a given S-box S, is the average value of all nonlinearities of coordinates of S.

**Definition 2.2.10** (S-box Decimal Look-up Table – DLUT). Each S-box is uniquely defined by its LUT. Translating each row of the LUT as a decimal number uniquely defines the same S-box as a decimal look-up table (DLUT).

A bijective S-box S(n,n) has exactly *n* coordinates. Each coordinate is defined by its truth table, which consists of  $2^n$  elements from *B*. So, we have a total of  $n2^n$  elements from *B* which uniquely define *S*. Following this observation, we have a total of  $2^{n2^n}$  possible choices of S-boxes. But not all of them are bijective. To further restrict our choices to bijective

| Input bits | <b>Output bits</b> | Decimal |
|------------|--------------------|---------|
| 000        | 001                | 1       |
| 001        | 110                | 6       |
| 010        | 010                | 2       |
| 011        | 111                | 7       |
| 100        | 101                | 5       |
| 101        | 011                | 3       |
| 110        | 100                | 4       |
| 111        | 000                | 0       |

Table 2.1 DLUT example of a randomly-generated bijective (3,3) S-box.

S-boxes only, we need to restrict the set of possible S-boxes with the observation that all elements in the DLUT of *S* should be distinct. This reduces the possible choices of S-boxes from  $2^{n2^n}$  to  $2^n$ !.

**Definition 2.2.11** (XOR Table). The XOR table of an S-box S(n,m) is a  $(2^n \times 2^m)$  binary matrix  $S_{XORT}$ , which columns consist of all linear combinations of  $S_{LUT}$  columns ordered lexicographically.

**Definition 2.2.12** (S-box Minimal Algebraic Degree). The minimal algebraic degree of an S-box S(n,m) is the minimum algebraic degree among all component functions of *S*.

$$S_{DEG} = min_{(v \in B^m)} deg(g_v) =$$
  
=  $min_{((v_1, v_2, \dots, v_m) \in B^m)} deg(v_1 f_1(x) \oplus v_2 f_2(x) \oplus \dots \oplus v_m f_m(x)), (2.7)$ 

where  $f_1, f_2, \dots, f_m$  are the coordinate Boolean functions of S(n,m).

**Definition 2.2.13** (S-box Absolute Indicator). The absolute indicator of a given S-box *S*, denoted as  $S_{AC}$ , is equal to the maximal absolute indicator among all absolute indicators of component functions of *S*.

**Definition 2.2.14** (S-box Differential Uniformity). Differential uniformity, or  $\delta$ -uniformity of a given S-box S(n,m), denoted by  $S_{\delta}$ , is defined by:

$$S_{\delta} = \max_{\alpha \in B^n \setminus \{0\}} \max_{\beta \in B^m} \left| \{ x \in B^n \mid S(x) \oplus S(x \oplus \alpha) = \beta \} \right|$$

### 2.3 Cryptographic Properties of Some Popular S-boxes

The cryptographic properties of vector boolean functions are thoroughly examined by introducing a rich list of desirable parameters an S-box should have to guarantee an acceptable resistance to sophisticated cryptographic attacks such as the linear cryptanalysis [103][17], the differential cryptanalysis [18], boomerang attack [147] or interpolation attack [79]. Sboxes are widely used in modern cryptographic algorithms like AES [40], Whirlpool [11], Camellia [7] and many others (see Table A.1 in the Appendix). For a given S-box S the goal of the designer is to achieve high values of  $S_{NL}$  and  $S_{DEG}$ , as well as small values of  $S_{\delta}$  and  $S_{AC}$ .

The S-boxes, created with the Finite Field Inversion method [114], as the Rijndael S-box used in AES [40], have the best currently known cryptographic properties among all  $8 \times 8$ S-boxes. However, some concerns about constructing S-boxes by using a purely algebraic approach can make them vulnerable to algebraic attacks [34]. Hence, in some applications, randomly or heuristically generated S-boxes are used. In table A.1 a collection of well-known and published S-boxes used in popular cryptographic algorithms are analyzed, and one can see that only 11 S-boxes, out of 47, are AES-alike. For a more detailed picture, the LAT Spectras of the S-boxes is also provided, i.e. the real-valued vector of all absolute values of LAT coefficients. The distribution of the  $S_{LAT}$  coefficients of a given S-box S could also provide some more insights into how S is constructed when the construction method is not announced (intentionally or not) by the designers of S.

## 2.4 Design Strategies for Constructing S-boxes

The rich variety of proposed S-boxes constructions can be classified into four categories. The first category  $T_1$  for finding S-boxes with good cryptographic properties uses the pseudo-random generation method. The highest reported nonlinearity (NL) of an (8,8) S-box generated by this approach is 100 [110]. Table 2.2 presents statistics of our experiments about pseudo-randomly generated S-boxes. We generated over one billion S-boxes (1,387,914,282) and, for example, find that the probability to randomly construct an (8,8) S-box with NL 100 is  $2^{-25.978}$ . Thus, the probability to find an S-box of NL 100, or higher, at random is rather small.

The second category  $T_2$  uses a more straightforward (deterministic) approach, like an algebraic constructions like finite field inversion method, cellular automata based methods [16], quasi-cyclic codes methods [25][19], affine-power-affine methods [38] or using some other deterministic approach as Feistel and Misty constructions [29].

| Nonlinearity | Found     | Approx. probability |
|--------------|-----------|---------------------|
| 66           | 1         | $2^{-30.370}$       |
| 68           | 7         | $2^{-27.563}$       |
| 70           | 35        | $2^{-25.241}$       |
| 72           | 252       | $2^{-22.393}$       |
| 74           | 1467      | $2^{-19.852}$       |
| 76           | 8372      | $2^{-17.339}$       |
| 78           | 44954     | $2^{-14.914}$       |
| 80           | 223694    | $2^{-12.599}$       |
| 82           | 1032177   | $2^{-10.393}$       |
| 84           | 4412551   | $2^{-8.297}$        |
| 86           | 17459934  | $2^{-6.313}$        |
| 88           | 62726236  | $2^{-4.468}$        |
| 90           | 192298910 | $2^{-2.851}$        |
| 92           | 430567292 | $2^{-1.689}$        |
| 94           | 515198571 | $2^{-1.430}$        |
| 96           | 161572964 | $2^{-3.103}$        |
| 98           | 2366844   | $2^{-9.196}$        |
| 100          | 21        | $2^{-25.978}$       |
| 102          | 0         | NA                  |

Table 2.2 Statistics for (8,8) Sboxes generated by using  $T_1$ 

The third category  $T_3$  is about applying heuristic search methods to optimize pseudorandomly generated S-boxes. Members of this category are methods like hill climbing [107], simulated annealing [32], genetic algorithms [108], special genetic algorithms combined with total tree searching [145], special immune algorithms [78], and others [142][121].

The fourth category  $T_4$  is using hybrid search, i.e starting from an S-box generated by some  $T_2$  construction, and then obtaining a new one by using some  $T_3$  algorithm. Such methods are suggested in [85][31][76][101][42][77][4]. It should be noted that categories  $T_3$ and  $T_4$  looks similar. However, the comparison between  $T_3$  and  $T_4$  methods is not entirely fair, since the authors of the latest do not start from a pseudo-random state. Instead, they initialize their algorithm with some highly competitive candidate. The same observation is made in [121], p.9. The logic flow of the aforementioned categories is summarized in Figure 2.1.  $\mathbf{R}$  denotes some pseudo-random generated bijective S-box,  $\mathbf{H}$  is a notation for some heuristic algorithm,  $\mathbf{D}$  is a notation for some deterministic construction, while  $\mathbf{F}$  is the final state.

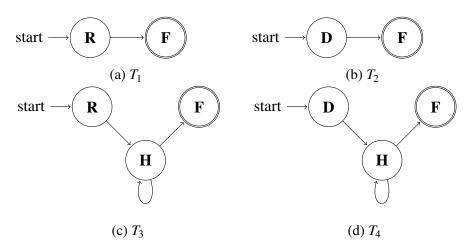


Fig. 2.1 Automata representation of S-box generation categories.

We should also address the S-box chaos-based constructions methods. They could belong to either of categories  $T_2$ ,  $T_3$  or  $T_4$ . However, in [50], S-boxes generated by using chaotic functions (CF) are analyzed to measure their actual resistance to linear cryptanalysis. It appears that most of the aforementioned papers emphasize the average nonlinearity of the S-box coordinates (ACNV) only, ignoring the rest of the S-box components in the process. Having this in mind, the majority of those studies should be re-evaluated. Integrating such S-boxes in a given cryptosystem should be done with considerable caution. Furthermore, we show that in the context of the nonlinearity optimization problem the profit of using chaos structures appears to be negligible. By using two heuristic methods and starting from pseudorandom S-boxes, we repeatedly reached S-boxes, that significantly outperform all previously published CF-based S-boxes, in those cryptographic terms, that the aforementioned papers utilize for comparison. Moreover, we have linked the multi-armed bandit problem to the problem of maximizing an S-box average coordinate nonlinearity value, which further allowed us to reach near-optimal average coordinate nonlinearity values significantly greater than those known in the literature.

The methods involved in CF S-box constructions are manifold (see the comparison table provided in [50]). The actual nonlinearity of an S-box is calculated by the minimum nonlinearity of all the components of the S-box. For example, let us take an arbitrary S-box F(5,5) with  $F_{LUT} = [f_0, f_1, f_2, f_3, f_4]$ . Each column of  $F_{LAT}$  is determined by some linear combination of coordinates of F, sorted lexicographically, from left to right, by the binary representation of the column index, zero-filled to 5. Let  $F_{LAT}[i]$  denotes the *i*-th column

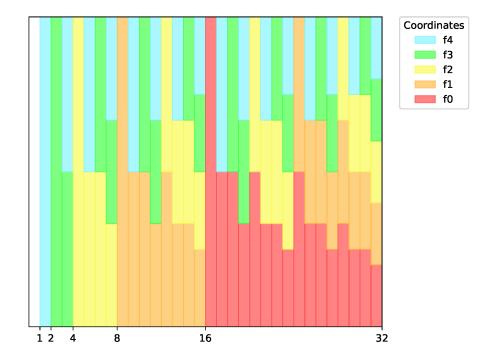


Fig. 2.2 Coordinate decomposition of a (5,5) S-box LAT

of  $F_{LAT}$ . Then, for example, the  $F_{LAT}[11]$  column holds the nonlinear characteristics of the Boolean function  $f_1 \oplus f_3 \oplus f_4$ , while  $F_{LAT}[4]$  holds the nonlinear characteristics of the Boolean function  $f_3$ . In Figure 2.2 the coordinate decomposition of  $F_{LAT}$  is visualized. Each coordinate is associated with a distinct color. The number of segments in each column corresponds to the number of terms in the respective linear combination of coordinates. Since  $F_{LAT}[0]$  is the trivial linear combination (all coefficients are equal to zero), we leave the first column of Figure 2.2 colorless. For technical reasons and better illustration, the coordinate decomposition example is based on a (5,5) S-box. However, it applies to S-boxes of any dimension.

As defined in Definition 2.2.8, we seek the maximum absolute value v of all the elements in S-box S(n,n) LAT, to find the nonlinearity of S, i.e.  $S_{NL} = 2^{n-1} - v$ . In the context of block ciphers, a low nonlinearity S-box value is associated with the cipher linear cryptanalysis resistance [103][17][74]. As shown in [50], the average value of the nonlinearities of the coordinates of a given S-box S doesn't correspond to the actual nonlinearity of S. However, from the designer's perspective, when a higher value of ACNV is desirable, a simple heuristic construction could be used instead.

In general, if we want to improve the nonlinearity of a given bijective S-box S(n,n), a strategy of lowering the absolute value of coefficients in  $S_{LAT}$  makes sense. Moreover, the elements of each column of  $S_{LAT}$  are entangled by Parceval's theorem [104]. Let's denote as

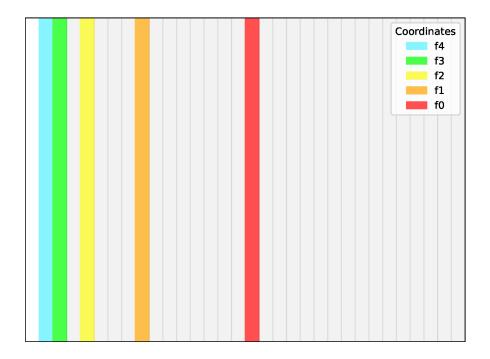


Fig. 2.3 Columns of interest of a (5,5) S-box LAT

 $C_i$  the array composed of the elements of  $S_{LAT}[i]$ . Since we want to lower the nonlinearities of coordinates of *S* only, an evaluating function E(S) is created, s.t.  $E(S) = \sum_{p=0}^{n-1} \sum_{x \in C_{2^p}} |x|^M$ , where *M* denotes a magnitude of our choice. The restriction  $x \in C_{2^p}$  narrows down the set of possible columns of  $S_{LAT}$  to be optimized, in terms of nonlinearity, to the set of coordinates of *S*. As an example, in the case of a S(5,5) S-box, the evaluation function threats as significant the elements inside the colored columns of  $S_{LAT}$  illustrated in Figure 2.3.

By using stochastic<sup>1</sup> hill climbing as a heuristic function, starting from arbitrary pseudorandom S-box construction and by using E(S), algorithm 1 is proposed.

<sup>&</sup>lt;sup>1</sup>hill climbing without neighborhood search

| Algorithm I An algorithm for an S-box ACNV optimization |                                                                                     |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 1: $s \leftarrow R(n)$                                  | $\triangleright$ the function R(n) generates pseudo-random bijective S-box $S(n,n)$ |  |  |  |  |  |  |  |  |  |
| 2: repeat                                               |                                                                                     |  |  |  |  |  |  |  |  |  |
| 3: $sdupl \leftarrow s$                                 |                                                                                     |  |  |  |  |  |  |  |  |  |
| 4: RT(sdupl)                                            | $\triangleright$ the function RT(S) make a random transposition in S                |  |  |  |  |  |  |  |  |  |
| 5: <b>if</b> E( <i>sdupl</i> )                          | < E( <i>s</i> ) <b>then</b>                                                         |  |  |  |  |  |  |  |  |  |
| $6: \qquad s \leftarrow sdup$                           | ol                                                                                  |  |  |  |  |  |  |  |  |  |
| 7: <b>end if</b>                                        |                                                                                     |  |  |  |  |  |  |  |  |  |
| 8: <b>until</b> STOP cond                               | dition is reached $\triangleright$ reaching $\frac{n(n-1)}{4}$ cycles               |  |  |  |  |  |  |  |  |  |

Given an S-box S(n,n), and by using just one transposition, we can reach a total of  $\binom{n}{2}$  S-boxes. Let denote this set as  $S^T$ . We further define a set  $S^I$ , s.t.  $W \in S^I \iff W \in$  $S^{T} \wedge E(W) < E(S)$ . In case  $|S^{I}| = 1$ , and we are allowed to randomly pick  $\frac{|S^{T}|}{2}$  elements from  $S^{T}$ , the probability some of the picked elements to belong to  $S^{I}$  is  $\frac{1}{2}$ . The threshold value of the stop condition in Algorithm 1 is constructed on this observation.

By using a magnitude of 10, we repeatedly generated S-boxes with high coordinate nonlinearities. During our experiments, we tried various magnitude values. However, larger or smaller values of the magnitude are respectively too aggressive or too tolerant to the largest elements of the S-box LAT. In Figure 2.4 the DLUT, in a hexadecimal format, of an optimized S-box  $S_c(8,8)$  is presented. The first row and column of the table correspond respectively to the first and second half of the input in hexadecimal format. For example, the input **11110101**, equal to **f5**, is transformed by  $S_c$  to **5d**.

By using Algorithm 1 we could repeatedly optimize pseudo-randomly generated S-boxes to ACNV of 114.0, the highest reported in the literature. Moreover, by exploiting the techniques discussed in the multi-armed bandit problem [15], we were able to reach ACNV of 114.5 (see [50]). Algorithm 1 was implemented with the built-in tools provided by the open-source mathematical software system SageMath [43].

#### **Nonlinearity Optimization Using SAT Solvers** 2.5

In this section, an interconnection between the S-box nonlinearity optimization problem and binary integer programming is shown. A lightweight optimization routine is proposed, which does not cause any significant computational burden. Moreover, the toolbox could be utilized as proof of infeasibility.

A major drawback of the state-of-the-art heuristic techniques is their aggressiveness on the initial S-box. Hence, in most cases, it is difficult to link the resulting S-box with the

|    | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0a | 0b | 0c | 0d | 0e | Of |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 00 | ab | f0 | 5e | 3f | fa | e2 | 6f | 8e | Зc | 36 | 30 | db | 29 | 73 | da | 45 |
| 10 | 87 | f9 | 60 | Зb | bf | a4 | c7 | 0c | a9 | c0 | f3 | cb | 68 | ff | ee | a6 |
| 20 | 90 | 57 | f2 | 77 | ef | c2 | 78 | b7 | 94 | 32 | e6 | 4d | 53 | 6d | 26 | 98 |
| 30 | c1 | 2c | 2a | 9a | 12 | 2b | ea | e8 | 17 | 7c | 5c | 6e | 50 | d9 | f6 | 88 |
| 40 | 83 | 69 | 5a | 67 | af | b9 | 1a | b8 | 8a | d4 | b4 | a0 | сс | e1 | 24 | c6 |
| 50 | be | 1f | a1 | 51 | 9f | 64 | 4e | 4f | 2f | 85 | 6b | 76 | 86 | 35 | 4b | ed |
| 60 | 81 | 84 | 39 | 13 | 62 | c3 | 9e | dc | d0 | 66 | 5f | 44 | de | 1c | bd | 34 |
| 70 | 1d | 1e | 2d | 6c | a2 | 46 | 97 | c5 | 37 | 61 | a3 | 56 | fe | f7 | d5 | 38 |
| 80 | ce | 05 | 09 | 18 | aa | fc | 91 | 28 | 9b | 10 | e9 | 0b | 71 | dd | e7 | 23 |
| 90 | 7f | 72 | 59 | 6a | 43 | fd | d1 | e4 | f8 | 0d | 55 | 74 | c8 | f5 | 27 | 65 |
| a0 | 93 | c4 | 19 | 49 | 00 | 20 | 3d | 2e | a8 | d3 | 01 | 7d | 25 | 0e | f4 | 33 |
| b0 | 02 | 04 | 0a | 14 | 16 | ae | 31 | 11 | cf | 79 | 8f | d8 | 8b | d7 | ca | b3 |
| c0 | bb | Зe | 0f | 92 | df | 40 | 4c | cd | ac | 22 | 5b | a5 | bc | f1 | 75 | 89 |
| d0 | 96 | b1 | e3 | d2 | 7a | 1b | 70 | 58 | 03 | 47 | 80 | 9c | 06 | ba | c9 | 54 |
| e0 | ad | 41 | 99 | 48 | 7e | 3a | 95 | e0 | ec | 07 | 63 | 7b | b2 | 21 | b0 | 4a |
| fO | 8d | d6 | 15 | fb | 9d | 5d | 8c | 42 | 80 | b6 | eb | a7 | b5 | e5 | 52 | 82 |

Fig. 2.4 An optimized S-box  $S_c(8,8)$  using Algorithm 1, having ACNV of 114.0

initial S-box. It is difficult to prove that such a link exists in the first place. The fine-grained optimization routine proposed in [51] allows us to optimize the nonlinearity value of a given S-box with as minimum changes as possible. From the designer's perspective, this property is particularly beneficial, since we could focus the optimization routine on the weak components of a given S-box, without degrading the remaining ones. The effectiveness of the proposed algorithm is further demonstrated by increasing the nonlinearity of the Skipjack S-box, developed by NSA, and Kuznyechik S-box, developed by the Russian Federation's standardization agency, by tweaking respectively 4 and 12 (out of 2048) bits only.

The currently known maximum nonlinearity value for 8-variable balanced Boolean functions is 116 [122]. Furthermore, as shown in [133], the nonlinearity value of 8-variable balanced Boolean functions is upper bounded by 120, which means that the maximum theoretical ACNV of (8,8) bijective S-boxes is less or equal to 118.0. If a bijective S-box with ACNV greater than 116.0 is found, at least one of its eight coordinates will possess a nonlinearity value of 118, which will finally answer the long-standing problem of the maximum possible nonlinearity value for 8-variable balanced Boolean functions. However, there is academic skepticism that 8-variable balanced Boolean functions with nonlinearity value 118 exist. Having this in mind, one open question to be answered is: *Does bijective* (8,8) *S-box with an ACNV value of 116 exist*? By using the SAT solving techniques, we showed that bijective (8,8) S-boxes with an ACNV value of 116.0 exist. However, despite our attempts, we were not able to find an 8-variable balanced Boolean function with a nonlinearity of 118.

We first introduce the concept of couplings, coordinate decomposition, degree of descendibility, S-box coordinate extended linear approximation table (CELAT), as well as some useful properties and inner relationships. For convenience, let us denote as  $f(n)^i$  the integer extracted from *n*, by flipping its *i*-th bit of its binary representation. Obviously,  $f(f(n)^i)^i = n$ .

**Lemma 2.5.1** (The Parity Lemma). Tweaking a bijective S-box *S* by flipping just one bit in its corresponding Look-up Table (LUT) will convert *S* to a non-bijective S-box.

**Proof 2.5.1** (Proof of Lemma 2.5.1). We take an arbitrary bijective S-box S(n,n) and its corresponding Look-up  $S_{LUT}$  and Decimal Look-up  $S_{DLUT}$  tables. We pick the flipped bit to be somewhere inside the row with index *i* of  $S_{LUT}$ . The resulted Look-up Table will be denoted as  $S'_{LUT}$ . We will prove that the S-box S' is not bijective.

Indeed, if  $S_{DLUT} = [d_0, d_1, \dots, d_{2^n-1}]$ , then the resulted Decimal Look-up Table of the S-box S' is equal to  $S_{DLUT} = [d_0, d_1, \dots, \overline{d_i}, \dots, d_{2^n-1}]$ , where  $\overline{d_i}$  is the decimal integer, which corresponds to the bit-concatenation of all the bits from the *i*-th row of  $S_{LUT}$ . However, from the bijectivity property it follows that  $\forall i : i \neq j \rightarrow d_i \neq d_j$ . Furthermore, by definition (see Lemma 2.2.2),  $S_{DLUT}$  is in fact a permutation of all the  $2^n$  integers in the interval  $[0, 2^n - 1]$ .

Since *S* is with dimensions (n,n), each element of  $S_{DLUT}$  is represented by exactly  $2^n$  bits. Having this in mind, the number of possible distinct values of  $\overline{d_i}$  is  $2^n$  ( $d_i$  with the first bit flipped,  $d_i$  with the second bit flipped, ..., or  $d_i$  with the last bit flipped). Since the binary representations of all those distinct values consist of exactly *n* bits, their decimal representations are values less or equal to  $2^n - 1$ . Therefore, no matter which bit of  $d_i$  is flipped,  $\overline{d_i}$  will collide with exactly one  $d_j$ , for some  $j \neq i$ . Hence,  $S'_{DLUT}$  will hold two different elements,  $\overline{d_i}$  and  $d_j$ , with equal values, and therefore, S' is a non-bijective S-box.

It is not possible to get a bijective S-box by modifying (flipping) a single bit of the  $S_{LUT}$  of another bijective S-box. However, as shown in the next Lemma, the minimum count of bits we need to change in the *LUT* of a random bijective S-box to get a new bijective S-box is 2.

**Lemma 2.5.2** (Couplings Lemma). The smallest nonzero number of bits from the LUT of a random bijective S-box that needed to be modified to obtain another bijective S-box is 2.

**Proof 2.5.2** (Proof of Lemma 2.5.2). Let us take a bijective S-box S(n,n) and define the DLUT of S as an array  $S_{DLUT} = [d_0, d_1, \dots, d_{2^n-1}]$ . Since S is bijective, it follows that  $\forall i : i \neq j \rightarrow d_i \neq d_j$ . We recall that  $S_{DLUT}$  is a permutation of all the  $2^n$  integers in the interval  $[0, 2^n - 1]$ .

Without loss of generality, we pick the first flipped bit to be somewhere inside the row with index *i* of  $S_{LUT}$ . Let us denote the resulted Look-up Table, when this bit is flipped, as

 $S'_{LUT}$ . As shown in the previous lemma, the S-box S', which corresponds to the Look-up Table  $S'_{LUT}$ , is not bijective. However, we will show that we could always flip another distinct (non-trivial) bit, which could transform the S-box S' to some bijective S-box S'', where  $S'' \neq S$ .

Using the notations introduced throughout the proof of the previous lemma, we have

$$S_{DLUT} = [d_0, d_1, \cdots, d_{2^n - 1}],$$

and

$$S_{DLUT} = [d_0, d_1, \cdots, \overline{d_i}, \cdots, d_{2^n - 1}],$$

where  $\overline{d_i}$  is the decimal integer, which corresponds to the bit-concatenation of all the bits from the *i*-th row of  $S'_{LUT}$ . Following the same observation made in Lemma 2.5.1, no matter which bit of  $d_i$  is flipped,  $\overline{d_i}$  will collide with exactly one  $d_j$ , for some  $j \neq i$ , and  $S'_{DLUT}$  will hold two different elements,  $\overline{d_i}$  and  $d_j$ , with equal values

$$S_{DLUT}' = [d_0, d_1, \cdots, d_j, \cdots, \overline{d_i}, \cdots, d_{2^n-1}].$$

However, all the remaining  $2^n - 2$  elements from  $S_{DLUT}^{'}$ , i.e. all the elements in  $S_{DLUT}^{'}$  with  $d_j$  and  $\overline{d_i}$  excluded, differ from each other. Since  $d_j = \overline{d_i}$ , and  $d_i \neq \overline{d_i}$ , we could highlight two reasons for the non-bijectivity of the S-box S':

- The value  $d_i$  is missing from  $S_{DLUT}$ .
- There are two identical values in  $S'_{DLUT}$   $d_j$  and  $\overline{d_i}$ .

Having this in mind, if we could modify  $d_j$  to  $d_i$ , by using just a single flip, we could convert  $S_{DLUT}$  to  $S_{DLUT}$ , where the S-box S'', which corresponds to the Decimal Look-up Table  $S_{DLUT}$ , is bijective. It is trivial to be shown that this modification is possible. Let us recall that  $\overline{d_i}$  is created by flipping a single bit in  $d_i$  on position, for example, x. Therefore, since  $d_j = \overline{d_i}$ , flipping the bit on position x in  $d_j$  will convert  $d_j$  back to  $d_i$ , and we will have the DLUT  $S_{DLUT}'$ , s.t:

$$S_{DLUT} = [d_0, d_1, \cdots, d_i, \cdots, d_j, \cdots, d_{2^n - 1}].$$

Since the elements in the S-box S'', which corresponds to the Decimal Look-up Table  $S'_{DLUT}$ , are now a permutation of all the  $2^n$  integers in the interval  $[0, 2^n - 1]$ , S'' is bijective. Furthermore, the permutation  $S'_{DLUT}$  is exactly one transposition away from the permutation  $S_{DLUT}$ . We have shown that if we start from a random bijective S-box S it is possible to construct another bijective S-box S'' by flipping exactly two bits from the LUT of S. It appears that the first flip can be on a random element in the LUT, but the second flip is uniquely determined by the first one. We define each such pair as coupling.

**Definition 2.5.1** (Couplings). Let us take a bijective S-box S(n,n) and its corresponding DLUT

$$S_{DLUT} = [d_0, d_1, \cdots, d_i, \cdots, d_{2^n-1}].$$

We define as a **coupling** each set  $\{d_s, f(d_s)^j\}$ , while the set of all couplings in S as  $\{S \updownarrow\}$ .

**Lemma 2.5.3** (Couplings Set Cardinality). Given a bijective S-box S(n,n):

$$|\{S \uparrow\}| = n2^{n-1}.$$

**Proof 2.5.3** (Proof of Lemma 2.5.3). If we flip a bit on column *i* in the LUT of *S*, the corresponding unique second flip we need to perform to guarantee the bijectivity property of the newly created S-box has to be on column *i* as well, i.e. we are flipping two distinct bits sharing the same S-box coordinate *i*. Thus, we have exactly *n* coordinates, each having  $\frac{2^n}{2}$  distinct couplings, or a total of  $n2^{n-1}$  couplings.

**Definition 2.5.2** (Couplings Pivot Set). We define the set  $\{S \downarrow^i\}$  as the maximum subset of the coupling set of a bijective S-box S(n,n), which holds couplings operating only on column *i* of the  $S_{LUT}$ , i.e. couplings of the form  $\{d_x, f(d_x)^i\}$ . We call each such maximum subset  $\{S \downarrow^i\}$  a couplings pivot set operating on column *i* of  $S_{LUT}$ .

**Corollary 2.5.1** (Properties of Couplings Pivot Sets). Considering the definitions of the Couplings Pivot Sets on bijective S-box S(n,n), the following properties hold:

- $\forall i \neq j, \{S \uparrow^i\} \cap \{S \uparrow^j\} = \emptyset$
- $\forall i, |\{S \uparrow^i\}| = 2^{n-1}$
- $\left|\bigcup_{i=1}^{n} \{S \ddagger^{i}\}\right| = n2^{n-1}$

**Definition 2.5.3** (Coordinate Decomposition). Let *S* be an (n,n) bijective S-box. We take a random element with coordinates (x, y) of its corresponding linear approximation table  $S_{LAT}$ . We denote the binary representation of *y* as:

$$y_{(2)} = b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + \dots + b_12^1 + b_02^0$$

The coordinate decomposition of an element with coordinates (x, y), denoted by  $\Delta_{x,y}$ , is the set:

$$\Delta_{x,y} = \bigcup_{i=0,b_i\neq 0}^{n-1} \{b_i(n-i-1)\}$$

**Definition 2.5.4** (Nonlinearity Bottleneck Snapshot – NBS). We define the nonlinearity bottleneck snapshot  $S_{NBS}$  of a bijective S-box S(n,n) as a set of tuples holding all coordinates of the elements of  $S_{LAT}$ , which are holding down the nonlinearity value  $S_{NL}$  of S, i.e.

$$(x,y) \in S_{NBS} \iff |LAT_S[x][y]| = 2^{n-1} - S_{NL}$$

**Definition 2.5.5** (NBS Coordinate Decomposition – NBSCD). We define the nonlinearity bottleneck snapshot coordinate decomposition of a bijective S-box S(n,n), denoted by  $\Delta_S$ , as a set of all  $S_{NBS}$  coordinate decompositions, i.e.:

$$\Delta_S = \bigcup_{(x,y)\in S_{NBS}} \Delta_{x,y}$$

**Definition 2.5.6** (Degree of Descendibility –  $\Lambda_S$ ). For a given bijective S-box S(n,n), we define a family of sets  $\Psi_S$ , s.t.:

$$E \in \Psi_S \iff \forall Q \in \Delta_S \exists q \in Q : q \in E$$

The degree of descendibility of S is the minimum cardinality of a set in  $\Psi_S$ , i.e.:

$$\Lambda_S = \min_{\forall A \in \Psi_S} |A|$$

**Corollary 2.5.2** (Basic properties of  $\Lambda_S$ ). For a given bijective S-box S(n,n):

- $\Lambda_S \in \mathbb{N}$
- $\Lambda_S \in [1,n]$
- $\Lambda_S = 1 \iff |\bigcap_{s \in \Delta_S}| \ge 1$
- $\Lambda_S > 1 \iff \bigcap_{s \in \Delta_S} = \emptyset$

**Definition 2.5.7** (Descendible Coordinate). For a given bijective S-box S(n,n), we say that coordinate *j* is descendible if the following properties hold:

• 
$$\Lambda_S = 1$$

•  $j \in \bigcap_{s \in \Delta_S}$ 

**Definition 2.5.8** (Couplings Transformation). For a given bijective S-box S(n,n) and some coupling  $c_i$ , we denote as  $S^{c_i}$  the S-box created by applying coupling  $c_i$  on S. We define this transform as coupling transform denoting it with the operator  $\circ$ , i.e.

$$S^{c_i} = S \circ c_i$$

When we have a list of couplings  $\{c_1, c_2, \dots, c_i\}$ , which we want to use for transformation of *S* in this exact order, we will use the following expression:

$$S^{c_1,c_2,\cdots,c_i} = S \circ c_1 \circ c_2 \circ \cdots \circ c_i$$

**Lemma 2.5.4** (Couplings Inverse). For a given bijective S-box *S* and any coupling *c*, the following property holds:

$$S = S \circ c \circ c$$

**Proof 2.5.4.** Since *c* is, in fact, a transposition in the Decimal Look-up Table  $S_{DLUT}$  of *S* (swapping two elements in  $S_{DLUT}$ ) applying the same transposition twice would cancel its effect out.

**Definition 2.5.9** (Coupling Transformation Matrix – CTM). For a given bijective S-box S(n,n) and some coupling  $c_i$ , we denote as  $S_{LAT}^{c_i}$  the transformed LAT of S caused by  $c_i$ . We define the coupling transformation matrix of  $c_i$  on S, as:

$$S_{CTM}^{c_i} = S_{LAT}^{c_i} - S_{LAT}$$

**Lemma 2.5.5** (Pivot Couplings Commutativity). For a given bijective S-box S(n,n), for any two couplings  $c_a$  and  $c_b$ , which belongs to the same couplings pivot set  $\{S \downarrow^i\}$ , we have the following property:

$$S \circ c_a \circ c_b = S \circ c_b \circ c_a$$

**Proof 2.5.5.** In case  $c_a \equiv c_b$  the theorem follows from lemma 2.5.4, i.e.

$$S \circ c_a \circ c_b = S \circ c_a \circ c_a = S$$

In the case when  $c_a \neq c_b$ , since they belong to the same coupling pivot set, it follows that  $c_a \cap c_b = \emptyset$ , which concludes the proof.

**Corollary 2.5.3.** For a given bijective S-box S(n,n), for any couplings  $c_j$ , which belongs to the same couplings pivot set  $\{S \uparrow^i\}$ , we have the following properties:

$$S_{LAT}^{c_a,c_b} = S_{LAT}^{c_b,c_a} = S_{LAT} + S_{CTM}^{c_a} + S_{CTM}^{c_b}$$
$$S_{LAT}^{c_1,c_2,\cdots,c_k} = S_{LAT} + \sum_{i=1}^k S_{CTM}^{c_i}$$

Lemma 2.5.6 (CTM Values). The value of each element in a CTM is -2, 0, or 2.

**Proof 2.5.6.** For a given bijective S-box S(n,n) and some coupling  $c = \{d_x, f(d_x)^j\}$ , we denote as  $S^c_{LAT}$  the transformed LAT of S caused by c. Let us take some element  $e_{x,y}$  from the LAT of S before the coupling transformation. We have:

$$e_{x,y} = 2^{n-1} - d_H(L_q, b_1 b_2 \cdots b_{2^n}),$$

for some linear function  $L_q$  and some linear combination in binary representation of the coordinates of  $S : b = b_1 b_2 \cdots b_{2^n}$ . If  $j \notin \Delta_{x,y}$ ,  $e_{x,y}$  is not affected after applying the coupling. However, if  $j \in \Delta_{x,y}$ , we know that exactly two of the bits of the linear combination b are flipped. We denote them as  $b_s$  and  $b_t$ . Let us denote the element on position (x, y) on the newly created LAT as  $e'_{x,y}$ .

$$e_{x,y}' = 2^{n-1} - d_H(l_q, b_1 b_2 \cdots \bar{b_s} \cdots \bar{b_t} \cdots b_{2^n})$$
  
=  $2^{n-1} - d_H(l_q, b_1 b_2 \cdots \bar{b_s} \cdots \bar{b_t} \cdots b_{2^n}) \pm 1$   
=  $2^{n-1} - d_H(l_q, b_1 b_2 \cdots b_s \cdots b_t \cdots b_{2^n}) \pm 1 \pm 1$   
=  $e_{x,y} \pm 1 \pm 1$  (2.8)

Since the expression  $\pm 1 \pm 1$  is equal to one of the three possible values: -2, 0, and 2, the proof concludes.

**Corollary 2.5.4.** For a given bijective S-box S(n,n), let us apply transformations of couplings  $c_1, c_2, \dots, c_k$ , which belongs to the same couplings pivot set  $\{S \downarrow^i\}$ . The elements of the resulting CTM are numbers in the interval  $[-2k, -2(k-1), \dots, -2, 0, 2, \dots, 2(k-1), 2k]$ .

**Definition 2.5.10** (S-box Coordinate Extended LAT – CELAT). For a given bijective S-box S(n,n), and a given coordinate *i*, we can define the one-dimensional linear approximation table of *S* as:

$$S_{LAT_{1D}}[x] = S_{LAT}[x / 2^{n}][x \% 2^{n}]$$

Furthermore, we denote all the couplings in the couplings pivot set  $\{S \uparrow^i\}$  as  $c_1, c_2, \dots, c_{2^{n-1}}$ . We have:

$$S_{CTM}^{c_1} = S_{LAT}^{c_1} - S_{LAT}$$

$$S_{CTM}^{c_2} = S_{LAT}^{c_2} - S_{LAT}$$
...
$$S_{CTM}^{c_{2^{n-1}}} = S_{LAT}^{c_{2^{n-1}}} - S_{LAT}$$
(2.9)

Following the same concept used in the construction of one-dimensional LAT of *S*, we can define one-dimensional CTM, i.e.:

$$S_{CTM_{1D}}^{c_1} = S_{LAT_{1D}}^{c_1} - S_{LAT_{1D}}$$

$$S_{CTM_{1D}}^{c_2} = S_{LAT_{1D}}^{c_2} - S_{LAT_{1D}}$$

$$\dots$$

$$S_{CTM_{1D}}^{c_{2n-1}} = S_{LAT_{1D}}^{c_{2n-1}} - S_{LAT_{1D}}$$
(2.10)

Finally, we define S-box *i*-th Coordinate Extended LAT  $S_{CELAT}^{i}$  as the following table:

 $S_{CELAT}^{i}$  has  $2^{n-1} + 1$  rows and  $2^{2n}$  columns.

For example, let us consider an S-box S(2,2) with  $S_{DLUT} = [0,2,1,3]$ . For n = 2 the  $S_{CELAT}^2$  has  $2^2 - 1 = 3$  rows and  $2^2 * 2 = 16$  columns. Considering coordinate 2, we have:

**Definition 2.5.11** (Integer Programming – Optimization Problem). A pure integer linear program is a problem of the form:

$$\begin{array}{rcl} \max & cx\\ \text{subject to} & Ax & \leq & b\\ & x & \geq & 0 & \text{integral} \end{array}$$

where the data consists of the row vector c with size n, (m, n) matrix A, and column vectors b and x with respective sizes of m and n. The column vector x contains the variables to be optimized. We say that the set S is the set of feasible solutions, i.e.:

$$S := \left\{ x \in Z_+^n : Ax \le b \right\}$$

**Definition 2.5.12** (Binary Integer Linear Programming – BILP). A pure binary integer linear program is a problem of the form:

$$\begin{array}{rcl} \max & cx\\ \text{subject to} & Ax &\leq b\\ & x &\geq 0 & \text{binary} \end{array}$$

where the data consists of the row vector c with size n, (m, n) matrix A, and column vectors b and x with respective sizes of m and n. The column vector x contains the binary variables to be optimized. We say that the set S is the set of feasible solutions, i.e.:

$$S := \left\{ x \in B^n : Ax \le b \right\}$$

**Definition 2.5.13** (Binary Integer Programming – Feasibility or SAT Problem). A feasibility binary integer program is a problem of the form:

subject to 
$$Ax \le b$$
  
 $x \ge 0$  binary

where the data consists of (m, n)-matrix A and column vectors b and x with respective sizes of m and n. The column vector x contains the binary variables to be optimized. We say that the set S is the set of feasible solutions, i.e.:

$$S := \left\{ x \in B^n : Ax \le b \right\}$$

In the context of the feasibility problem we are looking for just one element in the set *S*, not the optimal one.

For an (n,n) S-box S, we denote  $2^{n-1}$  by r and  $2^{2n}$  by m. Let us construct its CELAT using coordinate *i* i.e:

$$S_{CELAT}^{i} = \begin{bmatrix} S_{LAT_{1D}} \\ S_{CTM_{1D}}^{c_1} \\ S_{CTM_{1D}}^{c_2} \\ \cdots \\ S_{CTM_{1D}}^{c_{2n-1}} \end{bmatrix} = \begin{bmatrix} l_1 & l_2 & \cdots & l_m \\ c_{11} & c_{12} & \cdots & c_{1m} \\ c_{21} & c_{22} & \cdots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{r1} & c_{r2} & \cdots & c_{rm} \end{bmatrix}$$

We want to apply some coupling transformations subset  $P = p_1, p_2, \dots, p_k$  which belongs to the pivot coupling set  $\{S \downarrow^i\}$ . From corollary 2.5.3 it follows that:

$$S_{LAT}^{p_1, p_2, \dots, p_k} = S_{LAT} + \sum_{i=1}^k S_{CTM}^{p_i}$$

We denote

$$S_{LAT_{1D}}^{p_1,p_2,\cdots,p_k} = [q_1,q_2,\cdots,q_m]$$

Then, we can construct the following system of equations:

$$q_{1} = l_{1} + c_{11}x_{1} + c_{21}x_{2} + \dots + c_{r1}x_{r}$$

$$q_{2} = l_{2} + c_{12}x_{1} + c_{22}x_{2} + \dots + c_{r2}x_{r}$$

$$\dots$$

$$q_{m} = l_{m} + c_{1m}x_{1} + c_{2m}x_{2} + \dots + c_{rm}x_{r}$$
(2.11)

where  $x = (x_1, x_2, \dots, x_r) \in B^r$ , and  $x_t = 1$  iff  $p_t \in P$ . We have  $S_{NL} = 2^{n-1} - \max_{j=1}^m abs(l_j)$ . If coordinate *i* is descendable, we can construct the following binary integer programming feasibility problem:

subject to 
$$\langle S_{CELAT}^{i}, x \rangle \leq A$$
  
subject to  $\langle S_{CELAT}^{i}, x \rangle \geq B$   
 $x \geq 0$  binary

where A is a column vector with  $2^{n-1} + 1$  elements, each equal to  $2^{n-1} - S_{NL} - 2$ , while *B* is a column vector with  $2^{n-1} + 1$  elements, each equal to  $S_{NL} - 2^{n-1} + 2$ . Let us denote the SAT

problem descending on coordinate *i* in equation 2.5 as  $\Omega_{S,i}$ . This is *NP*-hard<sup>2</sup> problem with a total of  $2^{n-1}$  binary variables and  $2^n + 2$  restrictions. However, we can further divide the problem to an union of subproblems, i.e.:

$$\Omega_{S,i} = \bigcup_{d=1}^{n-1} \Omega_{S,i}^d$$

where each subproblem  $\Omega_{S,i}^d$  is modelled using the following restrictions:

subject to  $\langle S_{CELAT}^{i}, x \rangle \leq A$ subject to  $\langle S_{CELAT}^{i}, x \rangle \geq B$ subject to  $\sum_{j=1}^{r} x_{j} = d$  $x \geq 0$  binary

Solving any of the subproblems will yield a solution to the original problem.

For subproblems  $\Omega_{S,i}^d$  of a binary integer programming feasibility problem  $\Omega_{S,i}$ , the following property holds:

$$\bigcap_{d=1}^{n-1} \Omega_{S,i}^d = \emptyset$$

It is easy to show that the search space of the subproblem  $\Omega_{S,i}^d$  for the bijective S-box S(n,n) is  $\binom{2^{n-1}}{d}$ .

**Theorem 2.5.1.** For a subproblem  $\Omega_{S,i}^d$ , all restrictions with the participation of some  $l_j$  for which the following inequalities hold:

$$l_{j} \leq 2^{n-1} - S_{NL} - 2d - 2$$

$$l_{j} \geq S_{NL} - 2^{n-1} + 2d + 2$$
(2.12)

are always satisfied.

<sup>&</sup>lt;sup>2</sup>The complexity class of decision problems that are intrinsically harder than those that can be solved by a nondeterministic Turing machine in polynomial time.

**Proof 2.5.7.** For a subproblem  $\Omega_{S,i}^d$  we have the following restrictions:

$$l_{1} + c_{11}x_{1} + c_{21}x_{2} + \dots + c_{r1}x_{r} \leq 2^{n-1} - S_{NL} - 2$$

$$l_{1} + c_{11}x_{1} + c_{21}x_{2} + \dots + c_{r1}x_{r} \geq S_{NL} - 2^{n-1} + 2$$

$$l_{2} + c_{12}x_{1} + c_{22}x_{2} + \dots + c_{r2}x_{r} \leq 2^{n-1} - S_{NL} - 2$$

$$l_{2} + c_{12}x_{1} + c_{22}x_{2} + \dots + c_{r2}x_{r} \geq S_{NL} - 2^{n-1} + 2$$

$$\dots$$

$$l_{m} + c_{1m}x_{1} + c_{2m}x_{2} + \dots + c_{rm}x_{r} \leq 2^{n-1} - S_{NL} - 2$$

$$l_{m} + c_{1m}x_{1} + c_{2m}x_{2} + \dots + c_{rm}x_{r} \geq S_{NL} - 2^{n-1} + 2$$

$$x_{1} + x_{2} + \dots + x_{r} = d$$
(2.13)

From lemma 2.5.6, we know that the possible values of the elements  $c_{ij}$  are -2, 0 or 2. Hence:

$$\min_{i,j} c_{ij} = -2$$
$$\max_{i,j} c_{ij} = 2$$

Since  $\sum x_j = d$ , we have:

$$\min_{j} (c_{1j}x_1 + c_{2j}x_2 + \dots + c_{rj}x_r) = -2d$$
$$\max_{j} (c_{1j}x_1 + c_{1j}x_2 + \dots + c_{rj}x_r) = 2d$$

If for some  $l_j$  the following inequalities hold:

$$l_{j} \leq 2^{n-1} - S_{NL} - 2d - 2$$

$$l_{j} \geq S_{NL} - 2^{n-1} + 2d + 2$$
(2.14)

then

$$l_{1} + c_{11}x_{1} + c_{21}x_{2} + \dots + c_{r1}x_{r} \leq$$

$$\leq l_{1} + \max(c_{11}x_{1} + c_{21}x_{2} + \dots + c_{r1}x_{r}) \leq$$

$$\leq l_{1} + 2d \leq$$

$$\leq 2^{n-1} - S_{NL} - 2d - 2 + 2d \leq$$

$$\leq 2^{n-1} - S_{NL} - 2$$

$$(2.15)$$

and on the other hand

$$l_{1} + c_{11}x_{1} + c_{21}x_{2} + \dots + c_{r1}x_{r} \ge$$

$$\ge l_{1} + \min(c_{11}x_{1} + c_{21}x_{2} + \dots + c_{r1}x_{r}) \ge$$

$$\ge l_{1} - 2d \ge$$

$$i_{1} - 2d \ge$$

$$S_{NL} - 2^{n-1} + 2d + 2 - 2d \ge$$

$$\ge S_{NL} - 2^{n-1} + 2$$
(2.16)

which completes the proof.

**Definition 2.5.14** (CELAT with radius R). For a given bijective S-box S(n,n), and a given coordinate *i*, we have:

$$S_{CELAT}^{i} = \begin{bmatrix} l_{1} & l_{2} & \cdots & l_{m} \\ c_{11} & c_{12} & \cdots & c_{1m} \\ c_{21} & c_{22} & \cdots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{r1} & c_{r2} & \cdots & c_{rm} \end{bmatrix}$$

We define as  $S_{CELAT}^{i,R}$  a matrix constructed of those columns of  $S_{CELAT}^{i}$  with first element  $\rho$ , for which the following inequalities hold:

$$\rho > 2^{n-1} - S_{NL} - 2R - 2$$

$$\rho < S_{NL} - 2^{n-1} + 2R + 2$$
(2.17)

Hence, a given suproblem  $\Omega_{S,i}^d$  could be further reduced and launched on  $S_{CELAT}^{i,d}$ , instead of its corresponding full (unreduced) version  $S_{CELAT}^i$ .

By using automata notation, Figure 2.5 presents the distinct steps of the optimization process. State S is the initial state of the automata. In this phase, we initialize and process the input. We make some additional checks about the properties of the S-box. For example, we check the bijectivity property of the S-box. We further analyze and extract the descendable coordinates (if such exist).

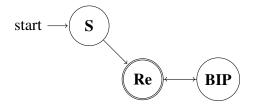


Fig. 2.5 Automata representation of the optimization process

A few important properties of the automata should be emphasized. For a given S-box *S*, if  $\Lambda_S = 1$ , then at least one descendible coordinate, for example *j*, does exist. Thus, if a feasible solution of  $\Omega_{S,j}^R$  is found, the nonlinearity of *S* could be increased by activating exactly *R* couplings. Therefore, we could not only optimize the nonlinearity of *S* but dictate the impact of our changes to the original S-box as well - increasing the value of *R* will increase the total count of flipped bits in *S*.

For example, if we first choose the coordinate *j* to descend into, we further calculate the corresponding matrix  $S_{CELAT}^{j}$ . Then, the adjacent state *Re*, by further processing the generated matrix, and by using some radius *R*, generates the matrix  $S_{CELAT}^{j,R}$ . Finally, state *BIP* is translating the problem to a binary integer programming feasibility problem. In case a feasible solution or proof that the problem is infeasible is found, the result is reported back to state Re, the major role of which is to orchestrate the behavior of the optimization routine - increasing the radius, changing the descendible coordinate, or giving up.

In those cases where  $\Lambda_S > 1$ , the aforementioned algorithm, as we will later demonstrate, is still applicable. We just pick a random coordinate  $j \in \Delta_S$  instead of a descendible one. As a consequence, finding a solution to the  $\Omega_{S,j}^R$  problem will not increase the nonlinearity of *S*. However, it will decrease the value of  $\Lambda_S$  by 1. Thus, by repeating the reduction phase, we would eventually reduce the initial problem to a problem having  $\Lambda_{S'} = 1$ , for some S-box *S'*, yielded by the optimization routine, or the composition of optimization routines, performed on *S*.

We have implemented the algorithm by using Python, for states S and Re, and the Gurobi SAT Solver [71], for the BIP state itself. We analyzed two famous S-boxes: the Skipjack S-box, developed by the U.S. National Security Agency (NSA) [138], which we will denote as  $S_k$ , and the Kuznyechik S-box, standardized by the Russian Federation's standardization agency [53], which we will denote as  $K_k$ .

#### **2.5.1** Skipjack (Case $S_k$ )

The characteristics of *Sk* are  $Sk_{NL} = 100$ ,  $Sk_{NBS} = \{(138, 89), (125, 168), (77, 168)\}$ ,  $\Delta_{Sk} = \{(1,3,4,7), (0,2,4)\}$  and  $\Lambda_{Sk} = 1$ . Since the coordinate with index 4 is descendible, we first try to solve the problem  $\Omega_{Sk,4}^1$ , trying the minimum possible radius value of 1. The translated BIP model consists of 51 rows, 128 columns, and 3420 nonzeros. By using a general-purpose CPU, it took approximately 0.115 seconds to prove that  $\Omega_{Sk,4}^1$  is infeasible. However, by increasing the radius value by 1, the translated BIP model of  $\Omega_{Sk,4}^2$ , consisting of 189 rows, 128 columns, and 12640 nonzeros, a solution is found. The time required was 0.301 seconds. The found solution coupling set is  $\{(130, 138), (183, 191)\}$ . Indeed, the resulting S-box does possess a nonlinearity of 102. Furthermore, the found solution required the flipping of only

4 bits, since, by design, each activated coupling modifies exactly 2 bits in the S-box it was launched on.

On the other hand, if we require a higher nonlinearity, combined with a greater impact of the structure of *Sk*, we could significantly increase the value of R. Indeed, using a radius value of 10, the translated BIP model of  $\Omega_{Sk,4}^{10}$  consists of 25125 rows, 128 columns, and 1621980 nonzeros. Despite the greater model, after 14.542 seconds, a solution was found, yielding an S-box with nonlinearity 102, constructed from Sk by flipping exactly 20 bits.

#### 2.5.2 Kuznyechik (Case *K<sub>k</sub>*)

The characteristics of Kk are  $Kk_{NL} = 100$ ,  $Kk_{NBS} = \{ (90,47), (184,105), (55,165), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,103), (102,10), (102,10), (102,103), (102,103), (102,103), (102,103), (102,10$ (222,151), (62,105), (72,85), (237,98), (110,15), (246,28), (65,106), (135,171), (76,167), (251,54),  $\Delta_{Kk} = \{ (2,3,5,6), (1,2,5,6,7), (0,2,5,7), (1,3,5,7), (1,2,4,7), (0,2,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,6,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3,5,7), (0,3$ (3,4,5), (0,2,4,6,7), (1,2,6), (1,2,4,6), (2,4,5,6,7), (4,5,6,7)and  $\Lambda_{Kk} = 2$ . Since the degree of descendibility is greater than 1, more precisely  $\Delta_{Kk} = \{2, 5\}$ , we pick a random coordinate from  $\Delta_{Kk}$ .  $\Omega^1_{Kk,5}$  and  $\Omega^2_{Kk,5}$  are reported back as infeasible. However,  $\Omega^3_{Kk,5}$ , consisting of 319 rows, 128 columns, and 20904 nonzeros, is feasible. Again, the solver took less than a second to find a solution, i.e. the coupling set  $\{(0,4), (67,71), (136,140)\}$ . Let's denote the resulting S-box as  $\widehat{Kk}$ . The characteristics of  $\widehat{Kk}$  are  $\widehat{Kk}_{NL} = 100$ ,  $Kk_{NBS} =$  $\{(65, 106), (135, 171), (62, 105), (237, 98), (184, 105)\}, \Delta_{\widehat{Kk}} = \{(0, 2, 4, 6, 7), (1, 2, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), (1, 2, 4, 6), ($ (1,2,4,7)} and  $\Lambda_{\widehat{Kk}} = 1$ . As expected, the value of  $\Lambda$  is decreased by 1. Thus, we continue the optimization process by the descendible coordinate with index 2. First, the infeasibility of the two models  $\Omega^1_{\widehat{Kk},2}$  and  $\Omega^2_{\widehat{Kk},2}$  are proved. However, the BIP model of  $\Omega^3_{\widehat{Kk},2}$ , consisting of 379 rows, 128 columns, and 25344 nonzeros, yielded a solution for less than a second. Indeed, the found coupling set  $\{(95, 127), (207, 239), (108, 157)\}$  increased the nonlinearity of  $\widehat{Kk}$  from 100 to 102. Hence, we have shown how Kk could be optimized to an S-box with higher nonlinearity by tweaking just 12 bits.

#### 2.5.3 The ACNV problem

The ACNV optimization problem could be represented as a special, and significantly lighter, in terms of computational burden, case of  $S_{CELAT}^{i,R}$ , where *S* denotes the initial S-box and *i* denotes the coordinate of *S* to be optimized. Since our goal is ACNV optimization only, we could significantly reduce the size of  $S_{CELAT}^{i,R}$ . Let us denote as  $S_{ACNV}^{i,R}$ , the matrix formed by the matrix  $S_{CELAT}^{i,R}$ , with columns corresponding to linear combinations of coordinates of *S* removed. Indeed, this is a significant reduction of the feasibility model. For example, if *S* is of dimension (n,n),  $S_{CELAT}^{i,R}$  has  $2^{n-1} + 1$  rows and  $2^{2n}$  columns, while  $S_{ACNV}^{i,R}$  has  $2^{n-1} + 1$ 

rows and  $2^n$  columns. We further denote the corresponding feasibility problem corresponding to  $S_{ACNV}^{i,R}$  as  $\Psi_{S,i}$ . As usual, we could divide the problem  $\Psi_{S,i}$  to a union of subproblems  $\Psi_{S,i}^d$ .

We have initiated the optimization routine on a bijective S-box, for simplicity denoted as S, from [50], possessing the highest, currently known, ACNV of 114.5. It is composed of 6 coordinates with a nonlinearity value of 114 and 2 coordinates with a nonlinearity value of 116. We will outline a possible trace of improvement, which led to an S-box with an ACNV of 116.0.

- We launched  $\Psi_{S,4}^{\leq 9}$ . After around 153 seconds a feasible solution, with exactly 9 couplings, was found. We activated the couplings to get  $S_1$ . ACNV was lifted to 114.75.
- We launched  $\Psi_{S_1,1}^{\leq 8}$ . After around 16 seconds a feasible solution, with exactly 8 couplings, was found. We activated the couplings to get  $S_2$ . ACNV was lifted to 115.
- We consequently launched  $\Psi_{S_2,2}^{\leq 9}$ ,  $\Psi_{S_2,3}^{\leq 9}$  and  $\Psi_{S_2,5}^{\leq 9}$ , to prove their infeasibility for respectively 181, 274 and 173 seconds. However, by launching  $\Psi_{S_2,7}^{\leq 9}$ , after 257 seconds, a feasible solution with exactly 9 couplings was found. We activated the couplings to get  $S_3$ . ACNV was lifted to 115.25.
- We consequently launched  $\Psi_{S_3,2}^{\leq 9}$ ,  $\Psi_{S_3,2}^{10}$  and  $\Psi_{S_3,2}^{11}$ , to prove their infeasibility for respectively 151, 698 and 3457 seconds. Then, we continued with  $\Psi_{S_3,3}^{\leq 9}$  and  $\Psi_{S_3,3}^{10}$  to prove their infeasibility for respectively 240 and 1015 seconds. However,  $\Psi_{S_3,3}^{11}$  yielded a solution after 5171 seconds. We activated the 11 couplings to get  $S_4$ . ACNV was lifted to 115.5.
- We continued with  $\Psi_{S_4,2}^{\leq 9}$  and  $\Psi_{S_4,2}^{10}$  to prove their infeasibility for respectively 170 and 715 seconds. However,  $\Psi_{S_4,2}^{11}$  yielded a solution after 1145 seconds. We activated the 11 couplings to get  $S_5$ . ACNV was lifted to 115.75.
- Finally, we launched  $\Psi_{S_5,5}^{\leq 9}$ , and a feasible solution was found after 69 seconds. We activated the 9 couplings to get  $S_6$ . ACNV was lifted to 116.

We present  $S_6$  in Figure 2.6 in a hexadecimal format.

The overall nonlinearity of  $S_6$  is 92.

Significant efforts were made to reach higher ACNV - reaching higher ACNV would reveal a balanced Boolean function having a nonlinearity of 118. Unfortunately, all instances  $\Psi_{S_6,y}^x$ , for  $\forall x, y : x \le 21, y \in [1,8]$ , were proofed infeasible. We want to emphasize that the search routine is highly efficient. For example,  $\Psi_{S_6,y}^{17}$ , for some y, was proved infeasible for 1065 seconds or approximately 18 minutes. Since the given search space size is equal

|    | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0a | 0b | 0c | 0d | 0e | Of |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 00 | a9 | 7b | 99 | 49 | 0a | 45 | b3 | c1 | a3 | 5a | 24 | 26 | bf | 72 | b6 | 05 |
| 10 | 4a | 73 | e2 | f1 | 2a | d1 | 25 | 92 | 64 | f3 | f5 | d7 | ff | dc | cb | 4e |
| 20 | de | 7a | 22 | 98 | f9 | 87 | b1 | a5 | 28 | 9a | b0 | 55 | 16 | 67 | 61 | 0c |
| 30 | 27 | 33 | 53 | 2d | с7 | 58 | 7e | f6 | 37 | 71 | 1e | 10 | d0 | e0 | b7 | c9 |
| 40 | 9e | 91 | 6e | 20 | d9 | 5b | fb | 13 | 8a | db | ad | a1 | 8c | 39 | a2 | ee |
| 50 | 89 | 4f | 50 | 1a | 07 | 35 | 65 | bd | 9f | 18 | cd | 17 | 41 | be | 2f | 00 |
| 60 | ca | 0d | ae | 3a | 94 | f7 | a8 | 93 | aa | f8 | e9 | e6 | b2 | 54 | 01 | 69 |
| 70 | a7 | 81 | 5c | 86 | 77 | f4 | 29 | d2 | ec | 0e | e4 | 56 | 90 | 2e | 1d | 40 |
| 80 | 4c | 51 | 75 | 11 | Зe | d3 | 3d | 8d | 9c | 6c | 95 | ef | 76 | c4 | 8b | dd |
| 90 | 23 | b4 | ce | 43 | 62 | d6 | 74 | fe | 82 | 02 | 7c | 80 | 32 | 2b | 78 | fc |
| a0 | c0 | 21 | af | e3 | 68 | 6f | e1 | eb | 03 | 38 | 09 | c2 | d4 | ed | bc | 12 |
| b0 | 15 | fa | 5e | bb | c8 | e7 | c6 | 14 | a4 | b9 | 9d | 04 | сс | d8 | 3f | 9b |
| c0 | e5 | 4d | 31 | 63 | 79 | 1c | d5 | fO | 47 | 7f | 0b | 46 | f2 | 2c | 70 | b5 |
| d0 | cf | 8e | 4b | 36 | 1f | da | a6 | 6a | 6b | 42 | 19 | 57 | 5d | 48 | ac | 1b |
| e0 | 44 | Зc | 5f | ea | a0 | 85 | 8f | 30 | ba | ab | 34 | c3 | 59 | 96 | fd | 08 |
| fO | b8 | e8 | 84 | 6d | 66 | 7d | df | 60 | 52 | 83 | 88 | Зb | Of | 97 | c5 | 06 |

Fig. 2.6 An optimized S-box  $S_c(8,8)$  with ACNV of 116.0 using SAT techniques

to  $\binom{128}{17}$ , or approximately 2<sup>69</sup>, this results in checking simultaneously roughly 2<sup>59</sup> distinct cases per second. The results are published in [51].

### Chapter 3

### **On the S-box Reverse Engineering**

#### 3.1 Introduction and motivation

The reasons for obfuscating the design of a given S-box are manifold. For example, the initial S-boxes used in the Data Encryption Standard (DES) [55] were originally modified by NSA. The reasons for applying those modifications were not known. However, in [33], D. Coppersmith announces the motivation behind the S-box modifications. It appears that the agency knew about the existence of differential attacks about 20 years before the academic world. However, they kept that in secrecy. D. Coppersmith further commented on this secrecy decision by saying:

... that was because [differential cryptanalysis] can be a very powerful tool, used against many schemes, and there was concern that such information in the public domain could adversely affect national security.

Another reason for hiding a given S-box design could be related to some hidden structure, the knowledge of which could be exploited to gain a significant advantage in terms of hardware implementation. For example, as discovered in [21], the S-boxes used in the hash function Streebog and the 128-bit block cipher Kuznyechik, standardized by the Russian Federation, are designed with such a hidden structure. A user knowing the not published decomposition could implement the given S-box with a significantly smaller hardware footprint, allowing him to reach an up to 8 times faster S-box look-up.

Another practical reason for hiding the design of a given S-box could be related to an encapsulated trapdoor as discussed in [128]. Although the aforementioned trapdoor can be easily detected, as shown in [151], the motivation for finding other trapdoor S-box techniques should not be underestimated.

There are various tools and techniques, which could help us to initiate some S-box reverse engineering (see [119][20][120]). In the next section, the concept of S-box spectrography is presented. A good example of using spectrography for S-box reverse engineering purposes is the Pollock representation (see [21]).

### 3.2 S-box spectrography

We can isolate the coordinates, in terms of row and column indexes, of those elements of the LAT of a given S-box S(n,m), which are equal to some fixed value or, in the more unrestricted case, belong to some set of values of our choice. We define each distinct isolation as a **spectra channel**. For convenience, we denote as  $\S_S^E$  the spectra channel isolated from an S-box *S*, by using restriction set *E*. We can further visualize the channel as a  $(2^n \times 2^m)$  matrix plot – those elements, which belong to the restriction set are colored in red, while the remaining elements are left colorless.

In Figures 3.1a and 3.1b two spectra channels of the popular Rijndael S-box [39] are presented. Since its dimensions, i.e. (8,8), the LAT table has  $2^8$  rows and  $2^8$  columns, or a total of  $2^{16}$  elements. For example, in Figure 3.1a only the elements from the corresponding S-box LAT equal to -12 or 12 are colored, while in Figure 3.1b the restriction set *E* is equivalent to  $\{-2,2\}$ .

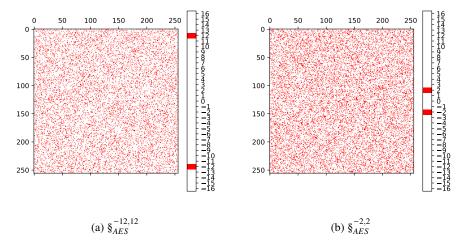


Fig. 3.1 Some spectra channels of Rijndael S-box

During our experiments, we repeatedly generated random bijective (8,8) S-boxes and thoroughly analyzed their spectra channels. However, we didn't find any anomalies, symme-

tries, or visual patterns. It is really difficult to distinguish visually their spectra channel plots from plots populated with randomly scattered points.

