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Preface

0.1 Scientific contributions

The main scientific contributions could be summarized as follows:

1. A rich collection of popular S-boxes is analyzed in great detail.

2. It is shown that the majority of chaos-based S-boxes are vulnerable to linear cryptanal-
ysis. A simple and lightweight algorithm is proposed, which significantly outperforms
all previously published chaos-based S-boxes, in those cryptographic terms, which
they utilize for comparison.

3. By introducing some new definitions like couplings, coordinate decomposition, degree
of descendibility, and CELAT, the S-box nonlinearity optimization problem is projected
to a satisfiability problem, which could be attacked by using SAT solvers.

4. By applying the SAT solver it is shown that 8 � 8 bijective S-boxes with all eight
coordinates having the maximal nonlinearity value of 116 do exist.

5. A strategy of analyzing various spectra channels to detect hidden patterns and anomalies
in S-boxes is proposed.

6. A simple and efficient algorithm based on a heuristic search by shotgun hill climbing
to construct binary sequences with small peak sidelobe levels (PSL) is proposed. The
algorithm successfully revealed binary sequences of lengths between 106 and 300 with
record-breaking PSL values.

7. By using some useful properties, the aforementioned algorithm time and memory
complexities are reduced to O�n�. This allowed us to reach record-breaking PSL
values for less than a second. Moreover, the efficiency range of the algorithm is further
extended to binary sequences of longer lengths.
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8. A detailed comparison and fine-grain analysis of the proposed algorithms is performed.
By using the insights of this analysis, a heuristic algorithm is proposed, which success-
fully reached all the optimal PSL values known in the literature, which was previously
discovered by an exhaustive search. This was achieved by using a low-cost mid-range
computer station, while the time required to reach the optimal PSL value for most of
the lengths is less than a second.

9. A GPU efficient algorithm addressing the well-known computational problem of
finding the lowest possible PSL among the set of a binary sequence B and all binary
sequences generated by rotations of B is proposed. The problem is projected to a
perfectly balanced parallelizable algorithm. By using the algorithm, the search space
of all m-sequences with lengths 2n

� 1, for 18 & n & 20 is successfully exhausted.
Furthermore, a complete list of all PSL-optimal Legendre sequences for lengths up to
432100 is revealed. A conjecture is made, that all PSL-optimal Legendre sequences,
with or without rotations, and with lengths N greater than 235723, are strictly greater
than

Ó
N.

10. Some useful mathematical properties related to the flip operation of the skew-symmetric
binary sequences are discovered, which could be exploited to significantly reduce the
memory complexity of state-of-the-art stochastic Merit Factor (MF) optimization al-
gorithms from O�n2� to O�n�, without degrading their time complexity. As a proof
of concept, a lightweight algorithm was constructed, which could optimize pseudo-
randomly generated skew-symmetric binary sequences with long lengths (up to 105

�1)
to skew-symmetric binary sequences with a MF greater than 5. This contradicts the
Bernasconi conjecture, that a stochastic search procedure will not yield MF higher
than 5 for long binary sequences (sequences with lengths greater than 200).

11. A new class of finite binary sequences with even lengths with alternate autocorrelation
absolute values equal to 1, called pseudo skew-symmetric class, is found. It is shown
that the MF values of the new class are closely related to the MF values of adjacent
classes of Golay’s skew-symmetric sequences.

12. Sub-classes of sequences based on the partition number problem, as well as the notion
of potentials, measured by helper ternary sequences, are proposed. Binary sequences
with MF records for binary sequences with many lengths less than 225, and all lengths
greater than 225, are revealed. Two extremely hard search spaces of lengths 573 and
1009 are also attacked. It was estimated that a state-of-the-art stochastic solver requires
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respectively 32 and 46774481153 years to reach MF values of 6.34, while the required
time from the proposed algorithm to reach such MF values is just several hours.

13. Using aperiodic autocorrelation functions for the S-box reverse engineering problem is
proposed.
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37. Bošković, Borko, and Janez Brest. "Computational search of long skew-symmetric
binary sequences with high merit factors." MENDEL. Vol. 28. No. 2, 2022.

38. Brest, Janez, and Borko Bošković. "Low Autocorrelation Binary Sequences: Best-
Known Peak Sidelobe Level Values." IEEE Access 9 (2021): 67713-67723.