In [132] a rich database of popular S-boxes is published. The rest of this section presents our results in applying spectra channel analysis on the aforementioned S-box collection. Anubis is a block cipher, which was submitted to the NESSIE project [127]. The Anubis S-box is constructed by using involutions. It appears that such constructions are easily detected by using some spectra channel plot of the form  $\$^{-x,x}$ . Indeed, as shown in Figure 3.2a, by applying the restriction  $\{-10, 10\}$  the plot is symmetric with respect to the main diagonal.

CLEFIA is a 128-bit block cipher supporting key lengths of 128, 192 and 256 bits [137]. The two S-boxes used by CLEFIA employ two different types of (8,8) S-boxes: the first  $S_0$  is based on four 4-bit random S-boxes, while the second  $S_1$  is based on the inverse function over  $GF(2^8)$ . To achieve better hardware implementation,  $S_0$  is designed by using a combination of 4 smaller linked S-boxes. We analyzed  $S_0$  to find anomalies in  $\S^0_{Clefias_0}$  plot (see Figure 3.2b). There are respectively vertical and horizontal red lines immediately next to the x and y axis, while a complete red square is visible in the upper-left of the matrix plot.

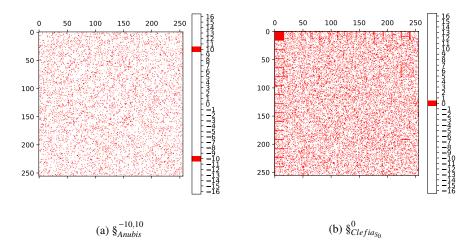


Fig. 3.2 Some spectra channels of Anubis and Clefia S-boxes

The Cellular Message Encryption Algorithm (CMEA) is a US block cipher that was used for securing mobile phone communications [126]. By analyzing the  $\S_{CMEA}^0$  plot we found anomalies immediately next to the y-axis horizontal red lines (see Figure 3.3a). Crypton is a new 128-bit block cipher algorithm proposal for AES. The S-box in the first version ( $S_0$ ) [93] was further revised and replaced by four S-boxes ( $S_1, S_2, S_3$  and  $S_4$ ) [94]. In Figure 3.3b the anomalies found in  $S_0$  are depicted, which are clearly visible by restriction {-8,8}.

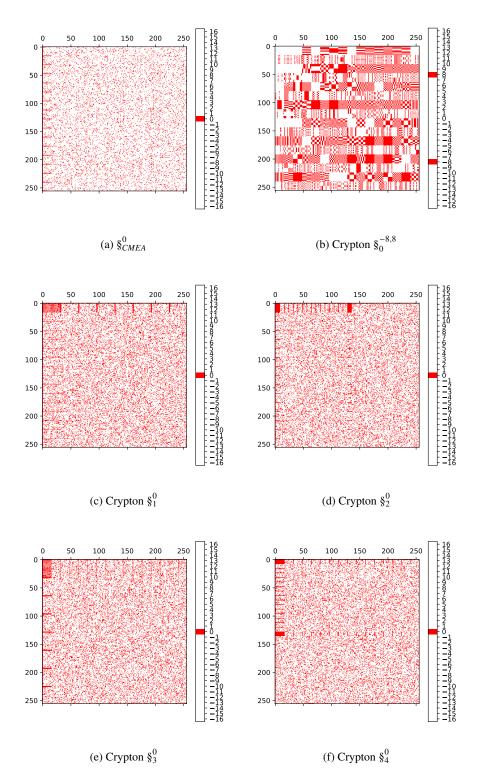


Fig. 3.3 Some spectra channels of CMEA and Crypton S-boxes

All revised Crypton S-boxes possess anomalies in their spectra channel plots. As shown in Figures from 3.3c to 3.3f, the plots are populated with horizontal and vertical lines by the restriction  $\{0\}$ .

Another NESSIE project block cipher submission is the CS-cipher [144]. By using spectra channel  $\S_{CS}^0$  a picturesque plot was discovered (see Figure 3.4a).

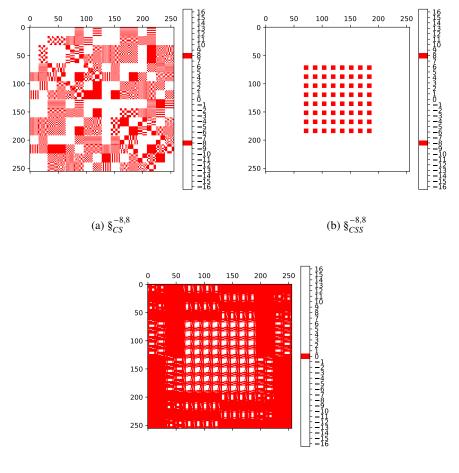




Fig. 3.4 Some spectra channels for CS and CSS S-boxes

The content scrambling system (CSS) [13] is used to encode DVDs. We analyzed the S-box implemented and the results are given in Figures 3.4b and 3.4c.

We further analyzed the S-boxes published in Enocoro [148], Fantomas [69], FLY [83], Fox [82] and Iceberg [143]. Enocoro anomalies are clearly visible in spectra channel with restriction  $E = \{0\}$  (see Figure 3.5a). White rectangular covering the lower values on x-axis of Fantomas is detected on spectra channel  $\S_{Fantomas}^{-4,4}$  (see Figure 3.5b), while smaller

almost perfect rectangulars are visible on the x-axis of FLY spectra channel  $\$_{FLY}^{-8,8}$  (see 3.5c). Analyzing Fox by applying spectra channel  $\$_{Fox}^{-4,4}$  reveals a grid-alike structure (see 3.5d). The Iceberg S-box is involution (see 3.6a).

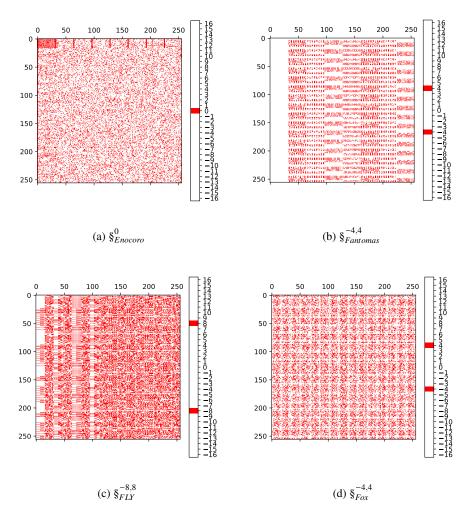


Fig. 3.5 Some spectra channels for Enocoro, Fantomas, FLY and Fox S-boxes

Anomalies are found in Iraqi [150], iScream [70], Khazad [10], Lilliput [3] and Picaro [123]. In Figure 3.6b the spectra channel for  $\$_{Iraqi}^{-1,1}$  is given. It is distinguishable from pseudo-randomly generated S-box by the striped-alike structure. Furthermore, we can deduce from  $\$_{Iraqi}^{-1,1}$  that the Iraqi S-box is not bijective. Fractal-alike structure is revealed in plot  $\$_{iScream}^{-4,4}$  (see Figure 3.6c), while involution is observed in  $\$_{Khazad}^{0}$  (see Figure 3.6d). Analyzing the Lilliput S-box a Tetris-alike structure is revealed on spectra channel  $\$_{Lilliput}^{-4,4}$  (see Figure 3.6e), while fence-alike structure is clearly visible in Picaro S-box on spectra channel  $\$_{Picaro}^{-8,8}$  (see Figure 3.6f).

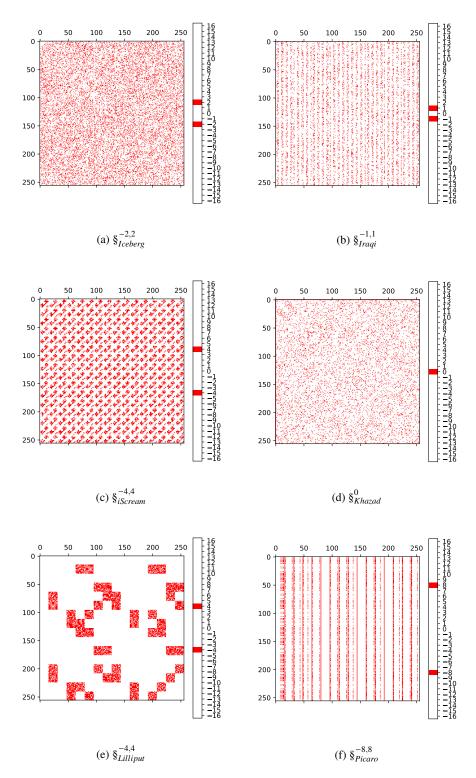


Fig. 3.6 Some spectra channels for Iceberg, Iraqi, iScream, Khazad, Lilliput and Picaro S-boxes

By applying the same method we were able to detect anomalies in Safer [102], Scream [30], SKINNY [5], SNOW 3G [117] and Twofish [134]. In Figure 3.7a the spectra channel  $\$_{Safer}^{0}$  is plotted, while in Figure 3.7b  $\$_{Scream}^{-4,4}$  a very curious pattern in Scream S-box is revealed.  $\$_{SKINNY}^{-4,4}$  is heavily partitioned (see 3.7c), while  $\$_{SNOW3G}^{-2,2}$  is completely blank (see Figure 3.7d), which, for example, is completely unusual for a pseudo-randomly generated S-box. In Twofish, two S-boxes  $\pi_0$  and  $\pi_1$  are used. Both of them are very similar in terms of their spectra channels (see Figures 3.8a and 3.8b). Furthermore, they are distinguishable from pseudo-randomly generated S-boxes as well (lines on the y-axis are visible).

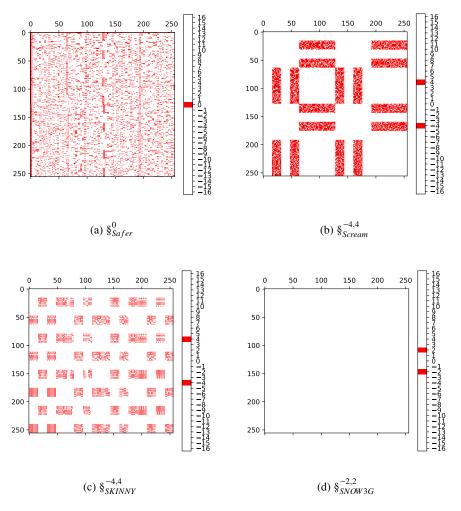


Fig. 3.7 Some spectra channels for Safer, Scream, SKINNY and SNOW3G S-boxes

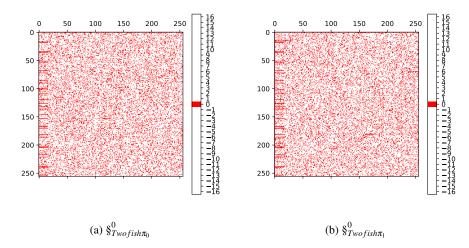


Fig. 3.8 Some spectra channels for Twofish S-boxes

Finally, we analyzed the S-boxes used in Whirlpool [12], Zorro [58] and ZUC [152] by using spectra channels  $\S_{Whirlpool}^{0}$  (see Figure 3.9a),  $\S_{Zorro}^{-2,2}$  (see Figure 3.9b) and  $\S_{ZUCS_{0}}^{-8,8}$  (see Figure 3.9c).

### 3.3 Automatic spectral analysis of S-box LAT, DDT, XORT, ACT spectras

We could automate the process of anomaly discovery in a given S-box S LAT spectra. Moreover, it could be easily generalized for other spectras of S like the DDT, ACT, and XORT.

 $S_{LAT}$  has  $2^n$  columns. We denote as  $S_{LAT}^T[i]$  the *i*-th column of  $S_{LAT}$ . We further denote as  $\sigma(S, i, e)$  the total number of occurrences of *e* and -e in  $S_{LAT}^T[i]$ , while  $\sigma_{ind}(S, e)$  denotes the set of indexes of columns of  $S_{LAT}$ , s.t:

$$\forall_{i_1 \neq i_2, i_1, i_2 \in \sigma_{ind}(S, e)} : \sigma(S, i_1, e) \equiv \sigma(S, i_2, e).$$

For some reasonable threshold value *t* and two different values  $e_1$  and  $e_2$ , in respect of pseudo-randomly generated S-box,  $\sigma_{ind}(S, e_1) \equiv \sigma_{ind}(S, e_2)$ , where  $\sigma(S, i, e_1) \ge t$  and  $\sigma(S, i, e_2) \ge t$ , is highly unlikely. During our experiments, we generated more than 10<sup>5</sup> pseudo-random S-boxes. Only in 0.3% of all generated S-boxes a collision was found and always with length 8. Let's denote such collision as  $\Gamma(S, t, e_1, e_2, I)$ , where *I* is a set of indexes of columns of  $S_{LAT}$ . In Table A.2 (in the Appendix) we give the collisions found

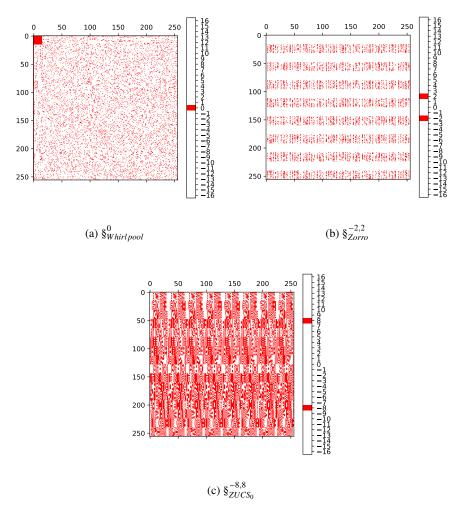
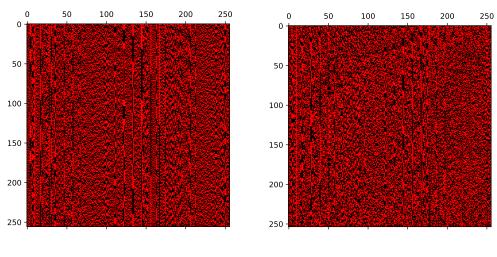


Fig. 3.9 Some spectra channels for Whirlpool, Zorro and ZUC S<sub>0</sub> S-boxes

in some S-boxes. We have found a collision in the Russian Federation's standardization agency Kuznyechik S-box [68], which was not visible during our spectra channel analysis. The indexes of the collision confirm the observations made in [21]. We can apply the same strategy on LAT rows (instead of columns). In Table A.3 the collisions found in the state standard of Republic of Belarus (BeIT) [131] are given. We further analyzed various S-box DDT spectra. The collisions found are given in Table A.4. We have found a collision in  $\pi_3$  S-box of the new encryption standard of Ukraine Kalyna [116]. By applying the same method to the transformed DDT, more collisions are found in Kalyna and BeIT (see Table A.5). We searched for collisions in S-boxes ACT spectra. In Table A.6 the found collisions are given.

We further analyzed the XORT of various S-boxes. A visual interpretation of some XORT relies on the order in which the columns of XORT are populated. In the original definition, the columns are populated in lexicographical order. However, we can tweak that order and populate the XORT by first plotting the *n* coordinates of a given S-box S(n,n), then all linear combinations of *S* coordinates with two terms, three terms, and so on, until the last column, which is the XOR of all *n* coordinates. Such rearrangement makes sense since we group the XORs of the main building blocks of the S-box (the coordinates) into the most significant columns of XORT (the left ones). For example, In Figures 3.10a and 3.10b we give the respectively XORT and rearranged XORT plot of BeIT S-box. The lexicographically sorted XOR reveals some vertical lines, which is not unusual for XOR tables of pseudo-randomly generated S-boxes. However, the rearranged XORT reveals some interesting leafs-alike patterns in the upper left section. Furthermore, each consequent column is similar to the previous column when upward-slide.



(a) BelT XORT plot(b) BelT rearranged XORT plotFig. 3.10 Some XORT spectra channels for BelT S-box

## Chapter 4

# **Binary Sequences and Their Autocorrelation**

Sequences with low autocorrelation functions are necessary for a variety of signal and information-processing applications. For example, in pulse codes-based compression for radars and sonars, such sequences are used to obtain high resolution. The shifts of sequences with low autocorrelation can be also used for better synchronization purposes or to identify users in multi-user systems. Due to their big practical importance, these sequences have been widely studied and various methods for constructing sequences with small values of autocorrelation are developed.

Let  $B = (b_0, b_1, \dots, b_{n-1})$  be a binary sequence of length n > 1, where  $b_i \in \{-1, 1\}, 0 \le i \le n-1$ . The **aperiodic autocorrelation function** (AACF) of *B* is given by

$$C_u(B) = \sum_{j=0}^{n-u-1} b_j b_{j+u}, \text{ for } u \in \{0, 1, \dots, n-1\}.$$

We will note that the AACF is originally defined in the interval

$$\{-n+1, -n+2, \cdots, -2, -1, 0, 1, 2, \cdots, n-1\}$$

As the AACF is an even function with  $C_u(B) = -C_u(B)$ , we will consider it for the interval  $\{0, 1, \dots, n-1\}$  only. The  $C_0(B)$  is called **mainlobe** and the rest  $C_u(B)$  for  $u \in \{1, \dots, n-1\}$  are called **sidelobe** levels. We define the **peak sidelobe level (PSL)** [146] of *B* as

$$PSL(B) = \max_{0 < u < n} |C_u(B)|.$$

The value of the PSL can also be represented in decibels

$$PSL_{db}(B) = 20\log\left(\frac{PSL(B)}{n}\right)$$

Another important measure of an AACF is the **merit factor** (MF), which gives the ratio of the energy of the mainlobe level to the energy of sidelobe levels, i.e.

$$MF(B) = \frac{C_0(B)}{2\sum_{u=1}^{n-1} |C_u(B)|^2}.$$

The binary sequences of low autocorrelation are of special interest and some of the well known such sequences are the Barker codes [9], M-sequences [67], Gold codes [66], Kasami codes [84], Weil sequences [130], Legendre sets [124] and others (see [92][139]). Barker sequences are known to have the best autocorrelation properties, but the longest such sequence is of length 13. M-sequences, Gold codes, and Kasami sequences have ideal periodic autocorrelation functions but have no constraints on the sidelobes of their aperiodic autocorrelation functions. As summarized in [111], during the years a variety of analytical constructions and computer search methods are developed to construct binary sequences with relatively minimal PSL. By an exhaustive search the minimum values of the PSL for  $n \le 40[96]$ ,  $n \le 48[8]$ , n = 64[35],  $n \le 68[88]$ ,  $n \le 74[90]$ ,  $n \le 80$  [91],  $n \le 82$  [89] and  $n \le 84$  [87] are obtained. The best currently known values for PSL for  $85 \le n \le 105$  are published in [112], and for  $n \ge 106$  in [54].

### 4.1 Efficient Generation of Low Autocorrelation Binary Sequences

In this section an efficient and easy-to-implement heuristic algorithm is suggested and, as an illustration of its effectiveness, it was further utilized for the generation of binary sequences with lengths between 106 and 300. The generated sequences are better, in terms of PSL values than a significant part of those obtained in [54] ones. The algorithm can also be used for the generation of sequences with lengths greater than 300.

Since our goal is to lower the PSL of a given binary sequence, i.e. to lower the value of PSL(B), it makes sense to simultaneously lower the values of each  $C_u(B)$ , for  $u \in$ 

 $\{1, \dots, n-1\}$ . By making this observation, we define the following fitness function:

$$F(B) = \sum_{u=1}^{n-1} |C_u(B)|^P = \sum_{u=1}^{n-1} \left( |\sum_{j=0}^{n-u-1} b_j b_{j+u}| \right)^P,$$

where *P* is the magnitude of the fitness function, i.e. the higher the magnitude is the higher the fitness function intolerance to large absolute values of  $C_u(B)$ 's will be. We made experiments with various values of *P* and the best results were obtained for values in the interval [3,5]. Lower values of *P* make the fitness function too tolerant to higher absolute values of the PSLs  $C_u(B)$ , while higher values of *P* are heavily populating the heuristic topology with local minimums. We have fixed the magnitude P of the fitness function to 4.

Let's denote the *i*-th position of a binary sequence *B* of length *n* as  $b_i$ . Flipping the *i*-th position of *B* is to interchange  $b_i$  with  $-b_i$ . By the neighborhood of the binary sequence *B*, denoted by N(B), we define the set of all binary sequences constructed from *B* by making a single flip in *B*.

The optimization process takes as input the length of the binary sequence *n*, the fitness function *F*, the threshold value *t*, the two integers  $h_{min}$  and  $h_{max}$  defining the flipping allowance interval, and the goal *G* which is the desired final PSL value to be reached.

In the beginning, we generate a random binary sequence *B* of length *n*. Then, by searching the neighborhood of *B*, we look for a better binary sequence, i.e. a binary sequence with a smaller fitness value. If some *X* out of the neighborhood no better binary sequence is found, we are stuck in some local minimum B'. In order to escape the local minimum we flip *h* randomly chosen elements of B', where  $h \in [h_{min}, h_{max}]$ . We will call such try a **quake**. In the case when *t* consecutive quakes are not sufficient to escape the local minimum, we start the process from the beginning by randomly generating a new binary sequence, i.e. the shotgun hill-climbing approach. The algorithm stops when a binary sequence with the searched value of the PSL is found or when the preliminary defined number of restarts is reached. The pseudo-code of the shotgun hill climbing (SHC) algorithm is given in Algorithm 2.

Algorithm 2 Shotgun Hill Climbing algorithm for PSL optimization

```
1: procedure HC(n, F, t, h_{min}, h_{max}, G)
      BinSeq \leftarrow R(n)
                                                      \triangleright random binary sequence BinSeq with length n
 2:
      thresholdLeft \leftarrow t; bestFit \leftarrow F(BinSeq)
 3:
      globFit \leftarrow bestFit; BinSeqCopy \leftarrow BinSeq
 4:
 5:
      repeat
       NB \leftarrow N(BinSeq)
                                                                              \triangleright generation of all neighbors
 6:
 7:
       FLAG \leftarrow True
        for X \in NB do
 8:
         if PSL(X)==G then Output X and Quit
 9:
10:
         end if
         if F(X) < bestFit then
                                                                               \triangleright a better candidate is found
11:
           bestFit \leftarrow F(X)
12:
13:
           BinSeq \leftarrow X
           FLAG \leftarrow False
14:
         end if
15:
        end for
16:
        if FLAG then
17:
         if bestFit < globFit then
18:
                                                                               \triangleright a better candidate is found
           globFit \leftarrow bestFit; BinSeqCopy \leftarrow BinSeq
19:
           thresholdLeft \leftarrow t
20:
21:
         else
                                                                       \triangleright a better candidate was not found
22:
           thresholdLeft \leftarrow thresholdLeft - 1
           if thresholdLeft > 0 then
23:
            BinSeq \leftarrow BinSeqCopy
24:
            h \leftarrow \text{RI}(h_{min}, h_{max})
                                                                     \triangleright h is random integer \in [h_{min}, h_{max}]
25:
                                                                             \triangleright flip h random bits in BinSeq
26:
             FLIP(BinSeq, h)
            bestFit \leftarrow F(BinSeq)
27:
           else
                                                                                  \triangleright the threshold is reached
28:
            BinSeq \leftarrow R(n)
29:
            thresholdLeft \leftarrow t
30:
            bestFit \leftarrow F(BinSeq)
31:
            globFit \leftarrow bestFit
32:
             BinSeqCopy \leftarrow BinSeq
33:
34:
           end if
         end if
35:
        end if
36:
                                                                                      \triangleright reaching 10<sup>5</sup> restarts
      until STOP condition reached
37:
38: end procedure
```

The fitness function is the critical resource demanding routine of the algorithm. However, its complexity is comparable to the complexity of the binary sequence PSL calculation itself. The additional negligible overheat is caused by the calculation of the sum of all the *P*-powered mainlobes.

The parameter  $h_{min}$  should be tolerant to possible optimizations involving any small number of flips. Having this in mind and without any restrictions, we choose  $h_{min} = 1$ . On the other hand, fixing a value of the parameter  $h_{max}$  is a trade-off between accuracy and flexibility - smaller values of  $h_{max}$  will decrease the algorithm's chances to escape from a given local minimum, while higher values of  $h_{max}$  will greatly defocus the climbing routines (for example, hopping from hill A to another hill B, before reaching the local minimum of A). During our experiments, we have fixed the value of  $h_{max}$  as  $\lceil \sqrt{n} \rceil$ , where *n* is the length of the starting binary sequence.

Another important parameter is the threshold value t. Choosing a small value of t allows us to restart the process of searching a binary sequence with a low PSL value and, instead of losing more time in trying to escape the current local minimum we have stuck at, we reinitialize the searching procedure by starting from the beginning.

We have tried different meta-heuristic strategies like, for example, the simulated annealing method and tabu search. However, it appears that regularly reinitializing the current state of the algorithm, i.e. the core concept of the shotgun hill-climbing method is a more productive strategy to utilize than the aforementioned ones. The initial state does matter and by having a low value of *t* we increase our chances to reinitialize the algorithm from a highly-competitive candidate. During our experiments, we used a threshold of  $t = 10^3$ .

We present in Table B.1 the obtained by Algorithm 2 results for binary sequences of lengths from 106 to 300. The second column contains the best-known by us value of the PSL for the corresponding length. In the third column, we present the best value of the PSL obtained by the Algorithm 2 and in the fourth the corresponding sequence with this value of the PSL. The sequences are given in a hexadecimal format where -1's are replaced by zeros and the leading -1's are omitted. For example, the binary sequence of length 11 B = (-1, -1, 1, 1, -1, 1, 1, 1, 1) is given by 1*b*7. The decoding procedure requires the length of the binary sequence. The corresponding values of the PSL in decibels and of the merit factor are calculated and given in the fifth and sixth columns respectively.

We improve the PSL values for 95 from the included 195 lengths. The remaining 100 binary sequences have the same values of the PSL as the currently known best ones. Furthermore, all of them are unique and unpublished before. The obtained in this thesis results and the best previously known ones are plotted in Fig. 4.1.

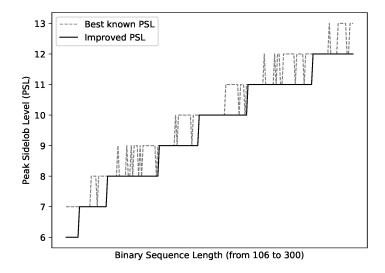


Fig. 4.1 An overview of the shotgun hill climbing algorithm results

The suggested in this section algorithm is highly parallelizable so that a multicore architecture can be fully utilized. It is implemented in Python on a single mid-range computer with an octa-core CPU. During our experiments, the time required to reach a given PSL goal was between a few minutes to several hours. Furthermore, with each instance of the algorithm, we repeatedly reached binary sequences with lower or the same PSL than the state-of-the-art algorithms. The results are published in [48].

### 4.2 On the Generation of Long Binary Sequences with Record-Breaking PSL Values

M-sequences, Gold codes, and Kasami sequences have ideal periodic autocorrelation functions but have no constraints on the sidelobes of their aperiodic autocorrelation functions, i.e. their PSL value is not pre-determined. The same is true for Legendre sets and Rudin-Shapiro sequences. Furthermore, it is difficult to calculate the growth of the PSL of the aforementioned families of binary sequences. It is conjectured that the PSL values of *m*-sequences grow like  $O(\sqrt{n})$ , making them one of the best methods to straightforwardly construct a binary sequence with near-optimal PSL value. However, as stated in [81]: The claim that the PSL of m-sequences grows like  $\mathcal{O}(\sqrt{n})$ , which appears frequently in the radar literature, is concluded to be unproven and not currently supported by data.

As summarized in [111], during the years a variety of analytical constructions and computer search methods are developed to construct binary sequences with relatively minimal PSL. It appears that the current state of art computer search methods, like CAN [73], ITROX [140], MWISL-Diag, MM-PSL [141] or DPM [86], could yield better, or at least not worse PSL values, than the algebraic constructions. However, when the length of the generated by a given heuristic algorithm binary sequences rises, so is the overall time and memory complexity of the routine. As concluded in [109]:

As an indication of the runtime complexity of our  $EA^1$ , the computing time is 58009 s or 16.1136 h for L=1019. For lengths up to 4096, the computing time required empirically shows a seemingly quadratic growth with L.

Thus, the main motivation of this section is to create an efficient and lightweight algorithm, in terms of time and memory complexity, to address the heuristic generation of very long binary sequences with near-optimal PSL values.

Let us denote  $C_{n-i-1}(B)$  by  $\hat{C}_i(B)$ . Since this is just a rearrangement of the sidelobes of *B*, it follows that:

$$B_{PSL} = \max_{0 < u < n} |C_u(B)| = \max_{0 \le u < n-1} |\hat{C}_u(B)|.$$

We will graphically represent the calculation of values of  $\hat{C}_i(B)$  for a binary sequence of length 8 in Figure 4.2. The *x*-axis indexes represent the elements of  $B = (b_0, b_1, \dots, b_7)$ , while the *y* axes represents the elements of *B* in reverse order, i.e.  $(b_7, b_6, \dots, b_0)$ . Each cell of the graphics corresponds to the product provided by the *x* and *y*-axis values. To calculate  $\hat{C}_i(B) = \sum_{j=0}^i b_j b_{j+n-i-1}$  for some *i* ( $0 \le i \le 7$ ), we start from the cell with coordinates  $(b_i, b_7)$ . Then, by decreasing both indexes of the current cell by 1 we jump to the next cell  $(b_{i-1}, b_6)$  which will be added to the sum. We continue this process until we reach the cell  $(b_0, b_{7-i})$ .

As the value of the mainlobe  $\hat{C}_7(B)$  is always 8, we can exclude it from the PSL calculation. Having this in mind, we can define the PSL of the binary sequence *B* as the diagonal in Figure 4.2 with the highest absolute sum of its elements compared to all other diagonals, excluding the main one.

Let us denote by  $\overline{b_i}$  the flipped bit  $b_i$ , i.e.  $\overline{b_i} = -b_i$  and by  $\hat{C}_i(B_j)$  the sidelobe of the binary sequence  $B_j$ , obtained from *B* by flipping the bit on position *j*.

<sup>&</sup>lt;sup>1</sup>EA stands for Evolutionary Algorithm

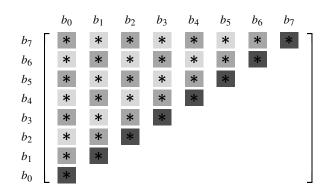


Fig. 4.2 A visual interpretation of the sidelobe calculation process, for a binary sequence with length 8

We can further exploit the relations between the value of the sidelobe  $\hat{C}_i(\Psi)$  of a given binary sequence  $\Psi$  with length *n*, and the value of the sidelobe  $\hat{C}_i(\Psi_f)$ , s.t. the binary sequence  $\Psi_f$  is equal to the binary sequence  $\Psi$  with the bit on position *f* flipped. We denote as  $\Omega_{\Psi}$  the array of all the consequent sidelobes of  $\Psi$ , i.e:

$$\Omega_{\Psi} = \left[\hat{C}_0(\Psi), \hat{C}_1(\Psi), \cdots, \hat{C}_{n-2}(\Psi)\right]$$

We denote as  $\Omega_{\Psi_f}$  the array of all the consequent sidelobes of  $\Psi_f$ , i.e.

$$\Omega_{\Psi_f} = \left[\hat{C}_0(\Psi_f), \hat{C}_1(\Psi_f), \cdots, \hat{C}_{n-2}(\Psi_f)\right]$$

For convenience, we further denote the *i*-th element of a given array A as A[i]. For example,  $\Omega_{\Psi}[3] = \hat{C}_2(\Psi)$ .

The calculation of  $\Omega_{\Psi}$ , corresponding to some random binary sequence  $\Psi$ , is not linear. The time complexity of the trivial computational approach is  $\mathcal{O}(n^2)$  (two nested **for** cycles). However, as shown in Wiener–Khinchin–Einstein theorem [149], the autocorrelation function of a wide-sense-stationary random process has a spectral decomposition given by the power spectrum of that process, we can use one regular and one inverse Fast Fourier Transform (FFT), to achieve a faster way of calculating  $\Omega_{\Psi}$ . Despite its time complexity of  $\mathcal{O}(n \log n)$ , its memory requirement is significantly higher than the trivial computational approach.

By exploiting the observations made in this section, we present an algorithm that can calculate the array  $\Omega_{\Psi_f}$ , if we hold the array  $\Omega_{\Psi}$  in memory, with time and memory complexity of  $\mathcal{O}(n)$ . The pseudo-code of the algorithm is given in Algorithm 3. The following notations are used:

•  $\min_{(x,y)}$ : returns x, if  $x \le y$ ; otherwise, returns y.

- $\max_{(x,y)}$  : returns x, if  $x \ge y$ ; otherwise, returns y.
- x = y: same as x = x y
- x \*= y: same as x = x \* y

Algorithm 3 An algorithm for an in-memory flip inside a binary sequence

| 1:  | <b>procedure</b> $FLIP(f, \Psi, \Omega_{\Psi}, n)$                       |
|-----|--------------------------------------------------------------------------|
| 2:  | $\delta_{min} \leftarrow \min_{(n-f-1,f)}$                               |
| 3:  | $\delta_{max} \leftarrow \max_{(n-f,f)}$                                 |
| 4:  | if $f \leq \frac{n-1}{2}$ then                                           |
| 5:  | for $q \in [0, \delta_{max} - \delta_{min} - 1)$ do                      |
| 6:  | $\Omega_{\Psi}[\delta_{min} + q] = 2\Psi[f]\Psi[n - q - 1]$              |
| 7:  | end for                                                                  |
| 8:  | else                                                                     |
| 9:  | for $q \in [0, \delta_{max} - \delta_{min})$ do                          |
| 10: | $\Omega_{\Psi}[\delta_{min} + q] = 2\Psi[f]\Psi[q]$                      |
| 11: | end for                                                                  |
|     | end if                                                                   |
| 13: | if $f \leq \frac{n-1}{2}$ then                                           |
| 14: | for $q \in [0, n - \delta_{max})$ do                                     |
| 15: | $\Omega_{\Psi}[\delta_{max} + q - 1] = 2\Psi[f](\Psi[2f - q] + \Psi[q])$ |
| 16: | end for                                                                  |
| 17: | else                                                                     |
| 18: | for $q \in [0, n - \delta_{max} - 1)$ do                                 |
| 19: | $\Omega_{\Psi}[\delta_{max} + q] =$                                      |
| 20: | $2\Psi[f](\Psi[\delta_{max} - \delta_{min} + q] + \Psi[n - q - 1])$      |
| 21: | end for                                                                  |
|     | end if                                                                   |
| 23: | $\Psi[f] *= -1$                                                          |
| 24: | end procedure                                                            |

The procedure introduced in Algorithm 3 performs an in-place memory update of  $\Omega_{\Psi}$  when a single bit on position f of  $\Psi$  is flipped. Therefore, when the procedure ends, both  $\Psi$  and  $\Omega$  are transformed to  $\Psi_f$  and  $\Omega_{\Psi_f}$ . We will note that the procedure is reversible, i.e. if an in-place memory update of  $\Omega_{\Psi_f}$  is made, when a single bit on position f of  $\Psi_f$  is flipped, both  $\Psi_f$  and  $\Omega_{\Psi_f}$  are transformed back to  $\Psi$  and  $\Omega_{\Psi}$ .

The basic ingredients of some heuristic algorithms could be summarized as:

- A: metaheuristic algorithm, like hill climbing, simulated annealing, tabu search, etc.
- $\mathcal{I}$ : search operator, which is used to generate the candidates

#### • $\mathcal{F}$ : fitness function, which is used to compare the candidates

In the previous section, we have used the shotgun hill-climbing as A, a neighborhood search as  $\mathcal{I}$ , and the following fitness function as  $\mathcal{F}$ :

$$F(B) = \sum_{u=1}^{n-1} |C_u(B)|^4 = \sum_{u=1}^{n-1} \left( |\sum_{j=0}^{n-u-1} b_j b_{j+u}| \right)^4,$$

where B is a binary sequence with length n. However, using shotgun hill-climbing metaheuristic algorithm for finding very long binary sequences with low PSL is not time efficient because the number of hops required to reach some local optimum grows exponentially when the length of the binary sequence increases.

Using a neighborhood search to consequently pick the best candidate among all neighbors could be beneficial in finding LBS with low PSL. However, in the aspect of very long binary sequences, this search strategy is extremely slow. For example, in the case of a binary sequence with length  $2^{16}$ , and  $\mathcal{I}$  equivalent to a single flip, in each optimization step we need to fitness all the  $2^{16}$  neighbors of the current state *S* and to pick the one with the best score yielded by  $\mathcal{F}$ . This observation is still true, even if all the neighbors of *S* have better scores.

To overcome the disadvantages mentioned above, we choose the following strategy:

- *A*: stochastic hill climbing metaheuristic algorithm. We visit a random neighbor of the current state *S* and accept it if it is a better candidate than *S*. Otherwise, we pick another neighbor of *S* and repeat the process.
- *I*: we choose a single flip as the search operator, so we can exploit the memory and time efficiency of Algorithm 3.
- $\mathcal{F}$ : since  $\hat{C}(B)$ s are rearrangements of the sidelobes of *B*, we can use the same fitness function F(B) as in [48], i.e.

$$F(B) = \sum_{u=0}^{n-2} |\hat{C}_u(B)|^4 = \sum_{u=0}^{n-2} \hat{C}_u(B)^4$$

We need to further address the strategy described in  $\mathcal{A}$  of picking the next candidate, or neighbor, of *S*. Let us consider an approach of consistently probing *x* pseudo-randomly chosen neighbors. In case a better candidate is found, we accept it; otherwise, we try again, until we have accumulated a total number of *t* consequent fails. Then, we announce that we have reached a local optimum. This model can be described by the Bernoulli distribution.

The probability to achieve exactly r successes in N trials is equal to:

$$P(X=r) = \binom{N}{r} p^{r} q^{N-r},$$

where *p* and *q* are the probabilities of success and failure respectively, i.e. q = 1 - p. We can easily calculate P(X = 0):

$$P(X=0) = \binom{N}{0} p^0 q^{N-0} = q^N = (1-p)^N$$

We further calculate  $P(X \ge 1)$ :

$$P(X \ge 1) = 1 - P(X = 0) = 1 - (1 - p)^{\Lambda}$$

Thus, relying solely on pseudorandom choices of neighbors is not efficient and there is always a chance to miss the better candidate. We can increase the probability of finding the eventual better candidate, but that significantly overhead the optimization process. Missing a better candidate is undesirable behavior of the optimization process, especially when we are dealing with very long binary sequences.

The number of neighbors of a binary sequence *B* with length *n* is *n*. Let us denote those neighbors as  $i_1, i_2, \dots, i_n$ , where the *j*-th neighbor  $i_j$  is equal to *B* with flipped bit on position *j*. We suggest the following simple search strategy::

- 1. we pick a pseudorandomly generated neighbor  $i_r$
- 2. we consequently try, for all  $x \in [1, n-1]$ , the neighbors  $i_{(r+x) \mod n}$

We want to emphasize the extreme situation when the local optimum is already reached, i.e. k = 0. The suggested search strategy will detect that in exactly *n* steps, which is an optimal scenario. Furthermore and more importantly, we never miss a better candidate, if any, and we keep the non-deterministic nature of the search routine at the same time.

We suggest Algorithm 4 for finding very long binary sequences with low PSL which is based on the above described  $(\mathcal{A}, \mathcal{I}, \mathcal{F})$ . The following notations and functions are used in the pseudo-code:

- $\Psi$  is a random (initial) binary sequence.
- $x, y \leftarrow a, b$  is equivalent to the statements x = a and y = b.
- R(n): a function, which generates a pseudo-random integer number  $\in [0, n)$ .

- $Q(x, B, \Omega_B)$ : a function, which makes x flips at random bit positions in B. We pass  $\Omega_B$  as an argument, so we can use the in-place memory function *Flip*. We apply this function to escape the local minimum when we are stuck in such.
- **beacon**: we further implant a beacon in the cost function *F*, so we can simultaneously calculate the PSL of the given binary sequence. Such an approach adds a negligible overhead, if any, to the cost function routine.

Algorithm 4 An algorithm for long binary sequences PSL optimization

```
1: BestCost, Cost \leftarrow F(\Omega_{\Psi}), 0
 2: isGImpr, isLImpr ← True, False
 3: while true do
     if isGImpr then
 4:
       r \leftarrow R(n)
 5:
 6:
       for i \in [0, n) do
         Flip((r+i)\%n, \Psi, \Omega_{\Psi}, n)
 7:
         \text{Cost} \leftarrow F(\Omega_{\Psi})
                                                                               \triangleright * the beacon is here *
 8:
         if BestCost > Cost then
 9:
10:
          BestCost ← Cost
          isLImpr ← True
11:
          break
12:
13:
         else
          Flip((r+i)\%n,\Psi,\Omega_{\Psi},n)
14:
         end if
15:
       end for
16:
       if isLImpr then
17:
         isGImpr, isLImpr ← True, False
18:
         continue
19:
20:
       else
         isGImpr ← False
21:
       end if
22:
23:
      else
       r \leftarrow R(4)
24:
       Q(1+r, \Psi, \Omega_{\Psi})
25:
       isGImpr, isLImpr ← True, False
26:
      end if
27:
28: end while
```

We emphasize that the complexity of Algorithm 4 mainly depends on the complexity of Algorithm 3, because in each iteration during the optimization process, Algorithm 3 is called twice, in case the new candidate is worse than the current one, and once, if the

new candidate is better. The in-memory flip function applied in Algorithm 3 passes only once through  $\Omega_{\Psi}$  array, without creating any memory overheads, to reach time and memory complexities of  $\mathcal{O}(n)$ . The same observation is true for the simple cost function F - it passes only once through  $\Omega_{\Psi}$  to sum all quadrupled values of its elements. The function Q is a random number of calls of F (between 1 and 4). The remaining part of Algorithm 4 consists of simple automaton, which rule the continuous optimization process. Therefore, both time and memory complexities of Algorithm 4 are  $\mathcal{O}(n)$ .

We have implemented Algorithm 4 by using the C language and a mid-range computer station. Given the linear time and memory complexity of the algorithm, we were able to repeatedly generate binary sequences with record-breaking PSL values for less than a second. As stated in [109], the time required to reach a PSL value 26, for a binary sequence with length 1019, is 58009 seconds or 16.1136 hours. For comparison, by using Algorithm 4, we reach this value for less than a second.

We present the results achieved by Algorithm 4, for binary sequences with lengths  $x^2$  for  $x \in [18, 44]$ , compared with the currently known state of art algorithms found in the literature, like CAN [73], ITROX [140], MWISL-Diag, MM-PSL [141], DPM [86], 1bCAN [95]. We will refer to this collection of algorithms as collection **A**. We want to emphasize, that the differences between the proposed algorithm with algorithms from collection A are manifold. For example, we do not use converging functions, mini regular or quadratic optimization problems, or floating-based arithmetic. Furthermore, the provided algorithm does not suffer from a unique navigation trace through the sequence search space. The experiments were based on 12 instances of each algorithm is restricted to 1 minute. As shown in Figure 4.3, we significantly outperform the best results achieved by state of art algorithms. In fact, for some of the lengths, less than a second was needed to reach a record-breaking PSL.

In contrast to some other state-of-the-art algorithms, the computing complexity of the algorithm presented in this work does not grow quadratically. Maybe this is the reason for the lack of published results for binary sequences of lengths greater than  $2^{12}$ . Nevertheless, the results with which we can further compare are *m*-sequences. However, such sequences exists only for lengths  $2^n - 1$ ,  $n \ge 1$ ,  $n \in N$ .

In Table 4.11 we present the best PSL values of binary m-sequences with length n (with or without rotation), yielded by some primitive polynomial of degree n over GF(2) from [52] denoted by  $\mathbb{M}_n^{\mathbb{F}}$  and the binary sequences generated by Algorithm 4 denoted by  $\mathbb{A}_n$  for lengths  $2^n - 1$  and  $13 \le n \le 17$ . As it can be seen from Table 4.11, our results significantly outperform the best results achieved by *m*-sequences. The results are published in [49].

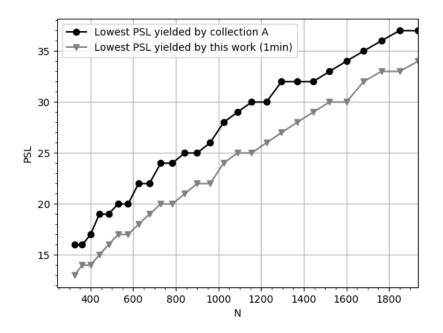


Fig. 4.3 Comparison to other state of the art algorithms known in literature

Table 4.1 Reached PSL values compared to known results from m-sequences exhaustive search

| n  | $2^{n} - 1$ | $\mathbb{M}_n^{\mathbb{F}}$ | $\mathbb{A}_n$ |
|----|-------------|-----------------------------|----------------|
| 13 | 8191        | 85                          | 77             |
| 14 | 16383       | 125                         | 115            |
| 15 | 32767       | 175                         | 171            |
| 16 | 65535       | 258                         | 254            |
| 17 | 131071      | 363                         | 360            |

## 4.3 Hybrid Constructions of Binary Sequences with Low Autocorrelation Sidelobes

An m-sequence  $M = (x_0, x_1, \dots, x_{2^m-2})$  of length  $2^m - 1$  is defined by:

$$x_i = (-1)^{Tr(\beta\alpha^i)}, \text{ for } 0 \le i < 2^m - 1,$$

where  $\alpha$  is a primitive element of the field  $\mathbb{F}_{2^m}$ ,  $\beta \in \mathbb{F}_{2^m}$ , and Tr is denoting the trace function from  $\mathbb{F}_{2^m}$  to  $\mathbb{F}_2$ .

Given an odd prime *p*, a Legendre sequence L with length p is defined by:

$$L_i = \begin{cases} 1, \text{ if } i \text{ is a quadratic residue mod } p \\ -1, \text{ otherwise.} \end{cases}$$

We denote as  $B \leftarrow \rho$  the binary sequence obtained from *B*, by left-rotating it  $\rho$  times. By definition,  $B \leftarrow |B| \equiv B$ . Furthermore, if  $b_i$  is the element of *B* on position *i*, we will denote as  $b_i^{\leftarrow \rho}$  the element of  $B \leftarrow \rho$  on position *i*.

A comparison, in terms of algorithm efficiency (the ratio of the beneficial work performed by the algorithm to the total energy invested) and actual effectiveness (the quality of the achieved results), was made. The best results were achieved by the SHC algorithm, regarding the binary sequences with lengths less than 300, and HC, for all the remaining lengths. However, the approximated binary sequence's length, from which HC starts outperforming SHC, is fuzzy and yet to be determined.

In Table 4.2 a comparison between the most significant components of SHC and HC was made. In summary, both heuristic algorithms are not deterministic, i.e. starting from two identical states rarely results in two identical ending states. The search operator used in both SHC and HC is the single flip operator. Thus, each modification is a simple composition of single flips. One major difference between the two algorithms is their complexity. Indeed, in HC the time complexity of the flip operation is linear, which is a significant advantage compared to the quadratic one to be found in SHC. Another major difference between HC and SHC is the probability of missing (failing to detect) a better binary sequence, which is just 1 flip away from the current position.

As observed in Section 4.2 of the thesis or in our work [49], the PSL-optimization process of very long binary sequences is a time-consuming routine, despite the algorithm's linear time and memory complexities. Thus, HC avoids restarts, i.e. re-initializing the starting state with a pseudo-random binary sequence. However, re-initialization appears to be significantly beneficial when dealing with PSL optimization of binary sequences with relatively small lengths, such as the SHC algorithm.

By considering the observations made above, we have revisited the SHC algorithm:

- The quadratic flip operator was interchanged with the linear flip operator.
- The probing strategy (searching for better candidates) was interchanged with the more efficient probing strategy introduced in HC.

The complete pseudo-code of the kernel of the revisited SHC algorithm is summarized in Algorithm 5. For brevity, the following notations were used:

|                     | SHC      | HC    |
|---------------------|----------|-------|
| Deterministic       | No       | No    |
| Search Operator     | Flip     | Flip  |
| Complexity          | $O(n^2)$ | O(n)  |
| Fitness Function    | $x^4$    | $x^4$ |
| Restarts            | Yes      | No    |
| Missing Probability | > 0      | = 0   |
|                     |          |       |

Table 4.2 A comparison between SHC and HC

- *n* the binary sequence's length
- $\ensuremath{\mathbb{T}}$  the threshold value of the instance
- *F* a fixed fitness function
- $V, V^*$  respectively the current best and the overall best fitness value
- c the counter. The algorithm quits if the counter c reaches the threshold  $\mathbb T$
- $\mathbb{Z}_n^+$  the set of all positive integer numbers strictly less than *n*
- L, G binary variables: L (local) is activated if V is improved, while G (global) is activated if V<sup>\*</sup> is improved
- $\mathbb{B}^n$  the set of all *n*-dimensional binary sequences with elements from  $\{-1,1\}$
- Q the quaking function as defined in Section 4.2. For example, if the input triplet of Q is x, L, SL, the function flips x random bits in L, and at the same time, in-memory updating the sidelobe array SL

Considering the significant changes made in the SHC algorithm, the fitness function parameters are carefully analyzed, re-evaluated, and updated. Given a binary sequence  $\Psi$ , both algorithms (SHC and HC) are sharing the same fitness function *F*, s.t:

$$F(\Psi) = \sum_{x \in \Omega_{\Psi}} |x|^4 = \sum_{x \in \Omega_{\Psi}} x^4$$

During our previous experiments, we reached to the conclusion that interchanging the power 4 with larger or smaller value, is respectively too intolerant or too tolerant to the largest elements in  $\Omega_{\Psi}$ . However, since significant changes to the kernel of SHC were made, this

Algorithm 5 The Shotgun Hill Climbing revisited kernel

```
1: procedure SHC(n, \mathbb{T})
       pick \Psi \in \mathbb{B}^n
  2:
       V^*, V, \mathbb{G}, \mathbb{L}, c \leftarrow F(\Omega_{\Psi}), 0, \text{True, False, } 0
  3:
 4:
        while c < T do
         c += 1
  5:
  6:
          if \mathbb{G} then
           pick r \in \mathbb{Z}_n^+
  7:
            for i \in [0, n) do
  8:
              flip((r+i) \% n, \Psi, \Omega_{\Psi})
  9:
             if V_{\pm}^* > F(\Omega_{\Psi}) then
10:
               V^*, \mathbb{L} \leftarrow F(\Omega_{\Psi}), True
11:
                break
12:
13:
              else
                flip((r+i) \% n, \Psi, \Omega_{\Psi})
14:
              end if
15:
            end for
16:
            if \mathbb{L} then
17:
              \mathbb{G}, \mathbb{L} \leftarrow \text{True}, \text{False}
18:
19:
              continue
20:
            else
              \mathbb{G} \leftarrow \text{False}
21:
            end if
22:
          else
23:
           pick r \in \mathbb{Z}_4^+
24:
            Q(1+r, \Psi, \Omega_{\Psi})
25:
            \mathbb{G}, \mathbb{L} \leftarrow \text{True}, \text{False}
26:
27:
          end if
       end while
28:
29: end procedure
```

observation is to be re-evaluated by a series of experiments. More precisely, given a fixed threshold  $\mathbb{T}$ , and the fitness function  $\sum_{x \in \Omega_{\Psi}} |x|^{\alpha}$ , a comparison between the efficiency of different  $\alpha$  values is measured.

In Table 4.3 the results regarding binary sequences with length 100 are given. Each row of the table corresponds to a different experiment. For a more informative measurement of the overall efficiency of the experiments, another variable  $V^{\nabla}$  was introduced. It measures the median value of all the best values  $V^*$ . More formally, if  $t_i$  denotes the thread *i* of a given experiment  $\mathbb{E}$  with  $\mathbb{R}$  restarts, and if the best results achieved by  $t_i$  is denoted as  $V_i^*$ , then

$$V^{\nabla} = \frac{\sum_{i \in \mathbb{E}} V_i^*}{\mathbb{R}}$$

At first, the numerical experiments suggest  $\alpha = 3$  as a near-optimal value for achieving the best results. Indeed, given a binary sequence with length 100, and  $(\alpha, \mathbb{R}, \mathbb{T}) = (3, 10^2, 10^4)$ , the value of  $V^{\nabla}$  is smaller compared to the other experiments' values. This observation is more clearly visible throughout the experiments with binary sequences having length 256 summarized in Table 4.4 and binary sequences with length 500 (see Table 4.5 and the triplet  $(\alpha, \mathbb{R}, \mathbb{T}) = (3, 10^2, 10^4)$  with  $V^{\nabla} = 11.51$ ). However, this tendency of  $\alpha = 3$  supremacy over integer values of  $\alpha$  is not observable throughout larger values of n. As summarized in Table 4.6, the triplet  $(\alpha, \mathbb{R}, \mathbb{T}) = (4, 10^2, 10^4)$  yields better characteristics than  $(\alpha, \mathbb{R}, \mathbb{T}) = (3, 10^2, 10^4)$ . In fact, the quality of the binary sequences yielded by the triplet  $(\alpha, \mathbb{R}, \mathbb{T}) = (4, 10^2, 10^4)$  with  $V^{\nabla} = 24.98$ . Since the first threshold value  $(10^3)$  is ten times smaller than the second one  $(10^4)$ , and given the negligible difference of the binary sequences' quality (0.17), this correlation is particularly beneficial and could be further exploited to reduce the overall time needed for the binary sequences optimization routines.

During the final two experiments, considering the bigger sizes of the binary sequences, the threshold value is fixed at  $10^3$ . However, the data gathered throughout the previous experiments suggested that if we have a triplet  $(n, \mathbb{R}, \mathbb{T}_1)$  measured with  $V_1^{\nabla}$ , then, given  $\mathbb{T}_1 \ge 10^3$  and some threshold value  $\mathbb{T}_2 >> \mathbb{T}_1$ , such that the triplet  $(n, \mathbb{R}, \mathbb{T}_2)$  is measured with  $V_2^{\nabla}$ , then  $V_2^{\nabla} < V_1^{\nabla}$ .

In Tables 4.7 and 4.8, triplets of the form  $(\alpha, 10^2, 10^3)$  were analyzed, corresponding to binary sequences with respective lengths of 2048 and 4096. It appears that the longer the binary sequence is (n), the larger the aggression of the optimization routine should be  $(\alpha)$ . Indeed, in the case of n = 2048, the best value of  $V^{\nabla} = 36.74$  is calculated by using  $\alpha = 5$ ,

| п   | α | $\mathbb{R}$ | $\mathbb{T}$ | $V^*$ | $V^{\nabla}$ |
|-----|---|--------------|--------------|-------|--------------|
| 100 | 1 | $10^{2}$     | $10^{3}$     | 7     | 7.63         |
| 100 | 1 | $10^{2}$     | $10^{4}$     | 6     | 7.00         |
| 100 | 2 | $10^{2}$     | $10^{3}$     | 6     | 6.95         |
| 100 | 2 | $10^{2}$     | $10^{4}$     | 6     | 6.72         |
| 100 | 3 | $10^{2}$     | $10^{3}$     | 6     | 6.94         |
| 100 | 3 | $10^{2}$     | $10^{4}$     | 6     | 6.70         |
| 100 | 4 | $10^{2}$     | $10^{3}$     | 7     | 7.00         |
| 100 | 4 | $10^{2}$     | $10^{4}$     | 6     | 6.94         |
| 100 | 5 | $10^{2}$     | $10^{3}$     | 7     | 7.00         |
| 100 | 5 | $10^{2}$     | $10^{4}$     | 6     | 6.95         |
| 100 | 6 | $10^{2}$     | $10^{3}$     | 7     | 7.10         |
| 100 | 6 | $10^{2}$     | $10^{4}$     | 7     | 7.00         |
| 100 | 7 | $10^{2}$     | $10^{3}$     | 7     | 7.23         |
| 100 | 8 | $10^{2}$     | $10^{3}$     | 8     | 8.26         |

Table 4.3 Efficiency and comparison of various triplets ( $\alpha$ ,  $\mathbb{T}$ , 100)

Table 4.4 Efficiency and comparison of various triplets ( $\alpha$ ,  $\mathbb{T}$ , 256)

| п   | α | $\mathbb{R}$ | $\mathbb{T}$ | $V^*$ | $V^{\nabla}$ |
|-----|---|--------------|--------------|-------|--------------|
| 256 | 1 | $10^{2}$     | $10^{3}$     | 13    | 14.66        |
| 256 | 1 | $10^{2}$     | $10^{4}$     | 13    | 13.94        |
| 256 | 2 | $10^{2}$     | $10^{3}$     | 11    | 11.98        |
| 256 | 2 | $10^{2}$     | $10^{4}$     | 11    | 11.72        |
| 256 | 3 | $10^{2}$     | $10^{3}$     | 11    | 11.92        |
| 256 | 3 | $10^{2}$     | $10^{4}$     | 11    | 11.51        |
| 256 | 4 | $10^{2}$     | $10^{3}$     | 11    | 11.99        |
| 256 | 4 | $10^{2}$     | $10^{4}$     | 11    | 11.84        |
| 256 | 5 | $10^{2}$     | $10^{3}$     | 12    | 12.22        |

| п   | α | $\mathbb{R}$ | $\mathbb{T}$    | $V^*$ | $V^{\nabla}$ |
|-----|---|--------------|-----------------|-------|--------------|
| 500 | 1 | $10^{2}$     | $10^{3}$        | 21    | 23.19        |
| 500 | 1 | $10^{2}$     | $10^{4}$        | 21    | 22.10        |
| 500 | 2 | $10^{2}$     | $10^{3}$        | 17    | 17.83        |
| 500 | 2 | $10^{2}$     | $10^{4}$        | 16    | 17.04        |
| 500 | 3 | $10^{2}$     | $10^{3}$        | 16    | 16.94        |
| 500 | 3 | $10^{2}$     | $10^{4}$        | 16    | 16.61        |
| 500 | 4 | $10^{2}$     | $10^{3}$        | 16    | 17.04        |
| 500 | 4 | $10^{2}$     | 10 <sup>4</sup> | 16    | 16.89        |

Table 4.5 Efficiency and comparison of various triplets ( $\alpha$ ,  $\mathbb{T}$ , 500)

\_\_\_\_\_

Table 4.6 Efficiency and comparison of various triplets ( $\alpha, \mathbb{T}, 1024$ )

| n    | α | $\mathbb{R}$ | $\mathbb{T}$ | $V^*$ | $V^{\nabla}$ |
|------|---|--------------|--------------|-------|--------------|
| 1024 | 1 | $10^{2}$     | $10^{3}$     | 34    | 38.50        |
| 1024 | 1 | $10^{2}$     | $10^{4}$     | 34    | 35.96        |
| 1024 | 2 | $10^{2}$     | $10^{3}$     | 27    | 28.27        |
| 1024 | 2 | $10^{2}$     | $10^{4}$     | 26    | 27.12        |
| 1024 | 3 | $10^{2}$     | $10^{3}$     | 24    | 25.43        |
| 1024 | 3 | $10^{2}$     | $10^{4}$     | 24    | 24.81        |
| 1024 | 4 | $10^{2}$     | $10^{3}$     | 24    | 24.98        |
| 1024 | 4 | $10^{2}$     | $10^{4}$     | 24    | 24.16        |
| 1024 | 5 | $10^{2}$     | $10^{3}$     | 25    | 25.32        |
| 1024 | 6 | $10^{2}$     | $10^{3}$     | 25    | 25.98        |
|      |   |              |              |       |              |

| n    | α | $\mathbb{R}$ | $\mathbb{T}$ | $V^*$ | $V^{\nabla}$ |
|------|---|--------------|--------------|-------|--------------|
| 2048 | 1 | $10^{2}$     | $10^{3}$     | 58    | 65.64        |
| 2048 | 2 | $10^{2}$     | $10^{3}$     | 41    | 44.32        |
| 2048 | 3 | $10^{2}$     | $10^{3}$     | 37    | 38.27        |
| 2048 | 4 | $10^{2}$     | $10^{3}$     | 36    | 36.99        |
| 2048 | 5 | $10^{2}$     | $10^{3}$     | 36    | 36.74        |
| 2048 | 6 | $10^{2}$     | $10^{3}$     | 36    | 36.91        |

Table 4.7 Efficiency and comparison of various triplets ( $\alpha$ ,  $\mathbb{T}$ , 2048)

Table 4.8 Efficiency and comparison of various triplets ( $\alpha$ , T, 4096)

| n    | α | $\mathbb{R}$ | $\mathbb{T}$ | $V^*$ | $V^{ abla}$ |
|------|---|--------------|--------------|-------|-------------|
| 4096 | 1 | $10^{2}$     | $10^{3}$     | 99    | 110.11      |
| 4096 | 2 | $10^{2}$     | $10^{3}$     | 64    | 68.48       |
| 4096 | 3 | $10^{2}$     | $10^{3}$     | 55    | 57.47       |
| 4096 | 4 | $10^{2}$     | $10^{3}$     | 53    | 54.91       |
| 4096 | 5 | $10^{2}$     | $10^{3}$     | 53    | 54.17       |
| 4096 | 6 | $10^{2}$     | $10^{3}$     | 53    | 54.16       |
| 4096 | 7 | $10^{2}$     | $10^{3}$     | 53    | 54.28       |

while in the case of binary sequences with lengths n = 4096, the best value of  $V^{\bigtriangledown} = 54.16$  is yielded by using  $\alpha = 6$ .

As previously discussed, binary sequences with lengths up to 84 and PSL-optimal values have been already discovered by using various exhaustive search strategies. This data is particularly beneficial for measuring the efficiency of a given PSL-optimizing algorithm. In other words, given a search space with binary sequences with some fixed length  $n \le 84$ , and some PSL-optimizing algorithm A with a reasonable threshold value, the best results achieved by A could be compared with the already known optimal PSL values.

During our experiments, we used a single general-purpose computer with a 6-cored central processing unit architecture, capable of running 12 threads simultaneously. Surprisingly, by using the SHC revisited kernel, as well as a fixed value of  $\alpha = 2$ , we were able to reach binary sequences with optimal PSL values for each length in [1,82]. Given the linear time and memory complexities of the algorithm, for the majority of those lengths, the PSL-optimal binary sequences were reached for less than a minute. However, for some border cases, the needed time was a few hours. The best results yielded by our experiments are summarized in

Table B.2. A remark should be made, that we have included just one PSL-optimal binary sequence for a given length. However, for almost each fixed length, the algorithm was able to find more than one binary sequence having an optimal PSL value. The binary sequences are given in a hexadecimal format, by omitting the leading zeroes. In the last column of Table B.2, beside the corresponding optimal PSL value of the hexadecimal binary sequence given in column 2, the symbol x was used to illustrate some approximation of the time needed for Algorithm 2 to reach a PSL-optimal binary sequence:

- $\mathbf{X} \approx \text{minute}$
- $\Xi \Xi \approx \text{hour}$
- *x x x* ≈ day

For all other cases, the algorithm was able to reach the optimal PSL for less than a minute, and in some cases, for less than a second.

The results achieved throughout the experiments described in this section demonstrated the efficiency of Algorithm 5. Thus, we have further launched the algorithm on binary sequences with lengths up to 300. The results are given in Table B.3. The binary sequences with record-breaking PSL values are further highlighted with the symbol  $\mathbf{\nabla}$  (the black triangle pointing down). Almost all of the results known in the literature were improved. More precisely, we have improved 179 out of 195 cases. Curiously, for some lengths, we have even revealed binary sequences with record-breaking PSL values, having a distance of 2 to the previously known PSL record value. We will mark those improvements with a double black triangle symbol. An example of such length is 229.

In [36], the best results achieved by the D-Wave 2 quantum computer for binary sequences with length 128 is PSL 8, while Algorithm 5 could reach PSL 6. For longer lengths, for example, binary sequences with lengths 256, the best PSL achieved by the D-Wave 2 quantum computer was 12, while during our experiments we reached PSL values of 10. We reached PSL values of 10 for binary sequences up to 271. For completeness, since the D-Wave 2 quantum computer is tested on binary sequences with length 426, we have further launched Algorithm 2 on the same length. Surprisingly, the algorithm was able to find binary sequences with PSL values of 17 (the best value achieved by the quantum computer) for less than a second. It reached PSL values of 16, and even 15, for less than a second as well. However, PSL value of 14 (see Table B.4) was noticeable harder to reach (199 seconds). During this optimization routine, and driven by the results provided in Table 4.5 (since 500 is close to 426), we have updated the  $\alpha$  value to 3.