39. Brest, Janez, Borko Boškovic. "Neperiodicna binarna zaporedja z dobrimi avtoko-
relacijskimi lastnostmi: nizke vrednosti stranskih reznjev." Društvo Slovenska sekcija
IEEE. 31-th International Electrotechnical and Computer Science Conference: 355-
358.

40. Chen, Zhixiong, Zhihua Niu, Yuqi Sang, and Chenhuang Wu. "Arithmetic autocorrela-
tion of binary m-sequences." Cryptologia (2022): 1-10.

Genetic algorithm for synthesis of binary signals with optimal autocorre-
lation

41. Li, Ning, Mengdao Xing, Yaxin Hou, Shengwei Zhou, and Guang-Cai Sun. "Ship
Focusing and Positioning Based on 2-D Ambiguity Resolving for Single-Channel
SAR Mounted on High-Speed Maneuvering Platforms With Small Aperture." IEEE
Transactions on Geoscience and Remote Sensing 60 (2022): 1-13.

Hybrid Constructions of Binary Sequences With Low Autocorrelation
Sideobes
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Chapter 1

Introduction

Boolean functions, vector Boolean functions, or S-boxes, and digital sequences are widely
used in various practical fields such as telecommunications, radar technology, navigation,
cryptography, measurement sciences, biology, or industry.

S-boxes are one of the most important primitives to be found in modern block ciphers.
A weak S-box, in a cryptographic perspective, can be exploited by various attacks like
linear cryptanalysis [17], differential cryptanalysis [18] , boomerang attack [147], algebraic
attacks [34] or others like in [59]. Arguably, one of the most important properties of a
given S-box is its nonlinearity. An S-box with high nonlinearity can be achieved by using
the finite field inversion method [113]. However, such S-box is closely related to various
algebraic structures. As a proactive countermeasure to future algebraic attacks, new ways
of generation or optimization of pseudo-random S-boxes are proposed. Some examples of
the aforementioned algorithms are published in [32], [85], [107], [108], and [145]. However,
heuristically optimization of a given S-boxes could be a resource-consuming task.

Given their significance and importance, the design principles of an S-box construction,
especially when implemented in a widely used and critical cryptosystem, should be publicly
available and reproducible. However, in some cases, a given S-box generation method is
not announced, or worse, misleadingly announced as a pseudo-randomly generated one.
The reasons for obfuscating the design of a given S-box are manifold. For example, the
initial S-boxes used in the Data Encryption Standard (DES) [55] were originally modified by
NSA. The reasons for applying those modifications were not known. However, in [33], D.
Coppersmith announces the motivation behind the S-box modifications. It appears that the
agency knew about the existence of differential attacks about 20 years before the academic
world.

Hiding a given S-box design could be related to some hidden construction, the knowledge
of which could be exploited to gain a significant advantage in terms of hardware implementa-
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tion. For example, as discovered in [21], the S-boxes used in the hash function Streebog and
the 128-bit block cipher Kuznyechik, standardized by the Russian Federation, are designed
with such a hidden structure. A user knowing this decomposition could implement the given
S-box with a significantly smaller hardware footprint, allowing him to reach an up to 8 times
faster S-box look-up.

A practical reason for hiding the design of a given S-box could be related to an encap-
sulated trapdoor as discussed in [128]. Even though the aforementioned trapdoor can be
easily detected, as shown in [151], the motivation for finding other trapdoor S-box techniques
should not be underestimated. Moreover, the designers of a given S-box could unintention-
ally create it with a flaw, which further rises the academic attention to the S-box reverse
engineering problem.

Finding binary sequences whose aperiodic autocorrelation characteristics are collectively
small according to some pre-defined criteria is a famous and well-studied problem. Two
such measures are the Peak Sidelobe Level (PSL) and the Merit Factor (MF) value, which
was first introduced by Golay in 1972 [60]. However, before Golay’s definition, Littlewood
[98] studied the norms of polynomials with �1 coefficients on the unit circle of the complex
plane.

One of the desirable characteristics a given binary sequence should possess is a low
peak sidelobe level. Some well-known constructions of such sequences includes the Barker
codes [9], Rudin-Shapiro sequences [129][136], m-sequences [67], Gold codes [66], Kasami
codes [84], Weil sequences [130], Legendre sequences [124]. Nevertheless, none of the
aforementioned constructions guarantees that the generated binary sequence will possess the
lowest possible (optimal) PSL value. Thus, currently, initiating an exhaustive search is the
only way to reveal an optimal PSL value for binary sequences of some fixed length. The
PSL-optimal values of binary sequences with lengths n greater than 84 are still unknown.
This is not surprising, since the cardinality of the search space comprised of all binary
sequences with some fixed length rises exponentially.