Recently, in [37] a multi-thread evolutionary search algorithm was proposed. By using Algorithm 5 we were able to improve almost all of the best PSL values from the aforemen-

tioned paper - usually for less than a second. For example, the best PSL value for binary sequences with length 3000 achieved in [37] is 51. We have launched Algorithm 2 on binary sequences with the same length. It should be emphasized (see Tables 4.7 and 4.8), that the  $\alpha$  parameter should be increased to 6. Record-breaking PSL values of 44 and 43 were reached for respectively 111 and 371 seconds. In Table B.4 an example of such binary sequence (2nd row) is given. The last column of the table provides a more quantitative measure of the record:  $\nabla x$  denotes that the corresponding binary sequences possess a record-breaking PSL equal to P - x, where P was the previously known record.

The reasoning behind announcing one binary sequence as long, or short, is ambiguous. Measuring the largeness of a given binary sequence is probably more related to the capabilities of the used algorithm than the actual length itself. From a practical point of view, some algorithms, or their implementations, would not even start the optimization (or construction) process, since their computational capabilities (or hardware restrictions) would not be able to process the desired length. For example, as discussed in [36], the usage of a 512-qubit D-Wave 2 quantum computer limits the code length that can be handled, to at most 426, due to a combination of overhead operations and qubits unavailability. Moreover, it was estimated that a 2048-qubit D-Wave computer could handle binary sequences with lengths up to 2000. Hence, the exact fixed value differentiating short from long binary sequences is still unclear.

In Table 4.9 some detailed time measurements of binary sequences with lengths  $2^g - 1$ , for  $g \in N, g \in [13, 17]$  are given. The binary sequences are specially chosen to exactly match the lengths of the well-known m-sequences, generated by some primitive polynomial of degree g over GF(2) denoted by M (see [52]) and the binary sequences generated by Algorithm 5 denoted by A. The  $\alpha$  parameter was fixed to 4. The last column (A) denotes the time needed for Algorithm 5 to reach the corresponding PSL (s, m, h, and D denote respectively seconds, minutes, hours and days). Evidently, the longer the m-sequence, the harder for Algorithm 5 to find binary sequences with better PSL values is. For example, Algorithm 5 required approximately 3 days to find a binary sequence of length 131071 with lower PSL than the optimal m-sequence having the same size. Given a PSL-optimizing algorithm  $\mathscr{A}$  we will reference the length *n* of a binary sequence as  $\mathscr{A}$ -long if the expected time from  $\mathscr{A}$ , starting from a pseudo-randomly generated binary sequence with length n, to reach a binary sequence with PSL p, s.t.  $p \le \sqrt{n}$ , and by using single general purpose processor, is more than 1 day. Otherwise, we will reference it as A-short. Throughout the radar literature statements that the asymptotic PSL of m-sequences grows no faster than order  $\sqrt{n}$ , were frequently made. However, as shown in [81], this assumption was not supported by theory or by data. Nevertheless, it appears that the PSL-optimal m-sequences are very

| g  | $n = 2^{g} - 1$ | $\mathbb{M}_n^{\mathbb{F}}$ (PSL) | $\mathbb{A}$ (PSL) | T      |
|----|-----------------|-----------------------------------|--------------------|--------|
| 13 | 8191            | 85                                | 84                 | 19s    |
| 13 | 8191            | 85                                | 83                 | 23s    |
| 13 | 8191            | 85                                | 82                 | 28s    |
| 13 | 8191            | 85                                | 81                 | 1.5m   |
| 13 | 8191            | 85                                | 80                 | 6.95m  |
| 13 | 8191            | 85                                | 79                 | 4.37h  |
| 13 | 8191            | 85                                | 78                 | 8.04h  |
| 13 | 8191            | 85                                | 77                 | 13.24h |
| 14 | 16383           | 125                               | 124                | 44s    |
| 14 | 16383           | 125                               | 123                | 1.16m  |
| 14 | 16383           | 125                               | 122                | 4.70m  |
| 14 | 16383           | 125                               | 121                | 4.72m  |
| 14 | 16383           | 125                               | 120                | 5.30m  |
| 14 | 16383           | 125                               | 119                | 14.15m |
| 14 | 16383           | 125                               | 118                | 20.26m |
| 14 | 16383           | 125                               | 117                | 20.37m |
| 14 | 16383           | 125                               | 116                | 1.49h  |
| 14 | 16383           | 125                               | 115                | 1.49h  |
| 15 | 32767           | 175                               | 174                | 47.27m |
| 15 | 32767           | 175                               | 173                | 47.28m |
| 15 | 32767           | 175                               | 172                | 3.09h  |
| 15 | 32767           | 175                               | 171                | 3.10h  |
| 16 | 65535           | 258                               | 257                | 9.42m  |
| 16 | 65535           | 258                               | 256                | 22.79m |
| 16 | 65535           | 258                               | 255                | 22.80m |
| 16 | 65535           | 258                               | 254                | 22.81m |
| 17 | 131071          | 363                               | 362                | 2.95D  |
| 17 | 131071          | 363                               | 361                | 2.95D  |
| 17 | 131071          | 363                               | 360                | 2.95D  |

Table 4.9 Time required to find better PSL values compared to known results from m-sequences exhaustive search

close to  $\sqrt{n}$  (see [44]). Thus, the threshold value of  $\lfloor \sqrt{n} \rfloor$  is based on the expectation that the optimal PSL value for a given binary sequences with length *n* is less than  $\lceil \sqrt{n} \rceil$ .

From now on, we denote Algorithm 5 as  $\mathscr{A}$  with fixed  $\alpha$  value to 4 if not specified otherwise. During our experiments and by using  $\mathscr{A}$ , we have reached the conclusion that all binary sequences with lengths *n*, s.t.  $n > 10^5$  are  $\mathscr{A}$ -long. In this section, we have investigated some hybrid constructions which could be applied in those cases when the binary sequences are  $\mathscr{A}$ -long.

#### **4.3.1** Using $\mathscr{A}$ as an m-sequences extension

The following procedure is proposed:

- Choose a primitive polynomial f over  $F_{2^m}$
- Fix an initial element *a* over  $F_{2^m}$
- Convert f to a linear-feedback shift register  $\mathscr{L}$
- Expand the  $\mathscr{L}$  to a binary sequence L,  $|L| = 2^m 1$ .
- Launch  $\mathscr{A}$  with *L* as an input

The primitive polynomials over  $F_{2^m}$  could be calculated in advance. Furthermore, the PSL of *L*, where *L* is seeded by some initial element *a* over  $F_{2^m}$ , could be specially chosen to have the minimum possible value. This is easily achievable by using the theorems discussed later in this chapter (see Subsection 4.3.3):

The aforementioned procedure could be better illustrated by an example. If we fix m = 17, we could pick the primitive polynomial  $f = x^{17} + x^{14} + x^{12} + x^{10} + x^9 + x + 1$  over  $F_{2^{17}}$ . Before converting f to a linear-feedback shift register  $\mathcal{L}$ , we should fix the starting state of  $\mathcal{L}$ . Throughout this example, a is fixed to the initial state of  $\mathcal{L}$ :

Then,  $\mathscr{L}$  is expanded to *L*. By using single instruction, multiple data (SIMD) capable device and starting with *L*, we could efficiently enumerate all 2<sup>17</sup> different binary sequences generated by all possible starting states, to find the one generating the minimum PSL value. More formally, a value  $\rho_{max}$ , s.t.  $\forall \rho : (L \leftarrow \rho_{max})_{PSL} \leq (L \leftarrow \rho)_{PSL}$ . Considering *f* and the fixed value of *a*, in this specific case the value of  $\rho_{max}$  is 15150, or more precisely,  $(L \leftarrow \rho_{max})_{PSL} = 363$ .

Experiments with initializing  $\mathscr{A}$  ( $\alpha$ =6) with  $L \leftarrow \rho_{max}$ , instead of pseudo-randomly generated binary sequences, were made. We were able to repeatedly reach record-breaking binary sequences of length 131071 having PSL equal to 359. The time required was less than 2 minutes, which was a significant improvement over the time required for  $\mathscr{A}$  (starting from pseudo-randomly generated sequences) to reach binary sequences with PSL close to 359: approximately 3 days. Leaving  $\mathscr{A}$  to work for another 46 minutes it even reached binary sequences of length 131071 with PSL 356.

The proposed procedure, as demonstrated, is highly efficient and is capable to reach binary sequences with  $\mathscr{A}$ -long lengths and record-breaking PSL values for a few minutes. Unfortunately, it is applicable on binary sequences with lengths of the form  $2^n - 1$  only. However, throughout the next section, we provide another procedure that can generate binary sequences with length p and record-breaking PSL values, where p is a prime number.

#### **4.3.2** Using *A* as an Legendre-sequences extension

The following procedure is proposed:

- Choose a prime number *p*
- Generate the sequence  $L = [t_1, t_2, \dots, t_p]$
- For *i*, s.t.  $i \in N$ ,  $1 \le i \le p$ , and in case *i* is a quadratic residue mod *p*, replace  $t_i$  with 1. Otherwise, replace  $t_i$  with -1.
- Launch  $\mathscr{A}$  with L as an input

As the numerical experiments suggested in [44], it is highly unlikely that a Legendre sequence with length p, for p > 235723, or any rotation of it, would yield a PSL value less than  $\sqrt{p}$ . Having this in mind, experiments with initializing  $\mathscr{A}$  ( $\alpha$ =8) with a rotation of Legendre sequence with length 235747 were made (the next prime number after 235723). Again, by using SIMD-capable devices, we have extracted the PSL-optimal rotation among all possible rotations of a Legendre sequence with length 235747. More precisely, on rotation 60547, a binary sequence with PSL equal to 508 was yielded. Surprisingly,  $\mathscr{A}$  was able to significantly optimize this binary sequence. As shown in Table 4.10, for less than 25 minutes, using only 1 thread of a Xeon-2640 CPU with a base frequency of 2.50 GHz, a binary sequence with PSL equal to 408 was found.

Since  $\sqrt{235747} \approx 485.54$ , it follows that 408 is significantly smaller than the expected value of 485.54. In fact, by leaving  $\mathscr{A}$  for a total of 2.21 hours, a binary sequence with length 235747 and PSL 400, or 108 $\triangledown$ , was reached. More details could be found in [47].

| Table 4.10 Time required for $\mathscr{A}$ to reach smaller PSL values, when launched from a rotated |
|------------------------------------------------------------------------------------------------------|
| Legendre sequence with length 235747 and rotation value 60547.                                       |

| PSL | Т     |
|-----|-------|
| 496 | 1s    |
| 482 | 6s    |
| 462 | 15s   |
| 442 | 24s   |
| 422 | 9.75m |
| 411 | 12.4m |
| 410 | 18.9m |
| 409 | 23.4m |
| 408 | 23.7m |
|     |       |

#### **4.3.3** On the Aperiodic Autocorrelations of Rotated Binary Sequences

The maximal length shift register sequences, or m-sequences, is a well-known algebraic design [67]. Unfortunately, they are defined for lengths  $2^n - 1$  only ( $n \in N$ ). Nevertheless, as shown in [52], their extensive study could provide valuable insights into understanding the world of binary sequences possessing low aperiodic autocorrelation characteristics. However, finding the PSL-optimal m-sequences is a rigid and tedious task - during each iteration, the PSL value of a given binary sequence *B*, altogether with all possible rotations of *B*, should be calculated. In [81], an exhaustive search of PSL-optimal m-sequence with lengths up to  $2^{15} - 1$  is given. Later, in [52], the exhaustive search study was extended with results regarding m-sequences with lengths  $2^{16} - 1$  and  $2^{17} - 1$ . Since then, no progress was made.

Similar to the problem of finding PSL-optimal m-sequences, finding PSL-optimal Legendre sequences involves a significant computational burden - during each iteration, the PSL value of the binary sequence, altogether with all possible rotations of *B*, should be calculated. This explains why the numerical results regarding the PSL-optimal Legendre sequences are scarce. For example, in [135], Fig.4, a list of all PSL-optimal Legendre sequences, up to length 3500 only, is given.

The routine of finding the minimum PSL among all the possible rotations of a given binary sequence plays an important role in the overall computational burden. By making some observations of the behavior of the sidelobes array in a rotated sequence, we were able to project the routine to a perfectly balanced parallelizable algorithm. This allows us to efficiently utilize the computational possibilities of modern GPUs. Hence, we were able to exhaustive search all m-sequences with lengths  $2^{18} - 1$ ,  $2^{19} - 1$  and  $2^{20} - 1$ , as well as finding

all optimal Legendre sequences with lengths up to 432100 - something out of reasonable computational reach until now.

We denote as  $B \leftarrow \rho$  the binary sequence obtained from *B*, by left-rotating it  $\rho$  times. By definition,  $B \leftarrow |B| \equiv B$ . Furthermore, if  $b_i$  is the element of *B* on position *i*, we will denote as  $b_i^{\leftarrow \rho}$  the element of  $B \leftarrow \rho$  on position *i*.

**Theorem 4.3.1.** Given a binary sequence  $B = b_0 b_1 \cdots b_{n-1}$  with length *n*, the following property holds:

$$\hat{C}_i(B \leftarrow 1) - \hat{C}_i(B) = b_0(b_{i+1} - b_{n-i-1})$$

Proof 4.3.1. By definition,

$$\hat{C}_i(B) = \sum_{j=0}^i b_j b_{j+n-i-1}$$

Since  $B \leftarrow 1$  is the left-rotated version of B,

$$\hat{C}_i(B \leftarrow 1) = \sum_{j=0}^i b_{(j+1 \mod n)} b_{(j+1+n-i-1 \mod n)}$$

Thus,  $\hat{C}_i(B \leftarrow 1) - \hat{C}_i(B)$  is equal to:

$$\sum_{j=0}^{i} b_{(j+1 \mod n)} b_{(j+1+n-i-1 \mod n)} - \sum_{j=0}^{i} b_j b_{j+n-i-1} =$$
(4.1)

$$\sum_{j=0}^{i} b_{(j+1 \mod n)} b_{(j+n-i \mod n)} - \sum_{j=0}^{i} b_j b_{j+n-i-1} =$$
(4.2)

$$\sum_{i=0}^{i} b_{(j+1 \mod n)} b_{(j+n-i \mod n)} - \sum_{j=-1}^{i-1} b_{j+1} b_{j+1+n-i-1} =$$
(4.3)

$$\sum_{j=0}^{i} b_{(j+1 \mod n)} b_{(j+n-i \mod n)} - \sum_{j=-1}^{i-1} b_{j+1} b_{j+n-i} =$$
(4.4)

$$\sum_{j=0}^{i-1} b_{(j+1 \mod n)} b_{(j+n-i \mod n)} + b_{(i+1 \mod n)} b_{(i+n-i \mod n)} -$$

$$(4.5)$$

$$\sum_{j=0}^{i-1} b_{j+1} b_{j+n-i} - b_{-1+1} b_{-1+n-i}$$
(4.6)

Since i < n-1 and  $j \le i-1$ , we have j < i < n-1. Thus,  $(j+1) \mod n = j+1$ . However, since j < i, or j-i < 0, we have j-i+n < n. Thus,  $(j+n-i) \mod n = j+n-i$ . Hence,

 $\hat{C}_i(B \leftarrow 1) - \hat{C}_i(B)$  could be further simplified to:

$$\sum_{j=0}^{i-1} b_{j+1} b_{j+n-i} + b_{i+1} b_{(n \mod n)} -$$
(4.7)

$$\sum_{j=0}^{i-1} b_{j+1} b_{j+n-i} - b_0 b_{n-i-1} =$$
(4.8)

$$b_{i+1}b_0 - b_0b_{n-i-1} = b_0(b_{i+1} - b_{n-i-1})$$
(4.9)

**Theorem 4.3.2.** Given a binary sequence  $B = b_0 b_1 \cdots b_{n-1}$  with length *n*, the difference  $\hat{C}_i(B \leftarrow \rho) - \hat{C}_i(B \leftarrow (\rho - 1))$  is equal to  $b_{(\rho - 1) \mod n}(b_{(i+\rho) \mod n} - b_{(n-i+\rho-2) \mod n})$ .

**Proof 4.3.2.** Since  $B = b_0 b_1 \cdots b_{n-1}$ , it follows that  $B \leftarrow 1 = b_0^{\leftarrow 1} b_1^{\leftarrow 1} \cdots b_{n-1}^{\leftarrow 1}$ , or in the more general case  $B \leftarrow j = b_0^{\leftarrow j} b_1^{\leftarrow j} \cdots b_{n-1}^{\leftarrow j}$ . Thus, by using Theorem 4.3.1:

$$\hat{C}_i(B \leftarrow \rho) - \hat{C}_i(B \leftarrow (\rho - 1)) =$$
(4.10)

$$b_{0}^{\leftarrow(\rho-1)} \left( b_{i+1}^{\leftarrow(\rho-1)} - b_{n-i-1}^{\leftarrow(\rho-1)} \right)$$
(4.11)

However, by definition,  $b_i^{\leftarrow 1}$  is the element of  $B \leftarrow 1$  on position *i*. Thus,  $b_i^{\leftarrow 1} = b_{(i+1) \mod n}$ . In the general case,  $b_i^{\leftarrow x} = b_{(i+x) \mod n}$ . By using those relations, we can substitute:

$$b_{0}^{\leftarrow(\rho-1)} \left( b_{i+1}^{\leftarrow(\rho-1)} - b_{n-i-1}^{\leftarrow(\rho-1)} \right) =$$
(4.12)

$$b_{(0+\rho-1) \mod n} \left( b_{(i+1+\rho-1) \mod n} - b_{(n-i-1+\rho-1) \mod n} \right) =$$

$$(4.13)$$

$$b_{(0+\rho-1) \mod n} \left( b_{(i+1+\rho-1) \mod n} - b_{(n-i-1+\rho-1) \mod n} \right) =$$

$$(4.14)$$

$$b_{(\rho-1) \mod n} \left( b_{(i+\rho) \mod n} - b_{(n-i+\rho-2) \mod n} \right)$$
(4.14)

Let us denote as  $\Omega_B$  the array of all the sidelobes of a some binary sequence B with length *n*, or more formally:  $\Omega_B = [\hat{C}_0(B), \hat{C}_1(B), \dots, \hat{C}_{n-2}(B)]$ . By using Theorem 4.3.2 and the inherited relationship between elements of  $\Omega_{B\leftarrow\rho}$  and  $\Omega_{B\leftarrow(\rho-1)}$ , we can calculate  $\Omega_{B\leftarrow\rho}$ , given  $\Omega_{B\leftarrow(\rho-1)}$ , by using n-1 distinct parallel threads. Two very beneficial properties should be emphasized:

- The threads are independent of each other.
- The pool of the threads is perfectly balanced in terms of synchronization, i.e. if we have two distinct threads  $t_i$  and  $t_j$ , the arithmetic operations involved throughout the calculation process of  $t_i$  and  $t_j$  are the same.

This scenario suits well in the context of the single instruction, multiple data (SIMD) model [56]. We could dedicate the calculation of  $\hat{C}_i(B \leftarrow \rho)$  to a thread  $t_i$  only since the aforementioned calculation is independent of other threads' results. Moreover, to optimize the routine further, we could just in-memory replace the values of  $\hat{C}_i(B)$ , i.e.  $\Omega_B$ , with the consequent values of  $\hat{C}_i(B \leftarrow \rho)$ , i.e.  $\Omega_{B\leftarrow\rho}$ , for  $\rho \in [1, n-1]$ . The pseudo-code of the algorithm is given in Algorithm 6. Throughout the pseudo-code, we have used the following notations:

- $x \leftarrow y$ : same as x = y
- x + = y: same as x = x + y
- $\Omega_B[i]$ : the *i*-th element of  $\Omega_B$ , i.e.  $\hat{C}_i(B)$
- max  $|\Omega_B|$ : the maximum absolute value of  $\Omega_B$
- \*\*s\*\*y\*\*n\*\*c\*\*: we await all threads to synchronize (otherwise max  $|\Omega_B|$  could lead to an ambiguous result)

Algorithm 6 A GPU algorithm for extracting the minimum PSL value of B, and all possible rotations of B

```
1: procedure EXTRACT(B,n)
      \Omega_B \leftarrow \left[\hat{C}_0(B), \hat{C}_1(B), \cdots, \hat{C}_{n-2}(B)\right]
 2:
 3:
      minPSL \leftarrow n
      for \rho \in [0, n-1] do
 4:
        t_i: \Omega_B[i] + =
 5:
        b_{(\rho-1) \mod n} (b_{(i+\rho) \mod n} - b_{(n-i+\rho-2) \mod n})
 6:
        **s**y**n**c**
 7:
 8:
        if max |\Omega_B| < minPSL then
 9:
          minPSL \leftarrow max | \Omega_B |
        end if
10:
      end for
11:
12: end procedure
```

The observations made in the previous section allow us to design a fast routine for finding the minimum PSL among all the possible rotations of a given binary sequence. Our first practical application was an exhaustive search of all m-sequences with fixed lengths. The proposed algorithm could be summarized as follow:

- Choose a primitive polynomial f over  $F_{2^m}$
- Fix an initial element  $\beta$  over  $F_{2^m}$ .

- Convert f to a linear-feedback shift register  $\Gamma$  with a starting state set to  $\beta$ .
- Expand the  $\Gamma$  period to a binary sequence L with length  $2^m 1$ .
- Launch Algorithm 6.
- Output the value reached by the previous step.

Since the period of the LSFR L is equal to  $2^m - 1$ , the proposed algorithm would iterate through all possible starting states of expanded LSFRs constructed from f. Thus, we can conclude that the aforementioned algorithm will find the smallest achievable PSL by m-sequence generated by f with all possible starting states.

The proposed algorithm could be also successfully utilized in finding optimal Legendre sequences. Thus, the following routine is proposed:

- Choose a prime number *p*.
- Generate the sequence  $X = (x_1, x_2, \dots, x_p)$ .
- For *i*, s.t.  $i \in N$ ,  $1 \le i \le p$ , and in case *i* is a quadratic residue mod *p*, replace  $x_i$  with 1. Otherwise, replace  $x_i$  with -1.
- Launch Algorithm 6.
- Output the value reached by the previous step.

We have implemented the m-sequence exhaustive search algorithm by using an amalgam of programming languages<sup>2</sup> and GPUs as SIMD-capable devices. To analyze the efficiency of our implementation, we have further compared it to the popular scientific computing library NumPy [115]. More specifically, we compare the proposed algorithm with the naive approach of PSL re-calculation by using NumPy. The following notations are used:

- s, m, h, D, Y seconds, minutes, hours, days, years
- \*X\* S the time library X required for a single PSL calculation
- \*X\* R the overall time which a given library X required for the PSL calculations of all the distinct rotations of a given binary sequence

<sup>&</sup>lt;sup>2</sup>C, Python, SageMath, CUDA

| n  | $2^{n} - 1$ | NumPy S | NumPy R (estimation) | CUDA R |
|----|-------------|---------|----------------------|--------|
| 15 | 32767       | 1.3s    | 11.8h                | 1s     |
| 16 | 65535       | 4.3s    | 78.3h                | 2s     |
| 17 | 131071      | 16.3s   | 25D                  | 4s     |
| 18 | 262143      | 1m4s    | 194D                 | 14s    |
| 19 | 524287      | 4m15s   | 4.2Y                 | 48s    |
| 20 | 1048575     | 18m5s   | 36Y                  | 3m11s  |

Table 4.11 GPU algorithm vs CPU NumPy naive approach

During the comparison, a mid-range GPU with approximately 1200 CUDA cores and a mid-range CPU with 6 cores (12 threads) were used. The results are given in Table 4.11. For example, by using a single mid-range GPU, altogether with the aforementioned algorithm, the time required to find the PSL-optimal binary sequence, among the set comprised of a binary sequence *B* of length  $2^{20} - 1$  and all the possible rotations of *B*, would be 191 seconds. For completing the same calculation on a mid-range CPU, and by using a single thread, the required time would be approximately, based on estimation, 36 years. This results in an approximate speed-up factor of  $2^{22.5}$ .

The proposed algorithm allowed us to successfully exhaust search all possible msequences with lengths  $2^{18} - 1$ ,  $2^{19} - 1$  and  $2^{20} - 1$ . To achieve that, we first created a list of all the primitive polynomials of the corresponding degree. Then, for each polynomial, we launched the proposed algorithm. In Table 4.12 we present the optimal PSL values achieved by the exhaustive search routine. The best PSL values known before this work, to be found in [52], are denoted as  $\pi$ , while the optimal PSL values achieved by our work are denoted as  $\Pi$ . It should be emphasized, that the comparison provided in Table 4.11, for some *n*, does not reflect the actual time needed for exhaustive search of all m-sequences with length  $2^n - 1$ , but just the minimum PSL yielded by all possible rotations of a binary sequence generated by just one primitive polynomial. For example, the actual time needed for finding the optimal PSL value among all m-sequences with length  $2^{20} - 1$ , with or without rotations, is approximately 191 seconds multiplied by  $\frac{\phi(2^{20}-1)}{20} = 24000$ , or a total of 54 GPU days. However, by using NumPy and a naive approach, the time required would be approximately 864000 (single-thread) CPU years. Example of primitive polynomials yielding the PSL-optimal m-sequences, when rotated, could be found in 4.15, 4.16 and 4.17.

$$x^{18} + x^{15} + x^{14} + x^{13} + x^{6} + x^{3} + x^{2} + x + 1$$
(4.15)

$$x^{19} + x^{17} + x^{14} + x^{10} + x^9 + x^8 + x^6 + x^5 + x^3 + x^2 + 1$$
(4.16)

| п  | $2^{n} - 1$ | π    | П    | $\lfloor \sqrt{2^n - 1} \rfloor$ |
|----|-------------|------|------|----------------------------------|
| 18 | 262143      | 544  | 507  | 511                              |
| 19 | 524287      | 775  | 731  | 724                              |
| 20 | 1048575     | 1066 | 1024 | 1023                             |

Table 4.12 Optimum PSL values achieved during the exhaustive search

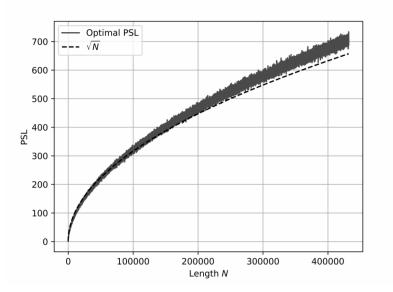


Fig. 4.4 A complete map of the optimal PSL values of all the Legendre sequences with lengths less than 432100, with or without rotation.

$$x^{20} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^4 + x + 1$$
(4.17)

We were able to successfully reveal all the optimal PSL values for Legendre sequences up to length 432100. In Figure 4.4, an overview of the optimal Legendre sequences is given.

It could be observed (depicted with a dashed line), in the beginning, the resulting trace stays very close to the line  $y = \sqrt{n}$ . It appears, that the beam comprised of the PSL-optimal Legendre sequence values, at least up to length  $2^{17}$ , is still able to cover the *y* trace. However, a tendency of overall PSL-increasing, compared to line *y*, could be noticed. Indeed, during our experiments, we were not able to find a Legendre sequence *B*, having length *n* greater than 235723, such that *B*, or rotations of *B*, yield a PSL value less or equal to  $\sqrt{n}$ . Combining this fact with the overall tendency of PSL beam increasing, we conjecture that all Legendre sequences, with or without rotation, and with lengths n > 235723, could not reach a PSL value less or equal to  $\sqrt{n}$ . The results are published in [44].

## Chapter 5

## **Binary Sequences and the Merit Factor Problem**

The merit factor problem is of practical importance to manifold domains, such as digital communications engineering, radars, system modulation, system testing, information theory, physics, and chemistry. However, the merit factor problem is referenced as one of the most difficult optimization problems and it was further conjectured that stochastic search procedures will not yield merit factors higher than 5 for long binary sequences (sequences with lengths greater than 200). Some useful mathematical properties related to the flip operation of the skew-symmetric binary sequences are presented in this chapter. By exploiting those properties, the memory requirement of state-of-the-art stochastic merit factor optimization algorithms could be reduced from  $O(n^2)$  to O(n). As a proof of concept, a lightweight stochastic algorithm was constructed, which can optimize pseudo-randomly generated skew-symmetric binary sequences with long lengths (up to  $10^5 + 1$ ) to skew-symmetric binary sequences with a merit factor greater than 5. An approximation of the required time is also provided. The numerical experiments suggest that the algorithm is universal and could be applied to skew-symmetric binary sequences with arbitrary lengths.

# 5.1 On the Skew-Symmetric Binary Sequences and the Merit Factor Problem

If  $F_n$  denotes the optimal (greatest) value of the merit factor among all sequences of length n, then the merit factor problem could be described as finding the value of  $\limsup_{n\to\infty} F_n$ . Several conjectures regarding the  $\limsup_{n\to\infty} F_n$  value should be mentioned. The first conjecture published in [75] assumes that  $\limsup_{n\to\infty} F_n = 6$ . A more extreme conjecture ture that  $\limsup_{n\to\infty} F_n = \infty$  is given by Littlewood [97]. In [28], it was conjectured that  $\limsup_{n\to\infty} F_n = 5$ . Golay [63] assumed that the expected value of  $\limsup_{n\to\infty} F_n$  is very close to 12.32. However, in [64] he added that "...no systematic synthesis will ever be found which will yield higher merit factors [than 6]...". Nevertheless, in [22] it was conjectured that  $\limsup_{n\to\infty} F_n > 6.34$ . The latest assumption is based on the specially constructed infinite family of sequences.

Since the merit factor problem has resisted more than 50 years of theoretical attacks, a significant number of computational pieces of evidence were collected. They could be divided into exhaustive search methods and heuristic methods.

Regarding the exhaustive search methods, the optimal merit factors for all binary sequences with lengths  $n \le 60$  are given in [105]. Twenty years later, the list of optimal merit factors was extended to  $n \le 66$  [118]. The two largest known values of  $F_n$  are 14.1 and 12.1 for *n* equals respectively 13 and 11. It should be mentioned that both of those binary sequences are comprised of the Barker sequences [9]. In fact, in [80] the author published a personal selection of challenges concerning the merit factor problem, arranged in order of increasing significance. The first suggested challenge is to find a binary sequence *X* of length n > 13 for which  $F(X) \ge 10$ .

A reasonable strategy for finding binary sequences with near-optimal merit factors is to introduce some restriction on the sequences' structure. A well-studied restriction on the structure of the sequence has been defined by the skew-symmetric binary sequences, which were introduced by Golay [60]. Having a binary sequence  $(b_0, b_1, \dots, b_{2l})$  of odd length n = 2l + 1, the restriction is defined by

$$b_{l+i} = (-1)^{i} b_{l-i}$$
 for  $i = 1, 2, \dots, l$ .

Golay observed that odd-length Barker sequences are skew-symmetric. Therefore, an idea of binary sequences' sieving was proposed [62]. Furthermore, as shown in [60], all aperiodic autocorrelations of a skew-symmetric sequence with even indexes are equal to 0.

The optimal merit factors for all skew-symmetric sequences of odd length  $n \le 59$  were given by Golay himself [62]. Later, the optimal merit factors for skew-symmetric sequences with lengths  $n \le 69$  and  $n \le 71$  were revealed respectively in [65] and [41], while the optimal skew-symmetric solutions for  $n \le 89$  and  $n \le 119$  were given in respectively [125] and [118].

It should be noted, that the problem of minimizing  $F_n$  is also known as the "low autocorrelated binary string problem", or the LABS problem. It has been well studied in theoretical physics and chemistry. For example, the LABS problem is correlated with the quantum models of magnetism. Having this in mind, the merit factor problem was attacked by various search algorithms, such as the branch and bound algorithm proposed in [118], as

well as stochastic search algorithms like tabu search [72], memetic algorithm combined with tabu search [57], as well as evolutionary and genetic algorithms [41] and [106]. However, since the search space grows like  $2^n$ , the difficulty of finding long binary sequences with near-optimal  $F_n$  significantly increases. Bernasconi predicted that [14] " ... stochastic search procedures will not yield merit factors higher than about  $F_n = 5$  for long sequences". By long sequences, Bernasconi was referring to binary sequences with lengths greater than 200. Furthermore, in [41] the problem was described as " ... amongst the most difficult optimization problems".

The principle behind basic search methods could be summarized as moving through the search space by doing tiny changes inside the current binary sequence. In the case of skew-symmetric binary sequences, Golay suggested [61] that only one or two elements should be changed at a given optimization step. In case the new candidate has a better merit factor, the search method accepts it as a new current state and continues the optimization process. Having this in mind, a strategy of how to choose a new sequence when no acceptable neighbor sequence exists should be considered as well.

The best results regarding skew-symmetric binary sequences with high merit factors are achieved by [24], [26], [27], and [57]. In [57], the authors introduced a memetic algorithm with an efficient method to recompute the characteristics of a given binary sequence L', such that L' is one flip away from L, and assuming that some products of elements from L have been already stored in memory. More precisely, a square (n-1,n-1) tau table  $\tau(S)$ , such that  $\tau(S)_{ij} = s_j s_{i+j}$  for  $j \le n-i$  was introduced. Later, in [24] the principle of self-avoiding walk [100] was considered. By using Hasse graphs the authors demonstrated that considering the LABS problem, a basic stochastic search method could be easily trapped in a cycle. To avoid this scenario, the authors suggested the usage of a self-avoiding walk strategy accompanied by a hash table for efficient memory storage of the pivot coordinates. Then, in [26] an algorithm called xLastovka was presented. The concept of a priority queue was introduced. In summary, during the optimization process, a queue of pivot coordinates altogether with their energy values is maintained. Recently, some skew-symmetric binary sequences with record-breaking merit factors for lengths from 301 to 401 were revealed [27].

The aforementioned state-of-the-art algorithms are benefiting from the tau table  $\tau(S)$  previously discussed. It significantly increases the speed of evaluating a given one-flip-away neighbor, reaching a time complexity of O(n). However, the memory requirement of maintaining  $\tau(S)$  is like  $O(n^2)$ . Having this in mind, the state-of-the-art algorithms could be inapplicable to very long binary sequences due to hardware restrictions.

In this section, by using some mathematical insights, an alternative to the  $\tau(S)$  table is suggested, the usage of which significantly reduces the memory requirement of the discussed

state-of-the-art algorithms from  $O(n^2)$  to O(n). This enhancement could be easily integrated. For example, in an online repository [23] a collection of currently known best merit factors for skew-symmetric sequences with lengths from 5 to 449 is given. The longest binary sequence is of length 449, having a merit factor of 6.5218. As a proof of concept, by using just a single budget processor Xeon-2640 CPU with a base frequency of 2.50 GHz, the price of which at the time of writing this work is about 15 dollars, and our tweaked implementation of the lssOrel algorithm introduced in [23], we were able to find a skew-symmetric binary sequence with better merit factor of 6.5319. The time required was approximately one day. As a comparison, the currently known optimal results were acquired by using the Slovenian Initiative for National Grid (SLING) infrastructure (100 processors) and a 4-day threshold limitation per length.

It should be noted, that despite the significant memory complexity optimization introduced, the state-of-the-art algorithms could still suffer from memory and speed issues. As previously discussed, additional memory-requiring structures were needed, such as, for example, a set of all previously visited pivots [24] or a priority queue with 640 000 coordinates and a total size of 512MB [26].

Another issue is the "greedy" approach of collecting all the neighbors to determine the best one. This could dramatically decrease the optimization process, especially when very long binary sequences are involved. This side-effect is already discussed in Section 4.2.

Having those observations in mind, an almost memory-free optimization algorithm is suggested. More precisely, both the time and memory complexities of the algorithm are linear. This could be particularly beneficial for multi-thread architectures or graphical processing units. During our experiments, and by using the aforementioned algorithm, we were able to find skew-symmetric sequences with merit factors strictly greater than  $F_n = 5$  for all the tested lengths up to  $10^5 + 1$ . Thus, Bernasconi's prediction that no stochastic search procedure will yield merit factors higher than  $F_n = 5$  for binary sequences with lengths greater than 200 was very pessimistic.

Let us consider a skew-symmetric binary sequence defined by an array  $L = [b_0, b_1, \dots, b_{n-1}]$  with an odd length n = 2l + 1. If the corresponding to *L* sidelobes' array is denoted by an array *W*, we have:

$$W = [C_{n-1}(L), C_{n-2}(L), \cdots, C_1(L), C_0(L)],$$

where

$$C_u(L) = \sum_{j=0}^{n-u-1} b_j b_{j+u}, \text{ for } u \in \{0, 1, \cdots, n-1\}$$

In this section, for convenience, we will use the reversed version of W, denoted by S, s.t:

$$S = [\hat{C}_0(L), \hat{C}_1(L), \cdots, \hat{C}_{n-2}(L), \hat{C}_{n-1}(L)],$$

where  $\hat{C}_{n-i-1}(L) = C_i(L)$ , for  $i \in \{0, 1, \dots, n-1\}$ . Thus,

$$\hat{C}_i(L) = C_{n-i-1}(L) = \sum_{j=0}^{n-(n-i-1)-1} b_j b_{j+(n-i-1)}$$

Hence,

$$\hat{C}_i(L) = \sum_{j=0}^i b_j b_{j+n-i-1}, \text{ for } i \in \{0, 1, \dots, n-1\}.$$

Furthermore, we will denote the *i*-th element of a given array A as A[i]. It should be noted that the first index of an array is 0, not 1. For example,

$$W[n-1] = S[0] = \hat{C}_0[L] = C_{n-1}(L).$$

Since *L* is a skew-symmetric binary sequence, the following properties hold:

• S[i] = 0, for odd values of *i*.

• 
$$L[l-i] = (-1)^{l}L[l+i].$$

Having this in mind, the array of sidelobes *S* could be represented as follows:

$$S = [\hat{C}_0(L), 0, \hat{C}_2(L), 0, \cdots, 0, \hat{C}_{n-3}(L), 0, \hat{C}_{n-1}(L)].$$

For convenience, we will use the notation  $S_i$  which represents the (i-1)-th element of a given array S, or more formally  $S_i = S[i-1]$ .

Thus, for every odd value *r*, we have

$$S_r = \hat{C}_{r-1}(L) = \sum_{j=0}^{r-1} b_j b_{j+n-r+1-1} = \sum_{j=0}^{r-1} b_j b_{j+n-r} = \sum_{j=1}^r b_{j-1} b_{j-1+n-r}.$$

In terms of *L*, the previous relationship could be written down as follows:

$$S_r = \sum_{j=1}^r b_{j-1} b_{j-1+n-r} = \sum_{i=1}^r L[i-1]L[n+i-r-1].$$

We could further substitute i = l - q, for  $q \in \{0, 1, \dots, l\}$  into the major property of the skew-symmetric sequences to show that:

$$L[l-l+q] = (-1)^{l-q} L[l+l-q] \implies$$
$$L[q] = (-1)^{l-q} L[l+l+1-q-1] \implies L[q] = (-1)^{l-q} L[n-q-1].$$

Hence, given a skew-symmetric sequence L with length n = 2l + 1, if we flip both the elements on positions q and n - q - 1, for some fixed  $q \in \{0, 1, \dots, l\}$ , the resulted binary sequence  $L^q$  will be skew-symmetric as well. Let's denote the array of sidelobes of  $L^q$  as  $S^q$ :

$$S^{q} = \left[\hat{C}_{0}(L^{q}), 0, \hat{C}_{2}(L^{q}), 0, \cdots, 0, \hat{C}_{n-3}(L^{q}), 0, \hat{C}_{n-1}(L^{q})\right]$$

As a consequence of the previously aforementioned observations, we have:

$$S_r^q = \sum_{i=1}^r L^q [i-1] L^q [n+i-r-1].$$

In Theorem 5.1.1 a more detailed picture of the *S* array transformation to the  $S^q$  array is provided.

**Theorem 5.1.1.** Given two skew-symmetric sequences *L* and  $L^q$  with length n = 2l + 1, and with sidelobes arrays respectively *S* and  $S^q$ , where q < l, the following properties hold:

- I For  $\forall e$ , s.t. *e* is an even number,  $S_e^q S_e = 0$ .
- II If *r* is an odd number and  $r \le q$ ,  $S_r^q S_r = 0$ .
- III If *r* is an odd number and r > q, and r < n q, and  $q \neq r q 1$ , then:

$$S_r^q - S_r = -2 \left( L[q] L[n+q-r] + L[r-q-1] L[n-q-1] \right).$$

IV If *r* is an odd number and r > q, and r < n - q, and q = r - q - 1, then  $S_r^q - S_r = 0$ .

V If *r* is an odd number and  $r \ge n - q$ , and  $q \ne r - q - 1$ , then:

$$S_r^q - S_r = -2L[n - q - 1]L[2n - q - r - 1] - 2L[q + r - n]L[q] - -2L[q]L[n + q - r] - 2L[r - q - 1]L[n - q - 1].$$

VI If *r* is an odd number and  $r \ge n - q$ , and q = r - q - 1, then:

$$S_r^q - S_r = -2L[n - q - 1]L[2n - q - r - 1] - 2L[q + r - n]L[q]$$

**Proof 5.1.1. Property I**: For  $\forall e$ , s.t. e is an even number,  $S_e = 0$  and  $S_e^q = 0$ , since both S and  $S^q$  are skew-symmetric sequences. Therefore,  $S_e^q - S_e = 0$ .

**Property II**: If *r* is an odd number and  $r \le q$ , then

$$S_r^q - S_r = \sum_{i=1}^r L^q [i-1] L^q [n+i-r-1] - \sum_{i=1}^r L[i-1] L[n+i-r-1].$$

By construction,  $L^{q}[q] \neq L[q]$ ,  $L^{q}[n-q-1] \neq L[n-q-1]$  and  $\forall x \in [0, 1, \dots, n-1], x \neq q \& x \neq n-q-1 : L^{q}[x] = L[x]$ . Since, by considering the initial condition  $r \leq q$ , it follows that r-1 < q. Therefore, for  $i \in \{1, 2, \dots, r\}, i-1 \leq r-1 < q$  and  $L^{q}[i-1] = L[i-1]$ . On the other hand, for  $i \in \{1, 2, \dots, r\}, n+i-r-1 \geq n+1-r-1 = n-r$ , but since  $r \leq q$ , then  $n-r \geq n-q > n-q-1$ , which means that  $L^{q}[n+i-r-1] = L[n+i-r-1]$ .

By combining the aforementioned observations:

$$S_{r}^{q} - S_{r} = \sum_{i=1}^{r} L^{q}[i-1]L^{q}[n+i-r-1] - \sum_{i=1}^{r} L[i-1]L[n+i-r-1] =$$

$$= \sum_{i=1}^{r} L[i-1]L[n+i-r-1] - \sum_{i=1}^{r} L[i-1]L[n+i-r-1] = 0.$$
(5.1)

**Property III** We consider *r* as an odd number, r > q, r < n - q, and  $q \neq r - q - 1$ . Since r > q, we have  $r - 1 \ge q$ , which means that at least one element from the elements defined by  $L^{q}[i-1]$ , for  $i \in \{1, 2, \dots, r\}$ , will coincide with  $L^{q}[q]$ . However, since r < n - q, or r - 1 < n - q - 1, there will be no element from the elements defined by  $L^{q}[i-1]$ , for  $i \in \{1, 2, \dots, r\}$ , that will coincide with  $L^{q}[n-q-1]$ .

For  $i \in \{1, 2, \dots, r\}$ ,  $n + i - r - 1 \ge n - r$ . If  $n - r \le q$  then  $n - q \le r$ , which contradicts the initial condition of r < n - q. Therefore, n - r > q and n + i - r - 1 > q, and there will be no element from the elements defined by  $L^q[n + i - r - 1]$ , for  $i \in \{1, 2, \dots, r\}$ , that will coincide with  $L^q[q]$ . On the other hand, for  $i \in \{1, 2, \dots, r\}$ ,  $n + i - r - 1 \ge n - r$ , and since r > q, n - r < n - q. Thus  $n - r \le n - q - 1$ , which means there will be an element from the elements

defined by  $L^{q}[n+i-r-1]$ , for  $i \in \{1, 2, \dots, r\}$ , which will coincide with  $L^{q}[n-q-1]$ .

$$S_{r}^{q} - S_{r} = \sum_{i=1}^{r} L^{q}[i-1]L^{q}[n+i-r-1] - \sum_{i=1}^{r} L[i-1]L[n+i-r-1] =$$

$$= (\sum_{i=1}^{q} L^{q}[i-1]L^{q}[n+i-r-1]) + L^{q}[q]L^{q}[n+q-r] + (\sum_{i=q+2}^{r} L^{q}[i-1]L^{q}[n+i-r-1]) -$$

$$- (\sum_{i=1}^{q} L[i-1]L[n+i-r-1]) - L[q]L[n+q-r] - \sum_{i=q+2}^{r} L[i-1]L[n+i-r-1].$$
(5.2)

However, since it is given that  $q \neq r - q - 1$ , then  $n + q - r \neq n + r - q - 1 - r = n - q - 1$ . Thus, the coinciding elements are still to be determined inside the sequences defined for  $i \in \{q + 2, q + 3, \dots, r\}$ . Furthermore, as previously shown, we have:

$$\sum_{i=1}^{q} L^{q}[i-1]L^{q}[n+i-r-1] = \sum_{i=1}^{q} L[i-1]L[n+i-r-1].$$

Hence:

$$\begin{split} S_{r}^{q} - S_{r} &= \\ &= L^{q}[q]L^{q}[n+q-r] + (\sum_{i=q+2}^{r} L^{q}[i-1]L^{q}[n+i-r-1]) - \\ &- L[q]L[n+q-r] - \sum_{i=q+2}^{r} L[i-1]L[n+i-r-1] = \\ &= L^{q}[q]L^{q}[n+q-r] + (\sum_{i=q+2}^{r-q-1} L^{q}[i-1]L^{q}[n+i-r-1]) + \\ &+ L^{q}[r-q-1]L^{q}[n+r-q-r-1] + \\ &+ (\sum_{i=r-q+1}^{r} L^{q}[i-1]L^{q}[n+i-r-1]) - \\ &- L[q]L[n+q-r] - \sum_{i=q+2}^{r-q-1} L[i-1]L[n+i-r-1] - \\ &- L[r-q-1]L[n+r-q-r-1] - \sum_{i=r-q+1}^{r} L[i-1]L[n+i-r-1]. \end{split}$$
(5.3)

Since we have isolated all coincidences, it follows:

$$\sum_{i=q+2}^{r-q-1} L^{q}[i-1]L^{q}[n+i-r-1] = \sum_{i=q+2}^{r-q-1} L[i-1]L[n+i-r-1].$$
$$\sum_{i=r-q+1}^{r} L^{q}[i-1]L^{q}[n+i-r-1] = \sum_{i=r-q+1}^{r} L[i-1]L[n+i-r-1].$$

Thus,

$$S_r^q - S_r = L^q[q]L^q[n+q-r] + L^q[r-q-1]L^q[n-q-1] - L[q]L[n+q-r] - L[r-q-1]L[n-q-1].$$
(5.4)

However, since  $L^q$  is identical to L with q-th and n - q - 1-th bits flipped, we have  $L^q[q] = -L[q]$  and  $L^q[n - q - 1] = -L[n - q - 1]$ .

$$S_{r}^{q} - S_{r} = -L[q]L^{q}[n+q-r] - L^{q}[r-q-1]L[n-q-1] - -L[q]L[n+q-r] - L[r-q-1]L[n-q-1] = -L[q]L[n+q-r] - L[r-q-1]L[n-q-1] - (5.5) - L[q]L[n+q-r] - L[r-q-1]L[n-q-1] = -2(L[q]L[n+q-r] + L[r-q-1]L[n-q-1]).$$

**Property IV** This property is almost identical to Property III. However, this time the fact that q = r - q - 1 should be considered. More precisely, we should revisit the equation:

$$S_{r}^{q} - S_{r} = L^{q}[q]L^{q}[n+q-r] + \left(\sum_{i=q+2}^{r} L^{q}[i-1]L^{q}[n+i-r-1]\right) - L[q]L[n+q-r] - \sum_{i=q+2}^{r} L[i-1]L[n+i-r-1].$$
(5.6)

Since q = r - q - 1, or 2q = r - 1, and n + q - r = n + q - 2q - 1 = n - q - 1, both coincides appeared on the same monomial:

$$\sum_{i=q+2}^{r} L^{q}[i-1]L^{q}[n+i-r-1] = \sum_{i=q+2}^{r} L[i-1]L[n+i-r-1].$$

Therefore,

$$S_{r}^{q} - S_{r} = L^{q}[q]L^{q}[n+q-r] - L[q]L[n+q-r] =$$

$$= L^{q}[q]L^{q}[n-q-1] - L[q]L[n-q-1] =$$

$$= -L[q]L^{q}[n-q-1] - L[q]L[n-q-1] =$$

$$= L[q]L[n-q-1] - L[q]L[n-q-1] = 0.$$
(5.7)

**Property V** We have that  $r \ge n - q$ , while in the same time  $q \ne r - q - 1$ . We continue the proof of this and the consequence properties by following the same method and observations made throughout the proof of Properties III and IV. A total of 4 coincides between  $L^q$  and L are possible:

- i 1 = q, or i = q + 1.
- n+i-r-1 = q, or i = q+r-n+1.

• 
$$i-1 = n-q-1$$
, or  $i = n-q$ .

• 
$$n+i-r-1 = n-q-1$$
, or  $i = r-q$ .

$$S_{r}^{q} - S_{r} = \sum_{i=1}^{r} L^{q} [i-1] L^{q} [n+i-r-1] - \sum_{i=1}^{r} L[i-1] L[n+i-r-1] =$$

$$= \sum_{i=1, i \notin \{q+1, q+r-n+1, n-q, r-q\}}^{r} L^{q} [i-1] L^{q} [n+i-r-1] +$$

$$+ L^{q} [q] L^{q} [n+q-r] + L^{q} [q+r-n] L^{q} [q] +$$

$$+ L^{q} [n-q-1] L^{q} [2n-q-r-1] +$$

$$+ L^{q} [r-q-1] L^{q} [n-q-1] -$$

$$- \sum_{i=1, i \notin \{q+1, q+r-n+1, n-q, r-q\}}^{r} L[i-1] L[n+i-r-1] -$$

$$- L[q] L[n+q-r] - L[q+r-n] L[q] -$$

$$- L[n-q-1] L[2n-q-r-1] -$$

$$- L[r-q-1] L[n-q-1] .$$
(5.8)

Since  $L^q$  is identical to L with q-th and n - q - 1-th bits flipped, it follows that both sums are comprised of non-flipped bits, and therefore they are equal. Thus:

$$\begin{split} S_{r}^{q} - S_{r} &= L^{q}[q]L^{q}[n+q-r] + L^{q}[q+r-n]L^{q}[q] + \\ &+ L^{q}[n-q-1]L^{q}[2n-q-r-1] + \\ &+ L^{q}[r-q-1]L^{q}[n-q-1] - \\ &- L[q]L[n+q-r] - L[q+r-n]L[q] - \\ &- L[n-q-1]L[2n-q-r-1] - \\ &- L[r-q-1]L[n-q-1] = \\ &= -L[q]L[n+q-r] - L[q+r-n]L[q] - \\ &- L[n-q-1]L[2n-q-r-1] - \\ &- L[r-q-1]L[n-q-1] - \\ &- L[q]L[n+q-r] - L[q+r-n]L[q] - \\ &- L[n-q-1]L[2n-q-r-1] - \\ &- L[q]L[n+q-r] - L[q+r-n]L[q] - \\ &- L[n-q-1]L[2n-q-r-1] - \\ &- L[r-q-1]L[n-q-1] = \\ &= -2*(L[q]L[n+q-r] + L[q+r-n]L[q] + \\ &+ L[n-q-1]L[2n-q-r-1] + L[r-q-1]L[n-q-1]). \end{split}$$

**Property VI** This property is very similar to the previous Property V. However, since q = r - q - 1, and by using the similar approach shown throughout the proof of Property IV, we could exactly pinpoint those monomials that include a double coincide. Indeed, when q = r - q - 1, n + q - r = n + (r - q - 1) - r = n - q - 1. Thus:

$$S_{r}^{q} - S_{r} = \sum_{i=1}^{r} L^{q} [i-1] L^{q} [n+i-r-1] - \sum_{i=1}^{r} L[i-1] L[n+i-r-1] =$$

$$= \sum_{i=1, i \notin \{q+1, q+r-n+1, n-q, r-q\}}^{r} L^{q} [i-1] L^{q} [n+i-r-1] +$$

$$+ L^{q} [q] L^{q} [n+q-r] + L^{q} [q+r-n] L^{q} [q] +$$

$$+ L^{q} [n-q-1] L^{q} [2n-q-r-1] -$$

$$- \sum_{i=1, i \notin \{q+1, q+r-n+1, n-q, r-q\}}^{r} L[i-1] L[n+i-r-1] -$$

$$- L[q] L[n+q-r] - L[q+r-n] L[q] -$$

$$- L[n-q-1] L[2n-q-r-1].$$
(5.10)

However:

$$L^{q}[q]L^{q}[n+q-r] - L[q]L[n+q-r] =$$
  
=  $L^{q}[q]L^{q}[n-q-1] - L[q]L[n-q-1] =$  (5.11)  
=  $(-1)L[q](-1)L[n-q-1] - L[q]L[n-q-1] = 0.$ 

Thus:

$$\begin{split} S_{r}^{q} - S_{r} &= \\ &= \sum_{i=1, i \notin \{q+1, q+r-n+1, n-q, r-q\}}^{r} L^{q}[i-1]L^{q}[n+i-r-1] + \\ L^{q}[q+r-n]L^{q}[q] + \\ &+ L^{q}[n-q-1]L^{q}[2n-q-r-1] - \\ &- \sum_{i=1, i \notin \{q+1, q+r-n+1, n-q, r-q\}}^{r} L[i-1]L[n+i-r-1] - \\ L[q+r-n]L[q] - \\ &- L[n-q-1]L[2n-q-r-1]. \end{split}$$
(5.12)

Following the same observations made throughout the proof of Property V, the equation could be further simplified to:

$$S_r^q - S_r = -2(L[q+r-n]L[q] + L[n-q-1]L[2n-q-r-1]).$$
(5.13)

We should emphasize, that Theorem 5.1.1 covers all the possible sidelobes positions and all the possible flip bit choices. Indeed, let's define the sidelobe position as *s*, while the flip bit position as *q*. Furthermore, we denote property *X* as  $\delta_X$ . Then:

$$\forall s \forall q \equiv (\forall e : e \equiv 0 \mod 2) \forall q \bigcup (\forall r : r \equiv 1 \mod 2) \forall q \equiv$$
  

$$\equiv \delta_1 \bigcup (\forall r : r \equiv 1 \mod 2) (\forall q : r \leq q) \bigcup$$
  

$$\bigcup (\forall r : r \equiv 1 \mod 2) (\forall q : r > q) =$$
(5.14)  

$$= \delta_1 \bigcup \delta_2 \bigcup (\forall r : r \equiv 1 \mod 2) (\forall q : r > q, r < n - q) \bigcup$$
  

$$\bigcup (\forall r : r \equiv 1 \mod 2) (\forall q : r > q, r \geq n - q).$$

For convenience, we will substitute ( $\forall r : r \equiv 1 \mod 2$ ) as  $\forall r \in \mathbb{O}$ :

$$\delta_{1} \bigcup \delta_{2} \bigcup (\forall r \in \mathbb{O}) (\forall q : r > q, r < n - q) \bigcup (\forall r \in \mathbb{O}) (\forall q : r > q, r \ge n - q) =$$

$$= \delta_{1} \bigcup \delta_{2} \bigcup (\forall r \in \mathbb{O}) (\forall q : r > q, r < n - q, q \ne r - q - 1) \bigcup (\forall r \in \mathbb{O}) (\forall q : r > q, r < n - q, q = r - q - 1) \bigcup (\forall r \in \mathbb{O}) (r \ge n - q) = \bigcup_{i=1}^{4} \delta_{i} \bigcup (\forall r \in \mathbb{O}) (r \ge n - q) =$$

$$= \bigcup_{i=1}^{4} \delta_{i} \bigcup (\forall r \in \mathbb{O}) (r \ge n - q, q \ne r - q - 1) \bigcup (\forall r \in \mathbb{O}) (r \ge n - q, q = r - q - 1) = \bigcup_{i=1}^{6} \delta_{i}.$$

$$(\forall r \in \mathbb{O}) (r \ge n - q, q = r - q - 1) = \bigcup_{i=1}^{6} \delta_{i}.$$

Furthermore,  $\bigcap_{i=1}^{6} \delta_i = \emptyset$ . Theorem 5.1.1, as well as the observations made throughout this section, are summarized as a pseudo-code in Algorithm 7. The following notations were used:

- n = 2l + 1: the odd length of the sequence.
- q: the bit position which is to be flipped. Defined for q < l. Please note, that besides q, the algorithm is going to flip n q 1 as well, since we want to keep the skew-symmetric property of the binary sequence.
- *L*: a binary skew-symmetric sequence.
- *S*: the sidelobes array corresponding to *L*.

When the algorithm finishes, L is going to be modified to  $L^q$ , while S is going to correspond to the sidelobes array of  $L^q$ . This is accomplished in O(n) for both time and memory complexities.

**Theorem 5.1.2.** Given two skew-symmetric sequences *L* and  $L^q$  with length n = 2l + 1, where  $L^q$  corresponds to *L* with *q*-th and n - q - 1-th bit flipped for some fixed q < l, and with sidelobes arrays denoted respectively as *S* and *S*<sup>*q*</sup>, the following property holds:

Algorithm 7 An algorithm for in-memory flip of skew-symmetric binary sequence in linear time and memory complexities

1: **procedure** FLIP(q, L, S)for r = 1; r < n - 1; r + = 2 do 2: 3: if  $r \leq q$  then continue 4: end if 5:  $\varepsilon_1 = L[q], \varepsilon_2 = L[n+q-r], \varepsilon_3 = L[r-q-1]$ 6:  $\epsilon_4 = L[n-q-1], \epsilon_5 = L[2n-q-r-1], \epsilon_6 = L[q+r-n]$ 7: if r < n - q then 8: if  $q \neq r - q - 1$  then 9:  $S_r = S_r - 2(\varepsilon_1 \varepsilon_2 + \varepsilon_3 \varepsilon_4)$ 10: end if 11: 12: else if  $q \neq r - q - 1$  then 13:  $S_r = S_r - 2(\varepsilon_1 \varepsilon_2 + \varepsilon_3 \varepsilon_4 + \varepsilon_4 \varepsilon_5 + \varepsilon_6 \varepsilon_1)$ 14: else 15:  $S_r = S_r - 2(\varepsilon_4 \varepsilon_5 + \varepsilon_6 \varepsilon_1)$ 16: end if 17: end if 18: end for 19: L[q] = -L[q], L[n-q-1] = -L[n-q-1]20: 21: end procedure

$$\mathbb{E}(L^{q}) = \mathbb{E}(L) + \sum_{\substack{r=q+1, r\neq 2q+1 \\ r \ge n-q, r \le n-1, r=2q+1 }}^{n-q-1} (16 + \sigma \kappa \varepsilon_{1}) + \sum_{\substack{r=n-q, r\neq 2q+1 \\ r \ge n-q, r \le n-1, r=2q+1 }}^{n-1} (\kappa(\varepsilon_{2} + \sigma \varepsilon_{1}) + 32 + 32\sigma \varepsilon_{1}\varepsilon_{2}) +$$

$$+ \sum_{\substack{r \ge n-q, r \le n-1, r=2q+1 \\ r \ge n-q, r \le n-1, r=2q+1 }} (16 + \kappa \varepsilon_{2}),$$
(5.16)

where 
$$\sigma = (-1)^{l-q}$$
,  $\kappa = -8S_r L[q]$ ,  $\varepsilon_1(r) = L[r-q-1]$ ,  $\varepsilon_2(r) = L[q+r-n]$ .

**Proof 5.1.2.** 

$$\mathbb{E}(L^{q}) - \mathbb{E}(L) = \sum_{i=1}^{n-1} (S_{i}^{q})^{2} - \sum_{i=1}^{n-1} (S_{i})^{2} = \sum_{i=1}^{n-1} ((S_{i}^{q})^{2} - (S_{i})^{2}) =$$

$$= \sum_{j=1}^{6} \sum_{i \in \mathbb{D}(\delta_{j})} ((S_{i}^{q})^{2} - (S_{i})^{2}) = \sum_{j=1}^{6} \sum_{i \in \mathbb{D}(\delta_{j})} ((S_{i} + \delta_{j})^{2} - (S_{i})^{2}) = (5.17)$$

$$= \sum_{j=1}^{6} \sum_{i \in \mathbb{D}(\delta_{j})} (2S_{i}\delta_{j} + \delta_{j}^{2}).$$

We proceed with the calculation of  $\delta_i^2$ , for  $i \in [3,5,6]$ .

$$\delta_{3}^{2} = (-2(L[q]L[n+q-r]+L[r-q-1]L[n-q-1]))^{2} =$$
  
=  $4(L[q]^{2}L[n+q-r]^{2}+L[r-q-1]^{2}L[n-q-1]^{2}+$   
+  $2L[q]L[n+q-r]L[r-q-1]L[n-q-1]).$  (5.18)

However,  $L[x]^2 = 1$  for any x, therefore:

$$\delta_3^2 = 4(1+1+2L[q]L[n+q-r]L[r-q-1]L[n-q-1]).$$
(5.19)

Furthermore, from the main property of the skew-symmetric binary sequences, we know that  $L[q] = (-1)^{l-q} L[n-q-1]$ . Thus:

$$L[n+q-r] = (-1)^{l-(n+q-r)} L[n-(n+q-r)-1] =$$
  
= (-1)<sup>l-n-q+r</sup> L[n-n-q+r-1] = (5.20)  
= (-1)<sup>l-n-q+r</sup> L[r-q-1].

However, since  $r \equiv n \equiv 1 \mod 2$ , we know that  $r - n \equiv 0 \mod 2$  and therefore  $(-1)^{l-n-q+r} = (-1)^{l-q}$ . Having this in mind, we can further simplify  $\delta_3^2$ :

$$\delta_3^2 = 8 + 8L[q]L[n+q-r]L[r-q-1]L[n-q-1]) =$$
  
= 8 + 8L[q](-1)<sup>l-q</sup>L[r-q-1])L[r-q-1](-1)<sup>l-q</sup>L[q] = (5.21)  
= 8 + 8L[q]<sup>2</sup>(-1)<sup>2(l-q)</sup>L[r-q-1]<sup>2</sup> = 8 + 8 = 16.