Golay’s publications reveal a dedication to the merit factor problem for nearly twenty
years (surveyed in [80]). Since then, a significant number of possible constructions of binary
sequences with high merit factors were published. Near-optimal and optimal candidates are
found by using heuristic search methods for longer lengths or a more direct approach, like
the exhaustive search method, for smaller problem spaces. In [65], the merit factor problem
was referenced by Golay as ...challenging and charming.

The problem of minimizing the merit factor is also known as the "low autocorrelated
binary string problem", or the LABS problem. It has been well studied in theoretical physics
and chemistry. For example, the LABS problem is correlated with the quantum models of
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magnetism. Bernasconi predicted that [14] ... stochastic search procedures will not yield
merit factors higher than about 5 for long sequences. By long sequences, Bernasconi was
referring to binary sequences with lengths greater than 200. Furthermore, in [41] the problem
was described as ... amongst the most difficult optimization problems. Since the merit
factor problem has resisted more than 50 years of theoretical attacks, a significant number of
computational pieces of evidence were collected.

In this thesis, several design strategies for constructing and analyzing Boolean functions,
S-boxes, and digital sequences are proposed. In Chapter 2 the preliminaries are provided.
In Sections 2.1 and 2.2 some important definitions regarding Boolean and vector Boolean
functions are given. Then, in Section 2.3 a rich collection of popular S-boxes is thoroughly
analyzed. In general, the S-box construction methods could be divided into four categories
as shown in Section 2.4. Then, S-boxes generated by using chaotic functions (CF) are
analyzed to measure their actual resistance to linear cryptanalysis. The majority of the
published papers using CFs emphasize the average nonlinearity of the S-box coordinates
only, ignoring the rest of the S-box components in the process. Thus, integrating such
S-boxes in a given cryptosystem should be done with considerable caution. Furthermore,
it appears that in the context of the nonlinearity optimization problem the profit of using
chaos structures is negligible. During our experiments, by using two heuristic methods and
starting from pseudo-random S-boxes, we repeatedly reached S-boxes, which significantly
outperform all previously published CF-based S-boxes, in those cryptographic terms, which
the aforementioned papers utilize for comparison. Then, in Section 2.5, we project the S-box
nonlinearity optimization problem to a satisfiability problem, which could be solved by using
SAT solvers. This is achieved by introducing some new definitions like couplings, coordinate
decomposition, degree of descendibility, S-box coordinate extended linear approximation
table (CELAT), as well as some useful properties and inner connections. The SAT projection
revealed that we could successfully construct bijective 8�8 S-boxes from 8 Boolean functions
as components, each of which possesses the maximum nonlinearity value of 116. The
provided toolbox could serve in cases, where the designer’s goal is to increase (or intentionally
decrease) the nonlinearity of a given S-box by applying as minimum changes as possible.
For example, we demonstrate how the Skipjack S-box, developed by the U.S. National
Security Agency (NSA), and the Kuznyechik S-box, developed by the Russian Federation’s
standardization agency, could be optimized to a higher nonlinearity by tweaking just 4 and
12 bits, respectively (out of 2048).

In Chapter 3, a strategy of analyzing various spectra channels to detect hidden patterns
and anomalies in popular S-boxes is discussed. It could serve as a more fine-grained extension
to the methods discussed in [119]. More specifically, by applying spectral analysis on various
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S-box characteristics, as a linear approximation, difference distribution, and auto-correlation
tables, we can detect visual symmetries or anomalies, which could not only serve as proof
that the S-box was not generated pseudo-randomly but additionally provides some further
information about the inner structure of the S-box, making the complete reverse-engineering
of the hidden construction possible 1.