The calculation of  $\delta_5^2$  is similar to the calculation of  $\delta_3^2$ . Indeed:

$$\delta_5^2 = (-2L[n-q-1]L[2n-q-r-1] - 2L[q+r-n]L[q] - 2L[q]L[n+q-r] - 2L[r-q-1]L[n-q-1]))^2.$$
(5.22)

We could simplify L[2n - q - r - 1]:

$$L[2n-q-r-1] =$$

$$= (-1)^{l-(2n-q-r-1)} L[n-(2n-q-r-1)-1] =$$

$$= (-1)^{l-2n+q+r+1} L[-n+q+r].$$
(5.23)

Since *r* is odd, r + 1 is even, and therefore  $r + 1 - 2n \equiv 0 \mod 2$ . Therefore,  $(-1)^{l-2n+q+r+1} = (-1)^{l+q} = (-1)^{l-q} (-1)^{2q} = (-1)^{l-q}$ . Thus:

$$\begin{split} &\delta_{5}^{2} = 4(L[n-q-1]L[2n-q-r-1] + L[q+r-n]L[q] + \\ &+ L[q]L[n+q-r] + L[r-q-1]L[n-q-1]))^{2} = \\ &= 4((-1)^{l-q}L[q](-1)^{l-q}L[r+q-n] + L[q+r-n]L[q] + \\ &+ L[q](-1)^{l-q}L[r-q-1] + L[r-q-1](-1)^{l-q}L[q])^{2} = \\ &= 4(2L[q]L[r+q-n] + 2L[q]L[r-q-1](-1)^{l-q})^{2} = \\ &= 16L[q]^{2}(L[r+q-n] + L[r-q-1](-1)^{l-q})^{2} = \\ &= 16(L[r+q-n]^{2} + (L[r-q-1](-1)^{l-q})^{2} + \\ &+ 2L[r+q-n]L[r-q-1](-1)^{l-q}) = \\ &= 32 + 32L[r+q-n]L[r-q-1](-1)^{l-q}. \end{split}$$

Finally, we simplify  $\delta_6^2$ :

$$\delta_{6}^{2} = 4(L[n-q-1]L[2n-q-r-1] + L[q+r-n]L[q])^{2} =$$

$$= 4(L[n-q-1]^{2}L[2n-q-r-1]^{2} + L[q+r-n]^{2}L[q]^{2} +$$

$$+ 2L[n-q-1]L[2n-q-r-1]L[q+r-n]L[q]) = (5.25)$$

$$= 4(2+2(-1)^{l-q}L[q](-1)^{l-q}L[r+q-n]L[q+r-n]L[q] =$$

$$= 4(2+2(-1)^{2(l-q)}L[q]^{2}L[q+r-n]^{2}) = 16.$$

We have:

$$\mathbb{E}(L^{q}) - \mathbb{E}(L) = \sum_{j=1}^{6} \sum_{i \in \mathbb{D}(\delta_{j})} (2S_{i}\delta_{j} + \delta_{j}^{2}) =$$

$$= \sum_{j \in \{1,2,4\}} \sum_{i \in \mathbb{D}(\delta_{j})} (2S_{i}\delta_{j} + \delta_{j}^{2}) + \sum_{j \in \{3,5,6\}} \sum_{i \in \mathbb{D}(\delta_{j})} (2S_{i}\delta_{j} + \delta_{j}^{2}).$$
(5.26)

However, since  $\delta_j$ , for  $j \in \{1, 2, 4\}$  is 0, we have:

$$\mathbb{E}(L^{q}) - \mathbb{E}(L) = \sum_{j \in \{3,5,6\}} \sum_{i \in \mathbb{D}(\delta_{j})} (2S_{i}\delta_{j} + \delta_{j}^{2}) =$$

$$= \sum_{r=q+1, r\neq 2q+1}^{n-q-1} (2S_{r}\delta_{3} + \delta_{3}^{2}) + \sum_{r=n-q, r\neq 2q+1}^{n-1} (2S_{r}\delta_{5} + \delta_{5}^{2}) + (5.27)$$

$$+ \sum_{r\geq n-q, r\leq n-1, r=2q+1} (2S_{r}\delta_{6} + \delta_{6}^{2}).$$

and:

$$\delta_{3} = -2(L[q]L[n+q-r] + L[r-q-1]L[n-q-1]) =$$
  
=  $-2(L[q](-1)^{l-q}L[r-q-1] + L[r-q-1](-1)^{l-q}L[q]) =$  (5.28)  
=  $-4(-1)^{l-q}L[q]L[r-q-1] = -4\sigma L[q]\varepsilon_{1}.$ 

$$\begin{split} \delta_{5} &= -2(L[n-q-1]L[2n-q-r-1] + L[q+r-n]L[q] + \\ &+ L[q]L[n+q-r] + L[r-q-1]L[n-q-1]) = \\ &= -4(L[q]L[r+q-n] + L[q]L[r-q-1](-1)^{l-q}) = \\ &= -4L[q](L[r+q-n] + L[r-q-1](-1)^{l-q}) = \\ &= -4L[q](\varepsilon_{2} + \varepsilon_{1}\sigma). \end{split}$$
(5.29)

$$\delta_{6} = -2(L[n-q-1]L[2n-q-r-1] + L[q+r-n]L[q]) =$$
  
=  $-2((-1)^{l-q}L[q](-1)^{l-q}L[q+r-n] + L[q+r-n]L[q]) =$  (5.30)  
=  $-4(-1)^{l-q}L[q]L[q+r-n] = -4\sigma L[q]\varepsilon_{2}.$ 

we could substitute and further simplify the difference between the merit factors of  $L^q$  and L, i.e:

$$\mathbb{E}(L^{q}) - \mathbb{E}(L) = \sum_{r=q+1, r\neq 2q+1}^{n-q-1} (2S_{r}(-4\sigma L[q]\varepsilon_{1}) + 16) + \sum_{r=n-q, r\neq 2q+1}^{n-1} (2S_{r}(-4L[q](\varepsilon_{2} + \varepsilon_{1}\sigma)) + 32 + 32\varepsilon_{2}\varepsilon_{1}\sigma) + \sum_{r\geq n-q, r\leq n-1, r=2q+1}^{n-1} (2S_{r}(-4\sigma L[q]\varepsilon_{2}) + 16).$$
(5.31)

However, if we use  $\kappa$ , where  $\kappa = -8S_r L[q]$ :

$$\mathbb{E}(L^{q}) - \mathbb{E}(L) = \sum_{r=q+1, r\neq 2q+1}^{n-q-1} (-8S_{r}\sigma L[q]\varepsilon_{1} + 16) + \\ + \sum_{r=n-q, r\neq 2q+1}^{n-1} (-8S_{r}L[q](\varepsilon_{2} + \varepsilon_{1}\sigma)) + 32 + 32\varepsilon_{2}\varepsilon_{1}\sigma) + \\ + \sum_{r\geq n-q, r\leq n-1, r=2q+1}^{n-q-1} (-8S_{r}\sigma L[q]\varepsilon_{2} + 16) = \sum_{r=q+1, r\neq 2q+1}^{n-q-1} (\kappa\sigma\varepsilon_{1} + 16) + \\ + \sum_{r=n-q, r\neq 2q+1}^{n-1} (\kappa(\varepsilon_{2} + \varepsilon_{1}\sigma)) + 32 + 32\varepsilon_{2}\varepsilon_{1}\sigma) + \sum_{r\geq n-q, r\leq n-1, r=2q+1} (\kappa\sigma\varepsilon_{2} + 16).$$

In Algorithm 8 a pseudo-code of the derivative function is given. The input of the function consists of a bit position q to be flipped, a skew-symmetric sequence L with an odd length n = 2l + 1, as well as the corresponding sidelobe array S. We recall that besides the bit position q, s.t. q < l, the bit position n - q - 1 is flipped as well, to keep the skew-symmetric property of the binary sequence. The output of the function consists of a single integer value  $\Delta$ , which corresponds to the difference between the energies of L and  $L^q$ . In other words, if  $\Delta < 0$ , then the energy of the sequence  $L^q$  is lower than the merit factor of the sequence

| n     | The memory required by using the tau table | The memory required<br>by using the proposed<br>method |
|-------|--------------------------------------------|--------------------------------------------------------|
| 256   | 256.0 KB                                   | 1.0 KB                                                 |
| 512   | 1.0 MB                                     | 2.0 KB                                                 |
| 1024  | 4.0 MB                                     | 4.0 KB                                                 |
| 5000  | 95.37 MB                                   | 19.53 KB                                               |
| 20000 | 1525.88 MB                                 | 78.12 KB                                               |
| 99999 | 37.25 GB                                   | 390.62 KB                                              |

Table 5.1 A comparison between the memory required by the tau table and the memory required by the proposed in-memory flip algorithm.

L. Therefore, the merit factor of L is going to be higher than the merit factor of  $L^{q}$ . More formally,

$$\Delta < 0 \implies \mathbb{E}(L^{q}) - \mathbb{E}(L) < 0 \implies \mathbb{E}(L^{q}) < \mathbb{E}(L) \implies 2\mathbb{E}(L^{q}) < 2\mathbb{E}(L) \implies$$
$$\implies \frac{1}{2\mathbb{E}(L^{q})} > \frac{1}{2\mathbb{E}(L)} \implies \frac{n^{2}}{2\mathbb{E}(L^{q})} > \frac{n^{2}}{2\mathbb{E}(L)} \implies \mathbb{MF}(L^{q}) > \mathbb{MF}(L).$$
(5.33)

The derivative function allows us to reduce the memory requirement of some state-of-theart algorithms from  $O(n^2)$  to O(n). In Table 5.1, a comparison between the space required by the tau table and the memory requirement by the proposed method is presented. During the calculations, an assumption was that both memory structures are comprised of integers (4 Bytes). For example, by using just one thread of the processors, the tau table corresponding to binary sequences with length 5000 would require approximately 95.37 Megabytes to be allocated for the tau table expansion routine, while the sidelobe array presented in this work would require the allocation of approximately 19.53 Kilobytes. It should be emphasized, that interchanging the tau table used by the state-of-the-art algorithms with the proposed sidelobe array structure would not impact the time complexity of the tweaked algorithm. However, from a practical point of view, the significant memory reduction could greatly enhance the overall time performance of a tweaked algorithm, since the size of the sidelobe array could be usually saved inside the CPU cache layers, instead of saving it to the slower memory banks. Furthermore, interchanging the tau table with the proposed sidelobe array could allow the multithreading capabilities of modern CPUs, and even GPUs, to be fully utilized.

For example, we have implemented a lightweight version of the lssOrel algorithm [24] with the tau table reduced. The pseudo-code of the enhanced implementation is given in Algorithm 9. The following notations were used:

- $\Psi$  a binary sequence with length *n*.
- $\Omega_{\Psi}$  the corresponding sidelobe array of  $\Psi$  the replacement of the tau table.
- $\mathbb{H}$  a set of fingerprints, or hashes, of visited candidates.
- $\mathbb{T}_i$  an inner threshold value. When the inner counter  $w_i$  reaches  $\mathbb{T}_i$ , the set is flushed and the whole routine restarts. The threshold value  $\mathbb{T}_i$  constrains the size of the set  $\mathbb{H}$ .
- $\mathbb{T}_o$  an outer threshold value. When the outer counter  $w_o$  reaches  $\mathbb{T}_o$ , the program is terminated. However,  $\mathbb{T}_o$  could be an expression as well.
- $\mathbb{H}$ .add(hash( $\Psi$ )) adding the hash of the binary sequence  $\Psi$  to the set  $\mathbb{H}$ .
- C(Ω<sub>Ψ</sub>) the cost function, i.e. the sum of the squares of all elements in the sidelobe array Ω<sub>Ψ</sub>, which is equal to the energy of Ψ, or E(Ψ).
- pickBestNeighbor(Ψ, Ω<sub>Ψ</sub>, ℍ) a function, which returns the index of the best unexplored neighbor of Ψ, i.e. the binary sequence Ψ<sup>f</sup> with a distance of exactly 1 flip away from Ψ, s.t. hash(Ψ<sup>f</sup>) does not belong to the set ℍ. The pseudo-code of this helper function is given in Algorithm 10.

Several notations were used throughout the pseudo-code presentation shown in Algorithm 10.

- MAX the maximum possible value, which the type of the variable bestDelta could hold. For example, if the variable bestDelta is of type INT (4 Bytes) then MAX = 7FFFFFFF16 = 2,147,483,647
- P,Q two odd prime numbers, which are used to calculate the hash of the binary sequence. During our experiments, they were fixed to P = 315223 and Q = 99041. It should be noted, that no additional efforts were made to find better, in terms of hash collision false positives or false negatives rates, values of P and Q.

Algorithm 9 was implemented (C++) on a general-purpose computer equipped with a budget processor Xeon-2640 CPU, having a base frequency of 2.50 GHz. A skew-symmetric binary sequence with length 449 and a record-breaking merit factor of 6.5319 was found after approximately one day. It should be noted that all 12 threads of the CPU were launched in parallel. As a comparison, the currently known optimal results (a merit factor of 6.5218) were acquired by using the Slovenian Initiative for National Grid (SLING) infrastructure (100 processors) and 4-day threshold limitation [23]. The binary sequence is given in a hexadecimal format in Table 5.2.

Algorithm 8 Lightweight flip probing of skew-symmetric binary sequences in linear both time and memory complexities

```
1: function DERIVATIVE(q, L, S)
 2: \Delta = 0
 3: \sigma = (-1)^{l-q}
 4: for r = 1; r < n - 1; r + = 2 do
        if r \le q then
 5:
          continue
 6:
        end if
 7:
        \kappa = -8S_r L[q]
 8:
 9:
        \varepsilon_1 = L[r-q-1]
        \varepsilon_2 = L[q+r-n]
10:
        if r < n - q then
11:
          if q \neq r - q - 1 then
12:
            \Delta = \Delta + 16 + \kappa \sigma \varepsilon_1
13:
          end if
14:
15:
         else
          if q \neq r - q - 1 then
16:
            \Delta = \Delta + 32 + \kappa(\varepsilon_2 + \varepsilon_1 \sigma) + 32\varepsilon_2 \varepsilon_1 \sigma
17:
          else
18:
19:
            \Delta = \Delta + 16 + \kappa \sigma \varepsilon_2
20:
          end if
         end if
21:
      end for
22:
23: return \Delta
24: end function
```

Algorithm 9 Heuristic algorithm, with tau table reduction, searching for binary skewsymmetric sequences with a high merit factor.

```
1: procedure MF(n, \mathbb{T}_i, \mathbb{T}_o)
       bestMF, w_o \leftarrow 0, 0
 2:
 3:
       while True do
        \mathbb{H}, w_i, \leftarrow \{\emptyset\}, 0
 4:
         \Psi \leftarrow random
 5:
        \mathbb{H}.add(hash(\Psi))
 6:
         V \leftarrow C(\Omega_{\Psi})
 7:
         while True do
 8:
 9:
          bestN \leftarrow pickBestNeighbor(\Psi, \Omega_{\Psi}, \mathbb{H})
10:
          if best N = -1 then
11:
            break
          end if
12:
          Flip(bestN, \Psi, \Omega_{\Psi})
13:
           V \leftarrow C(\Omega_{\Psi})
14:
          w_i + = 1
15:
          \mathbb{H}.add(hash(\Psi))
16:
          if \frac{n^2}{2V} > bestMF then
17:
            bestMF \leftarrow \frac{n^2}{2V}
18:
           end if
19:
          if w_i > \mathbb{T}_i then
20:
            w_o += 1
21:
            break
22:
          end if
23:
         end while
24:
25:
        if w_o > \mathbb{T}_o then
          break
26:
         end if
27:
28:
       end while
29: end procedure
```

Algorithm 10 Pseudo-code of the helper function pickBestNeighbor

1: **function** PICKBESTNEIGHBOR( $\Psi, \Omega_{\Psi}, \mathbb{H}$ ) 2: best N = -1bestDelta = MAX3: for  $q = 0; q < \lceil \frac{n}{2} \rceil; q + do$  $\delta = \text{Derivative}(q, \Psi, \Omega_{\Psi})$ 4: 5: if  $\delta \leq$  bestDelta then 6:  $hash=\mathbb{P}$ 7: **for**  $i = 0; i < [\frac{n}{2}]; i + +$ **do** 8: if q == i then 9: hash=hash\* $\mathbb{Q}$  -  $\Psi[i]$ 10: else 11: hash=hash\* $\mathbb{Q} + \Psi[i]$ 12: end if 13: end for 14: if  $hash(\Psi) \in \mathbb{H}$  then 15: continue 16: end if 17: bestDelta =  $\delta$ 18: 19: bestN=q end if 20: end for 21: return bestN 22: 23: end function

Table 5.2 An example of a skew-symmetric binary sequence with length 449 and a record merit factor found by Algorithm 9. The sequence is presented in HEX with leading zeroes omitted.

| n   | Sequence in HEX                 | MF     |
|-----|---------------------------------|--------|
| 449 | 96f633d86fe825794ed23a9dfd7d4c3 | 6.5319 |
|     | abd080cf76cbf9bdab9a7b2533e3161 |        |
|     | 901d1950c774ca8bd012cfd7d5d8123 |        |
|     | c4f97e285469d327478             |        |

It should be emphasized that the flip operation for the middle index of the skew-symmetric binary sequence  $\Psi$  is not permitted. However, this is not affecting the search space by cutting some parts of it. Indeed, let's define the binary sequence  $\mathbb{B} = b_1 b_2 \cdots b_l M b_{l+1} b_{l+2} \cdots b_{2l}$  of length n = 2l + 1 and the binary sequence  $\overline{\mathbb{B}}$  as the binary sequence  $\mathbb{B}$  with all the bits flipped, i.e.  $\overline{\mathbb{B}} = \overline{b_1 b_2} \cdots \overline{b_l M b_{l+1} b_{l+2}} \cdots \overline{b_{2l}}$ . It could be easily shown that all sidelobes of  $\mathbb{B}$  and  $\overline{\mathbb{B}}$  are identical. Indeed,

$$C_{u}(\overline{\mathbb{B}}) = \sum_{j=0}^{n-u-1} \overline{b_{j}b_{j+u}} = \sum_{j=0}^{n-u-1} (-1)^{2} b_{j}b_{j+u} = C_{u}(\mathbb{B}).$$

## 5.1.1 On the Bernasconi Conjecture

As previously discussed, in [14] Bernasconi conjectured that stochastic search procedures will not yield merit factors higher than 5 for long sequences (greater than 200). It should be mentioned that this prediction was made in 1987. Since then, many years have passed and pieces of evidence that stochastic search procedures could perform better than the prediction's expectations were found. Indeed, heuristic algorithms that could find odd binary sequences with lengths up to about 500 and merit factors greater than 5 were discovered. However, the Bernasconi conjecture appears valid when the threshold of the binary sequence's length is updated and lifted. Since during the last 35 years the computational capabilities of modern CPUs are rising almost exponentially such actualization would be fair. However, if a stochastic search procedure is found, a procedure that could reach extremely long binary sequences with merit factors greater than 5, by using a mid-range general-purpose computer, then the barriers predicted by Bernasconi could be very pessimistic.

Some more experiments were made by using Algorithm 9 and skew-symmetric binary sequences with lengths greater than 1000. For example, within several seconds, a binary

sequence with length 1001 and a merit factor greater than 5 was discovered. By leaving the routine for a minute, binary sequences with merit factors up to 5.65 were reached. Then, within several seconds as well, a binary sequence with a length of 2001 and a merit factor greater than 5 was discovered. However, this time the routine needed almost an hour to reach binary sequences with merit factors up to 5.40. When the length is increased to 5001, the algorithm required half a day to reach a binary sequence with MF greater than 5.10. Finally, the algorithm failed to reach a binary sequence with length 10001 and a merit factor greater than 5 within 24 hours (by using all the twelve threads of the processor). The numerical experiments suggest that Algorithm 9 is not able to find binary sequences with lengths greater than 10000 and merit factor greater than 5.

Indeed, the Algorithm 9 property of avoiding Hasse cycles, or the self-avoiding walk (SAW) property, yields binary sequences with near-optimal merit factors. However, the efficiency of this strategy melts away when binary sequences with bigger lengths are used. This is not surprising, since the bigger the length, the larger the search space is. For example, the search space of the set of all skew-symmetric binary sequences with length 10001 is  $2^{5001}$ . More importantly, several more computational burdens were introduced by Algorithm 9 itself:

- The pickBestNeighbor function (see Algorithm 10) is looking for the best neighbor of the current binary sequence Ψ. Thus, each calling of the function would trigger the Derivative function exactly *n* times.
- As previously discussed, Algorithm 9 is using a hashing technique to keep an unordered set of the already visited notes. Such an approach is causing a significant computation burden to the algorithm for larger values of *n*:
  - 1. The unordered set strategy requires at least  $\mathbb{GX}n\mathbb{T}_o$  bytes of memory, where  $\mathbb{G}$  is the count of the threads used by the processor, while  $\mathbb{X}$  is the size in bytes of the used variable type.
  - 2. Frequently, when a candidate  $\Psi^q$  with lower score  $\delta$  is found (see line 6 from Algorithm 10), a hash of the candidate should be calculated, so to be further checked was the binary sequence  $\Psi^q$  met before.

To annihilate all the aforementioned computational burdens, an Algorithm 11 is proposed. In summary, the following simplifications were introduced:

1. The pickBestNeighbor function straightforwardly accepts the first met neighbor having a strictly better score.

- 2. By introducing the previous tweak, the algorithm cycle trapping is avoided. It should be noted that if small values of *n* are used, this could greatly worsen the quality, in terms of the high merit factor, of the binary sequences found. However, when considering larger values of *n*, the numerical experiments suggest that this tweak could be highly efficient. Thus, the need of using an unordered set could be annihilated and the memory complexity of the algorithm significantly reduced.
- 3. Since the unordered set was annihilated, the hash routines are removed as well.

In Algorithm 11 the following notations were used:

- $\ensuremath{\mathbb{T}}$  the threshold value of the instance.
- *C* the cost function.
- $V, V^*$  respectively the current best and the overall best score values.
- c the counter. The algorithm quits if the counter c reaches the threshold  $\mathbb{T}$ .
- L, G binary variables: L (local) is activated if V is improved, while G (global) is activated if V<sup>\*</sup> is improved.
- Quake function the function flips  $\mathbb{Q}$  random bits in  $\Psi$ .

During our experiments, by using Algorithm 11, we were able to reach skew-symmetric binary sequences with lengths up to 100,001 and merit factors greater than 5. However, the greater the length of the binary sequence is, the larger the value of  $\mathbb{Q}$  should be. Some of those  $\mathbb{Q}$  values, used during our experiments, are given in Table 5.3. It should be emphasized, that those  $\mathbb{Q}$  values guarantee to reach a skew-symmetric binary sequence with merit factors greater than 5.0, but it is highly unlikely that exactly those values would yield the best results.

For example, by using Algorithm 11, a binary sequence with length 10,001 and a merit factor greater than 5 was reached for approximately one minute. Leaving the algorithm for another minute would reach merit factors of 5.10 and higher. Doubling the length of the binary sequence to 20,001 required from Algorithm 11 approximately 4 minutes to reach a skew-symmetric binary sequence with a merit factor greater than 5.

Binary sequences with a length of 50,001 and a merit factor greater than 5 were reached for leaving the algorithm for approximately 40 minutes, while binary sequences with a length of 100,001 and a merit factor greater than 5 were reached for approximately 5 hours. However, it should be emphasized that the larger the sequence, the larger the number of quakes  $\mathbb{Q}$  should be. In Table 5.3 the values of  $\mathbb{Q}$  corresponding to the binary sequences'

Algorithm 11 A heuristic algorithm, with a tau table, unordered set, and hashing routines reduced, for searching long skew-symmetric binary sequences with a high merit factor. Both the time and memory complexity of the algorithm are O(n).

```
1: procedure SHC(n, \mathbb{T})
  2:
         \Psi \leftarrow random
         V^*, V, \mathbb{G}, \mathbb{L}, c \leftarrow C(\Omega_{\Psi}), 0, True, False, 0
  3:
         while c < \mathbb{T} do
  4:
           c += 1
  5:
           if G then
  6:
             pick random r \in \left[0, \left\lfloor \frac{n}{2} \right\rfloor\right)
  7:
             for q \in \left[0, \left\lfloor \frac{n}{2} \right\rfloor\right) do
  8:
                \delta = \text{Derivative}((r+q) \mod \lfloor \frac{n}{2} \rfloor, \Psi, \Omega_{\Psi})
  9:
                if \delta > 0 then
10:
                  continue
11:
                end if
12:
                \operatorname{Flip}((r+q) \bmod \lfloor \frac{n}{2} \rfloor, \Psi, \Omega_{\Psi})
13:
                V += \delta
14:
                if V^* > C(\Omega_{\Psi}) then
15:
                  V^*, \mathbb{L} \leftarrow C(\Omega_{\Psi}), True
16:
                  break
17:
                else
18:
                  Flip((r+q) \mod \lfloor \frac{n}{2} \rfloor, \Psi, \Omega_{\Psi})
19:
20:
                end if
              end for
21:
              if \mathbb{L} then
22:
                \mathbb{G}, \mathbb{L} \leftarrow \text{True}, \text{False}
23:
                continue
24:
              else
25:
                \mathbb{G} \leftarrow \text{False}
26:
              end if
27:
28:
           else
              Quake(\mathbb{Q}, \Psi, \Omega_{\Psi})
29:
              \mathbb{G}, \mathbb{L} \leftarrow \text{True}, \text{False}
30:
31:
           end if
         end while
32:
```

33: end procedure

lengths used throughout the experiments are given. Small cuts from the history of the search traces are provided within the four complimentary files. Each file holds skew-symmetric binary sequences of fixed length -  $2^45^4 + 1$ ,  $2^55^4 + 1$ ,  $2^45^5 + 1$  or  $2^55^5 + 1$ . All sequences possess merit factors greater than 5.

Length  $n \mid$ Quake  $\mathbb{Q}$ 

Table 5.3 The number of quakes used throughout our experiments.

| LCIIGUII II | Quane | Ľ |
|-------------|-------|---|
| 999         | 1     |   |
| 1499        | 2     |   |
| 1999        | 3     |   |
| 2999        | 4     |   |
| 4999        | 6     |   |
| 10001       | 14    |   |
| 20001       | 30    |   |
| 50001       | 70    |   |
| 100001      | 160   |   |
|             |       |   |

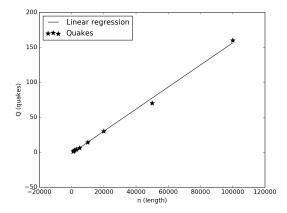


Fig. 5.1 A linear regression made to all the  $(n, \mathbb{Q})$  pairs from Table 5.3. The equation representing the linear fit is  $\mathbb{Q} = 0.001578787n - 1.546093$ .

The numerical experiments suggest that the value of  $\mathbb{Q}$  grows linear with the length of the binary sequence. This is visible in Figure 5.1. The time required (in seconds) to reach binary sequences with a merit factor strictly greater than 5 is given in Figure 5.2. As expected, the time required to reach a binary sequence with a merit factor greater than 5 grows quadratic with the size of the binary sequences *n*.

Both the regression models are rough approximations of the algorithm's behavior. For a more precise estimation - more instances of the algorithm should be analyzed. However, one very important property of Algorithm 11 should be further highlighted. When a counter to the function Quake is attached, during the optimization routine a total of approximately 2000-2500 calls to the function are made before a binary sequence with a merit factor greater than 5 is reached. This observation, as well as the numerical pieces of evidence found through our experiments, suggest that given an arbitrary binary sequence  $\mathbb{B}$  with length *n*, and by using a general-purpose computer with 12 threads, as well as C++ implementation of Algorithm 11 launched with variable  $\mathbb{Q}$  close to [0.001578787n - 1.546093],  $\mathbb{B}$  could be optimized to a binary sequence with merit factor greater than 5, after an approximately  $177.2867 - 0.0562043n + 0.000002340029n^2$  seconds.

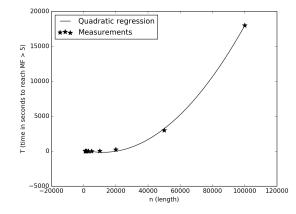


Fig. 5.2 A quadratic regression of all  $(n, \mathbb{T})$  measurements. The equation representing the quadratic fit is  $\mathbb{T} = 177.2867 - 0.0562043n + 0.000002340029n^2$ .

## 5.1.2 New Classes of Binary Sequences with High Merit Factor

Despite the rich results regarding the skew-symmetric binary sequences, the search for binary sequences with even lengths and high MF was scarcely researched. This is not surprising, since the sieving proposed by Golay applies to odd-length sequences only.

In this section, motivated by the absence of computationally efficient sieving for binary sequences with even lengths and high merit factor values, several new classes of binary sequences are proposed. We start with the definition of a class of finite binary sequences, called pseudo-skew-symmetric, with alternate auto-correlation absolute values equal to one. The class is defined by using sieving suitable for even-length binary sequences. Then, by using some mathematical observations, we show how state-of-the-art algorithms for searching skew-symmetric binary sequences with high merit factor and length 2n + 1 could be easily converted to algorithms searching pseudo-skew-symmetric binary sequences with high merit

factor and lengths 2n or 2n + 2. More importantly, this conversion does not degrade the performance of the modified algorithm.

Then, by using number partitions [6], an additional sieving strategy for both skewsymmetric and pseudo-skew-symmetric sequences is proposed. A method of finding subclasses of binary sequences with high MF is further discussed. The experiments revealed that the classes defined in this section are highly promising. By using a single mid-range computer, we were able to improve all records for skew-symmetric binary sequences with lengths above 225, which were recently reached by various algorithms and a supercomputer grid. We further revealed that binary sequences with even or odd length *n*, for  $n \le 2^8$ , and with merit factor strictly greater than 8, and binary sequences with even or odd length *n*, for  $n \le 2^9$  and with a merit factor strictly greater than 7 do exist.

Finally, we demonstrate the efficiency of the proposed algorithm by launching it on two extremely hard search spaces of binary sequences of lengths 573 and 1009. The choice of those two specific lengths is motivated by the approximation numbers given in [24], Figure 7, showing how much time the state-of-the-art stochastic solver lssOrel\_8 need to reach binary sequences with the aforementioned lengths and merit factors close to 6.34. More precisely, it was estimated that finding solutions with a merit factor of 6.34 for a binary sequence with length 573 requires around 32 years, while for a binary sequence with length 1009, the average runtime prediction to reach the merit factor of 6.34 is 46774481153 years. By using the proposed in this section algorithm, we were able to reach such candidates within several hours.

**Definition 5.1.1** (Pseudo-Skew-Symmetric Binary Sequence). We call a given sequence P = a ||X = Y||b a pseudo-skew-symmetric binary sequence, if either X or Y are skew-symmetric binary sequences, for some  $a \in \{-1, 1\}$  or  $b \in \{-1, 1\}$ .

**Proposition 5.1.1.** The sidelobes array of pseudo-skew-symmetric binary sequences consists of alternating  $\pm$  ones.

**Proof 5.1.3.** Let us denote the pseudo-skew-symmetric binary sequence as *P*. By definition, *P* could be represented as a ||A or B||b, for some skew-symmetric binary sequences *A* or *B*.

If P = B | | b, for some skew-symmetric binary sequence  $B = (b_0, b_1, \dots, b_{n-1})$ , then  $P = (b_0, b_1, \dots, b_{n-1}, b_n)$ , where  $b_n = b$ .

Thus,

$$\hat{C}_i(P) = \sum_{j=0}^i b_j b_{j+n-i}, \text{ for } i \in \{0, 1, \cdots, n\}.$$

Therefore, the sidelobes of *P* could be further simplified:

$$\hat{C}_{i}(P) = \sum_{j=0}^{i} b_{j} b_{j+n-i} = \sum_{j=0}^{i-1} b_{j} b_{j+n-i} + b_{i} b_{i+n-i} = \sum_{j=0}^{i-1} b_{j} b_{j+n-i} + b_{i} b_{n} = \hat{C}_{i-1}(B) + b_{i} b_{n}.$$

The last substitution arises from the definition of the sidelobe array:

$$\hat{C}_{i-1}(B) = \sum_{j=0}^{i-1} b_j b_{j+n-(i-1)-1} = \sum_{j=0}^{i-1} b_j b_{j+n-i}$$

The sidelobe array of P, denoted as  $S_P$ , could be then simplified:

$$S_{P} = [\hat{C}_{0}(P), \hat{C}_{1}(P), \dots, \hat{C}_{n-1}(P), \hat{C}_{n}(P)] = = [\hat{C}_{0}(P), \hat{C}_{0}(B) + b_{1}b_{n}, \hat{C}_{1}(B) + b_{2}b_{n}, \dots, \hat{C}_{n-2}(B) + b_{n-1}b_{n}, \hat{C}_{n-1}(B) + b_{n}b_{n}] = = [b_{0}b_{n}, \hat{C}_{0}(B) + b_{1}b_{n}, b_{2}b_{n}, \dots, b_{n-1}b_{n}, \hat{C}_{n-1}(B) + b_{n}b_{n}].$$
(5.34)

Note that  $\hat{C}_x(B) = 0$ , for odd values of *x*. Since  $b_i \in \{-1, 1\}$ ,  $\hat{C}_x(P) = b_x b_n = \pm 1$ , for even values of *x*, which completes the proof of the first case, or more formally:

$$S_P = \left[ \pm 1, \hat{C}_0(B) + b_1 b_n, \pm 1, \cdots, \pm 1, \hat{C}_{n-1}(B) + b_n b_n \right].$$

Let us consider the second case. If P = a ||A, then  $P^{rev} = A^{rev} ||a$  will possess the same sidelobes array as *P*, where  $A^{rev}$  denotes the reversed version of a given binary sequence *A*. Since *A* is skew-symmetric sequence,  $A^{rev}$  is a skew-symmetric as well. Thus, by applying the first case, we have:

$$S_P = S_{P^{rev}} = \left[ \pm 1, \hat{C}_0(A^{rev}) + a_1 a_n, \pm 1, \cdots, \pm 1, \hat{C}_{n-1}(A^{rev}) + a_n a_n \right],$$

where  $A^{rev} = (a_0, a_1, \dots, a_{n-1}, a_n)$  and  $a_n = a$ , which completes the proof.

This property is beneficial for the energy E(P) of the pseudo-skew-symmetric binary sequence *P*. Indeed,

$$\mathbb{E}(P) = \sum_{u=0}^{n-1} \hat{C}_u(P)^2 = \sum_{u=0, u_{even}}^{n-1} \hat{C}_u(P)^2 + \sum_{u=0, u_{odd}}^{n-1} \hat{C}_u(P)^2 =$$
$$= \sum_{u=0, u_{even}}^{n-1} \pm 1^2 + \sum_{u=0, u_{odd}}^{n-1} \hat{C}_u(P)^2 = \lfloor \frac{n}{2} \rfloor + \sum_{u=1, u_{odd}}^{n} \hat{C}_u(P)^2.$$

The following property allows us to convert an existing algorithm for searching skewsymmetric binary sequences with high merit factor to an algorithm searching pseudo-skewsymmetric binary sequences and high merit factor.

**Proposition 5.1.2.** Given a skew-symmetric binary sequence  $B = (b_0, b_1, \dots, b_{n-1})$  with sidelobes array

$$S_B = \left[\hat{C}_0(B), \hat{C}_1(B), \cdots, \hat{C}_{n-2}(B), \hat{C}_{n-1}(B)\right],$$

the following property holds:

$$\mathbb{E}(P) = \mathbb{E}(B) + n + 2b_n\delta,$$

where *P* is the pseudo-skew-symmetric sequence  $B||b_n$  and  $\delta = \sum_{u=0,u_{even}}^{n-2} \hat{C}_u(B)b_{u+1}$ .

**Proof 5.1.4.** Using the result from the previous proposition proof we have:

$$S_P = \left[\pm 1, \hat{C}_0(B) + b_1 b_n, \pm 1, \cdots, \pm 1, \hat{C}_{n-1}(B) + b_n b_n\right]$$

By using the definition of energy of a binary sequence we have:

$$\mathbb{E}(P) - \mathbb{E}(B) = \sum_{u=0}^{n-1} \hat{C}_{u}(P)^{2} - \sum_{u=0}^{n-2} \hat{C}_{u}(B)^{2} = 1 + \sum_{u=1}^{n-1} \hat{C}_{u}(P)^{2} - \sum_{u=0}^{n-2} \hat{C}_{u}(B)^{2} = 1 + \sum_{u=0}^{n-2} \hat{C}_{u+1}(P)^{2} - \hat{C}_{u}(B)^{2} = 1 + \sum_{u=0,u_{oud}}^{n-2} \hat{C}_{u+1}(P)^{2} - \hat{C}_{u}(B)^{2} + \sum_{u=0,u_{odd}}^{n-2} \hat{C}_{u+1}(P)^{2} - \hat{C}_{u}(B)^{2} = 1 + \sum_{u=0,u_{oud}}^{n-2} (\hat{C}_{u}(B) + b_{u+1}b_{n})^{2} - \hat{C}_{u}(B)^{2} + \sum_{u=0,u_{odd}}^{n-2} \pm 1^{2} - 0^{2} = 1 + \sum_{u=0,u_{even}}^{n-2} (\hat{C}_{u}(B) + b_{u+1}b_{n})^{2} - \hat{C}_{u}(B)^{2} + \lfloor \frac{n-1}{2} \rfloor = 1 + \sum_{u=0,u_{even}}^{n-2} 2\hat{C}_{u}(B)b_{u+1}b_{n} + \sum_{u=0,u_{even}}^{n-2} (b_{u+1}b_{n})^{2} + \lfloor \frac{n-1}{2} \rfloor = 1 + \sum_{u=0,u_{even}}^{n-2} 2\hat{C}_{u}(B)b_{u+1}b_{n} + \lfloor \frac{n-1}{2} \rfloor + \lfloor \frac{n-1}{2} \rfloor = 1 + \sum_{u=0,u_{even}}^{n-2} 2\hat{C}_{u}(B)b_{u+1}b_{n} + \lfloor \frac{n-1}{2} \rfloor + \lfloor \frac{n-1}{2} \rfloor = n + 2b_{n}\sum_{u=0,u_{even}}^{n-2} \hat{C}_{u}(B)b_{u+1}. \square$$

The last property is of significant importance when converting an algorithm searching for skew-symmetric binary sequences, denoted as  $\mathscr{A}$ , to an algorithm searching for pseudoskew-symmetric binary sequences  $\mathscr{B}$  and a high merit factor. Indeed, despite the complexity of algorithm  $\mathscr{A}$  we can decompose it to a tape  $\cdots ||\mathbb{L}_1||\cdots ||\mathbb{L}_2||\cdots ||\mathbb{L}_n||\cdots$ , where  $\mathbb{L}_i$  are stages of  $\mathscr{A}$ , where better candidates could be announced. They are known as local optimums in heuristic search literature. We could easily replace  $\mathbb{L}_i$  with  $\mathbb{L}_i||\mathbb{T}_i$ , where  $\mathbb{T}_i$  is a simple routine with memory and time complexity of O(n), which calculates the pseudo-skewsymmetric sequences  $L_i||1$  and  $L_i|| - 1$  merit factors, where  $L_i$  is the current best candidate. It should be noted that  $\mathscr{B} = \cdots ||\mathbb{L}_1||\mathbb{T}_1||\cdots ||\mathbb{L}_2||\mathbb{T}_2||\cdots ||\mathbb{L}_n||\mathbb{T}_n||\cdots$  does not interfere with the normal work of  $\mathscr{A}$  by design. Furthermore, since those linear time complexity checkups are initiated on local optimums only, the delay of  $\mathscr{B}$  compared to  $\mathscr{A}$  caused by the additional instructions  $\mathbb{T}_i$  is negligible.

We could further extend the search of highly-competitive pseudo-skew-symmetric sequences by the following observation:

**Proposition 5.1.3.** Given a skew-symmetric binary sequence  $B = b_0 ||B'||b_{n-1}$  both binary sequences  $b_0 ||B'|$  and  $B' ||b_{n-1}$  are pseudo-skew-symmetric.

**Proof 5.1.5.** From the main property of the skew-symmetric sequences follows that B' is skew-symmetric as well. Thus, the pseudo-skew-symmetry of  $b_0 ||B'$  and  $B' ||b_{n-1}$  follows directly from definition 5.1.1.

**Proposition 5.1.4.** Given a skew-symmetric binary sequence  $B = (b_0, b_1, \dots, b_{n-1}) = b_0 ||B'||b_{n-1}$  with sidelobes array

$$S_B = \left[ \hat{C}_0(B), \hat{C}_1(B), \cdots, \hat{C}_{n-2}(B), \hat{C}_{n-1}(B) \right],$$

the following property holds:

$$\mathbb{E}(P) = \mathbb{E}(B) + n - 3 + 2b_{n-1}\delta,$$

where *P* is the pseudo-skew-symmetric sequence  $b_0 ||B'$  and  $\delta = \sum_{u=1, u_{even}}^{n-2} - \hat{C}_u(B)b_u$ .

**Proof 5.1.6.** We have  $B = (b_0, b_1, \dots, b_{n-1})$  and  $P = (b_0, b_1, \dots, b_{n-2})$ . Furthermore,

$$\hat{C}_i(P) = \sum_{j=0}^i b_j b_{j+n-2-i}, \text{ for } i \in \{0, 1, \dots, n-2\}$$

Decomposing  $\hat{C}_i(B)$  reveals the following:

$$\hat{C}_{i}(B) = \sum_{j=0}^{i} b_{j} b_{j+n-1-i} = \sum_{j=0}^{i-1} b_{j} b_{j+n-1-i} + b_{i} b_{i+n-1-i} = b_{i} b_{n-1} + \hat{C}_{i-1}(P)$$

In other words,  $\hat{C}_{i-1}(P) = \hat{C}_i(B) - b_i b_{n-1}$ . Thus, by using the sidelobes array of *B*,

$$S_B = \left[\hat{C}_0(B), 0, \hat{C}_2(B), 0, \cdots, 0, \hat{C}_{n-3}(B), 0, \hat{C}_{n-1}(B)\right],$$

we could represent the sidelobes array of *P*:

$$S_{P} = [\hat{C}_{0}(P), \hat{C}_{1}(P), \hat{C}_{2}(P), \dots, \hat{C}_{n-2}(P)] = [\hat{C}_{1}(B) - b_{1}b_{n-1}, \hat{C}_{2}(B) - b_{2}b_{n-1}, \hat{C}_{3}(B) - b_{3}b_{n-1}, \dots, \hat{C}_{n-1}(B) - b_{n-1}b_{n-1}].$$
(5.36)

By using the definition of energy of a binary sequence we have:

$$\mathbb{E}(P) - \mathbb{E}(B) = \sum_{u=0}^{n-3} \hat{C}_{u}(P)^{2} - \sum_{u=0}^{n-2} \hat{C}_{u}(B)^{2} = \sum_{u=0}^{n-3} \hat{C}_{u}(P)^{2} - \left(1 + \sum_{u=1}^{n-2} \hat{C}_{u}(B)^{2}\right) = \\ = -1 + \sum_{u=1}^{n-2} \hat{C}_{u-1}(P)^{2} - \hat{C}_{u}(B)^{2} = \\ = -1 + \sum_{u=1, u_{even}}^{n-2} \hat{C}_{u-1}(P)^{2} - \hat{C}_{u}(B)^{2} + \sum_{u=1, u_{odd}}^{n-2} \hat{C}_{u-1}(P)^{2} - \hat{C}_{u}(B)^{2} = \\ = -1 + \sum_{u=1, u_{even}}^{n-2} \left(\hat{C}_{u}(B) - b_{u}b_{n-1}\right)^{2} - \hat{C}_{u}(B)^{2} + \sum_{u=1, u_{odd}}^{n-2} \pm 1^{2} - 0^{2} = \\ = -1 + \sum_{u=1, u_{even}}^{n-2} \left(-2\hat{C}_{u}(B)b_{u}b_{n-1} + (b_{u}b_{n-1})\right)^{2} + \left\lfloor\frac{n-2}{2}\right\rfloor = \\ = -1 + \sum_{u=1, u_{even}}^{n-2} - 2\hat{C}_{u}(B)b_{u}b_{n-1} + \left\lfloor\frac{n-2}{2}\right\rfloor + \left\lfloor\frac{n-2}{2}\right\rfloor = n - 3 + 2b_{n-1}\sum_{u=1, u_{even}}^{n-2} - \hat{C}_{u}(B)b_{u}.$$

$$(5.37)$$

The last property further enhances the power of the algorithm. Thus now we can modify each algorithm  $\mathcal{A}$ , searching for skew-symmetric binary sequences with odd length *n* and

high merit factor, to an algorithm  $\mathscr{B}$ , searching simultaneously skew-symmetric binary sequences with odd length *n* and pseudo-skew-symmetric binary sequences with even lengths n-1 and n+1.

**Definition 5.1.2** (Restriction Class of Binary Sequence). We will call the class of binary sequences of length *n*, with the first *k* elements fixed, a restriction class of order *k* on binary sequences with length *n*. We will denote this set as  $R_n^k$ . If the binary sequence is skew-symmetric we will use the notation  $\mathcal{R}_n^k$ .

It should be noted that  $\mathscr{R}_n^k \subset R_n^k$ . More precisely, the magnitude of  $\mathscr{R}_n^k$  is  $2^{n-k}$ , while the magnitude of  $\mathscr{R}_n^k$  is  $2^{l-k+1}$ , where n = 2l + 1, since  $\mathscr{R}_n^k$  is defined over the skew-symmetric binary sequences only.

A well-studied area in number theory and combinatorics is the number partition problem - distinct ways of writing a given integer number n as a sum of positive integers. We define the number of possible partitions of a non-negative integer n as the partition function p(n). No closed-form expression for p(n) is known. However, the partition functions for some different values of n could be found in the online encyclopedia of integer numbers (OEIS), sequence A000041 [1].

Theoretically, searching for skew-symmetric binary sequences of length *n* with high merit factors could be parallelized to  $|\mathscr{R}_n^k|$  instances. To minimize the total number of instances needed, we should consider several actions to a given skew-symmetric binary sequence  $B = (b_0, b_1, \dots, b_{n-1})$ :

- Reversing *B* defined as operator  $\delta_1$ :  $\delta_1(B) = (b_{n-1}, \dots, b_1, b_0)$
- Complementing *B* defined as operator  $\delta_2$ :  $\delta_2(B) = (\overline{b_0}, \overline{b_1}, \dots, \overline{b_{n-1}})$ , where  $\overline{b_i} = -b_i$
- Alternating complementing of *B* defined as operator δ<sub>3</sub> :
   δ<sub>3</sub>(B) = (···, b<sub>i-2</sub>, b<sub>i-1</sub>, b<sub>i</sub>, b<sub>i+1</sub>, b<sub>i+2</sub>, ···)

All three operators leave the energy of *B* intact. If we further add the identity operator  $\delta_0$  we construct a group *G* of order 8. By using some group theory [118], we could derive a closed formula of the exact number of symmetry classes with length k:  $2^{k-3} + 2^{\lfloor \frac{k}{2} \rfloor - 2 + (k \mod 2)}$ . The same formula arises from the row sums of the Losanitsch's triangle (OEIS, sequence A005418 [2]) - named after the S. Lozanić, in his work related to the symmetries exhibited by rows of paraffins [99]. This fact could be used to partition the search space from p(k) covering subsets to  $2^{k-3} + 2^{\lfloor \frac{k}{2} \rfloor - 2 + (k \mod 2)}$  non-covering subsets. A similar partitioning was used in [118] to efficiently parallelize a branch and bound algorithm for exhaustively searching binary sequences with optimal merit factors. Since exhaustive search is inapplicable for large values of *n*, the following characteristic is proposed:

**Definition 5.1.3** (Potential of a Restriction Subclass). For a skew-symmetric binary sequence  $B = (b_0, b_1, \dots, b_{n-1})$ , we fix a partitioning with length  $k: t_0, t_1, \dots, t_g$ , s.t.  $\sum_{i=0}^{g} t_i = k$ . The partitioning could be projected to a skew-symmetric binary sequence with the following procedure:

$$R = \underbrace{a \cdots a}_{t_0} \underbrace{\overline{a} \cdots \overline{a}}_{t_1} \underbrace{a \cdots a}_{t_2} \underbrace{\overline{a} \cdots \overline{a}}_{t_3} \cdots \underbrace{(-1)^g a \cdots (-1)^g a}_{t_g} \underbrace{u_1 u_2 u_3 \cdots u_{n-2k-2} u_{n-2k-1} u_{n-2k}}_{\text{non-fixed (free) elements}} \underbrace{f_1 f_2 f_3 \cdots f_{k-2} f_{k-1} f_k}_{\text{last elements are fixed}}$$

The last *k* elements  $f_i$  are fixed due to the first *k* elements of the sequence and its skewsymmetric property. Please note that all elements  $a, \overline{a}, (-1)^g a, u_i, f_i \in \{-1, 1\}$ . We define the potential of the binary skew-symmetric sequence *R* as the energy of the ternary sequence  $R^z$ , where:

$$R^{z} = \underbrace{a \cdots a}_{t_{0}} \underbrace{\overline{a} \cdots \overline{a}}_{t_{1}} \underbrace{a \cdots a}_{t_{2}} \underbrace{\overline{a} \cdots \overline{a}}_{t_{3}} \cdots \underbrace{(-1)^{g} a \cdots (-1)^{g} a}_{t_{g}} \underbrace{000 \cdots 000}_{n-2k \text{ zeroed elements}} \underbrace{f_{1} f_{2} f_{3} \cdots f_{k-2} f_{k-1} f_{k}}_{\text{last elements are fixed}}$$

 $R^{z}$  is ternary since we have introduced a new element 0. This way we could not only focus on the complete sidelobes of *R* but take under consideration the non-complete fragments of sidelobes of *R*, where the fixed elements of the sequence play a role. For example, let us consider a skew-symmetric binary sequence *Q* with length n = 21, a restriction k = 6 and a partition 1,1,2,2:

$$Q = \underbrace{a}_{1} \underbrace{\overline{a}}_{1} \underbrace{aa}_{2} \underbrace{\overline{aa}}_{2} \underbrace{u_{1}u_{2}u_{3}\cdots u_{9}}_{\text{non-fixed (free) elements elements are fixed}} \underbrace{f_{1}f_{2}f_{3}f_{4}f_{5}f_{6}}_{f_{1}f_{2}f_{3}f_{4}f_{5}f_{6}}$$

Since *Q* is skew-symmetric we know that  $Q[l-i] = (-1)^i Q[l+i]$ , for n = 2l + 1. If we take i = l we have  $Q[0] = (-1)^l Q[n-1]$ . In the current example, n = 21 and l = 10. Therefore  $f_6 = Q[20] = Q[0](-1)^l = Q[0]$ . By following the same routine we could reveal all values of  $f_i$ :

We could easily derive  $Q^{z}$ :

$$Q^{z} = \underbrace{a}_{1} \underbrace{\overline{a}}_{1} \underbrace{aa}_{2} \underbrace{\overline{aa}}_{2} \underbrace{00000000}_{9} \underbrace{a}_{1} \underbrace{\overline{aa}}_{2} \underbrace{aaa}_{3}$$

| Partition  | $\pm$ Notation                |     |
|------------|-------------------------------|-----|
| 6          | ['+', '+', '+', '+', '+', '+  | -'] |
| 5,1        | ['+', '+', '+', '+', '+', '-  | .'] |
| 4, 1, 1    | ['+', '+', '+', '+', '-', '+  | -'] |
| 4,2        | ['+', '+', '+', '+', '-', '-  | .'] |
| 3,1,2      | ['+', '+', '+', '-', '+', '+  | -'] |
| 3, 2, 1    | ['+', '+', '+', '-', '-', '+  | -'] |
| 3,3        | ['+', '+', '+', '-', '-', '-' | -'] |
| 2, 1, 2, 1 | ['+', '+', '-', '+', '+', '-  | .'] |
| 2, 1, 1, 2 | ['+', '+', '-', '+', '-', '-  | -'] |
| 2, 2, 2    | ['+', '+', '-', '-', '+', '+  | -'] |

Table 5.4 A list of unique partitions in  $\mathbb{R}^6_{21}$ 

Without loss of generality, let us fix a = 1. Then, we have  $\overline{a} = -1$ , and

$$Q^{z} = (1, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 1, 1)$$

Thus, the potential of the partition 1, 1, 2, 2 is equal to  $\mathbb{E}(Q^z)$ . The sidelobes' array of  $Q^z$  is:

$$S_{Q^z} = [1, 0, 1, 0, 1, 0, -5, 0, 3, 0, -1, 0, 0, 0, 0, 0, 0, 0, -4, 0],$$

therefore  $\mathbb{E}(Q^z) = \sum_u S_{Q^z u}^2 = 54$ . The cardinality of the set  $\mathscr{R}_{21}^6$  is  $|\mathscr{R}_{21}^6| = 2^{6-3} + 2^{\lfloor \frac{6}{2} \rfloor - 2 + (6 \mod 2)} = 2^3 + 2^1 = 10$ . A list of unique partitions in  $\mathscr{R}_{21}^6$  could be find in Table 5.4. For simplicity, we denote as  $\mathscr{R}_n^{k|m}$  those partitions of size *k* over *n*, which posses exactly *m* elements. For example, referring Table 5.4, the partition (6) is in  $\mathscr{R}_{21}^{6|1}$ , partitions (5,1), (4,2) and (3,3) are in  $\mathscr{R}_{21}^{6|2}$ , partitions (4,1,1), (3,1,2), (3,2,1) and (2,2,2) are in  $\mathscr{R}_{21}^{6|3}$ , while partitions (2,1,2,1) and (2,1,1,2) are in  $\mathscr{R}_{21}^{6|4}$ .

Given a partition  $t_0, t_1, \dots, t_g$  of size k, we will denote the set of skew-symmetric binary sequences defined by the partition as  $\mathbb{B}_n^{t_0, t_1, \dots, t_g}$ . Please note that  $\mathbb{B}_n^{t_0, t_1, \dots, t_g} \subset \mathscr{R}_n^{k|g+1} \subset \mathscr{R}_n^k$ . Finally, the potential of a given partition set S is denoted as  $\mathscr{U}(S)$ .

A few remarks regarding the sidelobes of a given potential ternary sequence should be made. In case we are interested in the potential of  $\mathscr{R}_n^k$ , the sidelobes of the ternary sequence could be divided into three distinct sections:

- **Head**: the first *k* sidelobes. They are shared among all sequences in this class, i.e. they are immutable.
- **Body**: the mid n 2k sidelobes. They are all equal to zero.

| Class                  | ${\mathscr U}$ optimal | U     | $\mathscr{U}^{\star}$ optimal | $\mathscr{U}^{\star}$ |
|------------------------|------------------------|-------|-------------------------------|-----------------------|
| $\mathscr{R}_n^{39 4}$ | 18,11,6,4              | 3731  | 18,11,6,4                     | 1082                  |
| $\mathscr{R}_n^{41 6}$ | 17,9,6,4,3,2           | 2217  | 17,9,6,4,3,2                  | 813                   |
| $\mathscr{R}_n^{47 9}$ | 18,8,5,4,3,3,2,2,2     | 1859  | 11,9,5,5,5,3,3,3,3            | 830                   |
| $\mathscr{R}_n^{56 4}$ | 27,14,9,6              | 12856 | 27,14,9,6                     | 3472                  |
| $\mathscr{R}_n^{68 7}$ | 25,11,10,7,5,5,5       | 9596  | 25,12,9,8,6,4,4               | 3040                  |
| $\mathscr{R}_n^{79 9}$ | 26,12,10,7,6,6,6,4,2   | 11667 | 28,14,10,7,6,6,4,2,2          | 3702                  |

Table 5.5 Some partitions with optimal and normalized potentials

• **Tail**: the last *k* sidelobes. Ignoring the sidelobes equal to zero, the remaining sidelobes are even numbers. They are not shared among the sequences in this class, i.e. they are mutable. However, partial information about their final value is gathered.

The actual calculation of the potential  $\mathscr{U}(\mathscr{R}_n^k)$  gives an equal priority to the value of the elements in the head and the tail. However, we could tweak the actual energy calculation while minimizing the energy of the elements to prefer minimizing the elements in the head more, than minimizing the elements in the tail. All elements inside the tail are even numbers. This arises from the simple observation, that each summand of the form  $b_i b_j$ , which participates in a given sidelobe inside the tail, is accompanied by the symmetry summand  $b_j b_i$ . Having this in mind, if we prefer to minimize the energy of the summands, rather than minimizing their overall sums, we could normalize the tail by dividing its sidelobes values by 2. We will define this value as a normalized potential, denoted as  $\mathscr{U}^*(\mathscr{R}_n^k)$ .

As a final remark, please note that despite  $\mathscr{R}_{n}^{k}, \mathscr{R}_{n+1}^{k}, \mathscr{R}_{n+2}^{k}, \cdots$  is an infinite sequence of non-intersecting finite sets, their potentials and normalized potentials are equal. More formally,  $\forall i \ge n \forall j \ge i : \mathscr{U}(\mathscr{R}_{i}^{k}) = \mathscr{U}(\mathscr{R}_{j}^{k}) \& \mathscr{U}^{*}(\mathscr{R}_{i}^{k}) = \mathscr{U}^{*}(\mathscr{R}_{j}^{k}).$ 

During our research, by using an exhaustive search, we have calculated all the potentials, as well as normalized potentials, of set partitions of the form  $\mathscr{R}_n^{k|g}$ , for 38 < k < 115 and some values of  $g \in [4, 12]$ . For speeding up the exhaustive routine, the following restriction of the partitions were further applied:  $\forall i : t_i \ge t_{i+1}$ . As an illustration, various partitions having an optimal potential and normalized potential are given in Table 5.5.

## 5.1.3 Algorithm for Finding Binary Sequences with Arbitrary Length and High Merit Factor

By achieving both linear time and memory complexities, we can utilize all the threads of a given central processing unit. Furthermore, the memory requirements of a given algorithm are significantly reduced.

In Algorithm 12 a pseudo-code of the proposed routine is presented. The following additional notations and remarks should be considered:

- *n* an odd integer number
- $t_0, t_1, \dots, t_g$  the partition search space to search through.
- $\mathbb{T}_i$  an inner threshold value. When the inner counter  $w_i$  reaches  $\mathbb{T}_i$ , the set is flushed and the whole routine restarts. The threshold value  $\mathbb{T}_i$  constrains the size of the set  $\mathbb{H}$ .
- $\mathbb{T}_o$  an outer threshold value. When the outer counter  $w_o$  reaches  $\mathbb{T}_o$ , the program is terminated.
- $\mathbb{T}_a$  an activator threshold value. For example, the probability of finding a pseudoskew-symmetric sequence with length n - 1 or n + 1 and merit factor X, from a skew-symmetric sequence with length n and merit factor X - 1, is negligible for higher values of X. Thus, we could save time and effort to repeatedly probe the adjacent pseudo-skew-symmetric sequences.
- $\perp_{n-1}, \perp_n, \perp_{n+1}$  the best candidates found, in terms of merit factor value, for respectively pseudo and not pseudo-skew-symmetric sequences of lengths n 1, n and n + 1.
- III a set of hashes of the visited candidates. We make sure to avoid already visited nodes.
- $\mathbb{H}$ .add(hash(*B*)) adding the hash of the binary sequence *B* to the set  $\mathbb{H}$ .
- pickBetterNeighborIndex a function, which returns the index of a better-unexplored neighbor of *B*, i.e. the binary sequence with a distance of exactly 1 flip away from *B*, s.t. its hash does not belong to the set *H*. An optimized derivative-based pseudo-code of this helper function is discussed in our previous work [45].

Algorithm 12 was implemented (C++) on a general-purpose computer equipped with a central processing unit with 8 cores and 16 threads. Despite using just a single lowbudget personal computer, we were able to improve all the results, for all skew-symmetric

Algorithm 12 An algorithm for searching skew-symmetric and pseudo-skew-symmetric binary sequences with arbitrary lengths and high merit factors.

1: **procedure** MF $(n, t_0, t_1, \dots, t_g, \mathbb{T}_i, \mathbb{T}_o, \mathbb{T}_a)$ 2:  $\perp_{n-1}, \perp_n, \perp_{n+1}, w_o \leftarrow 0, 0, 0, 0$ 3: while True do  $\mathbb{H}, w_i, \leftarrow \{\emptyset\}, 0$ 4:  $B \leftarrow \text{random}$ , s.t.  $B \in \mathbb{B}_n^{t_0, t_1, \dots, t_g} \subset \mathscr{R}_n^k$ , for  $k = \sum_{i=0}^g t_i$ . 5:  $\mathbb{H}.add(hash(B))$ 6:  $V \leftarrow \mathbb{E}(B)$ 7: 8: while True do bestN  $\leftarrow$  pickBetterNeighborIndex(*B*) 9: if best N = -1 then 10: break 11: end if 12: Flip(bestN, B) 13: 14:  $V \leftarrow \mathbb{E}(B)$ 15:  $w_i + = 1$  $\mathbb{H}.add(hash(B))$ 16: if  $\frac{n^2}{2V} > \perp_n$  then 17:  $\perp_n \leftarrow \frac{n^2}{2V}$ end if 18: 19: if  $\frac{n^2}{2V} \ge \mathbb{T}_a$  then 20: if  $\frac{(n+1)^2}{2(V+n+2b_n\delta)} > \bot_{n+1}$  then 21:  $\perp_{n+1} \leftarrow \frac{(n+1)^2}{2(V+n+2b_n\delta)}$ 22: end if if  $\frac{(n-1)^2}{2(V+n-3+2b_{n-1}\delta)} > \bot_{n-1}$  then 23: 24:  $\perp_{n-1} \leftarrow \frac{(n-1)^2}{2(V+n-3+2b_{n-1}\delta)}$ 25: end if 26: end if 27: if  $w_i > \mathbb{T}_i$  then 28:  $w_o += 1$ 29: 30: break end if 31: end while 32: if  $w_o > \mathbb{T}_o$  then 33: break 34: 35: end if end while 36: 37: end procedure

lengths in the range 225-451, announced in literature and reached by using a supercomputer grid. Furthermore, by using classes of pseudo-skew-symmetric sequences, we were able to simultaneously reach binary sequences of even lengths between 225 and 512, and beyond, with merit factors greater than 7. We demonstrate the efficiency of our approach by publishing a complete list of binary sequences, for both even and odd lengths up to  $2^8$ , and merit factors greater than 8. The list is further accompanied by a complete list of binary sequences, for both even and odd lengths up to  $2^9$ , and merit factors greater than 7 (see Tables B.5 - B.15).

We further demonstrate the power and efficiency of the proposed algorithm by launching it on binary sequences of lengths 573 and 1009. As mentioned earlier, the choice of those two specific lengths is motivated by the approximation numbers given in [24], Figure 7, presented during a discussion of how much time the state-of-the-art stochastic solver lssOrel\_8 will need to reach binary sequences with the aforementioned lengths and merit factors close to 6.34. It was estimated that finding solutions with a merit factor of 6.34 for a binary sequence with length 573 requires around 32 years, while for binary sequences with length 1009, the average runtime prediction to reach the merit factor of 6.34 is 46774481153 years. By using the proposed algorithm, we were able to reach such candidates within several hours (see Table B.16). By further applying some operators on the skew-symmetric binary sequence of length 1009 found, several sequences of lengths 1006, 1007, 1008, and 1010 with MF greater than 6.34 were also revealed. The same argument is true for the other sequence of length 573, but since the results are too many we omit the data.

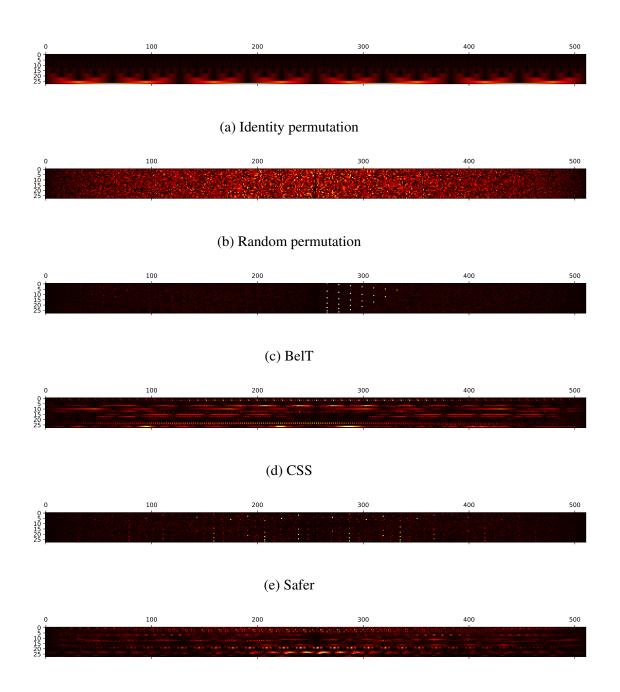
For convenience, we denote the operators acting on binary sequences as shown in Table 5.6. Please note that operator  $\eta_0$  activated on a given skew-symmetric binary sequence a||L||b will yield another skew-symmetric binary sequence L, while all other operators activated on the same skew-symmetric binary sequence will yield a pseudo-skew-symmetric sequence. Throughout the tables with reported records, the classes denoted with  $\Omega$  represent the best-known result to be found in the literature for the current length (all in Table B.5, for the lengths between 172 and 226). It should be emphasized, that all records achieved by starting from a sequence of class  $\Omega$ , are directly calculated without the usage of any additional stochastic routine. All other records throughout the tables (classes  $\mathbb{B}$ ) are achieved by using a heuristic search. All sequences are presented in hexadecimal format with zeroes omitted. It should be noted, that as soon as the algorithm finds a record sequence of a given length, it automatically continues to the next search space. In some cases, we required a little bit more demanding goal, i.e. MF greater than 8 (for sequences with lengths less than about 512). Some records were found for several minutes, while others required a little bit more effort of several hours.

| Operator | Action                      |
|----------|-----------------------------|
| $\eta_0$ | $a  L  b \circ \eta_0 = L$  |
| $\eta_1$ | $L \circ \eta_1 = L    1$   |
| $\eta_2$ | $L \circ \eta_2 = L    - 1$ |
| $\eta_3$ | $a    L \circ \eta_3 = L$   |
| $\eta_4$ | $L  b \circ \eta_4 = L$     |
| $\eta_5$ | $L \circ \eta_5 = 1    L$   |
| $\eta_6$ | $L \circ \eta_6 = -1   L $  |

Table 5.6 A list of used operators acting on binary sequences

## 5.2 Using Aperiodic Autocorrelation functions for an S-box reverse engineering

We can treat all  $\binom{n}{2}$  columns of two-term linear combinations of coordinates of an S-box S(n,n) as binary sequences and analyze their sidelobe levels. Such a strategy makes sense since sidelobe levels can reveal hidden inner relationships between the coordinates of S. In Figure 5.3 the obtained results are given. The absolute values of side lobes values are interchanged with a gradient palette starting from darker (lower values) to lighter (higher values). In Figure 5.3a the side lobes plot of the trivial (8,8) S-box, i.e. the identity permutation, is plotted, while Figure 5.3b is an example of a random (8,8) S-box side lobes plot. The anomalies in S-boxes of BelT, CSS, Safer, and SKINNY are visible.



(f) SKINNY

Fig. 5.3 Anomalies detected in various S-boxes' side lobes spectra

123

### References

- [1] Oeis a000041. https://oeis.org/A000041. Accessed: 2022-05-30.
- [2] Oeis a005418. https://oeis.org/A005418. Accessed: 2022-05-30.
- [3] Adomnicai, A., Berger, T. P., Clavier, C., Francq, J., Huynh, P., Lallemand, V., Le Gouguec, K., Minier, M., Reynaud, L., and Thomas, G. (2019). Lilliput-ae: a new lightweight tweakable block cipher for authenticated encryption with associated data. *Submitted to NIST Lightweight Project.*
- [4] Ahmad, M., Bhatia, D., and Hassan, Y. (2015). A novel ant colony optimization based scheme for substitution box design. *Procedia Computer Science*, 57:572–580.
- [5] Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., and Vizár, D. (2019). Forkae v. *Submission to NIST lightweight cryptography project*.
- [6] Andrews, G. E. (1998). The theory of partitions. Number 2. Cambridge university press.
- [7] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., and Tokita, T. (2000). Camellia: A 128-bit block cipher suitable for multiple platforms—design andanalysis. In *International Workshop on Selected Areas in Cryptography*, pages 39–56. Springer.
- [8] Baden, J. and Cohen, M. (1990). Optimal peak sidelobe filters for biphase pulse compression. In *IEEE International Conference on Radar*, pages 249–252. IEEE.
- [9] Barker, R. H. and Jackson, W. (1953). Group synchronization of binary digital systems in Communication Theory. *Academic Press, New York*, pages 273–287.
- [10] Barreto, P. and Rijmen, V. (2000). The khazad legacy-level block cipher. *Primitive submitted to NESSIE*, 97:106.
- [11] Barreto, P., Rijmen, V., et al. (2000a). The Whirlpool hashing function. In *First open NESSIE Workshop, Leuven, Belgium*, volume 13, page 14. Citeseer.
- [12] Barreto, P., Rijmen, V., et al. (2000b). The whirlpool hashing function. In *First open NESSIE Workshop, Leuven, Belgium*, volume 13, page 14. Citeseer.
- [13] Becker, M. and Desoky, A. (2004). A study of the dvd content scrambling system (css) algorithm. In Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology, 2004., pages 353–356. IEEE.

- [14] Bernasconi, J. (1987). Low autocorrelation binary sequences: statistical mechanics and configuration space analysis. *Journal de Physique*, 48(4):559–567.
- [15] Berry, D. A. and Fristedt, B. (1985). Bandit problems: sequential allocation of experiments (Monographs on statistics and applied probability). *London: Chapman and Hall*, 5:71–87.
- [16] Bhattacharya, D., Bansal, N., Banerjee, A., and RoyChowdhury, D. (2007). A near optimal S-box design. In *International Conference on Information Systems Security*, pages 77–90. Springer.
- [17] Biham, E. (1994). On Matsui's linear cryptanalysis. In Workshop on the Theory and Application of of Cryptographic Techniques, pages 341–355. Springer.
- [18] Biham, E. and Shamir, A. (1991). Differential cryptanalysis of DES-like cryptosystems. *Journal of CRYPTOLOGY*, 4(1):3–72.
- [19] Bikov, D., Bouyukliev, I., and Bouyuklieva, S. (2019). Bijective S-boxes of different sizes obtained from quasi-cyclic codes. *Journal of Algebra Combinatorics Discrete Structures and Applications*, 6(3):123–134.
- [20] Biryukov, A. and Perrin, L. (2015). On reverse-engineering s-boxes with hidden design criteria or structure. In *Annual Cryptology Conference*, pages 116–140. Springer.
- [21] Biryukov, A., Perrin, L., and Udovenko, A. (2016). Reverse-engineering the s-box of streebog, kuznyechik and stribobr1. In *Annual International Conference on the Theory and Applications of Cryptographic Techniques*, pages 372–402. Springer.
- [22] Borwein, P., Choi, K.-K., and Jedwab, J. (2004). Binary sequences with merit factor greater than 6.34. *IEEE transactions on information theory*, 50(12):3234–3249.
- [23] Boškovic, B., Brglez, F., and Brest, J. (2016). A github archive for solvers and solutions of the labs problem. *For updates, see https://github. com/borkob/git\_labs (January 2016).*
- [24] Bošković, B., Brglez, F., and Brest, J. (2017). Low-autocorrelation binary sequences: On improved merit factors and runtime predictions to achieve them. *Applied Soft Computing*, 56:262–285.
- [25] Bouyukliev, I., Bikov, D., and Bouyuklieva, S. (2017). S-boxes from binary quasi-cyclic codes. *Electronic Notes in Discrete Mathematics*, 57:67–72.
- [26] Brest, J. and Bošković, B. (2018). A heuristic algorithm for a low autocorrelation binary sequence problem with odd length and high merit factor. *IEEE Access*, 6:4127–4134.
- [27] Brest, J. and Bošković, B. (2020). In searching of long skew-symmetric binary sequences with high merit factors. *arXiv preprint arXiv:2011.00068*.
- [28] Byrnes, J. and Newman, D. J. (1990). The l4 norm of a polynomial with coefficients±1. *Amer. Math. Monthly*, 97:42–45.
- [29] Canteaut, A., Duval, S., and Leurent, G. (2015a). Construction of lightweight S-boxes using Feistel and MISTY structures. In *International Conference on Selected Areas in Cryptography*, pages 373–393. Springer.

- [30] Canteaut, A., Duval, S., and Leurent, G. (2015b). Construction of lightweight s-boxes using feistel and misty structures. In *International Conference on Selected Areas in Cryptography*, pages 373–393. Springer.
- [31] Chen, G. (2008). A novel heuristic method for obtaining S-boxes. *Chaos, Solitons & Fractals*, 36(4):1028–1036.
- [32] Clark, J. A., Jacob, J. L., and Stepney, S. (2005). The design of S-boxes by simulated annealing. *New Generation Computing*, 23(3):219–231.
- [33] Coppersmith, D. (1994). The data encryption standard (des) and its strength against attacks. *IBM journal of research and development*, 38(3):243–250.
- [34] Courtois, N. T. and Pieprzyk, J. (2002). Cryptanalysis of block ciphers with overdefined systems of equations. In *International Conference on the Theory and Application of Cryptology and Information Security*, pages 267–287. Springer.
- [35] Coxson, G. and Russo, J. (2005). Efficient exhaustive search for optimal-peak-sidelobe binary codes. *IEEE Transactions on Aerospace and Electronic Systems*, 41(1):302–308.
- [36] Coxson, G. E., Hill, C. R., and Russo, J. C. (2014). Adiabatic quantum computing for finding low-peak-sidelobe codes. In 2014 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–6. IEEE.
- [37] Coxson, G. E., Russo, J. C., and Luther, A. (2020). Long low-psl binary codes by multi-thread evolutionary search. In *2020 IEEE International Radar Conference (RADAR)*, pages 256–261. IEEE.
- [38] Cui, L. and Cao, Y. (2007). A new S-box structure named Affine-Power-Affine. International Journal of Innovative Computing, Information and Control, 3(3):751–759.
- [39] Daemen, J. and Rijmen, V. (2013a). *The design of Rijndael: AES-the advanced encryption standard*. Springer Science & Business Media.
- [40] Daemen, J. and Rijmen, V. (2013b). *The design of Rijndael: AES-the advanced encryption standard*. Springer Science & Business Media.
- [41] De Groot, C., Würtz, D., and Hoffmann, K. H. (1992). Low autocorrelation binary sequences: Exact enumeration and optimization by evolutionary strategies. *Optimization*, 23(4):369–384.
- [42] de la Cruz Jiménez, R. A. (2017). Generation of 8-Bit S-Boxes Having Almost Optimal Cryptographic Properties Using Smaller 4-Bit S-Boxes and Finite Field Multiplication. In *International Conference on Cryptology and Information Security in Latin America*, pages 191–206. Springer.
- [43] Developers, T. S. (2016). Sagemath.
- [44] Dimitrov, M. (2020a). On the aperiodic autocorrelations of rotated binary sequences. *IEEE Communications Letters*, 25(5):1427–1430.
- [45] Dimitrov, M. (2021a). On the skew-symmetric binary sequences and the merit factor problem. *arXiv preprint arXiv:2106.03377*.

- [46] Dimitrov, M. (2022). New classes of binary sequences with high merit factor. *arXiv* preprint arXiv:2206.12070.
- [47] Dimitrov, M., Baicheva, T., and Nikolov, N. (2021). Hybrid constructions of binary sequences with low autocorrelation sideobes. *IEEE Access*, 9:112400–112410.
- [48] Dimitrov, M., Baitcheva, T., and Nikolov, N. (2020a). Efficient generation of low autocorrelation binary sequences. *IEEE Signal Processing Letters*, 27:341–345.
- [49] Dimitrov, M., Baitcheva, T., and Nikolov, N. (2020b). On the generation of long binary sequences with record-breaking PSL values. *IEEE Signal Processing Letters*, 27:1904–1908.
- [50] Dimitrov, M. M. (2020b). On the design of chaos-based s-boxes. *IEEE Access*, 8:117173–117181.
- [51] Dimitrov, M. M. (2021b). A framework for fine-grained nonlinearity optimization of boolean and vectorial boolean functions. *IEEE Access*, 9:124910–124920.
- [52] Dmitriev, D. and Jedwab, J. (2007). Bounds on the growth rate of the peak sidelobe level of binary sequences. *Advances in Mathematics of Communications*, 1(4):461.
- [53] Dolmatov, V. (2016). Gost r 34.12-2015: Block cipher "kuznyechik". *Transformation*, 50:10.
- [54] Du, K. L., Wu, W. H., and Mow, W. H. (2013). Determination of long binary sequences having low autocorrelation functions. US Patent 8,493,245.
- [55] FIPS, P. (1999). 46-3. data encryption standard (des). *National Institute of Standards and Technology*, 25(10):1–22.
- [56] Flynn, M. J. (1972). Some computer organizations and their effectiveness. *IEEE transactions on computers*, 100(9):948–960.
- [57] Gallardo, J. E., Cotta, C., and Fernández, A. J. (2009). Finding low autocorrelation binary sequences with memetic algorithms. *Applied Soft Computing*, 9(4):1252–1262.
- [58] Gérard, B., Grosso, V., Naya-Plasencia, M., and Standaert, F.-X. (2013). Block ciphers that are easier to mask: How far can we go? In *International Workshop on Cryptographic Hardware and Embedded Systems*, pages 383–399. Springer.
- [59] Gilbert, H. and Peyrin, T. (2010). Super-Sbox cryptanalysis: improved attacks for AES-like permutations. In *International Workshop on Fast Software Encryption*, pages 365–383. Springer.
- [60] Golay, M. (1972). A class of finite binary sequences with alternate auto-correlation values equal to zero (corresp.). *IEEE Transactions on Information Theory*, 18(3):449–450.
- [61] Golay, M. (1975). Hybrid low autocorrelation sequences (corresp.). *IEEE Transactions* on *Information Theory*, 21(4):460–462.
- [62] Golay, M. (1977). Sieves for low autocorrelation binary sequences. *IEEE Transactions* on information theory, 23(1):43–51.

- [63] Golay, M. (1982). The merit factor of long low autocorrelation binary sequences (corresp.). *IEEE Transactions on Information Theory*, 28(3):543–549.
- [64] Golay, M. (1983). The merit factor of legendre sequences (corresp.). *IEEE Transactions on Information Theory*, 29(6):934–936.
- [65] Golay, M. J. and Harris, D. B. (1990). A new search for skewsymmetric binary sequences with optimal merit factors. *IEEE Transactions on Information Theory*, 36(5):1163– 1166.
- [66] Gold, R. (1967). Optimal binary sequences for spread spectrum multiplexing (Corresp.). *IEEE Transactions on Information Theory*, 13(4):619–621.
- [67] Golomb, S. W. et al. (1967). Shift register sequences. Aegean Park Press.
- [68] GOST, R. (2015). R 34.12-2015. Information Technology. Cryptographic Protection of Information. Block Ciphers]. Moscow, Standartinform.
- [69] Grosso, V., Leurent, G., Standaert, F.-X., and Varici, K. (2014a). LS-designs: Bitslice encryption for efficient masked software implementations. In *International Workshop on Fast Software Encryption*, pages 18–37. Springer.
- [70] Grosso, V., Leurent, G., Standaert, F.-X., Varici, K., Durvaux, F., Gaspar, L., and Kerckhof, S. (2014b). Scream & iscream side-channel resistant authenticated encryption with masking. *Submission to CAESAR*.
- [71] Gurobi Optimization, I. (2018). Gurobi optimizer reference manual. URL http://www. gurobi. com.
- [72] Halim, S., Yap, R. H., and Halim, F. (2008). Engineering stochastic local search for the low autocorrelation binary sequence problem. In *International Conference on Principles* and Practice of Constraint Programming, pages 640–645. Springer.
- [73] He, H., Stoica, P., and Li, J. (2009). Designing unimodular sequence sets with good correlations—including an application to mimo radar. *IEEE Transactions on Signal Processing*, 57(11):4391–4405.
- [74] Heys, H. M. (2002). A tutorial on linear and differential cryptanalysis. *Cryptologia*, 26(3):189–221.
- [75] Hoholdt, T. and Jensen, H. E. (1988). Determination of the merit factor of legendre sequences. *IEEE Transactions on Information Theory*, 34(1):161–164.
- [76] Isa, H., Jamil, N., and Z'aba, M. R. (2013). S-box construction from non-permutation power functions. In *Proceedings of the 6th International Conference on Security of Information and Networks*, pages 46–53. ACM.
- [77] Isa, H., Jamil, N., and Z'aba, M. R. (2016). Construction of cryptographically strong S-Boxes inspired by bee waggle dance. *New generation computing*, 34(3):221–238.
- [78] Ivanov, G., Nikolov, N., and Nikova, S. (2015). Cryptographically strong S-boxes generated by modified immune algorithm. In *International Conference on Cryptography and Information Security in the Balkans*, pages 31–42. Springer.

- [79] Jakobsen, T. and Knudsen, L. R. (1997). The interpolation attack on block ciphers. In *International Workshop on Fast Software Encryption*, pages 28–40. Springer.
- [80] Jedwab, J. (2004). A survey of the merit factor problem for binary sequences. In *International Conference on Sequences and Their Applications*, pages 30–55. Springer.
- [81] Jedwab, J. and Yoshida, K. (2006). The peak sidelobe level of families of binary sequences. *IEEE transactions on information theory*, 52(5):2247–2254.
- [82] Junod, P. and Vaudenay, S. (2004). Fox: a new family of block ciphers. In *International Workshop on Selected Areas in Cryptography*, pages 114–129. Springer.
- [83] Karpman, P. and Grégoire, B. (2016). The littlun s-box and the fly block cipher. In *Lightweight Cryptography Workshop*, pages 17–18.
- [84] Kasami, T. (1966). Weight distribution formula for some class of cyclic codes. *Coordinated Science Laboratory Report no. R-285.*
- [85] Kazymyrov, O., Kazymyrova, V., and Oliynykov, R. (2013). A Method For Generation Of High-Nonlinear S-Boxes Based On Gradient Descent. *IACR Cryptology ePrint Archive*, 2013:578.
- [86] Kerahroodi, M. A., Aubry, A., De Maio, A., Naghsh, M. M., and Modarres-Hashemi, M. (2017). A coordinate-descent framework to design low psl/isl sequences. *IEEE Transactions on Signal Processing*, 65(22):5942–5956.
- [87] Leukhin, A., Parsaev, N., Bezrodnyi, V., and Kokovihina, N. (2017). The exhaustive search for optimum minimum peak sidelobe binary sequences. *Bulletin of the Russian Academy of Sciences: Physics*, 81(5):575–578.
- [88] Leukhin, A. and Potehin, E. (2012). Binary sequences with minimum peak sidelobe level up to length 68. *arXiv preprint arXiv:1212.4930*.
- [89] Leukhin, A. and Potekhin, E. (2015). A Bernasconi model for constructing ground-state spin systems and optimal binary sequences. In *Journal of Physics: Conference Series*, volume 613, page 012006. IOP Publishing.
- [90] Leukhin, A. N. and Potekhin, E. N. (2013). Optimal peak sidelobe level sequences up to length 74. In *2013 European Radar Conference*, pages 495–498. IEEE.
- [91] Leukhin, Anatolii N and Potekhin, Egor N (2014). Exhaustive search for optimal minimum peak sidelobe binary sequences up to length 80. In *International Conference on Sequences and Their Applications*, pages 157–169. Springer.
- [92] Levanon, N. and Mozeson, E. (2004). Radar signals. John Wiley & Sons.
- [93] Lim, C. H. (1998). Crypton: A new 128-bit block cipher. NIsT AEs Proposal.
- [94] Lim, C. H. (1999). A revised version of crypton: Crypton v1. 0. In *International Workshop on Fast Software Encryption*, pages 31–45. Springer.

- [95] Lin, R., Soltanalian, M., Tang, B., and Li, J. (2019). Efficient design of binary sequences with low autocorrelation sidelobes. *IEEE Transactions on Signal Processing*, 67(24):6397– 6410.
- [96] Lindner, J. (1975). Binary sequences up to length 40 with best possible autocorrelation function. *Electronics letters*, 11(21):507–507.
- [97] Littlewood, J. (1966). On Polynomials  $\sum_{m=1}^{n} \pm z^{m}$ ,  $\sum_{m=1}^{n} e^{\alpha_{m}i} z^{m}$ ,  $z = e^{\theta i}$ . Journal of the London Mathematical Society, 1(1):367–376.
- [98] Littlewood, J. E. (1968). Some problems in real and complex analysis. DC Heath.
- [99] Losanitsch, S. (1897). Die isomerie-arten bei den homologen der paraffin-reihe. Berichte der deutschen chemischen Gesellschaft, 30(2):1917–1926.
- [100] Madras, N. and Slade, G. (2013). The self-avoiding walk. Springer Science & Business Media.
- [101] Mamadolimov, A., Isa, H., and Mohamad, M. S. (2013). Practical bijective S-box design. *arXiv preprint arXiv:1301.4723*.
- [102] Massey, J. L. (1993). Safer k-64: A byte-oriented block-ciphering algorithm. In International Workshop on Fast Software Encryption, pages 1–17. Springer.
- [103] Matsui, M. (1993). Linear cryptanalysis method for DES cipher. In *Workshop on the Theory and Application of of Cryptographic Techniques*, pages 386–397. Springer.
- [104] Meier, W. and Staffelbach, O. (1989). Nonlinearity criteria for cryptographic functions. In Workshop on the Theory and Application of Cryptographic Techniques, pages 549–562. Springer.
- [105] Mertens, S. (1996). Exhaustive search for low-autocorrelation binary sequences. *Journal of Physics A: Mathematical and General*, 29(18):L473.
- [106] Militzer, B., Zamparelli, M., and Beule, D. (1998). Evolutionary search for low autocorrelated binary sequences. *IEEE Transactions on Evolutionary Computation*, 2(1):34–39.
- [107] Millan, W. (1998). How to improve the nonlinearity of bijective S-boxes. In Australasian Conference on Information Security and Privacy, pages 181–192. Springer.
- [108] Millan, W., Burnett, L., Carter, G., Clark, A., and Dawson, E. (1999). Evolutionary heuristics for finding cryptographically strong S-boxes. In *International Conference on Information and Communications Security*, pages 263–274. Springer.
- [109] Mow, W. H., Du, K.-L., and Wu, W. H. (2015). New evolutionary search for long low autocorrelation binary sequences. *IEEE Transactions on aerospace and electronic* systems, 51(1):290–303.
- [110] Mroczkowski, P. (2009). Generating Pseudorandom S-Boxes-a Method of Improving the Security of Cryptosystems Based on Block Ciphers. *Journal of Telecommunications* and Information Technology, pages 74–79.

- [111] Nasrabadi, M. A. and Bastani, M. H. (2010). A survey on the design of binary pulse compression codes with low autocorrelation. In *Trends in Telecommunications Technologies*. IntechOpen.
- [112] Nunn, C. J. and Coxson, G. E. (2008). Best-known autocorrelation peak sidelobe levels for binary codes of length 71 to 105. *IEEE transactions on Aerospace and Electronic Systems*, 44(1):392–395.
- [113] Nyberg, K. (1991a). Perfect nonlinear S-boxes. In Workshop on the Theory and Application of Cryptographic Techniques, pages 378–386. Springer.
- [114] Nyberg, K. (1991b). Perfect nonlinear S-boxes. In Workshop on the Theory and Application of of Cryptographic Techniques, pages 378–386. Springer.
- [115] Oliphant, T. E. (2006). A guide to NumPy, volume 1. Trelgol Publishing USA.
- [116] Oliynykov, R., Gorbenko, I., Kazymyrov, O., Ruzhentsev, V., Kuznetsov, O., Gorbenko, Y., Dyrda, O., Dolgov, V., Pushkaryov, A., Mordvinov, R., et al. (2015). A new encryption standard of ukraine: The kalyna block cipher. *IACR Cryptology ePrint Archive*, 2015:650.
- [117] Orhanou, G., El Hajji, S., and Bentaleb, Y. (2010). Snow 3g stream cipher operation and complexity study. *Contemporary Engineering Sciences-Hikari Ltd*, 3(3):97–111.
- [118] Packebusch, T. and Mertens, S. (2016). Low autocorrelation binary sequences. *Journal* of *Physics A: Mathematical and Theoretical*, 49(16):165001.
- [119] Perrin, L. P. (2017). Cryptanalysis, reverse-engineering and design of symmetric cryptographic algorithms. PhD thesis, University of Luxembourg, Luxembourg, Luxembourg.
- [120] Perrin, L. P. and Udovenko, A. (2017). Exponential s-boxes: a link between the s-boxes of belt and kuznyechik/streebog. *IACR Transactions on Symmetric Cryptology*, 2016(2):99–124.
- [121] Picek, S., Cupic, M., and Rotim, L. (2016a). A new cost function for evolution of s-boxes. *Evolutionary computation*, 24(4):695–718.
- [122] Picek, S., Santana, R., and Jakobovic, D. (2016b). Maximal nonlinearity in balanced boolean functions with even number of inputs, revisited. In 2016 IEEE Congress on Evolutionary Computation (CEC), pages 3222–3229. IEEE.
- [123] Piret, G., Roche, T., and Carlet, C. (2012). Picaro–a block cipher allowing efficient higher-order side-channel resistance. In *International Conference on Applied Cryptography and Network Security*, pages 311–328. Springer.
- [124] Pott, A. (2006). Finite geometry and character theory. Springer.
- [125] Prestwich, S. D. (2013). Improved branch-and-bound for low autocorrelation binary sequences. *arXiv preprint arXiv:1305.6187*.
- [126] Reeds III, J. A. (1992). Cryptosystem for cellular telephony. US Patent 5,159,634.

- [127] Rijmen, V. and Barreto, P. (2000). The anubis block cipher. Submission to NESSIE.
- [128] Rijmen, V. and Preneel, B. (1997). A family of trapdoor ciphers. In *International Workshop on Fast Software Encryption*, pages 139–148. Springer.
- [129] Rudin, W. (1959). Some theorems on fourier coefficients. *Proceedings of the American Mathematical Society*, 10(6):855–859.
- [130] Rushanan, J. J. (2006). Weil sequences: A family of binary sequences with good correlation properties. In 2006 IEEE International Symposium on Information Theory, pages 1648–1652. IEEE.
- [131] SageMath. Preliminary State Standard of Republic of Belarus (STB P 34.101.31–2007). http://apmi.bsu.by/assets/files/std/belt-spec27.pdf.
- [132] SageMath. SageMath Sbox library. https://github.com/sagemath/sage/blob/master/ src/sage/crypto/sboxes.py.
- [133] Sarkar, P. and Maitra, S. (2000). Nonlinearity bounds and constructions of resilient boolean functions. In *Annual International Cryptology Conference*, pages 515–532. Springer.
- [134] Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., and Ferguson, N. (1998). Twofish: A 128-bit block cipher. aes submission, 15 june 1998.
- [135] Schotten, H. D. and Lüke, H. D. (2005). On the search for low correlated binary sequences. *AEU-International Journal of Electronics and Communications*, 59(2):67–78.
- [136] Shapiro, H. S. (1952). *Extremal problems for polynomials and power series*. PhD thesis, Massachusetts Institute of Technology.
- [137] Shirai, T., Shibutani, K., Akishita, T., Moriai, S., and Iwata, T. (2007). The 128-bit blockcipher clefia. In *International workshop on fast software encryption*, pages 181–195. Springer.
- [138] Skipjack, N. (1998). KEA algorithm specifications. Online document: http://csrc. nist. org/encryption/skipjack/skipjack. pdf.
- [139] Skolnik, M. I. (1970). Radar handbook.
- [140] Soltanalian, M. and Stoica, P. (2012). Computational design of sequences with good correlation properties. *IEEE Transactions on Signal processing*, 60(5):2180–2193.
- [141] Song, J., Babu, P., and Palomar, D. P. (2015). Sequence design to minimize the weighted integrated and peak sidelobe levels. *IEEE Transactions on Signal Processing*, 64(8):2051–2064.
- [142] Souravlias, D., Parsopoulos, K. E., and Meletiou, G. C. (2017). Designing bijective S-boxes using Algorithm Portfolios with limited time budgets. *Applied Soft Computing*, 59:475–486.

- [143] Standaert, F.-X., Piret, G., Rouvroy, G., Quisquater, J.-J., and Legat, J.-D. (2004). Iceberg: An involutional cipher efficient for block encryption in reconfigurable hardware. In *International Workshop on Fast Software Encryption*, pages 279–298. Springer.
- [144] Stern, J. and Vaudenay, S. (1998). Cs-cipher. In *International Workshop on Fast Software Encryption*, pages 189–204. Springer.
- [145] Tesař, P. (2010). A new method for generating high non-linearity s-boxes. *Radioengineering*, 19(1):23–26.
- [146] Turyn, R. et al. (1968). Sequences with small correlation. In *Error correcting codes*, pages 195–228. Wiley New York.
- [147] Wagner, D. (1999). The boomerang attack. In *International Workshop on Fast* Software Encryption, pages 156–170. Springer.
- [148] Watanabe, D., Furuya, S., Yoshida, H., Takaragi, K., and Preneel, B. (2002). A new keystream generator mugi. In *International Workshop on Fast Software Encryption*, pages 179–194. Springer.
- [149] Wiener, N. (1964). *Extrapolation, interpolation, and smoothing of stationary time series*. The MIT press.
- [150] Wikipedia source (1999). Wikipedia. https://en.wikipedia.org/wiki/Iraqi\_block\_ cipher.
- [151] Wu, H., Bao, F., Deng, R. H., and Ye, Q.-Z. (1998). Cryptanalysis of rijmen-preneel trapdoor ciphers. In *International Conference on the Theory and Application of Cryptology and Information Security*, pages 126–132. Springer.
- [152] Xiu-tao, F. (2011). Zuc algorithm: 3gpp lte international encryption standard [j]. *Information Security and Communications Privacy*, 12.

## Appendix A

## **S-box Characteristics and Collisions**

#### A.1 Detailed characteristics of popular S-boxes

| S                          | S <sub>NL</sub> | $S_{\delta}$ | S <sub>AC</sub> | $S_{DEG}$ | Spectra                            |
|----------------------------|-----------------|--------------|-----------------|-----------|------------------------------------|
|                            |                 |              |                 |           | 6896, 12520, 11331, 9978, 7750,    |
| Anubis                     | 94              | 8            | 96              | 7         | 5970, 4335, 2760, 1861, 1046,      |
|                            |                 |              |                 |           | 572, 282, 138, 78, 10, 2, 2, 4     |
|                            |                 |              |                 |           | 6277, 11745, 11387, 9943, 8250,    |
| BelT                       | 102             | 8            | 88              | 6         | 6301, 4793, 3344, 1836,            |
|                            |                 |              |                 |           | 979, 428, 190, 52, 10              |
|                            |                 |              |                 |           | 14160, 0, 22280, 0, 15596,         |
| CLEFIA S <sub>0</sub>      | 100             | 10           | 96              | 6         | 0, 8387, 0, 3535, 0,               |
|                            |                 |              |                 |           | 1185, 0, 340, 0, 52                |
|                            |                 |              |                 |           | 7338, 12050, 11742, 9575, 7930,    |
| CMEA                       | 96              | 12           | 104             | 6         | 5931, 4212, 2773, 1798, 1046, 576, |
|                            |                 |              |                 |           | 286, 162, 72, 30, 11, 3            |
| Crypton_1_0 S <sub>0</sub> |                 |              |                 |           | 12026 0 22058 0 15048              |
| Crypton_1_0 $S_1$          | 06              | 10           | 06              | 6         | 13926, 0, 22058, 0, 15948,         |
| Crypton_1_0 $S_2$          | 96              | 10           | 96              | 6         | 0, 8460, 0, 3731, 0, 1094,         |
| Crypton_1_0 S <sub>3</sub> |                 |              |                 |           | 0, 276, 0, 36, 0, 6                |

Table A.1 S-boxes overview.

| S              | S <sub>NL</sub> | So | SAC | $S_{DEG}$ | Spectra                          |
|----------------|-----------------|----|-----|-----------|----------------------------------|
|                |                 |    |     |           | 20891, 0, 11596, 0, 22018,       |
| Crypton 0.5    | 88              | 16 | 128 | 4         | 0, 4812, 0, 5236, 0,             |
| Crypton_0_5    | 00              | 10 | 120 | 4         | 468, 0, 370, 0, 20,              |
|                |                 |    |     |           | 0, 112, 0, 0, 0, 12              |
|                |                 |    |     |           | 7073, 12586, 11246, 9747, 7865,  |
| CSA            | 94              | 12 | 104 | 7         | 6041, 4231, 2777, 1733, 1117,    |
|                |                 |    |     |           | 581, 308, 139, 54, 22, 7, 5, 3   |
|                |                 |    |     |           | 33183, 0, 0, 0, 23264,           |
| CS_cipher      | 96              | 16 | 128 | 3         | 0, 0, 0, 8448, 0, 0,             |
|                |                 |    |     |           | 0, 288, 0, 0, 0, 352             |
|                |                 |    |     |           | 14248, 0, 21982, 0, 15824,       |
| Enocoro        | 96              | 10 | 128 | 6         | 0, 8369, 0, 3572, 0,             |
|                |                 |    | 104 |           | 1179, 0, 300, 0, 54, 0, 7        |
|                |                 |    |     |           | 6730, 12172, 11248, 9841, 8000,  |
| E2             | 100             | 10 | 104 | 6         | 6217, 4644, 2983, 1765,          |
|                |                 |    |     |           | 991, 507, 272, 120, 36, 9,       |
|                |                 |    |     |           | 26877, 0, 11568, 0, 15584, 0,    |
| Fantomas       | 96              | 16 | 128 | 2         | 4220, 0, 5816, 0, 572,           |
|                |                 |    |     |           | 0, 544, 0, 24, 0, 330            |
|                |                 |    |     |           | 19196, 0, 18171, 0, 15888,       |
| Fox            | 96              | 16 | 128 | 4         | 0, 6405, 0, 4280, 0,             |
|                |                 |    |     |           | 983, 0, 352, 0, 41, 0, 219       |
|                |                 |    |     |           | 6929, 12610, 11291, 9774, 7881 , |
| Iceberg        | 96              | 8  | 96  | 7         | 6060, 4166, 2892, 1887, 940,     |
|                |                 |    |     |           | 566, 288, 137, 62, 33, 14, 5     |
|                |                 |    |     |           | 23103, 0, 14728, 0, 15888, 0,    |
| iScream        | 96              | 16 | 128 | 4         | 4824, 0, 5536, 0, 904, 0,        |
|                |                 |    |     |           | 240, 0, 24, 0, 288               |
|                |                 |    |     |           | 6317, 11616, 10829, 9829, 8542,  |
| Kalyna $\pi_0$ | 104             | 8  | 72  | 7         | 6834, 4912, 3317, 1880,          |
|                |                 |    |     |           | 897, 371, 147, 44                |

S-boxes overview (continued).

| S              | $S_{NL}$ | $S_{\delta}$ | SAC | $S_{DEG}$ | Spectra                            |
|----------------|----------|--------------|-----|-----------|------------------------------------|
|                |          |              |     |           | 6280, 11426, 10769, 9948, 8500,    |
| Kalyna $\pi_1$ | 104      | 8            | 72  | 7         | 6970, 5112, 3267, 1855,            |
|                |          |              |     |           | 907, 351, 122, 28                  |
|                |          |              |     |           | 6307, 11643, 10808, 9681, 8540,    |
| Kalyna $\pi_2$ | 104      | 8            | 72  | 7         | 6895, 4981, 3415, 1854,            |
|                |          |              |     |           | 898, 363, 108, 42                  |
|                |          |              |     |           | 6371, 11451, 10804, 9887, 8422,    |
| Kalyna $\pi_3$ | 104      | 8            | 72  | 7         | 6985, 5019, 3310, 1878,            |
|                |          |              |     |           | 883, 361, 124, 40                  |
|                |          |              |     |           | 7030, 12594, 11426, 9876, 7573,    |
| Khazad         | 96       | 8            | 104 | 7         | 5938, 4268, 2836, 1877, 1058,      |
|                |          |              |     |           | 524, 264, 153, 58, 30, 16, 14      |
|                |          |              |     |           | 6534, 11645, 10761, 10166, 8793,   |
| Kuznechik      | 100      | 8            | 96  | 7         | 6804, 4474, 2796, 1693, 971,       |
|                |          |              |     |           | 535, 219, 91, 39, 14               |
|                |          |              |     |           | 7082, 12669, 11306, 9702, 7819,    |
| MD2            | 90       | 10           | 88  | 6         | 5899, 4244, 2850, 1776, 1033,      |
|                | 90       | 10           | 00  | 0         | 619, 286, 151, 60, 22,             |
|                |          |              | 88  |           | 11, 3, 1, 1, 1                     |
|                |          |              |     |           | 6995, 12491, 11309, 9828, 7860,    |
| newDES         | 92       | 12           | 96  | 6         | 6021, 4355, 2784, 1765, 1020,      |
|                |          |              |     |           | 557, 282, 154, 71, 25, 14, 1, 1, 2 |
|                |          |              |     |           | 19583, 0, 11392, 0, 23952, 0,      |
| Scream         | 96       | 8            | 128 | 3         | 4416, 0, 5344, 0, 576,             |
|                |          |              |     |           | 0, 112, 0, 0, 0, 160,              |
|                |          |              |     |           | 40383, 0, 5810, 0, 9904,           |
|                |          |              |     |           | 0, 1846, 0, 5624, 0, 388,          |
| SKINNY8        | 64       | 64           | 128 | 2         | 0, 464, 0, 118, 0, 892, 0,         |
|                |          |              |     |           | 22, 0, 0, 0, 4, 0, 24, 0, 2,       |
|                |          |              |     |           | 0, 0, 0, 2, 0, 52                  |

S-boxes overview (continued).

| S                     | S <sub>NL</sub> | $S_{\delta}$ | SAC | $S_{DEG}$ | Spectra                          |
|-----------------------|-----------------|--------------|-----|-----------|----------------------------------|
|                       |                 |              |     |           | 7005, 12456, 11244, 9799,        |
| Skipjack              | 100             | 12           | 96  | 6         | 7882, 6032, 4354, 2813, 1814,    |
|                       |                 |              |     |           | 1041, 567, 317, 154, 54, 3       |
|                       |                 |              |     |           | 25715, 0, 0, 0, 32324,           |
| SNOW3G                | 96              | 8            | 96  | 5         | 0, 0, 0, 6924, 0, 0, 0,          |
|                       |                 |              |     |           | 556, 0, 0, 0, 16                 |
|                       |                 |              |     |           | 6534, 11645, 10761, 10166, 8793, |
| Streebog              | 100             | 8            | 96  | 7         | 6804, 4474, 2796, 1693, 971,     |
|                       |                 |              |     |           | 535, 219, 91, 39, 14             |
|                       |                 |              |     |           | 6998, 12383, 11444, 9705, 7997,  |
| Turing                | 94              | 12           | 96  | 6         | 5922, 4320, 2852, 1800, 1045,    |
|                       |                 |              |     |           | 551, 265, 145, 72, 21, 11, 3, 1  |
|                       |                 |              |     |           | 14221, 0, 22376, 0, 15506,       |
| Twofish $p_0$         | 96              | 10           | 128 | 6         | 0, 8298, 0, 3545, 0, 1194,       |
|                       |                 |              |     |           | 0, 314, 0, 68, 0, 13             |
|                       |                 |              |     |           | 14151, 0, 22385, 0, 15667,       |
| Twofish $p_1$         | 96              | 10           | 112 | 6         | 0, 8209, 0, 3512, 0,             |
|                       |                 |              |     |           | 1189, 0, 353, 0, 57, 0, 12       |
| AES                   |                 |              |     |           |                                  |
| ARIA $S_2$            |                 |              |     |           |                                  |
| Camellia              |                 |              |     |           |                                  |
| CLEFIA S <sub>1</sub> |                 |              |     |           |                                  |
| DBlock                |                 |              |     |           | 4500 12240 0180 10200 8770       |
| Hierocrypt3           | 112             | 4            | 32  | 7         | 4590, 12240, 9180, 10200, 8670,  |
| Hierocrypt31          |                 |              |     |           | 6120, 9180, 4080, 1275           |
| SEED $S_0$            |                 |              |     |           |                                  |
| SEED $S_1$            |                 |              |     |           |                                  |
| SMS4                  |                 |              |     |           |                                  |
| ZUC $S_1$             |                 |              |     |           |                                  |
|                       |                 |              |     |           | 7399, 12400, 11084, 9960, 7580,  |
| Whirlpool             | 100             | 8            | 96  | 7         | 5882, 4229, 3028, 1870, 1048,    |
|                       |                 |              |     |           | 563, 260, 134, 62, 36            |
|                       |                 | 1            | I   |           |                                  |

S-boxes overview (continued).

| S         | S <sub>NL</sub> | $S_{\delta}$         | SAC                      | $S_{DEG}$ | Spectra                      |
|-----------|-----------------|----------------------|--------------------------|-----------|------------------------------|
|           |                 |                      |                          |           | 26655, 0, 0, 0, 31200,       |
| ZUC $S_0$ | 96              | 8                    | 128                      | 5         | 0, 0, 0, 7232, 0, 0, 0, 288, |
|           |                 |                      |                          |           | 0, 0, 0, 160                 |
|           |                 |                      |                          |           | 10115, 6322, 17157, 4921,    |
| 7.0000    | 06              | 11652, 3036          | 11652, 3036, 6519, 1393, |           |                              |
| 20110     |                 | 2562, 536, 891, 131, |                          |           |                              |
|           |                 |                      | 208, 36, 41, 9, 6        |           |                              |

S-boxes overview (continued).

#### A.2 Collisions search by using absolute LAT spectra

| Sbox   | Collision <b>F</b>      | I  | Ι                                                        |
|--------|-------------------------|----|----------------------------------------------------------|
| FLY    | $\Gamma(\cdot,4,0,8,I)$ | 12 | 22, 54, 86, 97, 99, 101, 103, 105, 107, 118, 150, 182    |
| FLY    | $\Gamma(\cdot,4,0,8,I)$ | 8  | 60, 94, 188, 195, 203, 207, 229, 252                     |
| FLY    | $\Gamma(\cdot,4,0,8,I)$ | 12 | 30, 126, 159, 189, 190, 219, 225, 231, 235, 239, 249,    |
|        |                         |    | 254                                                      |
| PICARO | $\Gamma(\cdot,4,2,6,I)$ | 96 | 0, 1, 9, 11, 13, 14, 16, 17, 25, 27, 29, 30, 32, 33, 41, |
|        |                         |    | 43, 45, 46, 48, 49, 57, 59, 61, 62, 64, 65, 73, 75, 77,  |
|        |                         |    | 78, 80, 81, 89, 91, 93, 94, 96, 97, 105, 107, 109, 110,  |
|        |                         |    | 112, 113, 121, 123, 125, 126, 128, 129, 137, 139, 141,   |
|        |                         |    | 142, 144, 145, 153, 155, 157, 158, 160, 161, 169, 171,   |
|        |                         |    | 173, 174, 176, 177, 185, 187, 189, 190, 192, 193, 201,   |
|        |                         |    | 203, 205, 206, 208, 209, 217, 219, 221, 222, 224, 225,   |
|        |                         |    | 233, 235, 237, 238, 240, 241, 249, 251, 253, 254         |
| PICARO | $\Gamma(\cdot,4,0,8,I)$ | 16 | 9, 11, 13, 14, 29, 43, 57, 78, 109, 125, 137, 174, 185,  |
|        |                         |    | 219, 238, 251                                            |

Table A.2 Collisions search by using absolute LAT spectra

| Sbox   | Collision <b>F</b>       | I   | Ι                                                          |
|--------|--------------------------|-----|------------------------------------------------------------|
| PICARO | $\Gamma(\cdot,4,2,10,I)$ | 96  | 0, 1, 9, 11, 13, 14, 16, 17, 25, 27, 29, 30, 32, 33, 41,   |
|        |                          |     | 43, 45, 46, 48, 49, 57, 59, 61, 62, 64, 65, 73, 75, 77,    |
|        |                          |     | 78, 80, 81, 89, 91, 93, 94, 96, 97, 105, 107, 109, 110,    |
|        |                          |     | 112, 113, 121, 123, 125, 126, 128, 129, 137, 139, 141,     |
|        |                          |     | 142, 144, 145, 153, 155, 157, 158, 160, 161, 169, 171,     |
|        |                          |     | 173, 174, 176, 177, 185, 187, 189, 190, 192, 193, 201,     |
|        |                          |     | 203, 205, 206, 208, 209, 217, 219, 221, 222, 224, 225,     |
|        |                          |     | 233, 235, 237, 238, 240, 241, 249, 251, 253, 254           |
| PICARO | $\Gamma(\cdot,4,2,10,I)$ | 12  | 19, 34, 52, 69, 99, 115, 132, 165, 180, 210, 229, 242      |
| PICARO | $\Gamma(\cdot,4,2,10,I)$ | 12  | 26, 44, 63, 72, 106, 122, 143, 168, 191, 220, 232, 252     |
| PICARO | $\Gamma(\cdot,4,2,10,I)$ | 12  | 82, 83, 84, 85, 146, 147, 148, 149, 194, 195, 196, 197     |
| PICARO | $\Gamma(\cdot,4,2,10,I)$ | 12  | 23, 39, 54, 70, 103, 119, 134, 166, 182, 215, 230, 247     |
| PICARO | $\Gamma(\cdot,4,4,12,I)$ | 204 | 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, |
|        |                          |     | 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 31, 32, 33, 34,    |
|        |                          |     | 35, 36, 37, 38, 39, 40, 42, 43, 44, 47, 48, 49, 50, 51,    |
|        |                          |     | 52, 53, 54, 55, 56, 57, 58, 60, 63, 64, 65, 66, 67, 68,    |
|        |                          |     | 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 86,    |
|        |                          |     | 87, 88, 90, 92, 95, 96, 97, 98, 99, 100, 101, 102, 103,    |
|        |                          |     | 104, 106, 108, 109, 111, 112, 113, 114, 115, 116, 117,     |
|        |                          |     | 118, 119, 120, 122, 124, 125, 127, 128, 129, 130, 131,     |
|        |                          |     | 132, 133, 134, 135, 136, 137, 138, 140, 143, 144, 146,     |
|        |                          |     | 147, 148, 149, 150, 151, 152, 154, 156, 159, 160, 161,     |
|        |                          |     | 162, 163, 164, 165, 166, 167, 168, 170, 172, 174, 175,     |
|        |                          |     | 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186,     |
|        |                          |     | 188, 191, 192, 194, 195, 196, 197, 198, 199, 200, 202,     |
|        |                          |     | 204, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216,     |
|        |                          |     | 218, 219, 220, 223, 224, 225, 226, 227, 228, 229, 230,     |
|        |                          |     | 231, 232, 234, 236, 238, 239, 240, 241, 242, 243, 244,     |
|        |                          |     | 245, 246, 247, 248, 250, 251, 252, 255                     |

Collisions search by using absolute LAT spectra (continued)

| Sbox   | Collision $\Gamma$        | I   | Ι                                                          |
|--------|---------------------------|-----|------------------------------------------------------------|
| PICARO | $\Gamma(\cdot,4,10,14,I)$ | 96  | 0, 1, 9, 11, 13, 14, 16, 17, 25, 27, 29, 30, 32, 33, 41,   |
|        |                           |     | 43, 45, 46, 48, 49, 57, 59, 61, 62, 64, 65, 73, 75, 77,    |
|        |                           |     | 78, 80, 81, 89, 91, 93, 94, 96, 97, 105, 107, 109, 110,    |
|        |                           |     | 112, 113, 121, 123, 125, 126, 128, 129, 137, 139, 141,     |
|        |                           |     | 142, 144, 145, 153, 155, 157, 158, 160, 161, 169, 171,     |
|        |                           |     | 173, 174, 176, 177, 185, 187, 189, 190, 192, 193, 201,     |
|        |                           |     | 203, 205, 206, 208, 209, 217, 219, 221, 222, 224, 225,     |
|        |                           |     | 233, 235, 237, 238, 240, 241, 249, 251, 253, 254           |
| PICARO | $\Gamma(\cdot,4,10,14,I)$ | 12  | 28, 42, 56, 79, 108, 124, 136, 175, 184, 218, 239, 250     |
| PICARO | $\Gamma(\cdot,4,12,14,I)$ | 12  | 23, 39, 54, 70, 103, 119, 134, 166, 182, 215, 230, 247     |
| Iraqi  | $\Gamma(\cdot,4,0,4,I)$   | 130 | 0, 2, 3, 4, 5, 10, 11, 12, 13, 18, 19, 20, 21, 26, 27, 28, |
|        |                           |     | 29, 32, 33, 38, 39, 40, 41, 42, 46, 47, 48, 49, 54, 55,    |
|        |                           |     | 56, 57, 62, 63, 66, 67, 68, 69, 74, 75, 76, 77, 82, 83,    |
|        |                           |     | 84, 85, 90, 91, 92, 93, 96, 97, 102, 103, 104, 105, 110,   |
|        |                           |     | 111, 112, 113, 118, 119, 120, 121, 126, 127, 128, 129,     |
|        |                           |     | 134, 135, 136, 137, 142, 143, 144, 145, 150, 151, 152,     |
|        |                           |     | 153, 158, 159, 162, 163, 164, 165, 170, 171, 172, 173,     |
|        |                           |     | 178, 179, 180, 181, 186, 187, 188, 189, 192, 193, 198,     |
|        |                           |     | 199, 200, 201, 206, 207, 208, 209, 214, 215, 216, 217,     |
|        |                           |     | 222, 223, 226, 227, 228, 229, 234, 235, 236, 237, 242,     |
|        |                           |     | 243, 244, 245, 250, 251, 252, 253                          |
| Iraqi  | $\Gamma(\cdot,4,2,6,I)$   | 129 | 0, 2, 3, 4, 5, 10, 11, 12, 13, 18, 19, 20, 21, 26, 27, 28, |
|        |                           |     | 29, 32, 33, 38, 39, 40, 41, 46, 47, 48, 49, 54, 55, 56,    |
|        |                           |     | 57, 62, 63, 66, 67, 68, 69, 74, 75, 76, 77, 82, 83, 84,    |
|        |                           |     | 85, 90, 91, 92, 93, 96, 97, 102, 103, 104, 105, 110,       |
|        |                           |     | 111, 112, 113, 118, 119, 120, 121, 126, 127, 128, 129,     |
|        |                           |     | 134, 135, 136, 137, 142, 143, 144, 145, 150, 151, 152,     |
|        |                           |     | 153, 158, 159, 162, 163, 164, 165, 170, 171, 172, 173,     |
|        |                           |     | 178, 179, 180, 181, 186, 187, 188, 189, 192, 193, 198,     |
|        |                           |     | 199, 200, 201, 206, 207, 208, 209, 214, 215, 216, 217,     |
|        |                           |     | 222, 223, 226, 227, 228, 229, 234, 235, 236, 237, 242,     |
|        |                           |     | 243, 244, 245, 250, 251, 252, 253                          |
|        |                           |     | Continue on the next page                                  |

Collisions search by using absolute LAT spectra (continued)

| Sbox      | Collision $\Gamma$       | I   | Ι                                                             |
|-----------|--------------------------|-----|---------------------------------------------------------------|
| FOX       | $\Gamma(\cdot,4,4,12,I)$ | 16  | 0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187,          |
|           |                          |     | 204, 221, 238, 255                                            |
| Fantomas  | $\Gamma(\cdot,4,0,8,I)$  | 10  | 102, 110, 114, 122, 195, 215, 230, 238, 242, 250              |
| Fantomas  | $\Gamma(\cdot,4,4,12,I)$ | 128 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, |
|           |                          |     | 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,       |
|           |                          |     | 32, 36, 40, 44, 48, 52, 56, 60, 64, 65, 68, 69, 72, 73,       |
|           |                          |     | 76, 77, 80, 81, 84, 85, 88, 89, 92, 93, 96, 98, 100, 102,     |
|           |                          |     | 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124,        |
|           |                          |     | 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146,        |
|           |                          |     | 148, 150, 152, 154, 156, 158, 160, 164, 168, 172, 176,        |
|           |                          |     | 180, 184, 188, 192, 195, 196, 199, 200, 203, 204, 207,        |
|           |                          |     | 208, 211, 212, 215, 216, 219, 220, 223, 224, 226, 228,        |
|           |                          |     | 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250,        |
|           |                          |     | 252, 254                                                      |
| Lilliput  | $\Gamma(\cdot,4,0,8,I)$  | 16  | 80, 83, 85, 86, 112, 115, 117, 118, 224, 226, 229, 231,       |
|           |                          |     | 232, 234, 237, 239                                            |
| Lilliput  | $\Gamma(\cdot,4,4,12,I)$ | 64  | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, |
|           |                          |     | 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,       |
|           |                          |     | 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154,        |
|           |                          |     | 155, 156, 157, 158, 159, 176, 177, 178, 179, 180, 181,        |
|           |                          |     | 182, 183, 184, 185, 186, 187, 188, 189, 190, 191              |
| Lilliput  | $\Gamma(\cdot,4,4,12,I)$ | 32  | 19, 23, 25, 29, 80, 86, 98, 106, 115, 117, 131, 134,          |
|           |                          |     | 137, 140, 163, 166, 169, 172, 192, 194, 196, 198, 200,        |
|           |                          |     | 202, 204, 206, 224, 226, 233, 235, 243, 255                   |
| Lilliput  | $\Gamma(\cdot,4,4,12,I)$ | 8   | 20, 26, 50, 60, 132, 142, 164, 174                            |
| CMEA      | $\Gamma(\cdot,4,0,4,I)$  | 5   | 0, 56, 118, 178, 252                                          |
| CMEA      | $\Gamma(\cdot,4,2,6,I)$  | 12  | 0, 5, 61, 75, 78, 115, 138, 143, 183, 193, 196, 249           |
| CryptonS0 | $\Gamma(\cdot,4,0,8,I)$  | 19  | 96, 103, 104, 105, 111, 117, 124, 162, 164, 167, 168,         |
|           |                          |     | 171, 173, 174, 197, 207, 231, 235, 236                        |
| CryptonS0 | $\Gamma(\cdot,4,4,12,I)$ | 12  | 0, 16, 18, 47, 76, 97, 142, 163, 192, 239, 253, 255           |
| CryptonS0 | $\Gamma(\cdot,4,4,12,I)$ | 5   | 99, 158, 179, 208, 210                                        |
| SKINNY    | $\Gamma(\cdot,4,0,8,I)$  | 8   | 193, 197, 201, 205, 225, 229, 233, 237                        |
| SKINNY    | $\Gamma(\cdot,4,0,8,I)$  | 8   | 74, 78, 106, 110, 202, 206, 234, 238                          |

Collisions search by using absolute LAT spectra (continued)

| Sbox       | Collision Γ                   | I   | Ι                                                          |
|------------|-------------------------------|-----|------------------------------------------------------------|
| SKINNY     | $\Gamma(\cdot, 4, 0, 8, I)$   | 12  | 21, 23, 29, 31, 55, 63, 151, 159, 181, 183, 189, 191       |
| SKINNY     | $\Gamma(\cdot,4,4,12,I)$      | 128 | 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, |
|            |                               |     | 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,    |
|            |                               |     | 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,    |
|            |                               |     | 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110,      |
|            |                               |     | 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132,     |
|            |                               |     | 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154,     |
|            |                               |     | 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176,     |
|            |                               |     | 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198,     |
|            |                               |     | 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220,     |
|            |                               |     | 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242,     |
|            |                               |     | 244, 246, 248, 250, 252, 254                               |
| SKINNY     | $\Gamma(\cdot, 4, 4, 12, I)$  | 12  | 19, 21, 27, 29, 147, 149, 155, 157, 195, 199, 203, 207     |
| SKINNY     | $\Gamma(\cdot, 4, 4, 12, I)$  | 8   | 83, 87, 91, 95, 243, 247, 251, 255                         |
| SKINNY     | $\Gamma(\cdot, 4, 4, 12, I)$  | 36  | 17, 23, 25, 31, 49, 55, 57, 63, 81, 85, 89, 93, 117, 125,  |
|            |                               |     | 145, 151, 153, 159, 177, 183, 185, 191, 193, 197, 201,     |
|            |                               |     | 205, 213, 221, 225, 229, 233, 237, 241, 245, 249, 253      |
| SKINNY     | $\Gamma(\cdot, 4, 0, 16, I)$  | 8   | 30, 62, 90, 122, 158, 190, 218, 250                        |
| SKINNY     | $\Gamma(\cdot,4,12,20,I)$     | 8   | 133, 135, 141, 143, 165, 167, 173, 175                     |
| SKINNY     | $\Gamma(\cdot, 4, 16, 24, I)$ | 12  | 21, 23, 29, 31, 55, 63, 151, 159, 181, 183, 189, 191       |
| ZUCS0      | $\Gamma(\cdot,4,0,8,I)$       | 16  | 22, 23, 54, 55, 86, 87, 118, 119, 150, 151, 182, 183,      |
|            |                               |     | 214, 215, 246, 247                                         |
| ZUCS0      | $\Gamma(\cdot,4,0,8,I)$       | 32  | 6, 7, 26, 27, 38, 39, 58, 59, 70, 71, 90, 91, 102, 103,    |
|            |                               |     | 122, 123, 134, 135, 154, 155, 166, 167, 186, 187, 198,     |
|            |                               |     | 199, 218, 219, 230, 231, 250, 251                          |
| Kuznyechik | $\Gamma(\cdot,4,2,14,I)$      | 16  | 0, 26, 32, 58, 68, 94, 100, 126, 138, 144, 170, 176,       |
|            |                               |     | 206, 212, 238, 244                                         |
| Kuznyechik | $\Gamma(\cdot, 4, 2, 16, I)$  | 16  | 0, 26, 32, 58, 68, 94, 100, 126, 138, 144, 170, 176,       |
|            |                               |     | 206, 212, 238, 244                                         |
| Scream     | $\Gamma(\cdot,4,0,8,I)$       | 8   | 67, 71, 75, 79, 99, 103, 107, 111                          |
| Scream     | $\Gamma(\cdot,4,0,8,I)$       | 8   | 200, 201, 202, 203, 204, 205, 206, 207                     |
| Scream     | $\Gamma(\cdot,4,0,8,I)$       | 12  | 88, 90, 92, 94, 112, 114, 116, 118, 121, 123, 125, 127     |
|            |                               |     | Continue on the next page                                  |

Collisions search by using absolute LAT spectra (continued)

| Sbox    | Collision Γ                  | I   | Ι                                                             |
|---------|------------------------------|-----|---------------------------------------------------------------|
| Scream  | $\Gamma(\cdot, 4, 4, 12, I)$ | 64  | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, |
|         |                              |     | 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,       |
|         |                              |     | 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154,        |
|         |                              |     | 155, 156, 157, 158, 159, 176, 177, 178, 179, 180, 181,        |
|         |                              |     | 182, 183, 184, 185, 186, 187, 188, 189, 190, 191              |
| Scream  | $\Gamma(\cdot,4,4,12,I)$     | 6   | 23, 25, 49, 52, 58, 63                                        |
| CSS     | $\Gamma(\cdot,4,0,16,I)$     | 128 | 4, 5, 6, 7, 8, 9, 10, 11, 20, 21, 22, 23, 24, 25, 26, 27,     |
|         |                              |     | 36, 37, 38, 39, 40, 41, 42, 43, 52, 53, 54, 55, 56, 57,       |
|         |                              |     | 58, 59, 64, 65, 66, 67, 76, 77, 78, 79, 80, 81, 82, 83,       |
|         |                              |     | 92, 93, 94, 95, 96, 97, 98, 99, 108, 109, 110, 111, 112,      |
|         |                              |     | 113, 114, 115, 124, 125, 126, 127, 128, 129, 130, 131,        |
|         |                              |     | 140, 141, 142, 143, 144, 145, 146, 147, 156, 157, 158,        |
|         |                              |     | 159, 160, 161, 162, 163, 172, 173, 174, 175, 176, 177,        |
|         |                              |     | 178, 179, 188, 189, 190, 191, 196, 197, 198, 199, 200,        |
|         |                              |     | 201, 202, 203, 212, 213, 214, 215, 216, 217, 218, 219,        |
|         |                              |     | 228, 229, 230, 231, 232, 233, 234, 235, 244, 245, 246,        |
|         |                              |     | 247, 248, 249, 250, 251                                       |
| SNOW3G  | $\Gamma(\cdot,4,0,8,I)$      | 8   | 56, 98, 100, 104, 172, 202, 216, 232                          |
| SNOW3G  | $\Gamma(\cdot,4,0,8,I)$      | 8   | 59, 81, 131, 141, 205, 207, 213, 251                          |
| SNOW3G  | $\Gamma(\cdot,4,0,8,I)$      | 8   | 22, 28, 38, 122, 150, 178, 180, 198                           |
| SNOW3G  | $\Gamma(\cdot,4,0,8,I)$      | 8   | 32, 42, 44, 112, 130, 144, 160, 228                           |
| SNOW3G  | $\Gamma(\cdot,4,0,8,I)$      | 8   | 9, 67, 119, 127, 129, 143, 145, 149                           |
| SNOW3G  | $\Gamma(\cdot,4,0,8,I)$      | 8   | 61, 71, 89, 97, 137, 159, 235, 247                            |
| SNOW3G  | $\Gamma(\cdot,4,0,8,I)$      | 10  | 7, 13, 40, 53, 83, 96, 99, 101, 153, 187                      |
| SNOW3G  | $\Gamma(\cdot,4,0,8,I)$      | 8   | 25, 115, 133, 135, 157, 179, 197, 203                         |
| SNOW3G  | $\Gamma(\cdot,4,0,8,I)$      | 24  | 14, 15, 17, 23, 26, 41, 52, 87, 105, 107, 117, 118, 156,      |
|         |                              |     | 163, 169, 189, 191, 193, 210, 215, 238, 239, 241, 246         |
| SNOW3G  | $\Gamma(\cdot,4,0,8,I)$      | 8   | 19, 121, 155, 165, 173, 181, 227, 231                         |
| SNOW3G  | $\Gamma(\cdot,4,0,8,I)$      | 8   | 31, 33, 35, 95, 167, 185, 225, 245                            |
| iScream | $\Gamma(\cdot,4,0,8,I)$      | 8   | 129, 145, 161, 177, 193, 209, 225, 241                        |
| iScream | $\Gamma(\cdot,4,4,12,I)$     | 32  | 0, 1, 16, 17, 32, 33, 48, 49, 64, 65, 80, 81, 96, 97, 112,    |
|         |                              |     | 113, 128, 129, 144, 145, 160, 161, 176, 177, 192, 193,        |
|         |                              |     | 208, 209, 224, 225, 240, 241                                  |

Collisions search by using absolute LAT spectra (continued)

| Sbox    | Collision Γ              | I   | Ι                                                           |
|---------|--------------------------|-----|-------------------------------------------------------------|
| iScream | $\Gamma(\cdot,4,4,12,I)$ | 8   | 34, 38, 50, 54, 71, 87, 99, 115                             |
| Zorro   | $\Gamma(\cdot,4,2,6,I)$  | 128 | 0, 1, 4, 5, 10, 11, 14, 15, 18, 19, 22, 23, 24, 25, 28, 29, |
|         |                          |     | 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 52, 53, 58, 59,     |
|         |                          |     | 62, 63, 64, 65, 68, 69, 74, 75, 78, 79, 82, 83, 86, 87,     |
|         |                          |     | 88, 89, 92, 93, 98, 99, 102, 103, 104, 105, 108, 109,       |
|         |                          |     | 112, 113, 116, 117, 122, 123, 126, 127, 128, 129, 132,      |
|         |                          |     | 133, 138, 139, 142, 143, 146, 147, 150, 151, 152, 153,      |
|         |                          |     | 156, 157, 162, 163, 166, 167, 168, 169, 172, 173, 176,      |
|         |                          |     | 177, 180, 181, 186, 187, 190, 191, 192, 193, 196, 197,      |
|         |                          |     | 202, 203, 206, 207, 210, 211, 214, 215, 216, 217, 220,      |
|         |                          |     | 221, 226, 227, 230, 231, 232, 233, 236, 237, 240, 241,      |
|         |                          |     | 244, 245, 250, 251, 254, 255                                |
| CS      | $\Gamma(\cdot,4,0,8,I)$  | 24  | 36, 37, 38, 39, 40, 41, 42, 43, 160, 161, 162, 163, 164,    |
|         |                          |     | 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175       |
| CS      | $\Gamma(\cdot,4,0,8,I)$  | 16  | 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,      |
|         |                          |     | 235, 236, 237, 238, 239                                     |
| CS      | $\Gamma(\cdot,4,0,8,I)$  | 16  | 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,     |
|         |                          |     | 94, 95                                                      |
| CS      | $\Gamma(\cdot,4,0,8,I)$  | 16  | 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186,      |
|         |                          |     | 187, 188, 189, 190, 191                                     |
| CS      | $\Gamma(\cdot,4,0,8,I)$  | 16  | 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122,      |
|         |                          |     | 123, 124, 125, 126, 127                                     |

Collisions search by using absolute LAT spectra (continued)

# A.3 Collisions search by using absolute transposed LAT spectra

Table A.3 Collisions search by using absolute transposed LAT spectra

| Sbox | Collision <b></b>             | I  | Ι                                                      |
|------|-------------------------------|----|--------------------------------------------------------|
| BelT | $\Gamma(\cdot, 4, 0, 8, I^T)$ | 16 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192 |
| BelT | $\Gamma(\cdot,4,0,8,I^T)$     | 6  | 7, 14, 28, 56, 80, 160                                 |
| BelT | $\Gamma(\cdot,4,8,12,I^T)$    | 6  | 7, 14, 28, 56, 80, 160                                 |