Chapter 4 addresses the PSL optimization problem. In Section 4.1, a simple and efficient
algorithm based on a heuristic search by shotgun hill climbing to construct binary sequences
with small peak sidelobe levels is suggested. The algorithm is applied for the generation of
binary sequences of lengths between 106 and 300. Improvements are obtained in almost half
of the considered lengths while for the rest of the lengths, binary sequences with the same PSL
values as reported in the state-of-the-art publications are found. Then, in Section 4.2, a method
to generate long binary sequences with low PSL value is proposed. Both the time and memory
complexities of the proposed algorithm are reduced to O�n�. During our experiments, we
repeatedly reach better PSL values than the currently known state of art constructions, such
as Legendre sequences, with or without rotations, Rudin-Shapiro sequences or m-sequences,
with or without rotations, by always reaching record-breaking PSL values strictly less than

Ó
n.

Furthermore, the efficiency and simplicity of the proposed method are particularly beneficial
to the lightweightness of the implementation, which allowed us to reach record-breaking PSL
values for less than a second. In Section 4.3 we continue our research with the exploration of
hybrid algorithms for achieving binary sequences with arbitrary lengths and high PSL values.
By combining some of our previous works, together with some mathematical insights, a
few hybrid heuristic algorithms were created. During our experiments, and by using the
aforementioned algorithms, we were able to find PSL-optimal binary sequences for all those
lengths, which were previously found during exhaustive searches by various papers. Then, by
using a general-purpose computer, we further demonstrate the effectiveness of the proposed
algorithms by revealing binary sequences with lengths between 106 and 300, the majority
of which possess record-breaking PSL values. Then, by using some well-known algebraic
constructions, we outline a few strategies for finding highly-competitive binary sequences,
which could be efficiently optimized, in terms of PSL, by the proposed algorithms. Finally,
in Section 4.3.3, a well-known computational problem is finding the lowest possible PSL
among the set of a binary sequence B, and all binary sequences generated by rotations of B is
discussed. Some useful properties of rotated binary sequences are discovered, which allowed
us to project the aforementioned problem to a perfectly balanced parallelizable algorithm.
The proposed algorithm, altogether with its graphics processing unit (GPU) implementation,

1Although the demonstrated anomalies are visible on paper, reading the electronic version is greatly
encouraged.



5

is significantly faster than the existing instruments. We were able to exhaust the search space
of all m-sequences with lengths 2n

�1, for 18 & n & 20, and to reveal a complete list of all
PSL-optimal Legendre sequences, with or without rotations, for lengths up to 432100 - out
of computational reach until now. The numerical experiments suggest that the PSL value of
all PSL-optimal Legendre sequences, with or without rotations, and with lengths N greater
than 235723, are strictly greater than

Ó
N.

Chapter 5 deals with the Merit Factor (MF) problem. It was conjectured that stochastic
search procedures will not yield merit factors higher than 5 for long binary sequences
(sequences with lengths greater than 200). Some useful mathematical properties related
to the flip operation of the skew-symmetric binary sequences are presented in Section 5.1.
By exploiting those properties, the memory complexity of state-of-the-art stochastic MF
optimization algorithms could be reduced from O�n2� to O�n�. As a proof of concept, a
lightweight stochastic algorithm was constructed, which can optimize pseudo-randomly
generated skew-symmetric binary sequences with long lengths (up to 105

� 1) to skew-
symmetric binary sequences with a merit factor greater than 5. An approximation of the
required time is also provided. The numerical experiments suggest that the algorithm is
universal and could be applied to skew-symmetric binary sequences with arbitrary lengths.

Golay introduced one beneficial class of sequences, called skew-symmetric sequences;
finite binary sequences with odd lengths with alternate autocorrelation values equal to 0. Their
special construction greatly reduces the computational efforts of finding binary sequences
with odd lengths and high MF. Having this in mind, the majority of papers to be found in
the literature are focused solely on this class, preferring them over binary sequences with
even lengths. In Section 5.1.2, a new class of finite binary sequences with even lengths
with alternate autocorrelation values equal to �1 is presented (see also [46]). We show that
the MF values of the new class are closely related to the MF values of adjacent classes of
skew-symmetric sequences. We further introduce new sub-classes of sequences using the
partition number problem and the notion of potentials, measured by helper ternary sequences.
Throughout our experiments, MF records for binary sequences with many lengths less than
225, and all lengths greater than 225, are discovered. Binary sequences of all lengths, odd
or even, less than 28 and with MF % 8, and all lengths, odd or even, less than 29 and with
MF % 7, are now revealed. We demonstrate the efficiency of the proposed algorithm by
launching it on two extremely hard search spaces of binary sequences of lengths 573 and
1009. The choice of those two specific lengths is motivated by the approximation numbers
given in [24], Figure 7, presented during a discussion of how much time the state-of-the-art
stochastic solver lssOrel_8 will need to reach binary sequences with the aforementioned
lengths and merit factors close to 6.34. It was estimated that finding solutions with a merit
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factor of 6.34 for a binary sequence with length 573 requires around 32 years, while for
binary sequences with length 1009, the average runtime prediction to reach the merit factor
of 6.34 was 46774481153 years. By using the proposed in Section 5.1.2 algorithm, we
were able to reach such binary sequences within several hours. Finally, in Section 5.2, a
method addressing the S-box reverse engineering problem using spectrography on aperiodic
autocorrelation functions is presented.