#### A.4 Collisions search by using DDT spectra

| Sbox           | Collision Γ                  | I  | Ι                                                        |
|----------------|------------------------------|----|----------------------------------------------------------|
| FLY            | $\Gamma(\cdot,4,0,4,I)$      | 8  | 6, 7, 14, 15, 96, 112, 224, 240                          |
| FLY            | $\Gamma(\cdot,4,4,8,I)$      | 8  | 6, 7, 14, 15, 96, 112, 224, 240                          |
| PICARO         | $\Gamma(\cdot, 0, 2, 12, I)$ | 12 | 23, 57, 73, 93, 107, 121, 139, 157, 167, 183, 205, 235   |
| PICARO         | $\Gamma(\cdot, 0, 2, 12, I)$ | 12 | 19, 53, 69, 95, 97, 117, 129, 159, 163, 179, 207, 225    |
| PICARO         | $\Gamma(\cdot, 0, 2, 12, I)$ | 10 | 2, 4, 6, 7, 9, 10, 11, 12, 13, 14                        |
| Lilliput       | $\Gamma(\cdot, 0, 4, 8, I)$  | 8  | 16, 32, 48, 80, 96, 112, 160, 224                        |
| SKINNY         | $\Gamma(\cdot,0,0,2,I)$      | 12 | 232, 233, 234, 235, 236, 237, 248, 249, 250, 251, 252,   |
|                |                              |    | 253                                                      |
| SKINNY         | $\Gamma(\cdot,0,0,4,I)$      | 8  | 53, 54, 98, 99, 114, 115, 197, 213                       |
| SKINNY         | $\Gamma(\cdot, 0, 4, 12, I)$ | 6  | 24, 25, 26, 27, 42, 43                                   |
| Kalyna $\pi_3$ | $\Gamma(\cdot,0,0,2,I)$      | 6  | 65, 67, 127, 145, 151, 250                               |
| ZUCS0          | $\Gamma(\cdot,0,0,2,I)$      | 8  | 133, 135, 141, 143, 149, 151, 157, 159                   |
| ZUCS0          | $\Gamma(\cdot,0,0,2,I)$      | 16 | 66, 70, 74, 78, 82, 86, 90, 94, 209, 211, 213, 215, 217, |
|                |                              |    | 219, 221, 223                                            |
| ZUCS0          | $\Gamma(\cdot,0,0,4,I)$      | 5  | 4, 6, 10, 20, 28                                         |
| ZUCS0          | $\Gamma(\cdot, 0, 4, 6, I)$  | 8  | 224, 226, 228, 230, 240, 242, 244, 246                   |
| ZUCS0          | $\Gamma(\cdot,0,0,8,I)$      | 8  | 35, 39, 43, 47, 51, 55, 59, 63                           |

| Sbox       | Collision <b>F</b>          | I   | Ι                                                        |
|------------|-----------------------------|-----|----------------------------------------------------------|
| ZUCS0      | $\Gamma(\cdot,0,0,8,I)$     | 8   | 161, 163, 169, 171, 177, 179, 185, 187                   |
| Kuznyechik | $\Gamma(\cdot,0,2,4,I)$     | 5   | 4, 18, 36, 38, 48                                        |
| Scream     | $\Gamma(\cdot,0,0,2,I)$     | 8   | 33, 49, 97, 113, 161, 177, 225, 241                      |
| Scream     | $\Gamma(\cdot,0,0,8,I)$     | 8   | 32, 64, 80, 96, 160, 192, 208, 224                       |
| CSS        | $\Gamma(\cdot,0,0,16,I)$    | 108 | 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34,  |
|            |                             |     | 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 53, 54, 55, 57,  |
|            |                             |     | 58, 59, 85, 86, 87, 89, 90, 91, 101, 102, 103, 105, 106, |
|            |                             |     | 107, 113, 114, 115, 117, 118, 119, 121, 122, 123, 125,   |
|            |                             |     | 126, 127, 149, 150, 151, 153, 154, 155, 165, 166, 167,   |
|            |                             |     | 169, 170, 171, 177, 178, 179, 181, 182, 183, 185, 186,   |
|            |                             |     | 187, 189, 190, 191, 209, 210, 211, 213, 214, 215, 217,   |
|            |                             |     | 218, 219, 221, 222, 223, 225, 226, 227, 229, 230, 231,   |
|            |                             |     | 233, 234, 235, 237, 238, 239, 245, 246, 247, 249, 250,   |
|            |                             |     | 251                                                      |
| SNOW3G     | $\Gamma(\cdot,0,0,2,I)$     | 8   | 67, 87, 97, 103, 138, 170, 192, 243                      |
| SNOW3G     | $\Gamma(\cdot,0,0,2,I)$     | 8   | 128, 133, 135, 144, 238, 248, 251, 255                   |
| SNOW3G     | $\Gamma(\cdot,0,0,4,I)$     | 8   | 67, 87, 97, 103, 138, 170, 192, 243                      |
| SNOW3G     | $\Gamma(\cdot, 0, 2, 4, I)$ | 24  | 22, 23, 42, 63, 70, 83, 98, 101, 110, 111, 113, 118,     |
|            |                             |     | 122, 123, 124, 125, 137, 155, 169, 175, 194, 196, 227,   |
|            |                             |     | 241                                                      |
| CS         | $\Gamma(\cdot,0,0,2,I)$     | 8   | 131, 147, 163, 179, 195, 211, 227, 243                   |
| CS         | $\Gamma(\cdot,0,0,2,I)$     | 8   | 11, 27, 43, 59, 203, 219, 235, 251                       |

Collisions search by using DDT spectra (continued)

#### A.5 Collisions search by using transposed DDT spectra

| Sbox           | Collision Γ                   | I | Ι                                       |
|----------------|-------------------------------|---|-----------------------------------------|
| Fox            | • • • • • •                   |   | 34, 51, 102, 119, 153, 170, 204, 255    |
| Kalyna $\pi_3$ | $\Gamma(\cdot, 0, 0, 2, I^T)$ | 5 | 1, 12, 55, 76, 199                      |
| BelT           | $\Gamma(\cdot, 0, 0, 2, I^T)$ | 9 | 28, 31, 67, 98, 114, 124, 201, 216, 223 |

Table A.5 Collisions search by using transposed DDT spectra

| Sbox | Collision <b></b>             | I | Ι                          |
|------|-------------------------------|---|----------------------------|
| BelT | $\Gamma(\cdot,0,0,2,I^T)$     | 6 | 57, 64, 143, 156, 184, 224 |
| BelT | $\Gamma(\cdot, 0, 0, 2, I^T)$ | 6 | 24, 32, 46, 56, 139, 195   |
| BelT | $\Gamma(\cdot, 0, 0, 2, I^T)$ | 5 | 16, 30, 34, 113, 197       |
| BelT | $\Gamma(\cdot, 0, 0, 2, I^T)$ | 5 | 11, 17, 88, 120, 176       |
| BelT | $\Gamma(\cdot, 0, 2, 4, I^T)$ | 5 | 11, 17, 88, 120, 176       |
| BelT | $\Gamma(\cdot, 0, 2, 4, I^T)$ | 5 | 16, 30, 34, 113, 197       |
| BelT | $\Gamma(\cdot, 0, 2, 4, I^T)$ | 6 | 24, 32, 46, 56, 139, 195   |

Collisions search by using transposed DDT spectra (continued)

#### A.6 Collisions search by using ACT spectra

Table A.6 Collisions search by using ACT spectra (some results are omitted)

| Sbox     | Collision $\Gamma$           | I   | Ι                                                          |
|----------|------------------------------|-----|------------------------------------------------------------|
| FLY      | $\Gamma(\cdot, 4, 0, 16, I)$ | 12  | 1, 3, 5, 7, 13, 15, 16, 48, 80, 112, 208, 240              |
| PICARO   | $\Gamma(\cdot,4,0,16,I)$     | 12  | 88, 90, 92, 95, 152, 154, 156, 159, 200, 202, 204, 207     |
| Iraqi    | $\Gamma(\cdot,4,0,8,I)$      | 129 | 0, 2, 3, 4, 5, 10, 11, 12, 13, 18, 19, 20, 21, 26, 27, 28, |
|          |                              |     | 29, 32, 33, 38, 39, 40, 41, 46, 47, 48, 49, 54, 55, 56,    |
|          |                              |     | 57, 62, 63, 66, 67, 68, 69, 74, 75, 76, 77, 82, 83, 84,    |
|          |                              |     | 85, 90, 91, 92, 93, 96, 97, 102, 103, 104, 105, 110,       |
|          |                              |     | 111, 112, 113, 118, 119, 120, 121, 126, 127, 128, 129,     |
|          |                              |     | 134, 135, 136, 137, 142, 143, 144, 145, 150, 151, 152,     |
|          |                              |     | 153, 158, 159, 162, 163, 164, 165, 170, 171, 172, 173,     |
|          |                              |     | 178, 179, 180, 181, 186, 187, 188, 189, 192, 193, 198,     |
|          |                              |     | 199, 200, 201, 206, 207, 208, 209, 214, 215, 216, 217,     |
|          |                              |     | 222, 223, 226, 227, 228, 229, 234, 235, 236, 237, 242,     |
|          |                              |     | 243, 244, 245, 250, 251, 252, 253                          |
| Fox      | $\Gamma(\cdot,4,8,24,I)$     | 16  | 0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187,       |
|          |                              |     | 204, 221, 238, 255                                         |
| Fantomas | $\Gamma(\cdot,4,0,64,I)$     | 5   | 84, 136, 148, 200, 212                                     |

| Sbox       | Collision Γ                  | I  | Ι                                                             |
|------------|------------------------------|----|---------------------------------------------------------------|
| Lilliput   | $\Gamma(\cdot, 4, 8, 24, I)$ | 24 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 40, 41, |
|            |                              |    | 42, 43, 44, 45, 46, 47                                        |
| Crypton S0 | $\Gamma(\cdot,4,8,24,I)$     | 16 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15          |
| SKINNY     | $\Gamma(\cdot,4,0,64,I)$     | 16 | 20, 24, 52, 56, 84, 88, 116, 120, 132, 140, 164, 172,         |
|            |                              |    | 196, 204, 228, 236                                            |
| ZUCS0      | $\Gamma(\cdot,4,0,8,I)$      | 16 | 20, 21, 52, 53, 84, 85, 116, 117, 148, 149, 180, 181,         |
|            |                              |    | 212, 213, 244, 245                                            |
| Kuznyechik | $\Gamma(\cdot,4,0,16,I)$     | 5  | 68, 94, 138, 144, 212                                         |
| Kuznyechik | $\Gamma(\cdot,4,32,40,I)$    | 16 | 0, 26, 32, 58, 68, 94, 100, 126, 138, 144, 170, 176,          |
|            |                              |    | 206, 212, 238, 244                                            |
| Scream     | $\Gamma(\cdot,4,8,24,I)$     | 32 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, |
|            |                              |    | 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47        |
| CSS        | $\Gamma(\cdot,4,0,64,I)$     | 64 | 68, 69, 70, 71, 72, 73, 74, 75, 84, 85, 86, 87, 88, 89,       |
|            |                              |    | 90, 91, 100, 101, 102, 103, 104, 105, 106, 107, 116,          |
|            |                              |    | 117, 118, 119, 120, 121, 122, 123, 132, 133, 134, 135,        |
|            |                              |    | 136, 137, 138, 139, 148, 149, 150, 151, 152, 153, 154,        |
|            |                              |    | 155, 164, 165, 166, 167, 168, 169, 170, 171, 180, 181,        |
|            |                              |    | 182, 183, 184, 185, 186, 187                                  |
| SNOW3G     | $\Gamma(\cdot,4,0,8,I)$      | 8  | 9, 67, 119, 127, 129, 143, 145, 149                           |
| iScream    | $\Gamma(\cdot,4,0,16,I)$     | 8  | 129, 145, 161, 177, 193, 209, 225, 241                        |
| Zorro      | $\Gamma(\cdot,4,8,24,I)$     | 8  | 0, 49, 86, 103, 129, 176, 215, 230                            |
| CS         | $\Gamma(\cdot,4,0,8,I)$      | 16 | 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,        |
|            |                              |    | 235, 236, 237, 238, 239                                       |

Collisions search by using ACT spectra (continued)

## **Appendix B**

## **Binary Sequences**

#### **B.1** Shotgun Hill climbing results

Table B.1 An overview of the shotgun hill climbing algorithm results

| п   | Old | New | Binary sequence in HEX          | db      | MF    |
|-----|-----|-----|---------------------------------|---------|-------|
| 106 | 7   | 6   | 1366453fff339abc3d613eab4f2     | -24.943 | 5.030 |
| 107 | 7   | 6   | 3e525b707207bb6280c08c733aa     | -25.025 | 4.497 |
| 108 | 7   | 6   | 9d31b81bc465b48ab7ae0801834     | -25.105 | 5.533 |
| 109 | 7   | 6   | 1c80e7c337e7ea64d55da750ca5b    | -25.186 | 5.636 |
| 110 | 7   | 6   | 825bebaee519f060d42d81cc8d4     | -23.926 | 5.984 |
| 111 | 7   | 6   | 1cb387b52c8ed4cfeb048855305c    | -24.004 | 5.138 |
| 112 | 7   | 6   | 68a5614a61368ddf1743207fe706    | -24.082 | 4.931 |
| 113 | 7   | 6   | 1ae5cb4fe90feae29779ec120644e   | -24.160 | 4.409 |
| 114 | 7   | 6   | 19ed6101bcf959e19a5583a622e81   | -24.236 | 5.375 |
| 115 | 7   | 7   | 56d413e9ca1c1992f37994f88c502   | -24.312 | 3.952 |
| 116 | 7   | 7   | 43f475cbd4e3b98d5d0cb6c4840db   | -24.387 | 3.925 |
| 117 | 7   | 7   | 5d8caed643dfa1480b11c347164c1   | -24.462 | 4.108 |
| 118 | 7   | 7   | 3ce9d9c9ad524fb5f415fade2e1186  | -24.536 | 3.976 |
| 119 | 7   | 7   | 4b24ce6b455b8b02001de1753c5297  | -24.609 | 4.331 |
| 120 | 7   | 7   | d91e13e197ad463b9e2d9d5fed2544  | -24.682 | 4.639 |
| 121 | 7   | 7   | 3fbd241b987f4b8ed966614a888e89  | -24.754 | 4.141 |
| 122 | 7   | 7   | 28d7ab4e488ce60018781f34d704ae9 | -24.825 | 3.999 |
| 123 | 8   | 7   | 7d9b6c7bf11e94507c2556d6e6a8c31 | -24.896 | 3.736 |

| n   | Old | New | Binary sequence in HEX                    | db      | MF    |
|-----|-----|-----|-------------------------------------------|---------|-------|
| 124 | 8   | 7   | 703ffe14662bdc7cd3f4eb262a49a93           | -24.966 | 4.884 |
| 125 | 8   | 7   | a8e0e42fc6af59cfb7b640cff64bb2c           | -25.036 | 4.134 |
| 126 | 8   | 7   | ca666b72aa45167f4cc39f00521c2d2           | -25.105 | 4.544 |
| 127 | 7   | 7   | 73fef5c8d1d95d05cc26917ce097bc2d          | -25.174 | 4.815 |
| 128 | 8   | 7   | 915fca044f23e83a942393ada7bb73e7          | -25.242 | 4.911 |
| 129 | 8   | 7   | 1856351aa9ada9798eb0070b267d80836         | -25.310 | 3.955 |
| 130 | 8   | 7   | 7ea03973917046150ca103459afb7b49          | -25.377 | 4.692 |
| 131 | 8   | 7   | 169633c2e13890d5e540afdd64c811c09         | -25.443 | 4.403 |
| 132 | 8   | 7   | f4bf06b4afe88af3c79dd76badcd94c8          | -24.350 | 4.431 |
| 133 | 8   | 7   | 18fe45f33afd90cba4888b9d2b534841e1        | -24.415 | 4.323 |
| 134 | 8   | 8   | 2b35983c61b4f3bbf3752c69fabe0897a8        | -24.480 | 3.742 |
| 135 | 8   | 8   | 12c3755bb64459418f4a242e731e1697e         | -24.545 | 3.876 |
| 136 | 8   | 8   | 30ed813f6f583c925aaa2f53e6722f5bcf        | -24.609 | 3.925 |
| 137 | 8   | 8   | d569ca74eebccc573b0208187a6f82fa09        | -24.673 | 4.066 |
| 138 | 8   | 8   | 3d128917da3431938e6dfd1ef7a2e68bc2f       | -24.736 | 3.771 |
| 139 | 8   | 8   | 3c0e1d9b35f9bd5342a80db491c406d6f10       | -24.798 | 3.808 |
| 140 | 8   | 8   | bdcf8e3944f5b152fbbbf01b66a2d0b890a       | -24.861 | 4.026 |
| 141 | 9   | 8   | 115e1f52e273d156c9af48cc8007b6c649e<br>5  | -24.923 | 3.923 |
| 142 | 8   | 8   | 71338901166bd08b7d05ac1a4edf87d1531       | -24.984 | 3.724 |
| 143 | 8   | 8   | 67aa81c2c56fde794f6365fc0b30db92253<br>7  | -25.045 | 3.940 |
| 144 | 8   | 8   | 39716d38490502a3765215eb20ee1bb84ca<br>3  | -25.105 | 3.886 |
| 145 | 8   | 8   | 1791bb0ba63bccda7c2a3678dfd6825c792<br>a0 | -25.166 | 4.477 |
| 146 | 8   | 8   | 3708999ea4c1f08e12ae8ebcdf092d1215a<br>20 | -25.225 | 3.975 |
| 147 | 9   | 8   | 40c48cac0843a2f917ccab14215dd87b792<br>c7 | -25.285 | 4.122 |
| 148 | 8   | 8   | 2c24f9cb675dcd540bb0943d629030d83cd<br>c0 | -25.343 | 5.291 |

| n   | Old | New | Binary sequence in HEX                        | db      | MF    |
|-----|-----|-----|-----------------------------------------------|---------|-------|
| 149 | 8   | 8   | 5a0f857ae7b62266299eee68a141d70085a<br>58     | -25.402 | 3.698 |
| 150 | 9   | 8   | 3d63df1b948ddc2689a895072984b2ba7e6<br>008    | -25.460 | 4.329 |
| 151 | 8   | 8   | 2640cc90388e31881fe5535d5ac2c2456f2<br>f16    | -25.518 | 3.999 |
| 152 | 9   | 8   | 6501a71c13b1fec21d82cfddb2bb3a5d569<br>536    | -25.575 | 4.068 |
| 153 | 9   | 8   | 1752e3434eae633cc3817375b05becd5f40<br>5224   | -25.632 | 3.917 |
| 154 | 9   | 8   | 3cbe58528eb47f0efe6afbc2ed521dcf988<br>626d   | -25.689 | 3.864 |
| 155 | 8   | 8   | aaa430985f6a183d3fc9edd8217b0732ef1<br>b74    | -25.745 | 3.987 |
| 156 | 9   | 8   | dcaf489c2264f8ff9aeb8d7433f708165a1<br>6928   | -25.801 | 4.713 |
| 157 | 8   | 8   | 8c91dbe342975ba661d860071a06d745771<br>7b0b   | -25.856 | 4.241 |
| 158 | 9   | 8   | 11f07cda85b2c794875eea635521ffdf727<br>5c666  | -25.911 | 4.479 |
| 159 | 9   | 8   | 665f717b678d7c472844d61aad3a2e77814<br>1dbfb  | -25.966 | 4.366 |
| 160 | 9   | 8   | 62088e74b483f5cf4daeb02e3d169de44e9<br>cd5df  | -26.021 | 3.765 |
| 161 | 9   | 8   | e720b7b8987caaa3ca7e454a0ecc9108245<br>a5cf   | -26.075 | 4.096 |
| 162 | 9   | 8   | 112db024584a1c7a44aa9b729ab138c0531<br>f8bf83 | -26.129 | 4.408 |
| 163 | 9   | 8   | 5af97f061a5a10317fa15510778b32ce219<br>9c89c2 | -26.182 | 4.104 |
| 164 | 9   | 8   | 10f81f8297d4226c9428d39b575b9cab2f3<br>f9a18a | -26.235 | 4.189 |

| n   | Old | New | Binary sequence in HEX                                          | db      | MF    |
|-----|-----|-----|-----------------------------------------------------------------|---------|-------|
| 165 | 9   | 8   | b8089b446cab2ffa99c97939df6953879e4<br>6bc6f8                   | -26.288 | 4.394 |
| 166 | 9   | 8   | 856dff4fad1b0b93a6195558e3130d69940                             | -26.340 | 4.212 |
|     |     |     | 67e81a                                                          |         |       |
| 167 | 8   | 8   | ecad8e1a6be074ff88322c5b3cd5680dc82<br>5a1198                   | -26.393 | 4.656 |
| 168 | 9   | 8   | 37f80dbe33864f68ef1fa5a951eeecd274d<br>5c6c506                  | -25.421 | 4.324 |
| 169 | 9   | 9   | 18a745f218b371c6f21132f7f2f3ec9d290<br>f9eaae6f                 | -25.473 | 3.636 |
| 170 | 9   | 9   | 3835d25fe470f32ed7c4ccabe4f2b5e6601<br>1584a5bb                 | -25.524 | 4.234 |
| 171 | 9   | 9   | 20acaa4d24c6028139c5fd39f3065ca87cd<br>082f5f84                 | -25.575 | 4.171 |
| 172 | 9   | 9   | 9c92f90c3ec2109c08862ec8ea5be45911d<br>7abb6143                 | -25.626 | 3.928 |
| 173 | 9   | 9   | 1e58f6cad6917eeaee691536d57df81c5cb<br>901c43387                | -25.676 | 4.025 |
| 174 | 9   | 9   | 6c99808556a9e44f04a4af397f90dac63b5<br>c151f770                 | -25.726 | 3.797 |
| 175 | 9   | 9   | 810552f57861b5543b90c9bc298de721699<br>f922627                  | -25.776 | 3.923 |
| 176 | 9   | 9   | ac277413353446ebbec34fbda6a08305ea7<br>07e8b14a3                | -25.825 | 3.792 |
| 177 | 9   | 9   | bfd3bffc44db1369bde8c4956de06a2f3cc<br>e38a9d0f9                | -25.875 | 4.366 |
| 178 | 9   | 9   | c40a317538cacb189615811a82f8a6da26c<br>bc12fff85                | -25.924 | 3.905 |
| 179 | 9   | 9   | 0ba19b2555                                                      | -25.972 | 3.953 |
| 180 | 10  | 9   | 00a1902555<br>20e89f547a266727ad2c0e2dfbfab4eb790<br>0d6f11e714 | -26.021 | 4.147 |

| п   | Old | New | Binary sequence in HEX                              | db      | MF    |
|-----|-----|-----|-----------------------------------------------------|---------|-------|
| 181 | 9   | 9   | 112569db006c60067a7aee0fc75d29142a7                 | -26.069 | 4.143 |
|     |     |     | 734da259170                                         |         |       |
| 182 | 10  | 9   | 55c099a8f91f8000d786cd73ce63b798a96                 | -26.117 | 4.434 |
|     |     |     | 866a94bab6                                          |         |       |
| 183 | 10  | 9   | 567d0f51bc62247232345e7bd5c5073a4b4                 | -26.164 | 3.946 |
|     |     |     | d5002d822d                                          |         |       |
| 184 | 10  | 9   | 9fb510fddd6402a513b7317c6506389a1e0                 | -26.212 | 4.121 |
|     |     |     | 59a4b11bc65                                         |         |       |
| 185 | 10  | 9   | 992f9283fb8240a96fc5d5862d296463ce5                 | -26.259 | 4.055 |
|     |     |     | debb71d8ccd                                         |         |       |
| 186 | 10  | 9   | 2efef5d4dde19fe9026e6db13acb718d287                 | -26.305 | 4.052 |
|     |     |     | 83c9f8ef52a8                                        |         |       |
| 187 | 10  | 9   | 14f80f5c2591e69ce6e755251fbd683512c                 | -26.352 | 4.899 |
|     |     |     | 2b6376eeedb                                         |         |       |
| 188 | 10  | 9   | d22ffdd5f6a233a8bea58a16e81943e370e                 | -26.398 | 3.936 |
|     | 4.0 | •   | 6912d33c3136                                        | 00.444  | 4     |
| 189 | 10  | 9   | 123dbffccf13e5b1b781ed982dba92a278e                 | -26.444 | 4.663 |
|     | 10  | 9   | 2573d64eaa9d<br>2bfec663b8b80160e29f16b506d8b6e8955 | -26.490 | 4.246 |
| 190 | 10  | 9   | 261676066b042                                       | -20.490 | 4.240 |
| 191 | 9   | 9   | 11eac5b0b8ca5ad4c2d2744038c59fe6fe4                 | -26.536 | 4.192 |
|     | 5   | 5   | d07dd6c98b3f1                                       | -20.000 | 7.152 |
| 192 | 10  | 9   | ad3aaa94f48d92334e31e476fe2f033dffc                 | -26.581 | 5.236 |
| 102 | 10  | U   | 37f9042c32697                                       | 201001  | 0.200 |
| 193 | 10  | 9   | aeb347c1d1da654e18f519cce85fc9df2c3                 | -26.626 | 4.272 |
|     |     |     | 23bf65bfebc90                                       |         |       |
| 194 | 10  | 9   | 152b11e12881902387f696de45c5a36c92f                 | -25.756 | 4.200 |
|     |     |     | 8a0ac77638caa7                                      |         |       |
| 195 | 10  | 9   | 1d47bac00fecaac330e5c6d93a68ce265e9                 | -26.716 | 3.980 |
|     |     |     | 4ba9db0b030128                                      |         |       |
| 196 | 10  | 10  | e1be82e1e81af93cca3cd9dd75ec888046b                 | -25.845 | 4.436 |
|     |     |     | 132b152c78404b                                      |         |       |

| п   | Old | New | Binary sequence in HEX              | db      | MF    |
|-----|-----|-----|-------------------------------------|---------|-------|
| 197 | 10  | 10  | 1e71d8a9e4c75c8904f6dfea5e35495f00d | -25.889 | 3.716 |
|     |     |     | ae91a0a1326ae05                     |         |       |
| 198 | 10  | 10  | 2edba6c2298993d0ff35b502b939c8283fc | -25.933 | 3.959 |
|     |     |     | 5bdf78ab63e79d4                     |         |       |
| 199 | 10  | 10  | 213212bd5e84d6fbe8f059e2e39fbcb6399 | -25.977 | 4.012 |
|     |     |     | b22ae39859b705f                     |         |       |
| 200 | 10  | 10  | 97f408aee9f17082e252ed9dd6354035128 | -26.021 | 4.016 |
|     |     |     | 4c780c85cf0cd0d                     |         |       |
| 201 | 10  | 10  | 1b8e271803e8f153e16ed49261efaeeda0d | -26.064 | 4.558 |
|     |     |     | b5e9ac6ea62467f5                    |         |       |
| 202 | 10  | 10  | 28896a25f8804e58cd76e40638bd0786ebc | -26.107 | 3.896 |
|     |     |     | e96957888301b22a                    |         |       |
| 203 | 10  | 10  | 169c3c36a07652906d0deec88865527c4e8 | -26.150 | 3.765 |
|     |     |     | c03e629baefe639e                    |         |       |
| 204 | 10  | 10  | cf67c809f660c8a7d9bc7aa4763d21c2105 | -26.193 | 4.130 |
|     |     |     | 135a2f235294545e                    |         |       |
| 205 | 10  | 10  | 159b65cba243039145c6500c7c65a7fe42d | -26.235 | 4.511 |
|     |     |     | 0077ac87d1be36a54                   |         |       |
| 206 | 10  | 10  | 12765377a7b55d926a14886701cfa80e3b0 | -26.277 | 4.546 |
|     |     |     | 5009f57a430e28cf8                   |         |       |
| 207 | 10  | 10  | 3eda512837a306f55c4e618f6282b984c0a | -26.319 | 4.124 |
|     |     |     | 22449efc32625e92f                   |         |       |
| 208 | 10  | 10  | d8c49d521383658069e764209165efb173a | -26.361 | 3.913 |
|     |     |     | c434b843e15d4756b                   |         |       |
| 209 | 10  | 10  | 92bb7527a734817aab8268f1be66a10f871 | -26.403 | 4.024 |
|     |     |     | 3dc86dca35bd6dfe7                   |         |       |
| 210 | 10  | 10  | 2e4b2cdb5d5d06708dddbda17e1097f8294 | -26.444 | 4.416 |
|     |     |     | 5cce2040c1e27438b7                  |         |       |
| 211 | 10  | 10  | 3006f3f70992440f19518c5b08c22b12234 | -26.486 | 3.853 |
|     |     |     | 35582bfa5f3d26b7c0                  |         |       |
| 212 | 10  | 10  | 2c1c395d9b2bad230839514a11bc85c866a | -26.527 | 4.197 |
|     |     |     | 6389a27fac0fa2107e                  |         |       |

| n   | Old | New | Binary sequence in HEX              | db      | MF    |
|-----|-----|-----|-------------------------------------|---------|-------|
| 213 | 10  | 10  | 1ecb7a82ac839c1634e9a3c03160de3d009 | -26.568 | 4.314 |
|     |     |     | 43a2f549afed919bdc8                 |         |       |
| 214 | 11  | 10  | 4391784839e2ba9e384fe40899ac6c696fd | -26.608 | 4.004 |
|     |     |     | 5eba9949d3feb66914                  |         |       |
| 215 | 11  | 10  | 54eba39307033259c5dd1ae000ba95a041b | -26.649 | 4.294 |
|     |     |     | ef2b9be2d87f2e35ac2                 |         |       |
| 216 | 11  | 10  | 70835039c47a166461a51e2e0bb2a4d756f | -26.689 | 4.160 |
|     |     |     | 29f7f04bfbc9920127d                 |         |       |
| 217 | 11  | 10  | 11c2d59cc49c9469e9d6922094e8dba2617 | -26.729 | 3.999 |
|     |     |     | 501ec028d3fc705f3fcd                |         |       |
| 218 | 11  | 10  | 12e61da78ed3e653f9cb64b6e8bf2145ee8 | -26.769 | 4.162 |
|     |     |     | 06877e7e76a8a819a9a1                |         |       |
| 219 | 11  | 10  | 2b37e41114e882ec5e59c25a9c57a203c0c | -26.809 | 4.174 |
|     |     |     | 6b9699493c357c59ddf7                |         |       |
| 220 | 11  | 10  | 62a2bc0a38b1605f8321a7c8a13719d34a9 | -26.848 | 4.229 |
|     |     |     | 6f3446f6effc21148636                |         |       |
| 221 | 11  | 10  | f45bafe7673953bce07d5e74b7c041472ed | -26.888 | 4.093 |
|     |     |     | a23e2cb7d49d32b1260b                |         |       |
| 222 | 11  | 10  | d91d6ed119acea81c5f47ec6bd6d3be95a1 | -26.927 | 4.046 |
|     |     |     | 9ef9e465a0159070f764                |         |       |
| 223 | 10  | 10  | 4a70894496d298c01381155df82667e4cb3 | -26.966 | 3.734 |
|     |     |     | 21f97347c235e38170ae7               |         |       |
| 224 | 11  | 10  | 1e2e7c3249469a3537e2fe24612a5c9f520 | -27.005 | 4.353 |
|     |     |     | 5f4fa9a9bdec67bee2bb2               |         |       |
| 225 | 11  | 10  | 1dea3e715a9881e3e0054954159db182909 | -27.044 | 4.609 |
|     |     |     | d36f961a4743e446b34ff1              |         |       |
| 226 | 11  | 10  | 32cc5e0c945afb4c12f3de9199312138c1d | -27.082 | 4.244 |
|     |     |     | 88669015a8da3fd5474581              |         |       |
| 227 | 10  | 10  | 22ebf7574cc9779ebc090324b0cc61927b4 | -27.121 | 4.251 |
|     |     | 4.0 | 257f143313950f857ea553              |         | 0 000 |
| 228 | 11  | 10  | fa53a40f36c2f6374864b9c2c9ef7b2a284 | -27.159 | 3.988 |
|     |     |     | c5fa79677ee1fea555b141              |         |       |

| n   | Old | New | Binary sequence in HEX              | db      | MF    |
|-----|-----|-----|-------------------------------------|---------|-------|
| 229 | 11  | 11  | a75ce55b5d23ecac9137d372bf947ea0c3a | -26.369 | 3.719 |
|     |     |     | 221a1b30befb4b108fcf72              |         |       |
| 230 | 11  | 11  | f7332341300147a52cd1491971e815e65f1 | -26.407 | 3.854 |
|     |     |     | 036b8769a8aaf7159f2c47              |         |       |
| 231 | 11  | 11  | 2a808dc4d85ca8bd9682006611f9a363c8e | -26.444 | 3.861 |
|     |     |     | 9ea6bebd2348d72c51a7c43             |         |       |
| 232 | 11  | 11  | 5656966e6e18f1dc48803edef7d24bb54ee | -26.482 | 3.748 |
|     |     |     | d93e77334ebe02d3aab03d8             |         |       |
| 233 | 11  | 11  | 17d4bccaaf3086f2ab017b84178db7eec81 | -26.519 | 3.898 |
|     |     |     | e279f5cbca7cbe68b5cd8da9            |         |       |
| 234 | 11  | 11  | 2007f0ac7762cac4e0e43831c4aa1a2240a | -26.556 | 4.009 |
|     |     |     | 3dbb58536dead2cd534c61b6            |         |       |
| 235 | 11  | 11  | 479662251d2130781bcca255d6a87bbc42c | -26.594 | 3.830 |
|     |     |     | 407c05258e8eac92838dbb66            |         |       |
| 236 | 11  | 11  | 240060c71fd710e97cbacb6a9de5b0aeb67 | -26.630 | 3.901 |
|     |     |     | 4353f352edc33609dd2f1337            |         |       |
| 237 | 11  | 11  | 19cc87e8436ee1b65ea0c8410034dd70a64 | -26.667 | 4.368 |
|     |     |     | 78e0d6a9d1575c5b89cb537             |         |       |
| 238 | 11  | 11  | 14cc4b3fad9b12199c1f4e96dfa8f5cd30e | -26.704 | 3.985 |
|     |     |     | 7b50817c2f41ab8a362cf7a9a           |         |       |
| 239 | 11  | 11  | 266ffb94a4f5bea647aa418dc69d151f1a2 | -26.740 | 3.560 |
|     |     |     | 9e6818ec9e5ee6e80f900720e           |         |       |
| 240 | 12  | 11  | fe9c900f2c6ade00a1e0b104e12ce6b0fdd | -26.776 | 4.179 |
|     |     |     | 2d54466a2146cfa2789ddb059           |         |       |
| 241 | 11  | 11  | 1c6b10f278e927d5b453595862437ec1f73 | -26.812 | 4.170 |
|     |     |     | b713a9b86042153e2ec0054e8           |         |       |
| 242 | 11  | 11  | 83a8ab66dbf3e2e774631ee7e01f0d8957e | -26.848 | 4.425 |
|     |     |     | 20e723dfc9512d2e3069a5eb4           |         |       |
| 243 | 11  | 11  | 4bb8a96e2929d4ed371fe8b99b623e16350 | -26.884 | 4.251 |
|     |     |     | ffe48c167f6f3c22b9021952a8          |         |       |
| 244 | 11  | 11  | a0e8e4f0e137dc06decc6ad51bc2b11e12d | -26.920 | 4.220 |
|     |     |     | 085843a610d47ffb4b20449b31          |         |       |

| n   | Old | New | Binary sequence in HEX              | db      | MF    |
|-----|-----|-----|-------------------------------------|---------|-------|
| 245 | 11  | 11  | 15e76533db7e903cd514700224afd24b2b4 | -26.955 | 3.877 |
|     |     |     | 033672fc1528f4308fa91ce0f1b         |         |       |
| 246 | 11  | 11  | abfcd0b3f80b03974d8248b8a2b39b7fa5f | -26.991 | 3.756 |
|     |     |     | 8c1ac676f61cd5fb7e729512bc          |         |       |
| 247 | 12  | 11  | 55779587d0bc0a753acb17dbc71ae24d857 | -27.026 | 3.966 |
|     |     |     | b967ef8529f3dfdd8466cb4c4cc         |         |       |
| 248 | 11  | 11  | fee01b4a6b639587aefd2079b02a0fe1f51 | -27.061 | 4.243 |
|     |     |     | a71ac419b55b5cb6666ebe7fa61         |         |       |
| 249 | 12  | 11  | e69021ef914b3dc4b720d828f4e78ad391e | -27.096 | 4.444 |
|     |     |     | 8d0671766745d035a2ac6441440         |         |       |
| 250 | 12  | 11  | 1d82eb11b055fee7570494f67cadeeadebd | -27.131 | 4.658 |
|     |     |     | 60e61c4e48a30f2b0495bd826c9e        |         |       |
| 251 | 11  | 11  | 185b66591f9adfd4fcb9711a1ed865fd10e | -27.166 | 4.101 |
|     |     |     | b1d31b5da95875bc4222eeef0b04        |         |       |
| 252 | 11  | 11  | 89e034220ae08d514bdaa363aaa4c2b7ed7 | -27.200 | 4.033 |
|     |     |     | 308c45bcdb44de44c3c7023cd85a        |         |       |
| 253 | 12  | 11  | 1ed2db2821fbfae1870f40e99545e8e8f72 | -27.235 | 3.996 |
|     |     |     | 856cccdea1deb2ec37f91da769ac6       |         |       |
| 254 | 12  | 11  | 2e00e40a057f47b7764b2e91f2e1dc36752 | -27.269 | 4.468 |
|     |     |     | 0e74fc9857f5e9298cf5f6b6b1ac7       |         |       |
| 255 | 12  | 11  | 4e48792994ce3896f2363f70b53c43853aa | -27.303 | 3.993 |
|     |     |     | aaed7c0b528101a17f4018136c933       |         |       |
| 256 | 12  | 11  | 9b77e41cc0d9278fdd5a54b331946a53564 | -27.337 | 4.264 |
|     |     |     | 37b53baa902f780a61805078f2083       |         |       |
| 257 | 12  | 11  | 797b093ac095d0d53d4ce60de43928b1442 | -27.371 | 4.116 |
|     |     |     | cb679e16ef7b80d5e76eddf8b45c9       |         |       |
| 258 | 12  | 11  | f19ccb67644aab3fac44bc02a8b7e62f7f4 | -27.405 | 3.962 |
|     |     |     | ed5f6179f428da5d9b4983dc73c2c       |         |       |
| 259 | 12  | 11  | 44c930912a770de24230e07dd434aca15a1 | -27.438 | 4.534 |
|     |     |     | 9580de8ab79ea8b37f1d90987cc182      |         |       |
| 260 | 12  | 11  | a50e2e9f7f7c415d2eb2cfab9be4ea46ab1 | -27.472 | 4.370 |
|     |     |     | 980f27c4cce6edc475ae09d216d382      |         |       |

| n   | Old | New | Binary sequence in HEX              | db      | MF    |
|-----|-----|-----|-------------------------------------|---------|-------|
| 261 | 11  | 11  | 10867d02c11be5517e4f4f5cbd4135e3f29 | -27.505 | 3.920 |
|     |     |     | b15ffecae6e0d2d66479d064a678e79     |         |       |
| 262 | 12  | 11  | 128b8716cdead0448f3f6e7265ac6435c10 | -27.538 | 4.198 |
|     |     |     | cefa2987f8c417035121484d40f452f     |         |       |
| 263 | 12  | 11  | c5e44bf69b228002a7b29e90ef252a10727 | -27.571 | 4.430 |
|     |     |     | 0065cca0f0fea6d579de3acdc732ec      |         |       |
| 264 | 12  | 11  | 838bacc30044321f263b7f2245bed79543d | -27.604 | 4.264 |
|     |     |     | b437f5612e9d956a63389f8177469e7     |         |       |
| 265 | 12  | 11  | 1832e784ed916573709c6abcffb07ab5fea | -27.637 | 3.928 |
|     |     |     | 0b3d5998abc9f0161ea37f7ad965a69     |         |       |
| 266 | 12  | 11  | 330bd8bc510f9d0045d9af80815954ee7d9 | -27.670 | 4.073 |
|     |     |     | 0a321066096387ec978dd496872d233c    |         |       |
| 267 | 11  | 11  | df45ddba45d345ced1fb81f37be31a52a00 | -27.702 | 4.327 |
|     |     |     | 14bdf11cacc3a3e3589f5a5e490ca4f     |         |       |
| 268 | 12  | 11  | 52b43d5792b8524e4edf6efb9b965597cf2 | -28.563 | 4.549 |
|     |     |     | 53c12f86ee5320c66efa122ff629c730    |         |       |
| 269 | 12  | 11  | 152b43d5792b8524e4edf6efb9b965597cf | -27.767 | 4.388 |
|     |     |     | 253c12f86ee5320c66efa122ff629c730   |         |       |
| 270 | 12  | 11  | 21e5eea4f7cf140f85bea242277dde7bcd9 | -27.799 | 4.237 |
|     |     |     | ca65dc4afae6f990be2a0678b4a966270   |         |       |
| 271 | 12  | 11  | 344052dfa92b00930cd10f1c58098a2a1cd | -27.832 | 3.838 |
|     |     |     | afa3b9b962b0724c86837e291fc18ae56   |         |       |
| 272 | 12  | 11  | fcdde3a5833a16db6ed41cb0d2cc19c6fae | -27.864 | 4.393 |
|     |     |     | cacb3a7ffa0dab51ba1cf6281b9d570fa   |         |       |
| 273 | 12  | 12  | 44fd6cbb59dc119fee359596843d96f3db2 | -27.140 | 4.141 |
|     |     |     | 8c5eab59b0e2febc09f04560c206e4ab7   |         |       |
| 274 | 12  | 12  | 2084a897ae41a524bbff40ff05d12b96043 | -27.171 | 3.609 |
|     |     |     | b5385d1fbb747137baa7399e5bc6c74dcd  |         |       |
| 275 | 12  | 12  | 4092e0bb2873535a4739c7cf18ade8c273c | -27.203 | 3.980 |
|     |     |     | 08cced32765fe95a0f45f6d66d564fafd5  |         |       |
| 276 | 12  | 12  | 3ad05cc5750b304c44d870be582126af4a6 | -27.235 | 3.563 |
|     |     |     | 7af40533e139a6afbdc6463ce0768206d8  |         |       |

| n   | Old | New | Binary sequence in HEX              | db      | MF    |
|-----|-----|-----|-------------------------------------|---------|-------|
| 277 | 12  | 12  | 183c883b5cb9366c4426e16eb70b50d862e | -27.266 | 3.912 |
|     |     |     | ae61914bfa6805a78a29402e20758df57f  |         |       |
| 278 | 12  | 12  | 3c474578ffdc1943abea11a0613a85b2970 | -27.297 | 4.077 |
|     |     |     | d2665b3a7a4d4216113e233f348859d013c |         |       |
| 279 | 12  | 12  | 7c815fd557ac5dce82804d1cf4b59b3ca8c | -27.328 | 3.983 |
|     |     |     | e63cc72d2b270145a7220d82501fe8e049  |         |       |
| 280 | 12  | 12  | d27923a83fe74ff88a80248e14ad48d99ea | -27.360 | 4.465 |
|     |     |     | 5ecf0d1f6d5dc6c18b773a8b167bb8c49ed |         |       |
| 281 | 12  | 12  | 15a63b833b92922bda94f25432f9906e7d6 | -27.391 | 3.823 |
|     |     |     | cb080b802c9d120101f66ae0d857078d3c6 |         |       |
|     |     |     | 3                                   |         |       |
| 282 | 12  | 12  | 4a0aa392e5296934d26cf8b8c007b8599be | -27.421 | 3.949 |
|     |     |     | e514e4e7040326316ec4722f5abf06e4fef |         |       |
| 283 | 12  | 12  | 131adc329deb49d4484ac1abfb560dd06c6 | -27.452 | 3.844 |
|     |     |     | e9bb893abf288981e6107a08775c30a25f1 |         |       |
|     |     |     | 8                                   |         |       |
| 284 | 13  | 12  | 750721671bd43b577672bdbb85d72e9eb6d | -27.483 | 3.961 |
|     |     |     | 8c2f778197470da082cefd9bfd061b61f63 |         |       |
|     |     |     | 6                                   |         |       |
| 285 | 12  | 12  | cfefe3c9a98b339b78784d6de752452df67 | -27.513 | 4.153 |
|     |     |     | 4bf76ef115867605ae316a075c142fe2451 |         |       |
|     |     |     | a                                   |         |       |
| 286 | 12  | 12  | 1e5f4df33a080874311aecb106e6bcf8aa4 | -27.544 | 4.409 |
|     |     |     | e9fe29d34b36e7e427f23d71a8fbca3f4e2 |         |       |
|     |     |     | d5                                  |         |       |
| 287 | 12  | 12  | 2d6fff0088403555d21c1be4513646065a4 | -27.574 | 4.220 |
|     |     |     | 2c2cde2742f397650ef9c8b432e8e5c0f6b |         |       |
|     |     |     | 14                                  |         |       |
| 288 | 12  | 12  | d19696cc4945e90993653bcafae44afe6bf | -27.604 | 4.002 |
|     |     |     | 3e1c872f1dfbf815e2a8c82f037d74dea9e |         |       |
|     |     |     | 72                                  |         |       |

| n   | Old | New | Binary sequence in HEX                       | db      | MF    |
|-----|-----|-----|----------------------------------------------|---------|-------|
| 289 | 12  | 12  | 185bffdf5540ebb9cc935f8bcc4dabf1974          | -27.634 | 3.803 |
|     |     |     | b54c1d5a9cf42b6383636e49c33ef889bc8<br>287   |         |       |
| 290 | 13  | 12  | 1954ea11d44ddb89d82999525ce70f41858          | -27.664 | 3.673 |
|     |     |     | f24832d2eb011c1c81e6b0047edf5b71b47<br>e88   |         |       |
| 291 | 13  | 12  | 25e47f4fc982622a311acd9dcbbec0f2e9a          | -27.694 | 4.513 |
|     |     |     | 9f0cfda9dbe1823df5d7638c6d6194afe08<br>296   |         |       |
| 292 | 13  | 12  | a3b9c7d13899707f33a824ea27782dbb9bc          | -27.724 | 4.072 |
|     |     |     | e68925256b14fbb10795a0528e89010c3c7<br>68c   |         |       |
| 293 | 13  | 12  | 17a57eb128c330309f040d6583d5e227709          | -27.754 | 3.940 |
|     |     |     | 75373e10547bf24a2e93d0cc8f996730a50<br>14c5  |         |       |
| 294 | 13  | 12  | 8dc9840017534c6eaf61cf1fbc58f568fa9          | -27.783 | 3.870 |
|     |     |     | 4403739476e14d72826e0bd289a4792fcd0<br>9c1   |         |       |
| 295 | 13  | 12  | 681faa2e4adff123767204b2af92e18b266          | -27.813 | 4.341 |
|     |     |     | 51a67e7c718c0619580c14a2b3f110cb42a<br>6da5  |         |       |
| 296 | 12  | 12  | fb1038796d64e801dc88d702cad89970a41          | -27.842 | 4.238 |
|     |     |     | 3091a431977d7be4ba8aa4eb721e3ba1409<br>acea  |         |       |
| 297 | 12  | 12  | 6d0fb7212d379086a9e86c2a54fcc87ccfb          | -27.872 | 3.976 |
|     |     |     | a7ff6b9d4eca11b8f1e6c13eabafc448a39<br>a7d7  |         |       |
| 298 | 13  | 12  | 3aff50e3839b63e273c7ed3402274894e21          | -27.901 | 4.131 |
|     |     |     | 3b169fb37555558be5cc425a760b79f690c<br>eba5f |         |       |
| 299 | 13  | 12  | 68ef75bbad75d36c63e30b296cd65f93e7e          | -27.930 | 4.139 |
|     |     |     | 0141f5bb84b81738c63ee47adab72a0f3b0          |         |       |
|     |     |     | 2cfb                                         |         |       |

 n
 Old
 New
 Binary sequence in HEX
 db
 MF

 300
 13
 12
 b25be8354bc61f73a63b94ea06430063068
 -27.959
 4.365

 27e386dc8e36058b22aabb5a123b284c9fd
 f9504
 f9504
 f9504
 f9504

An overview of the shotgun hill climbing algorithm results (continued)

#### **B.2** Reached optimal PSL solutions

Table B.2 Reached optimal solutions

| п  | Sequence in HEX | PSL |
|----|-----------------|-----|
| 10 | 37a             | 3   |
| 11 | 712             | 1   |
| 12 | b3              | 2   |
| 13 | a60             | 1   |
| 14 | 2a60            | 2   |
| 15 | 3dba            | 2   |
| 16 | a447            | 2   |
| 17 | 1c0a6           | 2   |
| 18 | 2650f           | 2   |
| 19 | 52447           | 2   |
| 20 | 87b75           | 2   |
| 21 | 129107          | 2   |
| 22 | 14f668          | 3   |
| 23 | 56ce01          | 3   |
| 24 | 4a223c          | 3   |
| 25 | 9b501c          | 2   |
| 26 | 2e7e935         | 3   |
| 27 | 24bb9f1         | 3   |
| 28 | e702a49         | 2   |
| 29 | 10e2225b        | 3   |
| 30 | 2a31240f        | 3   |
| 31 | 2d079910        | 3   |

| n         Sequence in HEX         PSL           32         2857d373         3           33         16915cc18         3           34         1a43808dd         3           35         5569e0199         3           36         87885776d         3           37         10c1237a2b         3           38         7caacc212         3           39         29ca6c7c80         3           40         22471e86fa         3           41         7c64d77ade         3           42         4447b874b4         3           43         550e7f99b49         3           44         cb4b8778888         3           45         b6cab731e3f         3           47         69a7e851988         3           48         e6e9bd5bc10f         3           49         103f6eda6ae71         4           50         31dceade920f         4           51         71c077376adb4         3           52         600dc3cb4cd56         4           53         1671848a940fcb         4           54         2622a797806912         4           55         6 |    | L ,              | ,   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------|-----|
| 33       16915cc18       3         34       1a43808dd       3         35       5569e0199       3         36       87885776d       3         37       10c1237a2b       3         38       7caacc212       3         39       29ca6c7c80       3         40       22471e86fa       3         41       7c64d77ade       3         42       4447b874b4       3         43       550e7f99b49       3         44       cb4b8778888       3         45       b6cab731e3f       3         46       16959a2e3003       3         47       69a7e851988       3         48       e6e9bd5bc10f       3         49       103f6eda6ae71       4         50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4 <th>n</th> <th>Sequence in HEX</th> <th>PSL</th>                           | n  | Sequence in HEX  | PSL |
| 34       1a43808dd       3         35       5569e0199       3         36       87885776d       3         37       10c1237a2b       3         38       7caacc212       3         39       29ca6c7c80       3         40       22471e86fa       3         41       7c64d77ade       3         42       4447b874b4       3         43       550e7f99b49       3         44       cb4b8778888       3         45       b6cab731e3f       3         46       16959a2e3003       3         47       69a7e851988       3         48       e6e9bd5bc10f       3         49       103f6eda6ae71       4         50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4                                                                      | 32 | 2857d373         | 3   |
| 35       5569e0199       3         36       87885776d       3         37       10c1237a2b       3         38       7caacc212       3         39       29ca6c7c80       3         40       22471e86fa       3         41       7c64d77ade       3         42       4447b874b4       3         43       550e7f99b49       3         44       cb4b8778888       3         45       b6cab731e3f       3         46       16959a2e3003       3         47       69a7e851988       3         48       e6e9bd5bc10f       3         49       103f6eda6ae71       4         50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4         59       3b06774134bdf5e       4 </td <td>33</td> <td>16915cc18</td> <td>3</td>                 | 33 | 16915cc18        | 3   |
| 36       87885776d       3         37       10c1237a2b       3         38       7caacc212       3         39       29ca6c7c80       3         40       22471e86fa       3         41       7c64d77ade       3         42       4447b874b4       3         43       550e7f99b49       3         44       cb4b8778888       3         45       b6cab731e3f       3         46       16959a2e3003       3         47       69a7e851988       3         48       e6e9bd5bc10f       3         49       103f6eda6ae71       4         50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4         59       3b06774134bdf5e       4         60       4df905215263a39       <                                                          | 34 | 1a43808dd        | 3   |
| 37       10c1237a2b       3         38       7caacc212       3         39       29ca6c7c80       3         40       22471e86fa       3         41       7c64d77ade       3         42       4447b874b4       3         43       550e7f99b49       3         44       cb4b8778888       3         45       b6cab731e3f       3         46       16959a2e3003       3         47       69a7e851988       3         48       e6e9bd5bc10f       3         49       103f6eda6ae71       4         50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4         59       3b06774134bdf5e       4         60       4df905215263a39       4         61       193c99e12d6010aa                                                           | 35 | 5569e0199        | 3   |
| 38       7caacc212       3         39       29ca6c7c80       3         40       22471e86fa       3         41       7c64d77ade       3         42       4447b874b4       3         43       550e7f99b49       3         44       cb4b8778888       3         45       b6cab731e3f       3         46       16959a2e3003       3         47       69a7e851988       3         48       e6e9bd5bc10f       3         49       103f6eda6ae71       4         50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4         59       3b06774134bdf5e       4         60       4df905215263a39       4         61       193c99e12d6010aa       4 <tr td="">       4</tr>                                                               | 36 | 87885776d        | 3   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                  |     |
| 39       29ca6c7c80       3         40       22471e86fa       3         41       7c64d77ade       3         42       4447b874b4       3         43       550e7f99b49       3         44       cb4b8778888       3         45       b6cab731e3f       3         46       16959a2e3003       3         47       69a7e851988       3         48       e6e9bd5bc10f       3         49       103f6eda6ae71       4         50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4         59       3b06774134bdf5e       4         60       4df905215263a39       4         61       193c99e12d6010aa       4         62       25695564e679ff83       4         63       707d54b9c                                                     | 37 | 10c1237a2b       | 3   |
| 40       22471e86fa       3         41       7c64d77ade       3         42       4447b874b4       3         43       550e7f99b49       3         44       cb4b8778888       3         45       b6cab731e3f       3         46       16959a2e3003       3         47       69a7e851988       3         48       e6e9bd5bc10f       3         49       103f6eda6ae71       4         50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4         59       3b06774134bdf5e       4         60       4df905215263a39       4         61       193c99e12d6010aa       4         62       25695564e679ff83       4         63       707d54b9c99ef690       4                                                                          | 38 | 7caacc212        | 3   |
| 41       7c64d77ade       3         42       4447b874b4       3         43       550e7f99b49       3         44       cb4b8778888       3         45       b6cab731e3f       3         46       16959a2e3003       3         47       69a7e851988       3         48       e6e9bd5bc10f       3         49       103f6eda6ae71       4         50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4         59       3b06774134bdf5e       4         60       4df905215263a39       4         61       193c99e12d6010aa       4         62       25695564e679ff83       4         63       707d54b9c99ef690       4                                                                                                              | 39 | 29ca6c7c80       | 3   |
| 42       4447b874b4       3         43       550e7f99b49       3         44       cb4b8778888       3         45       b6cab731e3f       3         46       16959a2e3003       3         47       69a7e851988       3         48       e6e9bd5bc10f       3         49       103f6eda6ae71       4         50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4         59       3b06774134bdf5e       4         60       4df905215263a39       4         61       193c99e12d6010aa       4         62       25695564e679ff83       4         63       707d54b9c99ef690       4                                                                                                                                                  | 40 | 22471e86fa       | 3   |
| 43       550e7f99b49       3         44       cb4b8778888       3         45       b6cab731e3f       3         46       16959a2e3003       3         47       69a7e851988       3         48       e6e9bd5bc10f       3         49       103f6eda6ae71       4         50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4         59       3b06774134bdf5e       4         60       4df905215263a39       4         61       193c99e12d6010aa       4         62       25695564e679ff83       4         63       707d54b9c99ef690       4                                                                                                                                                                                      | 41 | 7c64d77ade       | 3   |
| 44       cb4b8778888       3         45       b6cab731e3f       3         46       16959a2e3003       3         47       69a7e851988       3         48       e6e9bd5bc10f       3         49       103f6eda6ae71       4         50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4         59       3b06774134bdf5e       4         60       4df905215263a39       4         61       193c99e12d6010aa       4         62       25695564e679ff83       4         63       707d54b9c99ef690       4                                                                                                                                                                                                                           | 42 | 4447b874b4       | 3   |
| 45       b6cab731e3f       3         46       16959a2e3003       3         47       69a7e851988       3         48       e6e9bd5bc10f       3         49       103f6eda6ae71       4         50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4         59       3b06774134bdf5e       4         60       4df905215263a39       4         61       193c99e12d6010aa       4         62       25695564e679ff83       4         63       707d54b9c99ef690       4                                                                                                                                                                                                                                                                | 43 | 550e7f99b49      | 3   |
| 46       16959a2e3003       3         47       69a7e851988       3         48       e6e9bd5bc10f       3         49       103f6eda6ae71       4         50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4         59       3b06774134bdf5e       4         60       4df905215263a39       4         61       193c99e12d6010aa       4         62       25695564e679ff83       4         63       707d54b9c99ef690       4                                                                                                                                                                                                                                                                                                     | 44 | cb4b8778888      | 3   |
| 4769a7e851988348e6e9bd5bc10f349103f6eda6ae7145031dceade9920f45171c077376adb4352600dc3cb4cd564531671848a940fcb4542622a7978069124556006a578ea693345661e4b3229420af457143606103beca35458215081f5644f2ce4593b06774134bdf5e4604df905215263a39461193c99e12d6010aa46225695564e679ff83463707d54b9c99ef6904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45 | b6cab731e3f      | 3   |
| 48       e6e9bd5bc10f       3         49       103f6eda6ae71       4         50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4         59       3b06774134bdf5e       4         60       4df905215263a39       4         61       193c99e12d6010aa       4         62       25695564e679ff83       4         63       707d54b9c99ef690       4                                                                                                                                                                                                                                                                                                                                                                                | 46 | 16959a2e3003     | 3   |
| 49       103f6eda6ae71       4         50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4         59       3b06774134bdf5e       4         60       4df905215263a39       4         61       193c99e12d6010aa       4         62       25695564e679ff83       4         63       707d54b9c99ef690       4                                                                                                                                                                                                                                                                                                                                                                                                                      | 47 | 69a7e851988      | 3   |
| 50       31dceade9920f       4         51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4         59       3b06774134bdf5e       4         60       4df905215263a39       4         61       193c99e12d6010aa       4         62       25695564e679ff83       4         63       707d54b9c99ef690       4                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48 | e6e9bd5bc10f     | 3   |
| 51       71c077376adb4       3         52       600dc3cb4cd56       4         53       1671848a940fcb       4         54       2622a797806912       4         55       6006a578ea6933       4         56       61e4b3229420af       4         57       143606103beca35       4         58       215081f5644f2ce       4         59       3b06774134bdf5e       4         60       4df905215263a39       4         61       193c99e12d6010aa       4         62       25695564e679ff83       4         63       707d54b9c99ef690       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49 | 103f6eda6ae71    | 4   |
| 52600dc3cb4cd564531671848a940fcb4542622a7978069124556006a578ea693345661e4b3229420af457143606103beca35458215081f5644f2ce4593b06774134bdf5e4604df905215263a39461193c99e12d6010aa46225695564e679ff83463707d54b9c99ef6904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 | 31dceade9920f    | 4   |
| 531671848a940fcb4542622a7978069124556006a578ea693345661e4b3229420af457143606103beca35458215081f5644f2ce4593b06774134bdf5e4604df905215263a39461193c99e12d6010aa46225695564e679ff83463707d54b9c99ef6904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51 | 71c077376adb4    | 3   |
| 542622a7978069124556006a578ea693345661e4b3229420af457143606103beca35458215081f5644f2ce4593b06774134bdf5e4604df905215263a39461193c99e12d6010aa46225695564e679ff83463707d54b9c99ef6904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52 | 600dc3cb4cd56    | 4   |
| 556006a578ea693345661e4b3229420af457143606103beca35458215081f5644f2ce4593b06774134bdf5e4604df905215263a39461193c99e12d6010aa46225695564e679ff83463707d54b9c99ef6904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53 | 1671848a940fcb   | 4   |
| 5661e4b3229420af457143606103beca35458215081f5644f2ce4593b06774134bdf5e4604df905215263a39461193c99e12d6010aa46225695564e679ff83463707d54b9c99ef6904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54 | 2622a797806912   | 4   |
| 57143606103beca35458215081f5644f2ce4593b06774134bdf5e4604df905215263a39461193c99e12d6010aa46225695564e679ff83463707d54b9c99ef6904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55 | 6006a578ea6933   | 4   |
| 58       215081f5644f2ce       4         59       3b06774134bdf5e       4         60       4df905215263a39       4         61       193c99e12d6010aa       4         62       25695564e679ff83       4         63       707d54b9c99ef690       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56 | 61e4b3229420af   | 4   |
| 593b06774134bdf5e4604df905215263a39461193c99e12d6010aa46225695564e679ff83463707d54b9c99ef6904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57 | 143606103beca35  | 4   |
| 604df905215263a39461193c99e12d6010aa46225695564e679ff83463707d54b9c99ef6904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58 | 215081f5644f2ce  | 4   |
| 61193c99e12d6010aa46225695564e679ff83463707d54b9c99ef6904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59 | 3b06774134bdf5e  | 4   |
| 6225695564e679ff83463707d54b9c99ef6904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60 | 4df905215263a39  | 4   |
| 63 707d54b9c99ef690 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61 | 193c99e12d6010aa | 4   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62 | 25695564e679ff83 | 4   |
| 64 d4ef33d372e082be 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63 | 707d54b9c99ef690 | 4   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64 | d4ef33d372e082be | 4   |

Reached optimal solutions (continued)

| n  | Sequence in HEX       | PSL              |
|----|-----------------------|------------------|
| 65 | 1f75f6c8f84c6b50      | 4                |
| 66 | 28a59401e57b1c993     | 4                |
| 67 | 5ba4d417723078421     | 4                |
| 68 | d155a49d98c7bf7e1     | 4                |
| 69 | 18ff3eb05d654b6665    | 4                |
| 70 | 2b5aae6765e79b600f    | 4                |
| 71 | 8cea0ff5e92cb9726     | 4                |
| 72 | dbcf036102615ab2a     | $4^{x}$          |
| 73 | 164da9aab5398f1ffe1   | $4^{x}$          |
| 74 | 8c9c6dab51e57580f     | $4^{x}$          |
| 75 | 5ff692ba8d62f1e3326   | 4                |
| 76 | 87ad414fa9fcbb99a6c   | 4                |
| 77 | fe00861c0d932958aca   | 4                |
| 78 | 328b457f0461e4ed7b73  | 4 <sup>¤¤</sup>  |
| 79 | 55fae4fdb42732de2ce2  | $4^{x}$          |
| 80 | fe00a22a539352e3659e  | 4                |
| 81 | dc9df3ff085a6c3aae53  | 4 <sup>¤¤</sup>  |
| 82 | 2bf0fceee2499527bc61a | 4 <sup>¤¤¤</sup> |
|    |                       |                  |

Reached optimal solutions (continued)

### **B.3** Revised Shotgun Hill climbing results

Table B.3 An overview of the revised shotgun hill climbing algorithm results

| п   | Sequence in HEX              | PSL |
|-----|------------------------------|-----|
| 106 | 35101a2373a0160d982f6b4e39a  | 6   |
| 107 | 2408504b2beac46b8d93cc85f86  | 6   |
| 108 | 727184e79679234058155e880bd  | 6   |
| 109 | 5db00f58363f65c08452544632b  | 6   |
| 110 | 2b5085f188c82cbb79e1ae25c1bb | 6   |
| 111 | 700f7ceb4b8a926c793caafcdcee | 6   |
| 112 | 1c62bf5e0e2bf9bdb9db524d921b | 6   |

| n   | Sequence in HEX                    | PSL |
|-----|------------------------------------|-----|
| 113 | 10e8e632f9a52d803cd7eac6eddd5      | 6   |
| 114 | 3fad9a9fa616431ee6a6b8746ba74      | 6   |
| 115 | 637c6cdec32bd4cbaecaf2ffe1610      | 6▼  |
| 116 | a03feff259d626e9c4f46471a5168      | 6▼  |
| 117 | 1b33da4cc6d5dc7f8a55c9007cb8f0     | 6▼  |
| 118 | 23c598f4ac7f6afde47b84c05dd592     | 6▼  |
| 119 | 60835d6bb25f775d6b588d9e361f81     | 6▼  |
| 120 | 98cc2e429c2f810668dfdf14bab0b2     | 6▼  |
| 121 | 178ffe7181c3f443365313724aac95a    | 6▼  |
| 122 | 30d4e9ae516cf0320ad003177377485    | 6▼  |
| 123 | 369ec917afe507e53bdc97151138738    | 6▼  |
| 124 | f15ce151edfd7f0ca9eb4496d833233    | 6▼  |
| 125 | 1b8730333bcdf414d92203c581a554a5   | 6▼  |
| 126 | 3b9275a7ba7661bb8dbf8e078ad41257   | 6▼  |
| 127 | 2933b32d40937c4b6f08e03a851c2c2a   | 6▼  |
| 128 | 84528942da6f07e733404ee8ba70c3ae   | 6▼  |
| 129 | 1f80f99bf3cc5c3d6f1aacd4209aa925b  | 6▼  |
| 130 | 2678ae07e71929fb587022ed6bfdb576d  | 6▼  |
| 131 | 3cbf4b091ea86cea277167ac6304c812   | 6▼  |
| 132 | 410028af0ea52e93f029f908ce74d8c99  | 6▼  |
| 133 | 10c27978f1888d4fb0a97c9326ecafe97f | 6▼  |
| 134 | 3f01b89e464dccaabce38e920492b56810 | 6▼  |
| 135 | 550c944868887c4b7b8709d8263de6c81a | 7▼  |
| 136 | dc789e3aa4f65db16085033ab4b40aee42 | 7▼  |
| 137 | 1bdfe2817aaa3b39d39daf366d86bc0f49 | 7▼  |
|     | 2                                  |     |
| 138 | 1e618e9ba6c707dc94f05ad723357b2bff | 7▼  |
|     | d                                  |     |
| 139 | 2bd70f3cde89ad5316439120fe3b9b480b | 7▼  |
|     | 5                                  |     |
| 140 | 79f8036d08785fbef98ba3b2eb54652eb3 | 7▼  |
|     | 3                                  |     |

| n   | Sequence in HEX                                      | PSL |
|-----|------------------------------------------------------|-----|
| 141 | fdf5f77808f6cf055b0dd9295c878ad32e<br>2              | 7▼  |
| 142 | 343638ce5ed915e8abcc9a0beef8128148<br>94             | 7▼  |
| 143 | 554e194c63ca5a65f47de2fd999fc0227e<br>bd             | 7▼  |
| 144 | e757f83fd667a6c479d5296908879f6c8d<br>2e             | 7▼  |
| 145 | 1051d14d00c893e49498fdba0570862f53<br>9ca            | 7▼  |
| 146 | 1c8f3f584efe71220e0da5d4d58d10ed11<br>ec1            | 7▼  |
| 147 |                                                      | 7▼  |
| 148 | 136cbb11363a7078d55f1dc696f217b588<br>520            | 7▼  |
| 149 | 152214204e428bf4553661919fe41c0db6<br>9e18           | 7▼  |
| 150 |                                                      | 7▼  |
| 151 | 3b93bb695ed592557b82497047438f87c4<br>318 0          | 7▼  |
| 152 | 62913b08d6326c46c082e52e3feb0e0b6d<br>7505           | 7▼  |
| 153 | 152b80f95df5a4a0e1a2e30cbf68cf76e9<br>ccdeb          | 7▼  |
| 154 |                                                      | 7▼  |
| 155 | 1431f0be9440e92cdd1c4d5680659df937                   | 7▼  |
| 156 | 7adca<br>bbbd712a19673174fdbc9ad3e78d06f40b<br>b1a84 | 7▼  |

| п   | Sequence in HEX                               | PSL |
|-----|-----------------------------------------------|-----|
| 157 | 1444313cfc12546b26e36eb70568dc11b7            | 7▼  |
|     | 06bcf5                                        |     |
| 158 | 18785b52d7074935b31708ef988f769911            | 7▼  |
|     | 040aa7                                        |     |
| 159 | 41c5d5f8d8012c40f00d6ba24d35a539cd            | 7▼  |
|     | 8a573a                                        |     |
| 160 | 7277c5d1140ae6e5638c47ab40937830f2            | 7▼  |
|     | 1b684b                                        |     |
| 161 | 1c9d7e8ec413f2eddacc7be1a45a4318ba            | 7▼  |
|     | 3ab2b46                                       |     |
| 162 | 36280d42653b385e990c70aec3d64845dd            | 7▼  |
|     | 59413e                                        |     |
| 163 | ff4a2a50fadfb069cb64a79bb8eafdf55e            | 7▼  |
|     | 660cc4                                        |     |
| 164 | 8cbd592237b8e9d5dd7fddb148e13a7c0e            | 8   |
|     | f03696c                                       | 0   |
| 165 | bdfe78f96cd0a73e41fa8764667b9e82d1            | 8   |
| 166 | 54d6544<br>12c242012b761f803271ab9649f67432ee | 8   |
| 100 | 288d398a                                      | 0   |
| 167 |                                               | 8   |
| 107 | 18044fc3                                      | 0   |
| 168 | a18f9ca18bdb8eaf44a84db7f3f92ddd36            | 8   |
| 100 | 0ec23bc4                                      | U   |
| 169 | f77f9c30338bec86cb76455ec4af4d4394            | 8▼  |
|     | 769e17de                                      | - • |
| 170 | 1647c513e17c8b5ac12f169cf4008e77de            | 8▼  |
|     | aeedd71d9                                     |     |
| 171 | 455bce3cd34aa5199a53b3f9900ed684d8            | 8▼  |
|     | 11607828e                                     |     |
| 172 | 8a862f714aa517b5e1d4c9e784b66d0c07            | 8▼  |
|     | eccfd9f61                                     |     |

| An overview of the revised shotgun hill climbing algorithm results (continued) |
|--------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------|

| n   | Sequence in HEX                    | PSL |
|-----|------------------------------------|-----|
| 173 | 9087c81b16785b95b1f63942ab8829d1da | 8▼  |
|     | e83048267                          |     |
| 174 | 3a595abedb5fb13e998250683feaa608f1 | 8▼  |
|     | b10f721e8c                         |     |
| 175 | 75f9a9db5111b640009d36bc18a71887a8 | 8▼  |
|     | d4f60f5079                         |     |
| 176 | f8b81eb83c80faa526c53d6c43bbb18d34 | 8▼  |
|     | c2b7df7bb3                         |     |
| 177 | ceca7a7c3d3d4ed8893081464daa5d50cf | 8▼  |
|     | 40905fe630                         |     |
| 178 | 240603787909825762b567fe0a338e0aeb | 8▼  |
|     | 85db46e98a4                        |     |
| 179 | d27d4a3d8ce26560a137f967fd5b2a22fe | 8▼  |
|     | 7ea4e9cb1e                         |     |
| 180 | 45f880bba360f4fe67321649f77be67971 | 8▼  |
|     | e729d54b4a5                        |     |
| 181 | 16e90d659806f9ad47ab399481f7975581 | 8▼  |
|     | 4e0cc9805074                       |     |
| 182 | 2ad575a76ca6eb9f36b207790cec2047db | 8▼  |
|     | f70dd1f07095                       |     |
| 183 | 3080a6b5d518e2437cbe03e83276091f3d | 8▼  |
|     | 9ad5bb717275                       |     |
| 184 | bd09e4073d719c5290dc81d3edc090b050 | 8▼  |
|     | 3345a2aaddb7                       |     |
| 185 | 1b0245da96f15f3faaf6f0e71c5a6c6e2e | 8▼  |
|     | 7ba4fa2190aff                      |     |
| 186 | d6c3079d747a0496d4eab7337a91236c73 | 8▼  |
|     | cefba0eff4f4                       |     |
| 187 | 34999dc9c93025871f7aaceb517d0e451c | 8▼  |
|     | 07b504a75da01                      |     |
| 188 | 36766a797988a55100a42a91e73c43f005 | 8▼  |
|     | b76d60705f364                      |     |

| n   | Sequence in HEX                    | PSL |
|-----|------------------------------------|-----|
| 189 | 880723487ff2acbc3e65d1eba13327b9a0 | 8▼  |
|     | 5965bd52d14e7                      |     |
| 190 | 21e50af105ba1d87a44214221d935bba27 | 8▼  |
|     | 35951f776101cf                     |     |
| 191 | 6122466d46065abb2e2595ed350f45d4a7 | 8▼  |
|     | f173881f4c33ef                     |     |
| 192 | 1fbfab7bc285711fb852eb5f00b2ba9c36 | 8▼  |
|     | 98e27cd26a66c9                     |     |
| 193 | 11e5e2e1ea52cd9c13f6ec031979a99549 | 8▼  |
|     | b90fb8c2600a288                    |     |
| 194 | 35d745068d86b74ca0a6d8c73a39676ea7 | 8▼  |
|     | 7bd2b4bc0fc0267                    |     |
| 195 | 1c841bd699c259b0d801b20e4fd8bebe1c | 8▼  |
|     | 6567ae3abd08a95                    |     |
| 196 | b6a64ce8063c6116f91dd3cfc332f8aac5 | 9▼  |
|     | f7bdc8a0bad6d2a                    |     |
| 197 | 2b7ceef5fba16ec29257b30a65a26ac34f | 9▼  |
|     | 1841ddc7c0e0de7                    |     |
| 198 | 2da669214cb962a811544e5d3d37a000f8 | 9▼  |
|     | c0c60dced1ed0bce                   |     |
| 199 | 1144b275da9c8adb8fffce37c87ba0d2c3 | 9▼  |
|     | c6bda983f4dc032b                   |     |
| 200 | 66c30c122f4ee5d8b01ab9155a1ca5afed | 9▼  |
|     | 0d37d4df0775bd84                   |     |
| 201 | 82a1c892ca09589a5f1ba194c682ef0f71 | 9▼  |
|     | d182378a64895ff4                   |     |
| 202 | 1d045e3d7d3e006c938fb456d5f2a4bf5e | 9▼  |
|     | 4dcce9c41ca663186                  |     |
| 203 | 6413fc8964522104171ca948e5d4c4e1cf | 9▼  |
|     | ade1a82d03b3e640d                  |     |
| 204 | 6730c61d894ad6db47d7db1707d109a8fd | 9▼  |
|     | 7e9912cfee2df887d                  |     |

| n   | Sequence in HEX                    |    |  |
|-----|------------------------------------|----|--|
| 205 | d24ff6dfd7766450d28c6f1d08aa13c6f5 | 9▼ |  |
|     | 060b93ef182d5e847                  |    |  |
| 206 | 7372ccbe4d517dc500e9ed586a99c9fc60 | 9▼ |  |
|     | a442016a06fd0c961                  |    |  |
| 207 | 5b92dad3371cc960e08e1993a80ac0a9f5 | 9▼ |  |
|     | 73c2708165ba02bf5f                 |    |  |
| 208 | d47fffd42e8257a630ef1673359f05eb26 | 9▼ |  |
|     | ce173462e0ecb498d2                 |    |  |
| 209 | 1bf64d73ea8531230afd6c614fceee5aad | 9▼ |  |
|     | 2714cd7c1674125f01e                |    |  |
| 210 | 31da42975a5a3c741f6506fc77598874bf | 9▼ |  |
|     | 77e37f2ae29fb1304dd                |    |  |
| 211 | 252e50a7cd40fd82e13aae3096361608b2 | 9▼ |  |
|     | 3030076fbbd84ca636e                |    |  |
| 212 | 87d63ff093d2c932221b74ae6e9443ac63 | 9▼ |  |
|     | 33b42e0b890a5754141                |    |  |
| 213 | 54614010e30c87b5366b6baa6400fc7e8b | 9▼ |  |
|     | 57067a894e9b3f898e4                |    |  |
| 214 | e7d4a6d69fda9cf9843db94242a88c5cd7 | 9▼ |  |
|     | 77cd24165c2f913e0fc                |    |  |
| 215 | 301c7898c56aa56687800ffbf3e65a5787 | 9▼ |  |
|     | 6867c9426eb3dd5d46d3               |    |  |
| 216 | d332ccdcab19af1972f93007baf8af8057 | 9▼ |  |
|     | c3af4b59e4d040624b52               |    |  |
| 217 | a87867118f48a6922d161093f015d7f8dd | 9▼ |  |
|     | b57c80cb5aedd1b0b177               |    |  |
| 218 | 4c91d36554864c73c5ae223a17dd60ec62 | 9▼ |  |
|     | 96849685d7fb81f3f881               |    |  |
| 219 | 536a2df324baa32c8488880d9ae152f5bd | 9▼ |  |
|     | 0b808ebcf131fc0c293c7              |    |  |
| 220 | bc39257be78b79101abf2c3edb9b3c01e4 | 9▼ |  |
|     | 157240d46a6319c5789d2              |    |  |

| п   | Sequence in HEX                    | PSL |
|-----|------------------------------------|-----|
| 221 | fadda9f6d109fcc882a91bab8478e6ebc5 | 9▼  |
|     | 713826d19fd06b485a061              |     |
| 222 | 1e1a28caa7a070d16e6300965eba9752b3 | 9▼  |
|     | 4e37e66d02139025cfc84f             |     |
| 223 | 49e28e14ca6daa3c6fc973368464a08c55 | 9▼  |
|     | 94bf408129cfa607b303d1             |     |
| 224 | b5a435ab97a31e722120bbf812cd251cc7 | 9▼  |
|     | 032281cc0aa29f07f9b66e             |     |
| 225 | 1f61bc4168c021782f9e50c6b52a1c546a | 9▼  |
|     | da0864fd9313b32a9bfae98            |     |
| 226 | 3bbbf1c19f6ec551ff0ab982ab334dae01 | 9▼  |
|     | 29a63cc6b58b61e968d0d80            |     |
| 227 | 378320814f8021439fe15e5a12add18b76 | 9▼  |
|     | 0cd0788aba8ed3630926333            |     |
| 228 | ac5471683c569456b21141ec539fa32e00 | 9▼  |
|     | 78998f3800d377665b36fa             |     |
| 229 | a18ea64e0c7d887c6fb51278b686a8b401 | 9▼▼ |
|     | 66199ef8050906a7c1516b3            |     |
| 230 | 25474a4ba6e7c3434d1c724ef643ea3181 | 9▼▼ |
|     | 2c8fa1bbfc877bf6ee5488f7           |     |
| 231 | 180e1d36289672c3086a1511d58dfeb4a7 | 9▼▼ |
|     | f13ca44b44fec5d024664dde           |     |
| 232 | 886bf85a5bf40b7b2fab51ee8712e2bba7 | 9▼▼ |
|     | 5b358384435d3ccc99dbf7e6           |     |
| 233 | 5dda7518a3629e66f6ec3823f6cc6c373b | 9▼▼ |
|     | 4bac795efacf416fe1a1ab00           |     |
| 234 | f8e141d03a5bb1d91ce20721cdb6207f56 | 10▼ |
|     | b699d33bf575955694dfa930           |     |
| 235 | 3feaa21651ef22c8cb05ab35df33b138a0 | 10▼ |
|     | 8c83e1a1ed24685592035e152          |     |
| 236 | 5453ea9ffc1e60c3285de3d07b64a1bcc0 | 10▼ |
|     | 95366d4c437dfccd5d8f4fcea          |     |

| n   | Sequence in HEX                    | PSL  |
|-----|------------------------------------|------|
| 237 | 165567767124fabcb4d08f0da7140abd81 | 10 🗸 |
|     | f42e5c9a831dda76fffd894c71         |      |
| 238 | c81ea65bf4b9df2e7f7066454c2d3c8e6a | 10 🔻 |
|     | 2841e27963c8229db40a0afd8          |      |
| 239 | 6a66b95e25a3cb20e16c7b36b1b22e5988 | 10 🔻 |
|     | 21242ffc69eeaed03bf9f9d753         |      |
| 240 | dcd3bec7a1856d4ea4febb5c0dcc52e119 | 10▼  |
|     | ffaa69d4c86df1470530793374         |      |
| 241 | 15cabbcb3c965d13d1baf6581833a05593 | 10 🔻 |
|     | c6ff73c18dfca9e96272a467f29        |      |
| 242 | 2cf51c98f2793804326afb59471b2243a9 | 10 🔻 |
|     | 12fa50b7abce08ef22607d03941        |      |
| 243 | 66346d9c9f2d3393fdeaa0075e7f573ef2 | 10 🔻 |
|     | 7a1b4b8630b4a322df02f9ba47d        |      |
| 244 | cde4bae1750d2d31e5e3b193df44580f92 | 10▼  |
|     | 245b262ffaaf6e42c6bde7b9532        |      |
| 245 | 1af4e7a8ed850811188970ae2af8180736 | 10▼  |
|     | 3afb0113d0f9166b49916df928d6       |      |
| 246 | 30b36a460dbd8ab690c173b8d8ca8c0351 | 10 🔻 |
|     | cb3a170bba020a9417843dd76dd3       |      |
| 247 | 5de6adef6aa7775d3812b0cd7831689b5e | 10 🔻 |
|     | 39682e61899e9ba3f039b00e27b4       |      |
| 248 | f41f437cb07cf0a0aadf0c67b3f7fe114c | 10 🔻 |
|     | c66b766ccd153185293943089549       |      |
| 249 | 10242f665effd3eb4875a1fab42f9d4515 | 10 🔻 |
|     | fc9e251dae3c607319a69e49366ef      |      |
| 250 | 2007616f89095843f3ced5634bf501cfff | 10 🔻 |
|     | 55adb4589658662e8ba374f65c676      |      |
| 251 | 275419d5069976e3bdde14b3329284641e | 10 🔻 |
|     | 6164276b8012963f4d383e161fcba      |      |
| 252 | 1b55a5dadcac2ee8c3ef41026edcc98eab | 10 🔻 |
|     | f592878208e314f6349886407e13d      |      |

Sequence in HEX PSL п 253 16fa06a49b5776c2a804a3f64b59e4fd20 10**V** 3a358e8a77d8f79f159d7c34654e60 254 20d5c99925b7a51f543e49ff428d5d4e54 10 8a26e1280a1a2d9fc5cc33018c70ce 255 10008133c4e8b9aa47e1546b8b75a0a4fb 10 cc1d2c7925637235e4866f23d20cf2 6e6053b51d9f80a561e97e2cc13cae1d56 256 10 38728f2013377e867fbbee26bada65 257 1a24b6e6c465cf993425fe01cb10c2ac88 10 2285c51cea5697d378bc40305c6e753 258 dafc4a13dbc909c653b76970b24085986f 10 f0fd93e73d6bcd8bba9aae855ce8af 259 23c7a45f27e3ff8fb66d31f630620d9f6f 10 959318ea2754cff5256657508bdad2c 260 94db24992764caf16520a31303c3d0a967 10 2e74e01e8012d787381aaaeae319def 261 28d24a7097956e9f7a63b183c0d97211ee 10 4f99b9f94a3de360ff75f75082fb55d 262 2547150b862f86ac277033a8d7de1cfd81 10 8cd1012db7104817cbf15c29924695c9 58333ccc921a4318cbddf299f4a0d055a3 263 10 3a13554056c856a9380b4ff0e1c60d3f 264 7a4dd00f8bbafc5095a2f5f00da7131ba7 10 d6f7ac4ce20662e388a6b0c21273204b 154ab3ecf9568391efd8918b059f988d67 265 10 a21805a46107cb6b89bd30f4c47405c51 266 3c690152ba0daf7d5b4f7a3ee3c88ab33f 10 6bb8252dc786c8ccd668169c4bbc4cfc2 15e1810bfa1308e523b851c7078b2be464 267 10 f66df69c7492775594b91644a16e77aff 32c38e387faae3e8b74eb7d4675bfa49f5 10 268 00cac6c56b4de44a8b7f9d8372666090b

An overview of the revised shotgun hill climbing algorithm results (continued)

| n   | Sequence in HEX                    | PSL |
|-----|------------------------------------|-----|
| 269 | e6fbaa465ee2a294646b484fbf7d498512 | 10▼ |
|     | 837f32dc48de2872f0781741941892680  |     |
| 270 | ca6d5d2e2898349ca6f36814244ad6e204 | 10▼ |
|     | 8fc50210d8a0fe07fcd5d7f135261c718  |     |
| 271 | 4fd6ffb4ef673619e25b08bdb8157332e6 | 10▼ |
|     | 15587d1c72ee2d9302c5feb706b0acdab4 |     |
| 272 | eb8a2f2227f60eca7d47a60d44193beef1 | 11  |
|     | 4b2502f3b5a198f69d3ed7dfb4eca72b41 |     |
| 273 | 1b007f99648f37cf3f43ffdb61260d2d33 | 11  |
|     | b65231ad1cbc3353a1ec6e4bc5555d5ab9 |     |
|     | 5                                  |     |
| 273 | 1d92f5d3696863c9fa0972f85e9023bf72 | 11▼ |
|     | 63e0d0472f3a817d42462388332a9db3ba |     |
|     | d                                  |     |
| 274 | 2a377a8cd8e836fc187135c97cb4f69fad | 11▼ |
|     | ef3a4367b96014b1b9a79bb40d1120baa7 |     |
|     | 5                                  |     |
| 275 | 5991082785400a4fec7053b34aeba361d9 | 11▼ |
|     | 542b51c7533d37b28524c29f747f285b8c |     |
| 276 | af8eb78a4018df61ad9e2d5c980dd38ea4 | 11▼ |
|     | dbd3cc1d37126245796adbfad9dccfe27  |     |
| 277 | 4a97467cb36e66d3c4062908017d0aa39c | 11▼ |
|     | 6a04ad0f2f27b6c10b1dbaec226a396dc1 |     |
|     | d                                  |     |
| 278 | 96655611a994569ea5924430f8fbaace17 | 11▼ |
|     | 8f1df22f07a48c180bef02336e65223642 |     |
|     | b                                  |     |
| 279 | 7425c1ec9da091b4d0ee98297cf8a600cb | 11▼ |
|     | b43c455e0031c4f15c642251892bdbcbd5 |     |
|     | d7                                 |     |
| 280 | 55bef3e1c6a79c1a03aad609724c2da00b | 11▼ |
|     | ba2ad6484112fe95db18d81f99948c6f0b |     |
|     | 32                                 |     |

| п   | Sequence in HEX                    | PSL |
|-----|------------------------------------|-----|
| 281 | 1424e102f4fde1aa05941514283b49ba3e | 11▼ |
|     | 1786dae904facc4c6db8ac6632ef12acc8 |     |
|     | 9ce                                |     |
| 282 | 3e88983536cd657fd8069a3360e796e35a | 11▼ |
|     | dc35cb8ab5c6f0ebeeefee25ad9daecc06 |     |
|     | 81f                                |     |
| 283 | 5f08ad54acf01756103661f0e35a1c815c | 11▼ |
|     | d9465bf0909bdcbca2081b5ce79bbb96e7 |     |
|     | 4d                                 |     |
| 284 | d1195f2440f108379fb13357dd894f83ff | 11▼ |
|     | 89e0e313269f6b5f48f675acb1218d5769 |     |
|     | aeb                                |     |
| 285 | 1fd2b9a522fa0ba0363cefa32874704a1a | 11▼ |
|     | f558b374eb3eadff9593c7925bbc98e4f6 |     |
|     | 62d7                               |     |
| 286 | 12410ee79818cd60c7230ad510aadec039 | 11▼ |
|     | 2e476e0f0a036f167bf2be2cab02c0d6d4 |     |
|     | 4d81                               |     |
| 287 | 63dac2f781e251694b5e9978aa03ca24f2 | 11▼ |
|     | a20ad51bbba930e99d93590608f330099d |     |
|     | e606                               |     |
| 288 | 69a4d15a39cd274d62e3f41c235b3b280f | 11▼ |
|     | 0336af0833a646b21eb0a04085c40b5fab |     |
|     | 1aae                               |     |
| 289 | 16d9909ffc2421af02de219e1d86e042cd | 11▼ |
|     | bfaff9be97237531d2e1ab96739b5eab8b |     |
|     | 166aa                              |     |
| 290 | 15c7ff0aef22f9dbdf7394c8094b13871a | 11▼ |
|     | c35a9bcd81a472251e5024efd3605951fa |     |
|     | 0d157                              |     |
| 291 | a1c202c94a731846da997686016197dbcd | 11▼ |
|     | 6a6ca7cc264437646ac0c0fcbd11ff5ae0 |     |
|     | 7555                               |     |

| п   | Sequence in HEX                    | PSL  |
|-----|------------------------------------|------|
| 292 | 6e7871e089cc8db9274cf3a22f22d3d452 | 11 🔻 |
|     | 3d272db2952ab2ac27188b6fbf47faef01 |      |
|     | bbdf6                              |      |
| 293 | 4e6aa8af6a0ead457af0ad0ca55efe940e | 11   |
|     | 310e4e6f21b73cf0006124c90360db0b98 |      |
|     | 7db6c                              |      |
| 294 | 1a5b6d16eca315188a6c5271c7a7ab9eb3 | 11   |
|     | a5ee0efdaabf07b9578110e7fcfe06ccd0 |      |
|     | a47ecc                             |      |
| 295 | 4707bfcc051613d674df4982da568161be | 11   |
|     | 90f8cb12bf339535d1a7488f0468c03112 |      |
|     | ae1157                             |      |
| 296 | b71a2ac9b154ef459223e3b03cd2394c7e | 11   |
|     | 3c15f1ac6a2272deea2c235a20fb4bdbdf |      |
|     | 3b7fb4                             |      |
| 297 | 2ff21574c741f68aa9d0872b97acc757c6 | 11   |
|     | fdb374791dee45c4a41c274d6c6df59200 |      |
|     | 62de92                             |      |
| 298 | 32c7b45b87be1884edfec5712d7e3efcef | 11   |
|     | 2e825460a6d5dc1b9d4335581e4e33b454 |      |
|     | d9126b4                            |      |
| 299 | 587814353b51d6b1d029f7fe73bd9c88ad | 11   |
|     | 984a394357ee609923a3ec1923e0bb4047 |      |
|     | 492ea83                            |      |
| 300 | 5b2a550cad8a468cac4ac82be6ad333849 | 11   |
|     | c865361c6d800818ef9387d6513e8cb81d |      |
|     | 0f23ff6                            |      |

#### **B.3.1** Revised Shotgun Hill climbing results for longer binary sequences

Table B.4 An overview of the revised shotgun hill climbing algorithm results for longer binary sequences

| n    | Sequence in HEX                 | PSL | ▼          |
|------|---------------------------------|-----|------------|
| 426  | 3075e0e3e3c1581d2af808dfee48904 | 14  | <b>▼</b> 3 |
|      | 226a942d671d897292c4613c5b19a5d |     |            |
|      | d22a6799309414418db4ba724a9fd8f |     |            |
|      | fd1dd109b71493                  |     |            |
| 3000 | 9c9d1dd018fecf19c744616ad4b166  | 43  | ▼8         |
|      | 50e04945bf3f38486f3e52499f8687b |     |            |
|      | d6a090f4b79735ec64f9987f6ac4985 |     |            |
|      | ba941983ecdb9d1d0fd861dfdc7ed4a |     |            |
|      | dd34ac12f08b559aa8c22cf70b4724a |     |            |
|      | d819dbb4ddf4678582db3601786cc56 |     |            |
|      | 7f8d290b90cbf46e2939152989bba06 |     |            |
|      | 5e1644ec8b1d995e9d8d68221ff5166 |     |            |
|      | 66bff43b0a993eaa9ba440f0b79f00e |     |            |
|      | 083acd93b1b64ee5acc52cb1a3bc77e |     |            |
|      | 7c01a14a8a7d8003c62fc5778be6a05 |     |            |
|      | df09b9fc03b70dc2df6850a61ed7045 |     |            |
|      | 398c52aa1b5baf036848553d7dd27f8 |     |            |
|      | cb72ed847c6796f7216a975dc497149 |     |            |
|      | ef6eab576508ac77dc3c8837d54d952 |     |            |
|      | 1d151694dea17e2bb4969a2c4461616 |     |            |
|      | fafaacb172e35685b3bd63152287a79 |     |            |
|      | e329c65b01a41030bf595ec7ef87188 |     |            |
|      | b37a4d3552e73fadefcdf57b05cc618 |     |            |
|      | 904a2fdfd52ff7e8a8c1ea9fdf9db08 |     |            |
|      | 957495f01fd6ca7ff219ae3c4624100 |     |            |
|      | d4eee30cc0db5aa8e9f548c31b10593 |     |            |
|      | f138b2c7d22c3f7c16279b7b2f65de7 |     |            |
|      | d17494944967d341c6c0c4e70863b00 |     |            |
|      | 201984a                         |     |            |

## **B.4** New Classes of Binary Sequences with High (RECORD) Merit Factor

Table B.5 A list of binary sequences with record merit factor values and lengths between 172 and 237

| п   | Class                                                                           | Record sequence in HEX                                                     | Old MF  | New MF            |
|-----|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------|-------------------|
| 172 | $\Omega_{173} \circ \eta_4$                                                     | fe03184fe780309206b6663e571d355a6ac59356a                                  | 8.8363  | 9.052631578947368 |
| 178 | $\Omega_{179} \circ \eta_4$                                                     | 2c7bd3a7034ccbfe886e8a084688550ccf2b613d16c                                | 8.2125  | 9.29149560117302  |
| 180 | $\Omega_{179} \circ \eta_1$                                                     | b1ef4e9c0d332ffa21ba28211a2154333cad84f45b0                                | 8.5353  | 8.55332629355860  |
| 182 | $\Omega_{183} \circ \eta_4$                                                     | 3cfe712191dc7d1c57c81ec5a8d7edbd6ddb9a3b654d2                              | 8.2194  | 8.92830188679245  |
| 184 | $\Omega_{183} \circ \eta_2$                                                     | f3f9c4864771f4715f207b16a35fb6f5b76e68ed9534a                              | 8.2980  | 8.63673469387755  |
| 186 |                                                                                 | 233da5ef19ed00149bc0c4644d4b9c1550e992e878b375                             | 8.3606  | 8.62743142144638  |
|     | $\Omega_{185} \circ \eta_1$                                                     |                                                                            |         |                   |
| 190 | $\Omega_{187} \circ \eta_0 \circ \eta_0 \circ \eta_4$                           | 190c8d2692191f17dba56aff75407e11d7b5b9a3863c8cb9                           | 8.5021  | 9.19510952623535  |
| 192 | $\Omega_{195} \circ \eta_4 \circ \eta_4 \circ \eta_4$                           | 190c8d2692191f17dba56aff75407e11d7b5b9a3863c8cb9                           | 8.0000  | 8.93023255813953  |
| 193 | $\Omega_{195} \circ \eta_4 \circ \eta_4$                                        | 32191a4d24323e2fb74ad5feea80fc23af6b73470c791973                           | 8.6868  | 9.11179060665362  |
| 193 | $\Omega_{195} \circ \eta_0 \circ \eta_0 \circ \eta_1 \circ \eta_1$              | c864693490c8f8bedd2b57fbaa03f08ebdadcd1c31e465cf                           | 8.6868  | 9.23834325396825  |
| 194 | $\Omega_{195} \circ \eta_0 \circ \eta_0 \circ \eta_1 \circ \eta_1 \circ \eta_1$ | 190c8d2692191f17dba56aff75407e11d7b5b9a3863c8cb9f                          | 8.0522  | 8.64400551217271  |
| 196 | $\Omega_{199} \circ \eta_4 \circ \eta_4 \circ \eta_4$                           | 937e64c9f4bc13e78367a16729653ad0f58ce65738aaa                              | 8.0910  | 8.52173913043478  |
| 198 | $\Omega_{199} \circ \eta_4$                                                     | 24df99327d2f04f9e0d9e859ca594eb43d633995ce2aaa                             | 8.3662  | 8.78619453160017  |
| 200 | $\Omega_{199} \circ \eta_2$                                                     | 937e64c9f4bc13e78367a16729653ad0f58ce65738aaaa                             | 8.2919  | 8.75656742556917  |
| 200 |                                                                                 |                                                                            | 8.02919 |                   |
|     | $\Omega_{199} \circ \eta_2 \circ \eta_1 \circ \eta_6$                           | 126fcc993e97827cf06cf42ce52ca75a1eb19ccae715555                            |         | 8.56866862662746  |
| 204 | $\Omega_{205} \circ \eta_4$                                                     | 3c7877d72fc246a45d9aaedfb63a8eff98847e474af20a25a4b                        | 8.1858  | 8.27684964200477  |
| 206 | $\Omega_{207} \circ \eta_4$                                                     | 2492010c9e4ed276a103f76a13a07752ba0763c4e58cbaa38e2                        | 7.7921  | 8.43658051689860  |
| 208 | $\Omega_{211} \circ \eta_0 \circ \eta_4$                                        | 38e383be228cf9981fc150c0fafad4d014a9599acdf76bb5b6db                       | 7.9529  | 8.96849087893864  |
| 209 | $\Omega_{211} \circ \eta_4 \circ \eta_4$                                        | 38e383be228cf9981fc150c0fafad4d014a9599acdf76bb5b6db                       | 8.6394  | 8.84947325769854  |
| 209 | $\Omega_{211} \circ \eta_0$                                                     | 71c7077c4519f3303f82a181f5f5a9a02952b3359beed76b6db6                       | 8.6394  | 9.25444915254237  |
| 210 | $\Omega_{211} \circ \eta_4$                                                     | 71c7077c4519f3303f82a181f5f5a9a02952b3359beed76b6db6                       | 7,9862  | 9.15317559153175  |
| 210 |                                                                                 | 2a2fbaa406cf5693c8d89b658f12d8639d8dcb1e02ce547fbaf7f                      | 7.8082  | 9.26298433635614  |
|     | $\Omega_{213} \circ \eta_4$                                                     |                                                                            |         |                   |
| 214 | $\Omega_{213} \circ \eta_1$                                                     | a8beea901b3d5a4f23626d963c4b618e76372c780b3951feebdfd                      | 8.1808  | 9.17755511022044  |
| 216 | $\Omega_{215} \circ \eta_1$                                                     | 7c361f6410df47fc0c506cc111bbacc6becad56f5cbae75a72d6b                      | 7.8598  | 8.58910162002945  |
| 218 | $\Omega_{217} \circ \eta_1$                                                     | 1a403f08432daddf13836660a67d66635b1288f8f345d2b547955                      | 7.4888  | 8.32877672625306  |
| 220 | $\Omega_{221} \circ \eta_4$                                                     | 3f06f260dece7d91c596a6d0009d550e7e184918a6ce8d672e52b<br>5                 | 7.2848  | 8.47932725998598  |
| 222 | $\Omega_{223} \circ \eta_4$                                                     |                                                                            | 7.6742  | 8.71666077113548  |
| 224 | $\Omega_{223} \circ \eta_2$                                                     | 7c7c3e8ef809ff31e636e3c806226a8d247265b3558a944852d6d<br>6a                | 7.3962  | 8.52173913043478  |
| 226 | $\Omega_{225} \circ \eta_1$                                                     | e060603dfef3807b8dce68f58e36d82de6c8dba55b2ea8b565656<br>d5                | 7.1555  | 8.48720505151213  |
| 227 | $\mathbb{B}_n^{15,11,7}$                                                        | 7fff001fc3cdfb67e939a58cc0d8658d4cd879b1ea63a8cb4a955                      | 7.5578  | 8.06905731287190  |
| 228 | $\mathbb{B}^{17}_{228}$                                                         | 2aaa<br>ffff9c31639d28ccf5ab85cba46d3c6e10de901f4cc83d927b2d9              | 7.2888  | 8.18903591682     |
| 229 | $\mathbb{B}_{228} \circ \eta_5$                                                 | 5555<br>1ffff9c31639d28ccf5ab85cba46d3c6e10de901f4cc83d927b2d              | 7.5476  | 8.55202217873     |
| 230 | $\mathbb{B}_{228} \circ \eta_1 \circ \eta_5$                                    | 95555<br>3ffff3862c73a5199eb570b9748da78dc21bd203e99907b24f65b<br>2aaab    | 7.1739  | 8.16610064835     |
| 231 | $\mathbb{B}^{16}_{231}$                                                         | Zadau<br>7fffb612c7d8bc368ed13b8379234c371a35bb10ede34bd8a4f16<br>3aaaa    | 7.4381  | 8.18671371586     |
| 232 | $\mathbb{B}_{233} \circ \eta_4$                                                 | Sadaa<br>fffad0296b1ca397ca63d8cedc5b991edc4c9d260d7920db0782b<br>c1555    | 7.1727  | 8.05748502994     |
| 233 | $\mathbb{B}^{13}_{233}$                                                         | 1fff5a052d639472f94c7b19db8b7323db8993a4c1af241b60f05                      | 7.3522  | 8.22560606061     |
| 234 | $\mathbb{B}_{233} \circ \eta_5$                                                 | 782aaa<br>3fff5a052d639472f94c7b19db8b7323db8993a4c1af241b60f05<br>782aa   | 7.1651  | 8.27379873073     |
| 235 | $\mathbb{B}^{15}_{233}\circ\eta_5\circ\eta_5$                                   | 702ada<br>7fff5a052d639472f94c7b19db8b7323db8993a4c1af241b60f05<br>782aa   | 7.3496  | 8.44677271337     |
| 236 | $\mathbb{B}_{233}\circ\eta_1\circ\eta_5\circ\eta_5$                             | /82aaa<br>fffeb40a5ac728e5f298f633b716e647b7132749835e4836c1e0a<br>f05555  | 7.5797  | 8.37282020445     |
| 237 | $\mathbb{B}_{239} \circ \eta_0$                                                 | 165555<br>1fff3863ff634e14a46fe933d8c162c27ac9d338546e0fa4f2755<br>2693555 | 7.8230  | 8.65203327172     |

| n   | Class                                                                                                          | Record sequence in HEX                                                                         | Old MF | New MF       |
|-----|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------|--------------|
| 238 | $\mathbb{B}^{14}_{239}\circ\eta_4$                                                                             | 3fff3863ff634e14a46fe933d8c162c27ac9d338546e0fa4f2755<br>2693555                               | 7.7573 | 8.3422680412 |
| 239 | $\mathbb{B}^{19}_{239}$                                                                                        | 7ffff0c39e1f03f01ef8967c933666e66331ca61dae952b52969b<br>4d2aaaa                               | 7.6962 | 8.1905649555 |
| 240 | $\mathbb{B}^{14}_{239} \circ \eta_2$                                                                           | fffcff800f3c398721e6e43326f40dcaf46332e465a36992d34aa                                          | 7.2948 | 8.2474226804 |
| 241 | $\mathbb{B}_{241}$                                                                                             | 954d554<br>1ffffc4235e31e3c1ee6079bc2973b0b13782d196a645ad25b25f<br>22cdEEE                    | 8.0668 | 8.2689350797 |
| 242 | $\mathbb{B}_{241} \circ \eta_2$                                                                                | 22ed5555<br>3ffff8846bc63c783dcc0f37852e761626f05a32d4c8b5a4b64be<br>45daaaa                   | 7.1893 | 8.1497355969 |
| 243 | $\mathbb{B}^{18}_{243}$                                                                                        | 7ffff8c0e7381f840fe3960f3a4c66ce64c7b2d61b6ad45a95b26                                          | 7.2488 | 8.4621668099 |
| 244 | $\mathbb{B}_{243} \circ \eta_1$                                                                                | d4daaaaa<br>fffff181ce703f081fc72c1e7498cd9cc98f65ac36d5a8b52b64d<br>- 055555                  | 7.1730 | 8.5197481396 |
| 245 | $\mathbb{B}_{243}\circ\eta_1\circ\eta_5$                                                                       | a9b55555<br>1ffff181ce703f081fc72c1e7498cd9cc98f65ac36d5a8b52b64<br>da9b55555                  | 7.3237 | 8.5799028016 |
| 246 | $\mathbb{B}_{243}\circ\eta_1\circ\eta_1\circ\eta_5$                                                            | a39055555<br>3ffffe3039ce07e103f8e583ce9319b39931ecb586dab516a56c9<br>b536aaaab                | 7.1650 | 8.3332415312 |
| 247 | $\mathbb{B}_{243}\circ\eta_1\circ\eta_1\circ\eta_2\circ\eta_5$                                                 | 7ffffc60739c0fc207f1cb079d2633673263d96b0db56a2d4ad93                                          | 7.109  | 8.2288912867 |
| 248 | $\mathbb{B}_{243}\circ\eta_1\circ\eta_1\circ\eta_2\circ\eta_5\circ\eta_6$                                      | 6a6d55556<br>7ffffc60739c0fc207f1cb079d2633673263d96b0db56a2d4ad93<br>6a6d55556                | -      | 8.0166840458 |
| 249 | $\mathbb{B}^{16}_{249}$                                                                                        | 1ffffc212fe40e94e19e33d2972665b1b1e663783d3259a4f84ae                                          | 8.1323 | 8.2011904761 |
| 250 | $\mathbb{B}_{249} \circ \eta_2$                                                                                | 543a2d5555<br>3ffff8425fc81d29c33c67a52e4ccb6363ccc6f07a64b349f095c<br>                        | 7.1988 | 8.1956464725 |
| 251 | $\mathbb{B}_{249} \circ \eta_2 \circ \eta_1$                                                                   | a8745aaaaa<br>7ffff084bf903a538678cf4a5c9996c6c7998de0f4c96693e12b9<br>                        | 7.5632 | 8.2354248366 |
| 252 | $\mathbb{B}_{253} \circ \eta_4$                                                                                | 50e8b55555<br>ffffe03198f80ce61e0f2cf07a25ce2176c877a52cf2d6966cd5a                            | 7.2394 | 8.4943820224 |
| 253 | $\mathbb{B}^{19}_{253}$                                                                                        | d99356aaaa<br>1ffffc06331f019cc3c1e59e0f44b9c42ed90ef4a59e5ad2cd9ab                            | 7.3036 | 8.9548125349 |
| 254 | $\mathbb{B}_{253} \circ \eta_2$                                                                                | 5b326ad5555<br>3ffff80c663e03398783cb3c1e8973885db21de94b3cb5a59b356                           | 7.0325 | 8.5180881964 |
| 255 | $\mathbb{B}_{253} \circ \eta_2 \circ \eta_2$                                                                   | b664d5aaaaa<br>7ffff018cc7c06730f0796783d12e710bb643bd296796b4b366ad                           | 7.2849 | 8.2289293849 |
| 256 | $\mathbb{B}_{259} \circ \eta_0 \circ \eta_4$                                                                   | 6cc9ab55554<br>fff65cbd0a16c7841bd24913277f2064c6572a27311c70b945a4e                           | 7.1483 | 8.1269841269 |
| 257 | $\mathbb{B}_{259} \circ \eta_0$                                                                                | 17d0bc862aa<br>1ffffc380df2781e7233e42db41b66c64e6c671af1c2e532365a9                           | 7.3847 | 8.3227066532 |
| 258 | $\mathbb{B}_{259} \circ \eta_4$                                                                                | 635ca92d5555<br>3ffffc380df2781e7233e42db41b66c64e6c671af1c2e532365a9                          | 7.0738 | 8.252417555  |
| 259 | $\mathbb{B}^{19}_{259}$                                                                                        | 635ca92d5555<br>7ffff8701be4f03ce467c85b6836cd8c9cd8ce35e385ca646cb52                          | 8.0918 | 8.186599951  |
| 260 | $\mathbb{B}^{16}_{259} \circ \eta_1$                                                                           | c6b9525aaaaa<br>ffff3e0648fcf2598f931e43a9538a717b6093f812e5b39499e34                          | -      | 8.2640586797 |
| 261 | B <sub>261</sub>                                                                                               | d48e6a53555<br>1fffff21274a5ec18d9e601cf948f139c2d93b48f94daa659c9ac                           | -      | 8.0445205479 |
| 262 | $\mathbb{B}^{16}_{263}\circ\eta_4$                                                                             | 5e0f63a35555<br>3ffff3d98cc67b60b077887e1c1eed486c68fc45ada568976b0a7                          | -      | 8.0814692724 |
| 263 | B <sup>16</sup> <sub>263</sub>                                                                                 | 166cc99d3555<br>7fffe7b3198cf6c160ef10fc383dda90d8d1f88b5b4ad12ed614e                          | 7.2006 | 8.2285272424 |
| 264 | = 265<br>Β <sub>265</sub> • η <sub>4</sub>                                                                     | 2cd9933a6aaa<br>ffffec3731980ffc25863ed306f12b6b503e3f12e530eb65874aa                          | -      | 8.1726078799 |
| 265 | $\mathbb{B}_{267} \circ \eta_0$                                                                                | d5993234eaaa<br>1ffffe3943ca79588ed4f2ccc37e13e24dce253a572ccc34fc489                          | 7.0963 | 8.717105263  |
| 266 | $\mathbb{B}_{265} \circ \eta_1$                                                                                | f960d2f925555<br>3ffffb0dcc6603ff09618fb4c1bc4adad40f8fc4b94c3ad961d2a                         | _      | 8.104925544  |
| 267 | B <sup>20</sup> <sub>267</sub> ₿                                                                               | b5664c8d3aaaa<br>7ffffc728794f2b11da9e59986fc27c49b9c4a74ae599869f8913                         | 7.0765 | 8.0771583956 |
| 267 |                                                                                                                | f2c1a5f24aaaa<br>fffff1ca1e53cac476a796661bf09f126e7129d2b96661a7e244f                         | 7.0004 | 8.019651630  |
|     | $\mathbb{B}_{267} \circ \eta_2 \circ \eta_2 \circ \eta_3$ $\mathbb{B}_{267}^{22,11} \circ \eta_2 \circ \eta_3$ | cb0697c92aaaa                                                                                  |        |              |
| 269 | $\mathbb{B}^{22,11}_{269}$                                                                                     | 1fffff800ff0699b6c1f21f0db3632786c6c69632731cb5a35ac7<br>1986b54aa955555                       | 7.3092 | 7.4414849856 |
| 270 | $\mathbb{B}_{269} \circ \eta_1$                                                                                | 3fffff001fe0d336d83e43e1b66c64f0d8d8d2c64e6396b46b58e<br>330d6a9552aaaab                       | 7.0056 | 7.273997206: |
| 271 | $\mathbb{B}^{21}_{271}$                                                                                        | 7ffffe89502ef15b2327cc786c3c6784ad0fc5a64b4e5a4ca7373<br>812ef501deaaaaa                       | 7.5386 | 7.6901570680 |
| 272 | $\mathbb{B}_{271} \circ \eta_1$                                                                                | fffffd12a05de2b6464f98f0d878cf095a1f8b4c969cb4994e6e7<br>025dea03bd55555                       | -      | 7.3571996817 |
| 273 | $\mathbb{B}_{273}^{22,11}$                                                                                     | 1fffff800ff0338dbc2761b32787386c3e4e52c693696331a762d<br>1c932b54aa955555                      | -      | 7.2106230650 |
| 274 | $\mathbb{B}_{273} \circ \eta_2$                                                                                | 3fffff001fe0671b784ec3664f0e70d87c9ca58d26d2c6634ec5a<br>392656a9552aaaaa                      | -      | 7.1843062201 |
| 275 | $\mathbb{B}^{22,11}_{275}$                                                                                     | 7ffffe003f63918fc8c7a478f24e63c1e247694b66c72da47a4dc<br>ad91b62b556aaaa                       | -      | 7.5009918666 |
| 276 | $\mathbb{B}_{275} \circ \eta_1$                                                                                | ad910620505aaaaa<br>fffffc007ec7231f918f48f1e49cc783c48ed296cd8e5b48f49b9<br>5b236c56aad55555  | -      | 7.4770318023 |
| 277 | $\mathbb{B}_{275}\circ\eta_1\circ\eta_5$                                                                       | 1fffffc007ec7231f918f48f1e49cc783c48ed296cd8e5b48f49b                                          | -      | 7.4552079284 |
| 278 | $\mathbb{B}_{275}\circ\eta_1\circ\eta_2\circ\eta_5$                                                            | 95b236c56aad55555<br>3fffff800fd8e463f231e91e3c9398f07891da52d9b1cb691e937<br>2b646d8ad55aaaaa | -      | 7.1255762493 |

Table B.6 A list of binary sequences with record merit factor values and lengths between 238 and 278

| Table B.7 A list of binary sequences with record merit factor values and lengths between 279 |
|----------------------------------------------------------------------------------------------|
| and 312                                                                                      |

| n   | Class                                                                                                                           | Record sequence in HEX                                                             | Old MF | New MF        |
|-----|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------|---------------|
| 279 | $\mathbb{B}_{275}\circ\eta_{1}\circ\eta_{2}\circ\eta_{1}\circ\eta_{5}$                                                          | 7fffff001fb1c8c7e463d23c792731e0f123b4a5b36396d23d26e<br>56c8db15aab555555         | -      | 7.05209277043 |
| 280 | $\mathbb{B}_{281} \circ \eta_4$                                                                                                 | fffffc007936c187ec0dd8f03db13cda71b39278cb138b52d88d4<br>ea594e31a554aaaaa         | -      | 7.27002967359 |
| 281 | $\mathbb{B}_{281}^{22,11}$                                                                                                      | 1fffff800f26d830fd81bb1e07b6279b4e36724f1962716a5b11a<br>9d4b29c634aa955555        | 7.5058 | 7.7050156128  |
| 282 | $\mathbb{B}_{281}\circ\eta_2$                                                                                                   | 3fffff001e4db061fb03763c0f6c4f369c6ce49e32c4e2d4b6235<br>3a96538c69552aaaaa        | -      | 7.38933283776 |
| 283 | $\mathbb{B}^{22,11}_{283}$                                                                                                      | 7ffffe003f9c0f3c38d867139330e53e47a17a46b06d331b12658<br>db4b2d49ab556aaaa         | 7.5088 | 8.17067945317 |
| 284 | $\mathbb{B}_{283}\circ\eta_1$                                                                                                   | fffffc007f381e7871b0ce272661ca7c8f42f48d60da663624cb1<br>b6965a9356aad55555        | -      | 7.89815902859 |
| 285 | $\mathbb{B}^{22,11}_{285}$                                                                                                      | 1fffff800ff218fc31e07b06d24f26c6c6d999c6c6c634e3c6b16<br>a5b2d49a354aa955555       | 7.0142 | 7.46827877896 |
| 286 | $\mathbb{B}_{285}\circ\eta_1$                                                                                                   | 3fffff001fe431f863c0f60da49e4d8d8db3338d8d8c69c78d62d<br>4b65a9346a9552aaaab       | -      | 7.22707192083 |
| 287 | $\mathbb{B}^{22,11}_{287}$                                                                                                      | 7ffffe003fe06d8db331e63e16e4b4c78c6d0e4da4c3c6e16b669<br>3338d8e56ab556aaaaa       | -      | 7.47314461985 |
| 288 | $\mathbb{B}_{287} \circ \eta_1$                                                                                                 | fffffc007fc0db1b6663cc7c2dc9698f18da1c9b49878dc2d6cd2<br>6671b1cad56aad55555       | -      | 7.21503131524 |
| 289 | $\mathbb{B}^{22,11,6}_{289}$                                                                                                    | 1fffff800ff619ccc3c4e6723d3a5e35b0f24e34b1f25e13d2366<br>4ed2ccd9a754aa955555      | -      | 7.1312329235  |
| 290 | $\mathbb{B}_{291} \circ \eta_4$                                                                                                 | 3fffff001fec4a76992c5a7072d0cd969cc9b18cd879ccbc36b61<br>ec398760ec55aab55555      | -      | 7.36040609137 |
| 291 | $\mathbb{B}_{291}^{22,11,6}$                                                                                                    | 7ffffe003fd894ed3258b4e0e5a19b2d39936319b0f399786d6c3<br>d8730ec1d8ab556aaaa       | -      | 7.71370012753 |
| 292 | $\mathbb{B}_{291} \circ \eta_1$                                                                                                 | fffffc007fb129da64b169c1cb43365a7326c63361e732f0dad87<br>b0e6id83b156aad55555      | -      | 7.58846564614 |
| 293 | $\mathbb{B}_{291}\circ\eta_1\circ\eta_5$                                                                                        | 1fffffc007fb129da64b169c1cb43365a7326c63361e732f0dad8<br>7b0e61d83b156aad55555     | -      | 7.47032718413 |
| 294 | $\mathbb{B}_{291}\circ\eta_1\circ\eta_1\circ\eta_5$                                                                             | 3fffff800ff6253b4c962d38396866cb4e64d8c66c3ce65e1b5b0<br>f61cc3b0762ad55aaaaab     | -      | 7.33129770992 |
| 295 | $\mathbb{B}^{22,11,6}_{295}$                                                                                                    | 7ffffe003fc319e87b0f1cc672969a589c69c49e49d879e1f264c<br>92d3a5e9934ab556aaaaa     | -      | 7.28730530899 |
| 296 | $\mathbb{B}_{295}\circ\eta_1$                                                                                                   | fffffc007f8633d0f61e398ce52d34b138d3893c93b0f3c3e4c99<br>25a74bd326956aad55555     | -      | 7.13950456323 |
| 297 | $\mathbb{B}^{22,11,6}_{297}$                                                                                                    | 1fffff800fce123d389c6a5e972c63932799399399633926c3785<br>e06d893d23a4d4aa955555    | -      | 7.1551752109  |
| 298 | $\mathbb{B}_{297} \circ \eta_2$                                                                                                 | 3fffff001f9c247a7138d4bd2e58c7264f32732732c6724d86f0b<br>c0db127a4749a9552aaaaa    | -      | 7.26829268293 |
| 299 | $\mathbb{B}_{297} \circ \eta_2 \circ \eta_5$                                                                                    | 7fffff001f9c247a7138d4bd2e58c7264f32732732c6724d86f0b<br>c0db127a4749a9552aaaaa    | -      | 7.38485048736 |
| 300 | $\mathbb{B}_{301} \circ \eta_4$                                                                                                 | b7e00048d23dbb673e05a41e139b4cb590bd183cc39b16947856b<br>263b8b70dc5556a3d55       | -      | 7.67132628708 |
| 301 | $\mathbb{B}^{12}_{301}$                                                                                                         | 16fc00091a47b76ce7c0b483c2736996b217a307987362d28f0ad<br>64c7716e1b8aaad47aaa      | 7.7173 | 8.24544958136 |
| 302 | $\mathbb{B}_{301} \circ \eta_1$                                                                                                 | 2df80012348f6ed9cf81690784e6d32d642f460f30e6c5a51e15a<br>c98ee2dc371555a8f555      | -      | 8.092635315   |
| 303 | $\mathbb{B}_{301} \circ \eta_1 \circ \eta_1$                                                                                    | 5bf00024691eddb39f02d20f09cda65ac85e8c1e61cd8b4a3c2b5<br>931dc5b86e2aab51eaab      | 7.9488 | 8.16370264983 |
| 804 | $\mathbb{B}_{301} \circ \eta_1 \circ \eta_1 \circ \eta_1$                                                                       | b7e00048d23dbb673e05a41e139b4cb590bd183cc39b16947856b<br>263b8b70dc5556a3d557      | -      | 8.24553890079 |
| 305 | $\mathbb{B}_{301}\circ\eta_1\circ\eta_1\circ\eta_1\circ\eta_2$                                                                  | 16fc00091a47b76ce7c0b483c2736996b217a307987362d28f0ad<br>64c7716e1b8aaad47aaae     | 7.5117 | 8.12587351502 |
| 06  | $\mathbb{B}_{301}\circ\eta_1\circ\eta_1\circ\eta_1\circ\eta_6\circ\eta_5$                                                       | 2000b7e00048d23dbb673e05a41e139b4cb590bd183cc39b16947<br>856b263b8b70dc5556a3d557  | -      | 8.18353434714 |
| 807 | $\mathbb{B}_{301}\circ\eta_1\circ\eta_1\circ\eta_1\circ\eta_6\circ\eta_5\circ\eta_6$                                            | 2000b7e00048d23dbb673e05a41e139b4cb590bd183cc39b16947<br>856b263b8b70dc5556a3d557  | 7.4932 | 8.27180972442 |
| 308 | $ \mathbb{B}_{301} \circ \eta_1 \circ \eta_1 \circ \eta_1 \circ \eta_2 \circ \eta_6 \circ \eta_5 \circ \\ \eta_6 $              | 40016fc00091a47b76ce7c0b483c2736996b217a307987362d28f<br>0ad64c7716e1b8aaad47aaae  | -      | 8.15823873409 |
| 309 | $ \mathbb{B}_{301} \circ \eta_1 \circ \eta_1 \circ \eta_1 \circ \eta_2 \circ \eta_2 \circ \eta_6 \circ \\ \eta_5 \circ \eta_6 $ | 8002df80012348f6ed9cf81690784e6d32d642f460f30e6c5a51e<br>15ac98ee2dc371555a8f555c  | 7.5229 | 8.08338977311 |
| 310 | $\mathbb{B}_{309} \circ \eta_6$                                                                                                 | 8002df80012348f6ed9cf81690784e6d32d642f460f30e6c5a51e<br>15ac98ee2dc371555a8f555c  | -      | 7.96716962361 |
| 311 | $\mathbb{B}_{309} \circ \eta_6 \circ \eta_5$                                                                                    | 48002df80012348f6ed9cf81690784e6d32d642f460f30e6c5a51<br>e15ac98ee2dc371555a8f555c | 7.4229 | 7.88786494862 |
| 312 | $\mathbb{B}_{309} \circ \eta_2 \circ \eta_6 \circ \eta_5$                                                                       | 90005bf00024691eddb39f02d20f09cda65ac85e8c1e61cd8b4a3<br>c2b5931dc5b86e2aab51eaab8 | -      | 7.69152970923 |

Table B.8 A list of binary sequences with record merit factor values and lengths between 313 and 345

| п   | Class                                                                     | Record sequence in HEX                                                                                                         | Old MF | New MF        |
|-----|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------|---------------|
| 313 | $\mathbb{B}^{24,11,9,4}_{313}$                                            | 1fffffe003fe04b878f0b32666cda7c2c5a4f98f4994e1ec2d61c<br>c666330b49690ea552aa555555                                            | 7.5547 | 7.6204884878  |
| 314 | $\mathbb{B}_{313} \circ \eta_1$                                           | 3fffffc007fc0970f1e1664ccd9b4f858b49f31e9329c3d85ac39<br>8ccc661692d21d4aa554aaaaab                                            | -      | 7.31315828512 |
| 315 | $\mathbb{B}^{23,10,7,4}_{315}$                                            | 7fffff003f87c0f184fe339cf0c6179e38de666466668db69a164<br>d2c9b36ac592d4a5ab552aaaaa                                            | 7.4661 | 7.5204638472  |
| 316 | $\mathbb{B}_{315} \circ \eta_2$                                           | fffffe007f0f81e309fc6739e18c2f3c71bcccc8cccd1b6d342c9<br>a59366d58b25a94b56aa555554                                            | -      | 7.25908694388 |
| 317 | B <sub>317</sub>                                                          | 1ffffff003f920d9f36093b4ec686396db0f225e25e234b1c7926<br>86c4f138a7359ca3952ab555555                                           | -      | 7.46131571132 |
| 318 | $\mathbb{B}_{317} \circ \eta_2$                                           | 3fffffe007f241b3e6c12769d8d0c72db61e44bc4bc469638f24d<br>0d89e2714e6b39472a556aaaaaa                                           | -      | 7.23658222413 |
| 319 | $\mathbb{B}^{25,10,7}_{319}$                                              | 7fffffc00fe0674e1939ce09ccf92963cd83c378da34b58cb61f1<br>acc9d6c9b196c2656ad54aaaaaa                                           | 7.4224 | 7.45720357614 |
| 320 | $\mathbb{B}_{319} \circ \eta_2$                                           | ffffff801fc0ce9c32739c1399f252c79b0786f1b4696b196c3e3<br>5993ad93632d84cad5aa9555554                                           | -      | 7.48976009362 |
| 321 | $\mathbb{B}_{323} \circ \eta_0$                                           | 1fffffc003f9807e330e1ce9c63d0e61e0cd83c9998d29cca5a64<br>bd26d84da4b3256a9952aad55555                                          | 7.3183 | 7.73116746699 |
| 322 | $\mathbb{B}_{323} \circ \eta_4$                                           | 3fffffc003f9807e330e1ce9c63d0e61e0cd83c9998d29cca5a64<br>bd26d84da4b3256a9952aad55555                                          | -      | 7.76891952645 |
| 323 | $\mathbb{B}^{24,12,7}_{323}$                                              | 7fffff8007f300fc661c39d38c7a1cc3c19b0793331a53994b4c9<br>7a4db09b49664ad532a555aaaaaa                                          | 7.743  | 7.80788804071 |
| 324 | $\mathbb{B}_{323} \circ \eta_2$                                           | ffffff000fe601f8cc3873a718f4398783360f266634a73296992<br>f49b613692cc95aa654aab555554                                          | -      | 7.68491947291 |
| 325 | $\mathbb{B}_{323} \circ \eta_2 \circ \eta_1$                              | 1fffffe001fcc03f19870e74e31e8730f066c1e4ccc694e652d32<br>5e936c26d25992b54ca9556aaaaa9                                         | 7.5167 | 7.61206399539 |
| 326 | $\mathbb{B}_{323} \circ \eta_2 \circ \eta_1 \circ \eta_6$                 | 1fffffe001fcc03f19870e74e31e8730f066c1e4ccc694e652d32<br>5e936c26d25992b54ca9556aaaaa9                                         | -      | 7.50642746151 |
| 327 | $\mathbb{B}^{25,12,11,6}_{327}$                                           | 7fffffc003ff81ec63781ce43c19c39e1e66786619665a666969b<br>4994b46c95a364e95aab554aaaaa                                          | 7.3009 | 7.76761586518 |
| 328 | $\mathbb{B}_{323}\circ\eta_2\circ\eta_1\circ\eta_1\circ\eta_6\circ\eta_6$ | 3fffffc003f9807e330e1ce9c63d0e61e0cd83c9998d29cca5a64<br>bd26d84da4b3256a9952aad555553                                         | -      | 7.22622246104 |
| 329 | $\mathbb{B}_{327} \circ \eta_1 \circ \eta_2$                              | 1ffffff000ffe07b18de07390f0670e787999e19865996999a5a6<br>d2652d1b2568d93a56aad552aaaaaa                                        | 7.2782 | 7.33340108401 |
| 330 | $\mathbb{B}_{327} \circ \eta_1 \circ \eta_2 \circ \eta_1$                 | 3fffffe001ffc0f631bc0e721e0ce1cf0f333c330cb32d3334b4d<br>a4ca5a364ad1b274ad55aaa5555555                                        | -      | 7.22819593787 |
| 331 | $\mathbb{B}^{24,12,8,2}_{331}$                                            | 7fffff8007f83c0fcc36f0de9667261b24cb1a5b63638793cc739<br>672661e8d2e34cad4b5aa555aaaaaa                                        | 7.3501 | 7.44603778714 |
| 332 | $\mathbb{B}_{331} \circ \eta_2$                                           | ffffff000ff0781f986de1bd2cce4c36499634b6c6c70f2798e72<br>ce4cc3d1a5c6995a96b54aab555554                                        | -      | 7.2117246794  |
| 333 | $\mathbb{B}^{24,12,8,3}_{333}$                                            | 1fffffe001fe3181fc303c963e42f18cc6c63a670b70b66126c6c<br>c9b42e5278d2b2d5a9b255aaa555555                                       | 7.2743 | 7.29724927613 |
| 334 | $\mathbb{B}_{333} \circ \eta_2$                                           | 3fffffc003fc6303f860792c7c85e3198d8c74ce16e16cc24d8d9<br>93685ca4f1a565ab5364ab554aaaaaa                                       | -      | 7.06855911798 |
| 335 | $\mathbb{B}^{25,12,8,2}_{335}$                                            | 7fffffc003fc81e67b3698760f1b0f0cb46e46b61e6963e46e43c<br>d2d392d6259e33a6695cab554aaaaaa                                       | 7.3302 | 7.46276100545 |
| 336 | $\mathbb{B}_{335} \circ \eta_2$                                           | ffffff8007f903ccf66d30ec1e361e1968dc8d6c3cd2c7c8dc879<br>a5a725ac4b3c674cd2b956aa9555554                                       | -      | 7.27422680412 |
| 337 | $\mathbb{B}^{25,12,8,2}_{337}$                                            | 1ffffff000ff219cc6f03790f81e4f25a6931cb399b19930db386<br>1e34e5a94b972b46cd9a354aab55555                                       | 7.3327 | 7.35550518135 |
| 338 | $\mathbb{B}_{337} \circ \eta_2$                                           | 1834853945972046639354480555555<br>3fffffe001fe43398de06f21f03c9e4b4d26396733633261b670c<br>3c69cb52972e568d9b346a95556aaaaa   | -      | 7.26280991736 |
| 339 | $\mathbb{B}^{26,13,10,2}_{339}$                                           | 7fffffe000ffc231ec37835a670f85a749ccd8db61b9638d8cc9c                                                                          | 7.3961 | 7.77228459353 |
| 340 | $\mathbb{B}_{339} \circ \eta_1$                                           | 2785ad267835a34e9374aad556aaaaaa<br>ffffffc001ff8463d86f06b4ce1f0b4e9399b1b6c372c71b19938<br>/fbb54cff6b4026o85aaad55555       | -      | 7.7500670421  |
| 341 | $\mathbb{B}_{339}\circ\eta_1\circ\eta_5$                                  | 4f0b5a4cf06b469d26e955aaad555555<br>1ffffffc001ff8463d86f06b4ce1f0b4e9399b1b6c372c71b1993<br>84f0b5a4cf06b469d26e955aaad555555 | 7.317  | 7.72939377825 |
| 342 | $\mathbb{B}_{339}\circ\eta_1\circ\eta_1\circ\eta_5$                       | 84105546210546942569555834355555<br>3fffff8003ff08c7b0de0d699c3e169d2733636d86e58e363327<br>09e16b499e0d68d3a4dd2ab555aaaaab   | -      | 7.67984241628 |
| 343 | $\mathbb{B}_{339}\circ\eta_{1}\circ\eta_{1}\circ\eta_{5}\circ\eta_{6}$    | 099160499900686334402265553434348<br>3fffff8003ff08c7b0de0d699c3e169d2733636d86e58e363327<br>09916b499e0d68d3a4dd2ab555aaaaaab | 7.1921 | 7.63260672116 |
| 344 | $\mathbb{B}_{339}\circ\eta_1\circ\eta_1\circ\eta_1\circ\eta_5\circ\eta_6$ | 7fffff0007fe118f61bc1ad3387c2d3a4e66c6db0dcb1c6c664e<br>13c2d6933c1ad1a749ba556aab5555557                                      | -      | 7.36286709806 |
| 345 | $\mathbb{B}^{27,13,10,6}_{345}$                                           | 1ffffffc001ff8187e1f2364edc38f18e730f933a53a13e13394b                                                                          | 7.2612 | 7.48773276296 |

| Table B.9 A list of binary sequences with re | ecord merit factor values and lengths between 346 |
|----------------------------------------------|---------------------------------------------------|
| and 380                                      |                                                   |

| п          | Class                                                                                                                                                      | Record sequence in HEX                                                                                                                                     | Old MF | New MF                         |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------|
| 346        | $ \mathbb{B}_{339} \circ \eta_1 \circ \eta_1 \circ \eta_1 \circ \eta_1 \circ \eta_2 \circ \eta_5 \circ \\ \eta_6 $                                         | 1ffffffc001ff8463d86f06b4ce1f0b4e9399b1b6c372c71b1993<br>84f0b5a4cf06b469d26e955aad555555e                                                                 | -      | 7.10818192614                  |
| 347        | $\mathbb{B}^{26,13,10,0}_{347}$                                                                                                                            | 7fffffe000ffcc0f1e19c327c33966f03f21d8e17a6367a16d897<br>2b52e61b34a73499692d4caad556aaaaaa                                                                | 7.1698 | 7.23177177177                  |
| 348        | $\mathbb{B}_{347} \circ \eta_2$                                                                                                                            | ffffffc001ff981e3c33864f8672cde07e43b1c2f4c6cf42db12e<br>56a5cc36694e6932d25a9955aaad555554                                                                | -      | 7.13888233907                  |
| 349        | $\mathbb{B}^{24,9,9,9}_{349}$                                                                                                                              | 1ffffe00ff8033e76c49b0a79274c36a5ad0f0399b3931992b4b<br>c1e072cf63960b18ec76532a954aa555555                                                                | 7.1295 | 7.24488460623                  |
| 350        | $\mathbb{B}_{349} \circ \eta_2$                                                                                                                            | 3fffffc01ff0067ced893614f24e986d4b5a1e073367263325697<br>83c0e59ec72c1631d8eca6552a954aaaaaa                                                               | -      | 7.14619064287                  |
| 351        | $\mathbb{B}_{349} \circ \eta_2 \circ \eta_1$                                                                                                               | 7fffff803fe00cf9db126c29e49d30da96b43c0e66ce4c664ad2f<br>0781cb3d8e582c63b1d94caa552a9555555                                                               | 7.0911 | 7.14043120436                  |
| 352        | $\mathbb{B}_{349}\circ\eta_2\circ\eta_1\circ\eta_5$                                                                                                        | ffffff803fe00cf9db126c29e49d30da96b43c0e66ce4c664ad2f<br>0781cb3d8e582c63b1d94caa552a9555555                                                               | -      | 7.05603644647                  |
| 353        | $\mathbb{B}^{23,9,9,9}_{353}$                                                                                                                              | 1fffffc01ff006cf9f21e06d8e74c72667963c1b8b6b4f07091ad<br>27966636cf649c6a5a3594c6ab55aad55555                                                              | 7.1385 | 7.26498367537                  |
| 354        | $\mathbb{B}_{355} \circ \eta_4$                                                                                                                            | 3fffff803fe00f39e1b8784d2f26ccd9cc63c0f307c24e2d6b34a<br>d26cd9ccc6343ce9691a5934aa552a955555                                                              | -      | 7.18472652219                  |
| 355        | $\mathbb{B}^{23,9,9,9}_{355}$                                                                                                                              | 7fffff007fc01e73c370f09a5e4d99b398c781e60f849c5ad6695<br>a4d9b3998c6879d2d234b26954aa552aaaaa                                                              | 7.232  | 7.39496537965                  |
| 356        | $\mathbb{B}_{355} \circ \eta_2$                                                                                                                            | fffffe00ff803ce786e1e134bc9b3367318f03cc1f0938b5acd2b<br>49b3673318d0f3a5a46964d2a954aa555554                                                              | -      | 7.20582215147                  |
| 357        | $\mathbb{B}^{26,12,6}_{357}$                                                                                                                               | 1ffffff8007f876cc33e58e06f198373723c78d293d29983d383c<br>96d23737299b46a49e532cc76956aa9555555                                                             | 7.2201 | 7.48467230444                  |
| 358        | $\mathbb{B}_{357} \circ \eta_2$                                                                                                                            | 3ffffff000ff0ed9867cb1c0de3306e6e478f1a527a53307a7079<br>2da46e6e53368d493ca6598ed2ad552aaaaaa                                                             | -      | 7.27625752243                  |
| 359        | $\mathbb{B}_{357} \circ \eta_2 \circ \eta_2$                                                                                                               | 7fffffe001fe1db30cf96381bc660dcdc8f1e34a4f4a660f4e0f2<br>5b48dcdca66d1a92794cb31da55aaa5555554                                                             | 7.1896 | 7.33361784454                  |
| 360        | $\mathbb{B}_{357} \circ \eta_2 \circ \eta_2 \circ \eta_5$                                                                                                  | ffffffe001fe1db30cf96381bc660dcdc8f1e34a4f4a660f4e0f2<br>5b48dcdca66d1a92794cb31da55aaa5555554                                                             | -      | 7.12714474263                  |
| 361        | $\mathbb{B}_{357}\circ\eta_2\circ\eta_2\circ\eta_5\circ\eta_6$                                                                                             | fffffe001fe1db30cf96381bc660dcdc8f1e34a4f4a660f4e0f2<br>5b48dcdca66d1a92794cb31da55aaa5555554                                                              | 7.1229 | 7.17310656099                  |
| 362        | $\mathbb{B}_{363} \circ \eta_4$                                                                                                                            | 3ffffff000fde381fac783318cb427c3396999ce1ccbc4ed0cda4<br>d9987932d62f0c9b3296c15a925d4aab555555                                                            | -      | 7.86295451818                  |
| 363        | $\mathbb{B}^{26,12,6}_{363}$                                                                                                                               | 7fffffe001fbc703f58f066319684f8672d3339c399789da19b49<br>b330f265ac5e1936652d82b524ba9556aaaaaa                                                            | 7.6    | 7.92929353713                  |
| 364        | $\mathbb{B}_{363} \circ \eta_1$                                                                                                                            | ffffffc003f78e07eb1e0cc632d09f0ce5a66738732f13b433693<br>6661e4cb58bc326cca5b056a49752aad555555                                                            | -      | 7.68003709715                  |
| 365        | $\mathbb{B}_{363} \circ \eta_1 \circ \eta_2$                                                                                                               | 1ffffff8007ef1c0fd63c198c65a13e19cb4cce70e65e276866d2<br>6ccc3c996b17864d994b60ad492ea555aaaaaaa                                                           | 7.2421 | 7.46274927179                  |
| 366        | $\mathbb{B}_{363}\circ\eta_1\circ\eta_2\circ\eta_2$                                                                                                        | 3ffffff000fde381fac783318cb427c3396999ce1ccbc4ed0cda4<br>d9987932d62f0c9b3296c15a925d4aab5555554                                                           | -      | 7.43291532571                  |
| 367        | $\mathbb{B}_{363} \circ \eta_1 \circ \eta_2 \circ \eta_2 \circ \eta_2$                                                                                     | 7fffffe001fbc703f58f066319684f8672d3339c399789da19b49<br>b330f265ac5e1936652d82b524ba9556aaaaaa8                                                           | 7.0216 | 7.28600021638                  |
| 368        | $\mathbb{B}_{363} \circ \eta_1 \circ \eta_2 \circ \eta_2 \circ \eta_2 \circ \eta_2$                                                                        | ffffffc003f78e07eb1e0cc632d09f0ce5a66738732f13b433693<br>6661e4cb58bc326cca5b056a49752aad5555550                                                           | -      | 7.07692307692                  |
| 369        | $\mathbb{B}_{363} \circ \eta_5 \circ \eta_5 \circ \eta_6 \circ \eta_5 \circ \eta_6 \circ \eta_6$                                                           | 5ffffffe001fbc703f58f066319684f8672d3339c399789da19b4<br>9b330f265ac5e1936652d82b524ba9556aaaaaa                                                           | 7.074  | 7.19667019027                  |
| 370        | $\mathbb{B}_{369} \circ \eta_6$                                                                                                                            | 5ffffffe001fbc703f58f066319684f8672d3339c399789da19b4<br>9b330f265ac5e1936652d82b524ba9556aaaaaa                                                           | -      | 7.02988600185                  |
| 371        | $\mathbb{B}^{23,9,9,9}_{371}$                                                                                                                              | 7fffff007fc01f9de489b87b439839334cc34a5a736938cdb1e32<br>787c34cc331b59b43a5b9dc689a954aa552aaaaa                                                          | 7.333  | 7.44730007575                  |
| 372        | $\mathbb{B}_{371} \circ \eta_1$                                                                                                                            | fffffe00ff803f3bc91370f687307266998694b4e6d2719b63c64<br>f0f869986636b36874b73b8d1352a954aa555555                                                          | -      | 7.53561315618                  |
| 373        | $\mathbb{B}_{371} \circ \eta_1 \circ \eta_5$                                                                                                               | 1fffffe00ff803f3bc91370f687307266998694b4e6d2719b63c6<br>4f0f869986636b36874b73b8d1352a954aa555555                                                         | 7.2147 | 7.62601403201                  |
| 374        | $\mathbb{B}_{371} \circ \eta_1 \circ \eta_2 \circ \eta_5$                                                                                                  | 3fffffc01ff007e779226e1ed0e60e4cd330d2969cda4e336c78c<br>9e1f0d330cc6d66d0e96e771a26a552a954aaaaaa                                                         | -      | 7.51133068414                  |
| 375<br>376 | $\mathbb{B}_{371} \circ \eta_1 \circ \eta_2 \circ \eta_5 \circ \eta_5$ $\mathbb{B}_{371} \circ \eta_1 \circ \eta_2 \circ \eta_2 \circ \eta_5 \circ \eta_5$ | 7fffffc01ff007e779226e1ed0e60e4cd330d2969cda4e336c78c<br>9e1f0d330cc6666d00e96e771a26a552a954aaaaaa<br>ffffff007fc01f9de489b87b43982934cc3455726938cdb1o32 | 7.0011 | 7.40209495736<br>7.28141738772 |
|            | $\mathbb{B}_{371} \circ \eta_1 \circ \eta_2 \circ \eta_2 \circ \eta_1 \circ \eta_5$ $\mathbb{B}_{377}^{27,13,10,5}$                                        | ffffff007fc01f9de485b87b439839334cc34a5a736938cdb1e32<br>787c34cc331b59b43a5b9dc689a954aa552aaaaa9                                                         | -      |                                |
| 377        |                                                                                                                                                            | 1fffffc001ff80e783ce03cce4f872786f07b0db0d99c6666d99<br>cb1cb16b46963694e4cd2a4d2964a955aaad555555<br>2fffff002f6c1 e070_0700e66e_4604_0fc1bc1b232ece4b23  | 7.2249 | 7.35048613984                  |
| 378        | $\mathbb{B}_{377} \circ \eta_2$                                                                                                                            | 3ffffff8003ff01cf079c0799c9f0e4f0de0f61b61b338cccdb33<br>963962d68d2c6d29c99a549a52c952ab555aaaaaaa                                                        | -      | 7.11786390356                  |
| 379        | $\mathbb{B}^{27,13,10,5}_{379}$                                                                                                                            | 7ffffff0007fe0761e4f90f21fc30f06d8d86cf09b319a6367993<br>39d2ce58d8e52d34a972d1ac696256aa5552aaaaa                                                         | 7.2422 | 7.33685769742                  |
| 380        | $\mathbb{B}_{379} \circ \eta_1 \circ \eta_1 \circ \eta_3$                                                                                                  | ffffffc001ff81d8793e43c87f0c3c1b6361b3c26cc6698d9e64c<br>e74b39636394b4d2a5cb46b1a5895aa9554aaaaaab                                                        | -      | 7.01924946529                  |

| Table B.10 A list of binary sequences with record merit factor values and lengths between |
|-------------------------------------------------------------------------------------------|
| 381 and 414                                                                               |

| n          | Class                                                                                     | Record sequence in HEX                                                                                                                                           | Old MF   | New MF       |
|------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 381        | $\mathbb{B}^{27,13,10,5}_{381}$                                                           | 1ffffffc001ff818f0787c0d9e13e0cf0e49e43cc39c667333666<br>d92cd2e58e4b4ca53a59cad696b49a955aaad555555                                                             | 7.106    | 7.2018753721 |
| 382        | $\mathbb{B}_{381} \circ \eta_2$                                                           | 3ffffff8003ff031e0f0f81b3c27c19e1c93c8798738cce666ccd<br>b259a5cb1c96994a74b395ad2d69352ab555aaaaaaa                                                             | -        | 7.0843771239 |
| 383        | $\mathbb{B}^{27,13,10,5}_{383}$                                                           | 7ffffff0007fe07319cce478e730f318f01bc1e3963c3f27272b4<br>b61b694b952d932d326da46cc993256aa5552aaaaaa                                                             | 7.0314   | 7.0748046686 |
| 384        | $\mathbb{B}_{383} \circ \eta_1 \circ \eta_2 \circ \eta_3$                                 | ffffffc001ff81cc673391e39cc3cc63c06f078e58f0fc9c9cad2<br>d86da52e54b64cb4c9b691b3264c95aa9554aaaaaaa                                                             | -        | 7.0892307692 |
| 385        | $\mathbb{B}^{27,13,10,7}_{385}$                                                           | 1ffffffc001ff80d8c72d86c73343b439960f721f8d2d61b331a7<br>c3c95a374a7992f12f336c69c36c9ca955aaad555555                                                            | 7.0772   | 7.2488751956 |
| 386        | $\mathbb{B}_{385} \circ \eta_2$                                                           | 3ffffff8003ff01b18e5b0d8e668768732c1ee43f1a5ac366634f<br>8792b46e94f325e25e66d8d386d93952ab555aaaaaaa                                                            | -        | 7.1296774811 |
| 387        | $\mathbb{B}^{27,13,10,5}_{387}$                                                           | 7ffffff0007fe033c1f66139c2d327c96786f078d8dc39b33339b<br>48d8da52e5a61ca730f49b166294b356aa5552aaaaaa                                                            | 7.1502   | 7.1997404095 |
| 388<br>389 | $\mathbb{B}_{387} \circ \eta_1$                                                           | fffffe000ffc06783ecc27385a64f92cf0de0f1b1b8736666736<br>91b1b4a5cb4c394e61e9362cc52966ad54aaa5555555<br>1ffff8003ff01c39c3e47876c1da64f931b70cda1e723633272      | - 7.0461 | 7.0624882717 |
| 390        | $\mathbb{B}_{391} \circ \eta_0$<br>$\mathbb{B}_{391} \circ \eta_4$                        | 365a1ccb71b394e61dac7696e52d92dab552aa9555555<br>3ffffff8003ff01c39c3e47876c1da64f931b70cda1e723633272                                                           | -        | 7.2740315638 |
| 391        | B <sup>27,13,10,7,1</sup><br>B <sup>391</sup>                                             | 365a1ccb71b394e61dac7696e52d92dab552aa9555555<br>7ffffff0007fe0387387c8f0ed83b4c9f2636e19b43ce46c664e4                                                           | 7.1553   | 7.1607025761 |
| 391        | $\mathbb{B}_{391}$ $\circ$ $\eta_1$                                                       | 6cb43996636729cc3b58cd2dca5b25b56aa5552aaaaa<br>ffffffe000ffc070e70f91e1db076993e4c6dc336879c8d8cc9c8                                                            | -        | 7.1832460733 |
| 393        | $\mathbb{B}_{391} \circ \eta_1 \circ \eta_2$                                              | d968732dc6ce539876b1da5b94b64b6ad54aaa5555555<br>1ffffffc001ff80e1ce1f23c3b60ed327c98db866d0f391b19939                                                           | 7.0952   | 7.1930421013 |
| 394        | $\mathbb{B}_{391}\circ\eta_1\circ\eta_2\circ\eta_5$                                       | 1b2d0e65b8d9ca730ed63b4b7296c96d5aa9554aaaaaa<br>3ffffffc001ff80e1ce1f23c3b60ed327c98db866d0f391b19939                                                           | -        | 7.2209507861 |
| 395        | $\mathbb{B}_{391}\circ\eta_1\circ\eta_2\circ\eta_5\circ\eta_5$                            | 1b2d0e65b8d9ca730ed63b4b7296c96d5aa9554aaaaaa<br>7ffffffc001ff80e1ce1f23c3b60ed327c98db866d0f391b19939<br>1b2d0e65b8d9ca730ed63b4b7296c96d5aa9554aaaaaaa         | 7.0991   | 7.2361098228 |
| 396        | $\mathbb{B}_{395} \circ \eta_1$                                                           | ffffffe000ffc0664833c1e1e703721f9927c19cf1a65b0f34b1<br>e61b4d9ad63995a372b65a5ad3324e66ad54aa5555555                                                            | -        | 7.1527093596 |
| 397        | $\mathbb{B}^{27,13,8}_{397}$                                                              | 1ffffffc001ff9213e36cf18664c8978353c49d2c9da358e948f8<br>49f21d8c3d8ed3f29788ce669b4c7253a3955aaad555555                                                         | 7.0829   | 7.1967579908 |
| 398        | $\mathbb{B}_{399} \circ \eta_4$                                                           | 3ffffff8003fe69c336f097b072cd296cf04ed8b53ad278d99999<br>c963c13f09c4eb4c783cc36b178b4732d86552aa9555555                                                         | -        | 7.1205609997 |
| 399        | $\mathbb{B}^{27,13,8}_{399}$                                                              | 7ffffff0007fcd3866de12f60e59a52d9e09db16a75a4f1b33333<br>92c7827e1389d698f07986d62f168e65b0caa5552aaaaaa                                                         | 7.1487   | 7.2318070318 |
| 400        | $\mathbb{B}_{399} \circ \eta_1$                                                           | ffffffe000ff9a70cdbc25ec1cb34a5b3c13b62d4eb49e3666667<br>258f04fc2713ad31e0f30dac5e2d1ccb61954aaa5555555                                                         | -        | 7.1047957371 |
| 401        | $\mathbb{B}^{27,13,9}_{401}$                                                              | 1ffffffc001ff901e1c3cd32370b1b0f16e06e4392664db258b09<br>e31ce66392e46a47b4b1b0b7233cd2da5ab955aaad555555                                                        | 7.0084   | 7.0182000698 |
| 402        | $\mathbb{B}_{407} \circ \eta_0 \circ \eta_0 \circ \eta_4$                                 | 3fffffe001fc8787c06f0f067337903d892d23cc1a79db198e764<br>99b1d961acd23c389d2b973366b4b46ad6968d5aaa555555                                                        | -        | 7.0575596121 |
| 403<br>404 | $\mathbb{B}_{407} \circ \eta_0 \circ \eta_0$ $\mathbb{B}_{407} \circ \eta_0 \circ \eta_4$ | 7ffffc003f90f0f80de1e0ce66f207b125a479834f3b6331cec9<br>3363b2c359a478713a572e66cd6968d5ad2d1ab554aaaaaa<br>fffffc003f90f0f80de1e0ce66f207b125a479834f3b6331cec9 | -        | 7.1026414764 |
| 404        | $\mathbb{B}_{407} \circ \eta_4 \circ \eta_4$ $\mathbb{B}_{407} \circ \eta_4 \circ \eta_4$ | 3363b2c359a478713a572e66cd698d5ad21ab554aaaaaa<br>1ffffffc003f90f0f80de1e0ce66f207b125a479834f3b6331cec                                                          | _        | 7.0908265606 |
| 406        | $\mathbb{B}_{407}\circ\eta_4$                                                             | 93363b2c359a478713a572e66cd6968d5ad2d1ab554aaaaaa<br>3ffffff8007f21e1f01bc3c19ccde40f624b48f3069e76c6639d9                                                       | -        | 7.0376569037 |
| 407        | $\mathbb{B}^{27,12,6}_{407}$                                                              | 266c76586b348f0e274ae5ccd9ad2d1ab5a5a356aa9555555<br>7ffffff000fe43c3e0378783399bc81ec49691e60d3ced8cc73b2                                                       | -        | 7.1185646755 |
| 408        | $\mathbb{B}_{407} \circ \eta_2$                                                           | 4cd8ecb0d6691e1c4e95cb99b35a5a356b4b46ad552aaaaaa<br>ffffffe001fc8787c06f0f067337903d892d23cc1a79db198e764                                                       | -        | 7.1801242236 |
| 409        | $\mathbb{B}_{407} \circ \eta_2 \circ \eta_6$                                              | 99b1d961acd23c389d2b973366b4b46ad6968d5aaa5555554<br>ffffffe001fc8787c06f0f067337903d892d23cc1a79db198e764<br>99b1d961acd23c389d2b973366b4b46ad6968d5aaa5555554  | -        | 7.2428559057 |
| 410        | $\mathbb{B}_{407}\circ\eta_2\circ\eta_2\circ\eta_6$                                       | 1fffffc003f90f0f80de1e0ce66f207b125a479834f3b6331cec<br>93363b2c359a478713a572e66cd6968d5ad2d1ab554aaaaa8                                                        | -        | 7.0767028711 |
| 411        | $\mathbb{B}^{28,14,11,8,4}_{411}$                                                         | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                               | -        | 7.1304769945 |
| 412        | $\mathbb{B}_{411}\circ\eta_1$                                                             | fffffff0003ff8078d6cf0e43e1a61b9c9b483f0c3b309e473393<br>36e58b312cb528f18d91a61a52e4b4c7c96a9552aab5555555                                                      | -        | 7.0153744420 |
| 413        | $\mathbb{B}^{28,14,10,6}_{413}$                                                           | 1ffffffe0007fe06f0cfc3189e43ce49c9c9c333c0fc3c338cf0c<br>b4c932d2d4ad332d8d8d8e4d2e589b2d4cb46a556aaa5555555                                                     | -        | 7.0285561232 |
| 414        | $\mathbb{B}_{415} \circ \eta_4$                                                           | 3ffffffc000ffc0783ccf807b61bc3c9e4b198d398721b4a76699<br>86760f1a36993c99b0e58d2d1a716a94cd296ad54aad555555                                                      | -        | 7.0971428571 |

| Table B.11 A list of binary sequences with | ith record meri | it factor values an | d lengths between |
|--------------------------------------------|-----------------|---------------------|-------------------|
| 415 and 441                                |                 |                     |                   |

| п   | Class                                                          | Record sequence in HEX                                                                                                      | Old MF | New MF       |
|-----|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------|--------------|
| 415 | $\mathbb{B}^{28,14,10,6}_{415}$                                | 7ffffff8001ff80f0799f00f6c378793c96331a730e43694ecd33<br>0cec1e346d32793361cb1a5a34e2d5299a52d5aa9555aaaaaa                 | -      | 7.2589142712 |
| 416 | $\mathbb{B}_{415} \circ \eta_1$                                | ffffff0003ff01e0f3e01ed86f0f2792c6634e61c86d29d9a66<br>19d83c68da64f266c39634b469c5aa5334a5ab552aab555555                   | -      | 7.0485500162 |
| 417 | $\mathbb{B}^{28,13,12,8,6,6,4}_{417}$                          | 1ffffffe000fff00fc0fc92787993c3e0793934f867264730c739<br>936cb36e636694f39396a52d39969638d4ad4ab554aaa555555                | -      | 7.2261053856 |
| 418 | $\mathbb{B}_{417} \circ \eta_2$                                | 3ffffffc001ffe01f81f924f0f32787c0f27269f0ce4c8e618e73<br>26d966dcc6cd29e7272d4a5a732d2c71a95a956aa9554aaaaaaa               | -      | 7.1368352258 |
| 419 | $\mathbb{B}_{417}\circ\eta_2\circ\eta_5$                       | 7ffffffc001ffe01f81f924f0f32787c0f27269f0ce4c8e618e73<br>26d966dcc6cd29e7272d4a5a732d2c71a95a956aa9554aaaaaaa               | -      | 7.0512089324 |
| 420 | $\mathbb{B}_{421} \circ \eta_4$                                | fffffff0007ff807e07f031b2d86c9cc670cd8786d23c9c399b0c<br>d399b49cb70e5a58cd264c9ce58f39352a56a55aaa5552aaaaaa               | -      | 7.0458539702 |
| 421 | $\mathbb{B}^{28,13,12,8,6,6,4}_{421}$                          | 1ffffffe000fff00fc0fe06365b0d9398ce19b0f0da4793873361<br>9a73369396e1cb4b19a4c9939cb1e726a54ad4ab554aaa5555555              | -      | 7.2532738582 |
| 422 | $\mathbb{B}_{421} \circ \eta_1$                                | 3ffffffc001ffe01f81fc0c6cb61b27319c3361e1b48f270e66c3<br>34e66d272dc39696334993273963ce4d4a95a956aa9554aaaaaab              | -      | 7.0584225128 |
| 423 | $\mathbb{B}^{28,14,11,8,4}_{423}$                              | 7ffffff8001ffc03cc366f03d907b07993e4e1f21e1c3c66d2727<br>27270e64b49697296c6b19a53a518b52e634cb54aa9555aaaaaaa              | -      | 7.1715030060 |
| 424 | $\mathbb{B}_{423}\circ\eta_1$                                  | fffffff0003ff807986cde07b20f60f327c9c3e43c3878cda4e4e<br>4e4e1cc9692d2e52d8d6334a74a316a5cc6996a9552aab5555555              | -      | 7.0844892812 |
| 425 | $\mathbb{B}^{28,14,10,6}_{425}$                                | 1ffffffe0007fe03c25bc93927f0bc3326799334f07e4c9d90db7<br>0b71cb9d8ce56b4f339966332d0b563938d1e2d2a556aaa555555<br>5         | -      | 7.0667057903 |
| 426 | $\mathbb{B}_{429}\circ\eta_{0}\circ\eta_{4}$                   | 5<br>dffffff8001ffc03f07e1330b4e0e721a5e24d8e664e34e1e49b0<br>dcb18e5a4f24e6649ce25e1a364a4f0b33a56b52ad55aaa955555<br>5    | -      | 7.0552834149 |
| 427 | $\mathbb{B}_{429}\circ\eta_0$                                  | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                          | -      | 7.2278205026 |
| 428 | $\mathbb{B}_{429} \circ \eta_4$                                | a<br>fffffff0003ff807e0fc266169c1ce434bc49b1ccc9c69c3c9361<br>b9631cb49e49ccc939c4bc346c949e16674ad6a55aab5552aaaaa<br>a    | -      | 7.1388932190 |
| 429 | $\mathbb{B}^{28,14,11,8,4}_{429}$                              | 1ffffffe0007ff00fc1f84cc2d3839c86978936399938d387926c<br>372c639693c93999273897868d9293c2cce95ad4ab556aaa55555<br>55        | -      | 7.0535413153 |
| 430 | $\mathbb{B}_{431} \circ \eta_4$                                | 3ffffffc000ffe01e786f1c27b0cf61f0e633c1e9c3998ce46e52<br>d9c3e46e4c9992d85ad3264b5a74cb162db46965aa554aaad5555<br>55        | -      | 7.002196470  |
| 431 | $\mathbb{B}^{28,14,11,8,4}_{431}$                              | 7<br>7ffffff8001ffc03cf0de384f619ec3e1cc6783d3873319c8dca5<br>b387c8dc993325b0b5a64c96b4e9962c5b68d2cb54aa9555aaaaa<br>aa   | -      | 7.0884911852 |
| 432 | $\mathbb{B}_{431}\circ\eta_1$                                  | a<br>fffffff0003ff8079e1bc709ec33d87c398cf07a70e663391b94b<br>670f91b932664b616b4c992d69d32c58b6d1a596a9552aab55555<br>55   | -      | 7.0456055572 |
| 433 | $\mathbb{B}^{28,13,12,8,6,6,4}_{433}$                          | 33<br>1ffffffe000fff00fc0fc333247c1e1e0c7387999a5b8d3c619ce<br>1cda4d9a6d3c91e19996936ca5a5ad6e3332d4ad4ab554aaa5555<br>555 | -      | 7.0548239012 |
| 434 | $\mathbb{B}_{433}\circ\eta_2$                                  | 555<br>3ffffffc001ffe01f81f866648f83c3c18e70f3334b71a78c339c<br>39b49b34da7923c3332d26d94b4b5adc6665a95a956aa9554aaaa<br>aa | -      | 7.0614081127 |
| 435 | $\mathbb{B}_{433}\circ\eta_2\circ\eta_1$                       | 7ffffff8003ffc03f03f0ccc91f0787831ce1e66696e34f186738<br>73693669b4f24786665a4db29696b5b8cccb52b52ad552aa95555<br>555       | -      | 7.068546880  |
| 436 | $\mathbb{B}_{433}\circ\eta_2\circ\eta_1\circ\eta_5$            | fffffff8003ffc03f03f0ccc91f0787831ce1e66696e34f186738<br>73693669b4f24786665a4db29696b5b8cccb52b52ad552aa95555<br>555       | -      | 7.073076350  |
| 437 | $\mathbb{B}_{433}\circ\eta_2\circ\eta_1\circ\eta_5\circ\eta_5$ | 11111111111111111111111111111111111111                                                                                      | -      | 7.078169014  |
| 438 | $\mathbb{B}_{441} \circ \eta_4 \circ \eta_4 \circ \eta_4$      | 3ffffff0007fe0479c679c39c3873b1ce523c4e1f09784e46c3f0<br>cdc8cd2b4e46c5a1d296c4b706c93b25b49b49a649a456aa5552a<br>aaaa      | -      | 7.016458196  |
| 439 | $\mathbb{B}_{441}\circ\eta_0$                                  | 7fffffc001ff811e719e70e70e1cec73948f1387c25e1391b0fc3<br>372334ad391b16874a5b12dc1b24ec96d26d269926915aa9554aa<br>aaaa      | -      | 7.0754460679 |
| 440 | $\mathbb{B}_{441} \circ \eta_4$                                | ffffffc001ff811e719e70e70e1cec73948f1387c25e1391b0fc3<br>372334ad391b16874a5b12dc1b24ec96d26d269926915aa9554aa<br>aaaa      | -      | 7.1640023682 |
| 441 | $\mathbb{B}^{26,13,10,6}_{441}$                                | 1fffff8003ff023ce33ce1ce1c39d8e7291e270f84bc272361f8<br>66e46695a72362d0e94b625b83649d92da4da4d324d22b552aa95<br>55555      | -      | 7.2545881826 |

Table B.12 A list of binary sequences with record merit factor values and lengths between 442 and 464

| п   | Class                                                          | Record sequence in HEX                                                                                                             | Old MF | New MF        |
|-----|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|
| 442 | $\mathbb{B}_{441} \circ \eta_2$                                | 3ffffff0007fe0479c679c39c3873b1ce523c4e1f09784e46c3f0<br>cdc8cd2b446c5a1d296c4b706c93b25b49b49a649a456aa5552a<br>aaaa              | -      | 7.07994491556 |
| 443 | $\mathbb{B}_{441}\circ\eta_2\circ\eta_1$                       | aaaaa<br>7fffffe000ffc08f38cf3873870e7639ca4789c3e12f09c8d87e1<br>9b919a569c8d8b43a52d896e0d92764b6936934c9348ad54aaa55<br>55555   | -      | 7.06694274397 |
| 444 | $\mathbb{B}_{441} \circ \eta_2 \circ \eta_1 \circ \eta_2$      | ffffffc001ff811e719e70e70e1cec73948f1387c25e1391b0fc3<br>372334ad391b16874a5b12dc1b24ec96d26d269926915aa9554aa<br>aaaaa            | -      | 7.07798362775 |
| 445 | $\mathbb{B}^{27,13,10,7,3,3}_{445}$                            | aaaaa<br>1ffffffc001ff80e1cce3c34c6783d2663e14b913b461ec631e07<br>98736996a5b26c5a6f13b90fa52663d2966cf2d24cda4a955aaad<br>555555  | -      | 7.05317709075 |
| 146 | $\mathbb{B}_{445} \circ \eta_2$                                | 555555<br>3ffffff8003ff01c399c78698cf07a4cc7c29722768c3d8c63c0f<br>30e6d32d4b64d8b4de27721f4a4cc7a52cd9e5a499b4952ab555a<br>aaaaaa | -      | 7.12296784359 |
| 447 | $\mathbb{B}_{445}\circ\eta_2\circ\eta_5$                       | 7ffffff8003ff01c399c78698cf07a4cc7c29722768c3d8c63c0f<br>30e6d32d4b64d8b4de27721f4a4cc7a52cd9e5a499b4952ab555a<br>aaaaaa           | -      | 7.19410239793 |
| 448 | $\mathbb{B}_{445} \circ \eta_2 \circ \eta_2 \circ \eta_5$      | fffffff0007fe0387338f0d319e0f4998f852e44ed187b18c781e<br>61cda65a96c9b169bc4ee43e94998f4a59b3cb4933692a556aab5<br>555554           | -      | 7.168         |
| 449 | $\mathbb{B}_{445}\circ\eta_2\circ\eta_2\circ\eta_5\circ\eta_6$ | fffffff0007fe0387338f0d319e0f4998f852e44ed187b18c781e<br>61cda65a96c9b169bc4ee43e94998f4a59b3cb4933692a556aab5<br>555554           | 6.5218 | 7.1428925737  |
| 450 | $\mathbb{B}_{451} \circ \eta_4$                                | 3ffffffc000ffe01e1a70db06de07e34b5a46c93661e499938678<br>3733337296693998e5a6738c6e1f0f256a5c6b1cb61a5aa554aaa<br>d555555          | -      | 7.01517356059 |
| 451 | $\mathbb{B}^{28,14,11,8,4}_{451}$                              | 7ffffff8001ffc03c34e1b60dbc0fc696b48d926cc3c933270cf0<br>6e6666e52cd27331cb4ce718dc3e1e4ad4b8d6396c34b54aa9555<br>aaaaaaa          | -      | 7.17362629611 |
| 452 | $\mathbb{B}_{451} \circ \eta_2$                                | fffffff0003ff807e1f0fc1a7c0f349bie89ce1c6cc6693e24f0d<br>8726369cb4e253866cc6da4d885b18f34ad61ad4b5a56a9552aab<br>5555554          | -      | 7.04399393187 |
| 453 | $\mathbb{B}^{28,14,11,8,4}_{453}$                              | 1ffffffe0007ff00fc0fcf03c66679933387859e0db07938c7987<br>8c79396c96996c9396b1ca59e969333996666d2b4d4ad4ab556aa<br>a5555555         | -      | 7.04991754844 |
| 454 | $\mathbb{B}_{453} \circ \eta_2$                                | 3ffffffc000ffe01f81f9e078cccf326670f0b3c1b60f2718f30f<br>18f272d92d32d9272d6394b3d2d266732cccda569a95a956aad55<br>4aaaaaa          | -      | 7.04381108605 |
| 455 | $\mathbb{B}^{28,14,11,8,4,4}_{455}$                            | 7ffffff8001ffc03c3781e199cc785bc31ccc6696607f094f216d<br>8cc724cd8e172c1d2a5661e64cc934b85a4c999695a34b54aa955<br>5aaaaaaa         | -      | 7.10791045801 |
| 456 | $\mathbb{B}_{455} \circ \eta_2$                                | ffffff0003ff80786f03c33398f0b7863998cd2cc0fe129e42db<br>198e499b1c2e583a54acc3cc99926970b499332d2b4696a9552aa<br>b5555554          | -      | 7.01159967629 |
| 457 | $\mathbb{B}^{28,14,11,8,4,4,3}_{457}$                          | 1ffffffe0007ff00f0f9cce60f3e19e4f24f6316e163391cb370b<br>c70b670b6d0b730db9327a47b274e34e59a534a64cd94b4ab556a<br>aa5555555        | -      | 7.01966254369 |
| 458 | $\mathbb{B}_{461}\circ\eta_4\circ\eta_4\circ\eta_4$            | 3fffffc000fe01e1ec66f03f834b34b1b598dce1e729cda34d8<br>d86691e658d8c378c9f2696c8d98393c33c35ab52e64e96956aad<br>554aaaaa           | -      | 7.11884884273 |
| 459 | $\mathbb{B}_{461} \circ \eta_0$                                | 7ffffff0003ff80787b19bc0fe0d2cd2c6d66373879ca7368d363<br>6194479963630de327c9a5b23660e4f0cf0d6ad4b993a5a55aab5<br>552aaaaa         | -      | 7.25635461872 |
| 460 | $\mathbb{B}_{461} \circ \eta_4$                                | fffffff0003ff80787b19bc0fe0d2cd2c6d66373879ca7368d363<br>619a479963630de327c9a5b23660e4f0cf0d6ad4b993a5a55aab5<br>552aaaaa         | -      | 7.39549839228 |
| 461 | $\mathbb{B}^{28,14,11,8,4,4}_{461}$                            | 1ffffffe0007ff00f0f633781fc1a59a58dacc6e70f394e6d1a6c<br>6c3348f32c6c61bc64f934b646cc1c9e19e1ad5a973274b4ab556<br>aaa5555555       | -      | 7.53941393501 |
| 462 | $\mathbb{B}_{461} \circ \eta_1$                                | 3ffffffc000ffe01e1ec66f03f834b34b1b598dce1e729cda34d8<br>d86691e658d8c378c9f2696c8d98393c33c35ab52e64e96956aad<br>554aaaaab        | -      | 7.38509445713 |
| 463 | $\mathbb{B}_{461} \circ \eta_1 \circ \eta_1$                   | 7ffffff8001ffc03c3d8cde07f069669636b31b9c3ce539b469b1<br>b0cd23ccb1b186f193e4d2d91b3072786786b56a5cc9d2d2ad55a<br>aa95555557       | -      | 7.25248663644 |
| 464 | $\mathbb{B}_{461}\circ\eta_1\circ\eta_1\circ\eta_1$            | fffffff0003ff80787b19bc0fe0d2cd2c6d66373879ca7368d363<br>619a479963630de327c9a5b23660e4f0cf0d6ad4b993a5a55aab5<br>552aaaaaf        | -      | 7.13467656416 |

Table B.13 A list of binary sequences with record merit factor values and lengths between 465 and 485

| п   | Class                                                                     | Record sequence in HEX                                                                                                                              | Old MF | New MF        |
|-----|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|
| 465 | $\mathbb{B}_{461}\circ\eta_1\circ\eta_1\circ\eta_1\circ\eta_1$            | 1ffffffe0007ff00f0f633781fc1a59a58dacc6e70f394e6d1a6c<br>6c3348f32c6c61bc64f934b646cc1c9e19e1ad5a973274b4ab556<br>aaa5555555f                       | -      | 7.08469855832 |
| 466 | $\mathbb{B}_{461}\circ\eta_1\circ\eta_1\circ\eta_1\circ\eta_1\circ\eta_2$ | 3ffffffc000ffe01e1ec66f03f834b34b1b598dce1e729cda34d8<br>d86691e658d8c378c9f2696c8d98393c33c35ab52e64e96956aad<br>554aaaaaabe                       | -      | 7.09057663423 |
| 467 | $\mathbb{B}^{30,15,12,10,6,6,6}_{467}$                                    | 7ffffffe0003ffc00fc0fc1e0c39e19ce1c725e1399933cc8db83<br>6691e6691e635b8dccb3199b16872496c9969b4d694ad4ad54aab<br>5556aaaaaa                        | -      | 7.0075509286  |
| 468 | $\mathbb{B}_{469}\circ\eta_4$                                             | fffffffe0003fc03f03f19c781f870e6631e8c63ccc78f138f1c<br>c9c96ce1c9cc92db12da4ccb64de93666d25a95a4992b52b54aab<br>55556aaaaaa                        | -      | 7.16795392067 |
| 469 | $\mathbb{B}_{469}$                                                        | 1fffffffc0007ff807e07e338f03f0e1ccc63d18c7998f1e271e3<br>99392d9c3939925b625b49996c9bd26ccda4b52b493256a56a955<br>6aad5555555                       | -      | 7.3743127263  |
| 470 | $\mathbb{B}_{469}\circ\eta_1$                                             | 3fffffff8000fff00fc0fc671e07e1c3998c7a318f331e3c4e3c7<br>32725b38727324b6c4b69332d937a4d99b496a569264ad4ad52aa<br>d555aaaaaab                       | -      | 7.25165780316 |
| 471 | $\mathbb{B}_{469} \circ \eta_1 \circ \eta_2$                              | 7fffffff0001ffe01f81f8ce3c0fc3873318f4631e663c789c78e<br>64e4b670e4e6496d896d2665b26f49b3369244ad24c95a95aa555<br>aabb5555555                       | -      | 7.12719270064 |
| 472 | $\mathbb{B}_{469}\circ\eta_1\circ\eta_2\circ\eta_2$                       | ffffffe0003ffc03f03f19c781f870e6631e8c63ccc78f138f1c<br>c9c96ce1c9cc92db12da4ccb64de93666d25a95a4992b52b54aab<br>55556aaaaaaac                      | -      | 7.07340614681 |
| 473 | $\mathbb{B}^{29,15,11,9,6,6,4}_{473}$                                     | 1fffffff0001ffc01f81f2661c3ec1b324ce61e3c363633c396cd<br>0edc2e4e42dc4bcc792d327272d25a64ce331ac52da6635a95aad<br>55aaab555555                      | -      | 7.38087226181 |
| 474 | $\mathbb{B}_{473} \circ \eta_2$                                           | 3ffffffe0003ff803f03e4cc387d8366499cc3c786c6c67872d9a<br>1db85c9c85b89798f25a64e4e5a4b4c99c66358a5b4cc6b52b55a<br>ab5556aaaaaa                      | -      | 7.31129189717 |
| 475 | $\mathbb{B}_{473} \circ \eta_2 \circ \eta_5$                              | 7ffffffe0003ff803f03e4cc387d8366499cc3c786c6c67872d9a<br>1db85c9c85b89798f25a64e4e5a4b4c99c66358a5b4cc6b52b55a<br>ab5556aaaaaa                      | -      | 7.24410839273 |
| 476 | $\mathbb{B}_{473}\circ\eta_2\circ\eta_2\circ\eta_5$                       | fffffffc0007ff007e07c99870fb06cc9339878f0d8d8cf0e5b34<br>3b70b9390b712f31e4b4c9c9cb49699338cc6b14b6998d6a56ab5<br>56aaad5555554                     | -      | 7.07430997877 |
| 477 | $\mathbb{B}^{29,15,11,9,6,6,4}_{477}$                                     | 1fffffff0001ffc01f81e6f03c78c3e61e463e0f3333cccb4cb78<br>c67878c2c96966c970cf0ccd33334a526e5a652c96d2b465a95aa<br>d55aaab5555555                    | -      | 7.27859884837 |
| 478 | $\mathbb{B}_{477} \circ \eta_2$                                           | 3ffffffe0003ff803f03cde078f187cc3c8c7c1e66679996996f1<br>8cf0f18592d2cd92e19e199a6666694a4dcb4ca592da568cb52b55<br>aab5556aaaaaa                    | -      | 7.18548336373 |
| 479 | $\mathbb{B}^{29,15,11,9,6,6,4}_{479}$                                     | 7ffffffc0007ff007e07e72331c993c61b619d25ccb0f03c4b31b<br>0c3c1b4c394b4d3933c4b52d3cc8709963964b19c933726a56a55<br>2aa5554aaaaaa                     | -      | 7.12063186643 |
| 480 | $\mathbb{B}_{479} \circ \eta_1$                                           | fffffff8000ffe00fc0fce466393278c36c33a4b9961e07896636<br>1878369872969a7267896a5a7990e132c72c96339266e4d4ad4aa<br>554aaa9555555                     | -      | 7.05882352941 |
| 481 | $\mathbb{B}^{29,15,11,9,6,6,4}_{481}$                                     | 1ffffff0001ffc01f81fc27e1b6cc92f0cda6627a52f2d33b273<br>9a49e2d33c258e19363133c343e162661ccb438cc71a562d5a95a<br>ad55aab555555                      | -      | 7.26636306533 |
| 482 | $\mathbb{B}_{481} \circ \eta_1$                                           | adbbaabbbbbbb<br>3ffffffe0003ff803f03f84fc36d9925e19b4cc4f4a5e5a6764e7<br>3493c5a6784b1c326c62678687c2c4cc399687198e34ac5ab52b5<br>5aab5556aaaaaab  | -      | 7.15944530046 |
| 483 | $\mathbb{B}_{481}\circ\eta_1\circ\eta_2$                                  | 5aab5556aadaaa<br>7ffffffc0007ff007e07f09f86db324bc3369989e94bcb4cec9ce<br>69278b4cf0963864d8c4cf0d0f858998732d0e331c6958b56a56a<br>b5556aad5555556 | -      | 7.17503229378 |
| 484 | $\mathbb{B}_{481}\circ\eta_1\circ\eta_2\circ\eta_6$                       | 7ffffffc0007ff007e07f09f86db324bc3369989e94bcb4cec9ce<br>69278b4cf0963864d8c4cf0d0f858998732d0e331c6958b56a56a<br>b556aaad555556                    | -      | 7.08406919076 |
| 485 | $\mathbb{B}_{481}\circ\eta_1\circ\eta_2\circ\eta_6\circ\eta_6$            | 7ffffffc0007ff007e07f09f86db324bc3369989e94bcb4cec9ce<br>69278b4cf0963864d8c4cf0d0f858998732d0e331c6958b56a56a<br>b556aad5555556                    | -      | 7.11165195308 |

# Table B.14 A list of binary sequences with record merit factor values and lengths between 486 and 505

| n   | Class                                                          | Record sequence in HEX                                                                                                                 | Old MF | New MF       |
|-----|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|
| 486 | $\mathbb{B}_{487} \circ \eta_4$                                | 3fffffff0007ff807e07cf038f8c79c1e60f8799b0dc9f30f3391<br>b0e730f48f4b364b1b9334b358dcb199694a65ad96c9492b4d6a5<br>6a9556aab5555555     | -      | 7.1423042032 |
| 487 | $\mathbb{B}^{30,13,12,8,6,6,5}_{487}$                          | 7ffffffe000fff00fc0f9e071f18f383cc1f0f3361b93e61e6723<br>61ce61e91e966c9637266966b1b96332d294cb5b2d9292569ad4a<br>d52aad556aaaaaaa     | -      | 7.1978452200 |
| 488 | $\mathbb{B}_{487} \circ \eta_1$                                | fffffffc001ffe01f81f3c0e3e31e707983e1e66c3727cc3cce46<br>c39cc3d23d2cd92c6e4cd2cd6372c665a52996b65b2524ad35a95<br>aa555aaad5555555     | -      | 7.1903381642 |
| 489 | $\mathbb{B}^{30,15,12,8,6,4}_{489}$                            | 1fffffff8000fff00fc2c7e07878e1ec1f8c6d927c99626679339<br>86d24f264e634e3c6993396662798d639c6c95ac5a49696a56c2d<br>4ab554aaa95555555    | -      | 7.2007046494 |
| 490 | $\mathbb{B}_{489}\circ\eta_2$                                  | 3fffffff0001ffe01f858fc0f0f1c3d83f18db24f932c4ccf2673<br>Oda49e4c9cc69c78d32672ccc4f31ac738d92b58b492d2d4ad85a<br>956aa95552aaaaaaa    | -      | 7.0930576070 |
| 491 | $\mathbb{B}_{489}\circ\eta_2\circ\eta_1$                       | 7ffffffe0003ffc03f0b1f81e1e387b07e31b649f2658999e4ce6<br>1b493c99398d38f1a64ce59989e6358e71b256b16925a5a95b0b5<br>2ad552aaa55555555    | -      | 7.0851995532 |
| 492 | $\mathbb{B}_{495}\circ\eta_0\circ\eta_4$                       | fffffff0001ffc01f81f06d836cc2fc30d9c3b659b4e4ed38d8da<br>4e72666961e66726c78d8db0ec6c39863b498d34af4ce358e5295<br>a954aa95552aaaaaa    | -      | 7.0704521556 |
| 493 | $\mathbb{B}_{495}\circ\eta_4\circ\eta_4$                       | 1fffffff0001ffc01f81f06d836cc2fc30d9c3b659b4e4ed38d8d<br>a4e72666961e66726c78d8db0ec6c39863b498d34af4ce358e529<br>5a954aa95552aaaaaa   | -      | 7.0810220254 |
| 494 | $\mathbb{B}_{495} \circ \eta_1 \circ \eta_3 \circ \eta_3$      | 3ffffff8000ffe00fc0f836c1b6617e186ce1db2cda72769c6c6d<br>27393334b0f3339363c6c6d876361cc31da4c69a57a671ac7294a<br>d4aa554aaa95555555   | -      | 7.0763788203 |
| 495 | $\mathbb{B}^{29,15,11,9,6,6,4}_{495}$                          | 7ffffffc0007ff007e07c1b60db30bf0c3670ed966d393b4e3636<br>939c999a587999c9b1e3636c3b1b0e618ed2634d2bd338d6394a5<br>6a552aa5554aaaaaaa   | -      | 7.0123347261 |
| 496 | $\mathbb{B}_{495} \circ \eta_1$                                | fffffff8000ffa00fc0f836c1b6617e186ce1db2cda72769c6c6d<br>27393334b0f3339363c6c6d876361cc31da4c69a57a671ac7294a<br>d4aa554aaa95555555   | -      | 7.0145985401 |
| 497 | $\mathbb{B}_{495}\circ\eta_1\circ\eta_5$                       | 1fffffff8000ffe00fc0f836c1b6617e186ce1db2cda72769c6c6<br>d27393334b0f3339363c6c6d876361cc31da4c69a57a671ac7294<br>ad4aa554aaa95555555  | -      | 7.0173011363 |
| 498 | $\mathbb{B}^{27,15,11,11,7,7,7,7}_{497}\circ\eta_2$            | 3ffffff8000ffe003f80fe03c9c86321b0e61a7387983ccb724e6<br>696c3426636670b4e1e66c723ccb59a5b27966d397365c9cb56ad<br>5ab556aad555aaaaaaa  | -      | 7.0037842417 |
| 499 | $\mathbb{B}^{29,15,11,9,6,6,4}_{499}$                          | 7fffffc0007ff007e07d87431ed839c0e4f86ce46978d8f49b67<br>2d9b19b4c9cc399398f2639c2d8da1e46ce5ac6d49b58e934258a<br>56a552aa5554aaaaaa    | -      | 7.1679716736 |
| 500 | $\mathbb{B}_{499} \circ \eta_1$                                | fffffff8000ffe00fc0fb0863db07381c9f0d9c8d2f1b1e936ce<br>5b3633699398732731e4c7385b1b43c8d9cb58da936b1d2684b14<br>ad4aa554aaa9555555    | -      | 7.0454289257 |
| 501 | $\mathbb{B}^{30,15,12,8,6,4}_{501}$                            | 1fffffff8000fff00fc1e4f30f865f207e0f34da63598c5e0d939<br>bc360e4d8ccc9ce4a72d1939ca5ec99f261cf34a56a35e694b34e<br>5ad4ab554aaa9555555  | -      | 7.1657245632 |
| 502 | $\mathbb{B}_{501} \circ \eta_2$                                | 3ffffff0001ffe01f83C9e61f0cbe40fc1e69b4c6b318bc1b273<br>786c1c9b19939C94e5a327394bd933e4c39e694ad46bcd29669c<br>b5a956aa95552aaaaaaa   | -      | 7.2787245104 |
| 503 | $\mathbb{B}_{501} \circ \eta_2 \circ \eta_5$                   | 7fffffff0001ffe01f83c9e61f0cbe40fc1e69b4c6b318bc1b273<br>786c1c9b199939c94e5a327394bd933e4c39e694ad46bcd29669c<br>b5a956aa95552aaaaaaa | -      | 7.3948968258 |
| 504 | $\mathbb{B}_{501} \circ \eta_2 \circ \eta_2 \circ \eta_5$      | fffffffe0003ffc03f0793cc3e197c81f83cd3698d663178364e6<br>f0d83936333273929cb464e7297b267c9873cd295a8d79a52cd39<br>6b52ad552aaa55555554 | -      | 7.2196452933 |
| 505 | $\mathbb{B}_{501}\circ\eta_2\circ\eta_2\circ\eta_1\circ\eta_5$ | 1fffffffc0007ff807e0f27987c32f903f079a6d31acc62f06c9c<br>de1b0726c6664e7253968c9ce52f64cf930e79a52b51af34a59a7<br>2d6a55aa5554aaaaaa9  | -      | 7.0998051224 |

| n   | Class                                                                                                                                                     | Record sequence in HEX                                                                                                                      | Old MF | New MF        |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|
| 506 | $\mathbb{B}_{501}\circ\eta_2\circ\eta_2\circ\eta_1\circ\eta_1\circ\eta_5$                                                                                 | 3fffffff8000fff00fc1e4f30f865f207e0f34da63598c5e0d939<br>bc360e448ccc9ce4a72d1939ca5ec99f261cf34a56a35e694b34e<br>5ad4ab554aaa955555553     | -      | 7.05994595489 |
| 507 | $\mathbb{B}^{29,15,11,9,6,6,4}_{507}$                                                                                                                     | 7ffffffc0007ff007e07c1b30db303f0e1c9c6d99996e58f4f0e7<br>863948cf183592cdc1b65a6d2c2d86e19998e49c96d2b5338d339<br>4a56a552aa5554aaaaaaa     | -      | 7.23144657627 |
| 508 | $\mathbb{B}_{507} \circ \eta_1$                                                                                                                           | fffffff8000ffe0fc0f83661b6607e1c3938db3332dcb1e9e1cf<br>0c72919e306b259b836cb4da585b0dc33331c9392da56a671a672<br>94ad4aa554aa95555555       | -      | 7.10293955741 |
| 509 | $\mathbb{B}^{26,13,12,9,7,6,6,4,2}_{509}$                                                                                                                 | 1ffffff8003ffc01fc0fc3078f266781f81f393278cda4cb1c78d<br>2649c6963ccccd2786d8e63c96db0ce1cc9633935a95a96663496<br>b2d4ad5aad552aa9555555    | -      | 7.03489193005 |
| 510 | $\mathbb{B}_{511} \circ \eta_4$                                                                                                                           | 3ffffffe0007ffc007f01fc079b43c5b0ce72761e437872d2cccb<br>4e4db61b18ccc9b1a71ce4f0ccc3c36972e5a76364cb1ed2f196a<br>d5ab56aad5555aa5555555    | -      | 7.00889248181 |
| 511 | $\mathbb{B}^{27,15,11,11,7,7,7,7}_{511}$                                                                                                                  | 7ffffff0001ffc007f01fc079258d264c3613c61b1b1c8d8665a5<br>8c78c6c4b4b3c3c4e4da4d8786658dc9393964b1634c670d871a5<br>4a952a554aa95552aaaaaa    | -      | 7.22166602135 |
| 512 | $\mathbb{B}_{511} \circ \eta_1$                                                                                                                           | ffffffe0003ff800fe03f80f24b1a4c986c278c3636391b0ccb4b<br>18f18d8969678789c9b49b0f0ccb1b927272c962c698ce1b0e34a<br>952a54aa9552aaa555555     | -      | 7.09417622862 |
| 513 | $\mathbb{B}^{29,14,13,10,7,7,7,7,2}_{513}$                                                                                                                | 1fffffff0003ffe007f01fc078c6f0cc799c9e1b36b4e3ca52d61<br>c7a49ce6667996664d8e16da7c3e0d24f0731a58d996ccb46c96<br>ad5ab56aa5552aab555555     | -      | 7.11729229771 |
| 514 | $\mathbb{B}_{513} \circ \eta_2$                                                                                                                           | 3ffffffe0007ffc00fe03f80f18de198f3393c366d69c794a5ac3<br>8f4939ccccf32cccc9b1c2db4f87c1a49e0e634b1b32d9968d92d<br>5ab56ad54aaa5556aaaaaaa   | -      | 7.02014136153 |
| 515 | $\mathbb{B}_{517} \circ \eta_0$                                                                                                                           | 7ffffff0001ffe007e07c3c1d83e493b670b658c79c3a5c3cdb1<br>32c66c70f263672d24e64f3138cb487b49a4d863d263b1c6b5894<br>b4a56a556aa95552aaaaaa     | -      | 7.00874689498 |
| 516 | $\mathbb{B}_{517} \circ \eta_4$                                                                                                                           | fffffff0001ffe007e07c3c1d83e493b670b658c79c3a5c3cdb1<br>32c66c70f263672d24e64f3138cb487b49a4d863d263b1c6b5894<br>b4a56a556aa95552aaaaaaa    | -      | 7.01190350785 |
| 517 | $\mathbb{B}^{27,15,11,11,7,7,7,7}_{517}$                                                                                                                  | 1ffffffc0007ff001fc07f01e1e0f0f270cf03e19cc3c664d86d8<br>7c63332d999ccd999c33926d69c69ce66d2cd9a52b4cb634b4a5a<br>5ab56ad5aab556aaad555555  | -      | 7.12922756855 |
| 518 | $\mathbb{B}_{517} \circ \eta_2$                                                                                                                           | 3ffffff8000ffe003f80fe03c3c1e1e4e19e07c339878cc9b0db0<br>f8c7265b33399b33386724dad38d39ccda59b34a56996c69694b4<br>b56ad5ab556aad555aaaaaa   | -      | 7.20719849584 |
| 519 | $\mathbb{B}^{27,15,11,11,7,7,7,7}_{519}$                                                                                                                  | 7ffffff0001ffc007f01fc07c36493e1b64d25b0f87cc793ccf98<br>da7271b0f1999992d3927278d9accb1a4ca5ad3870c6396b1c634<br>a54a952a554aa95552aaaaa   | -      | 7.18717647687 |
| 520 | $\mathbb{B}_{519} \circ \eta_1$                                                                                                                           | ffffffe0003ff800fe03f80f86c927c36c9a4b61f0f98f2799f31<br>b4e4e361e3333325a724e4f1b3599634994b5a70e18c72d638c69<br>4a952a54aa9552aaa555555   | -      | 7.06078963860 |
| 521 | $\mathbb{B}^{27,15,11,11,7,7,7,7}_{521}$                                                                                                                  | 1fffffc0007ff001fc07f01b2c4996c7c36d0f60f358f0e63639<br>c9d878cce1e4f4e5a4cc969d8d927264b49f34a74bc72d6c798ec<br>31ab56ad5aab556aaad55555   | -      | 7.01760599793 |
| 522 | $\mathbb{B}_{521} \circ \eta_2$                                                                                                                           | 3ffffff8000ffe003f80fe03658932d8f86da1ec1e6b1e1cc6c73<br>93b0f199c3c9e9cb49992d3b1b24e4c9693e694e978e5ad8f31d8<br>6356ad5ab556aad555aaaaa   | -      | 7.06759350521 |
| 523 | $\mathbb{B}_{521} \circ \eta_2 \circ \eta_5$                                                                                                              | 7ffffff8000ffe003f80fe03658932d8f86da1ec1e6b1e1cc6c73<br>93b0f199c3c9e9cb49992d3b1b24e4c9693e694e978e5ad8f31d8<br>6356ad5ab556aad555aaaaa   | -      | 7.11833133816 |
| 524 | $\mathbb{B}_{521} \circ \eta_2 \circ \eta_2 \circ \eta_5$                                                                                                 | ffffff0001ffc007f01fc06cb1265b1f0db43d83cd63c398d8e7<br>2761e338793d39693325a763649c992d27cd29d2f1cb5b1e63b0<br>c6ad5ab56aad555aab555555    | -      | 7.08181161663 |
| 525 | $\mathbb{B}_{521}\circ\eta_2\circ\eta_2\circ\eta_5\circ\eta_6$                                                                                            | ffffff001ffc007f01fc06cb1265b1f0db43d83cd63c398d8e7<br>2761e338793d39693325a763649c992d27cd29d2f1cb5b1e63b0<br>c6ad5ab56aad55baaab555555    | -      | 7.04634931997 |
| 526 | $\mathbb{B}_{521}\circ\eta_2\circ\eta_2\circ\eta_1\circ\eta_1\circ\eta_5$                                                                                 | 3fffffc0007ff001fc07f01b2c4996c7c36d0f60f358f0e63639<br>c9d878cce1e4f4e5a4cc969d8d927264b49f34a74bc72d6c798ec<br>31ab56ad5aab556aaad555555  | -      | 7.03401637260 |
| 527 | $ \mathbb{B}_{517} \circ \eta_2 \circ \eta_2 \circ \eta_1 \circ \eta_1 \circ \eta_2 \circ \eta_5 \circ \\ \eta_6 \circ \eta_6 \circ \eta_5 \circ \eta_5 $ | 67fffff8000ffe003f80fe03c3c1e1e4e19e07c339878cc9b0db<br>0f8c7265b33399b33386724dad38d39ccda59b34a56996c69694b<br>4b56ad5ab556aad555aaaaaaa6 | -      | 7.08239404294 |

Table B.15 A list of binary sequences with record merit factor values and lengths between 506 and 527

Table B.16 A list of binary sequences with record merit factor values of lengths 573, 1006, 1007, 1008, 1009 and 1010

| n    | Class                                                     | Record sequence in HEX                                                                                                                                                                                                                                                      | Old MF | New MF        |
|------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|
| 573  | $\mathbb{B}^{27,15,11,11,7,7,7,7}_{573}$                  | 1ffffffc0007ff001fc07f01e7c2787b0e1e5a7e3cf0f64bc39ce<br>372d9b399ac9b26e333333246318c199319c3724d92d0e74b4d25<br>61e5a4b16962d65ab56ad5aab556aaad55555                                                                                                                     | -      | 6.82937432399 |
| 1006 | $\mathbb{B}_{1009} \circ \eta_0 \circ \eta_4$             | 016347105021003004054054054405405044405050444050504440505044405050444050504440504540504405405                                                                                                                                                                               | -      | 6.35677047348 |
| 1007 | $\mathbb{B}_{1009} \circ \eta_0$                          | 7fffffffffe00000fffe0003ff003fc03c07f817c07d38c1f6e1c3<br>e07361c78ec58e7948f3998de1b39264f92f0f3271b1b9b26e661<br>c2f270cfb0ec3c33e36b3e36b34b4ed3acd272f49666e739b9392<br>732d2f1ac671b3968d99b2dc1a6d84eda4963256b496e294db0a5<br>4a15aa54b54ab552ab5556aaad55556aaaaaaa | -      | 6.41941303825 |
| 1008 | $\mathbb{B}_{1009} \circ \eta_4$                          | fffffffffe00000fffe0003ff003fc03c07f817c07d38c1f6e1c3<br>e07361c78ec58e7948f3998de1b39264f92f0f3271b1b9b26e661<br>c2f270cfb0ec3c32e36b3e36b34b4ed3acd272f49666e739b9392<br>732d2f1ac671b3968d99b2dc1a6d84eda4963256b496e294db0a5<br>4a15aa54b54ab552ab5556aaad55556aaaaaaa  | -      | 6.41811107180 |
| 1009 | B <sup>39,21,15,15,10,10,8,8,4</sup><br>B <sup>1009</sup> | 1ffffffffc00001fffc0007fe007f80780ff02f80fa7183edc38<br>7c0e6c38f1d8b1cf291e7331bc36724c9f25e1e64e3637364dccc<br>385e4e19f61d87867c6d67c6d66969da759a4e5e92ccdcc737272<br>4e65a5e358ce3672d1b3365b834db09db492c64ad692dc529b614<br>a942b54a96a956aa556aaad555aaaad5555555   | -      | 6.41690827959 |
| 1010 | $\mathbb{B}_{1009} \circ \eta_2$                          | 3fffffffff800003fff8000ffc00ff00f01fe05f01f4e307db870<br>f81cd87143b1639e523ce663786ce4993e4bc3cc9c6c6e6c9b998<br>70bc9c33ec3b0f0cf8dacf8dacd2d3b4eb349cbd2599b9ce6e4e4<br>9ccb4bc6b19c6ce5a3666cb7069b613b69258c95ad25b8a536c29<br>52856a952d52ad54aad555aaab55555aaaaaaaa | -      | 6.36726796080 |