Chapter 2

Vector Boolean Functions and
Cryptography

2.1 Boolean Functions

Definition 2.1.1 (Boolean Function & Truth Tables). Let us define the set B � r0,1x. A
Boolean function f �x� of n variables x1, ...,xn is a mapping f � Bn

( B from n binary inputs
x � �x1,x2,�,xn� " Bn to one binary output y � f �x� " B. The binary truth table (BTT)
of an n-variable Boolean function f �x� is the vector of all the consecutive outputs of the
Boolean function:

� f �x�� � � f �0,0,�,0�, f �0,0,�,1�,�, f �1,1,�,1��
The polarity truth table (PTT) of an n-variable Boolean function f �x� is derived from the
binary truth table. We define the PTT by � f̂ �x�� � �1� 2 f �x��. By the definition of the
polarity truth table, follows:

f �x� � 0� f̂ �x� � 1; f �x� � 1� f̂ �x� � �1

Definition 2.1.2 (Algebraic Normal Form). The algebraic normal form of an n-variable
Boolean function f �x�, denoted by ANF f , is given by the following equation: ANF f �

a0h a1x1h a2x2h�h anxnh a1,2x1x2h�h a1,2,�,nx1x2�xn, where the coefficients a
belongs to B.

Definition 2.1.3 (Algebraic Degree). The algebraic degree of a Boolean function f �x�,
denoted by deg� f �, is equal to the number of variables in the longest item of its ANFf .
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Definition 2.1.4 (Hamming Distance). The Hamming distance between two n-variable
Boolean functions f �x� and g�x�, denoted by dH� f ,g�, represents the number of differing
elements in the corresponding positions of their truth tables.

Definition 2.1.5 (Linear Boolean Function). Any n-variable Boolean function of the form:

lw�x� �$ w,x %� w1x1hw2x2h�hwnxn,

where w,x " Bn, is called a linear function.

Definition 2.1.6 (Affine Boolean Function). Any n-variable Boolean function of the form:

lw�x� �$ w,x %� w0hw1x1hw2x2h�hwnxn,

where w0 " B and w,x " Bn, is called an affine function.

Definition 2.1.7 (Walsh-Hadamard Transform). For an n-variable Boolean function f �x�,
represented by its polarity table � f̂ �x��, the Walsh-Hadamard transform, or WHT, F̂f �Bn

� Z,
is defined by:

F̂f �w� � =
x"Bn

f̂ �x���1�$w,x%

Definition 2.1.8 (Absolute Indicator). For an n-variable Boolean function f �x�, we denote
the absolute indicator of f as ∆ f . For all u " Fn

2 , except the zero vector, write

∆ f �u� �=
x
��1� f �x�� f �x�u�

The absolute indicator of f is calculated by

∆ f �max
u

¶ ∆ f �u� ¶ (2.1)

2.2 Vector Boolean Functions (S-boxes)

Definition 2.2.1 (Vectorial Boolean Function – Substitution Table – S-box). An n-binary
input to m-binary output mapping S � Bn

� Bm, which assigns some y� �y1,y2,�,ym�" Bm

by S�x� � y to each x � �x1,x2,�,xn� " Bn, is called an �n,m� substitution table (S-box) and
is denoted by S�n,m�.

Definition 2.2.2 (Bijective S-box). An S-box S�n,m� is said to be bijective, if it maps each
input x " Bn to a distinct output y � S�x� " Bm and all possible 2m outputs are present.



2.2 Vector Boolean Functions (S-boxes) 9

Definition 2.2.3 (S-box Look-up Table – LUT). The look-up table LUT of an S-box S�n,m�
is an (2n x m) binary matrix S, which rows consist of all outputs of S�n,m�, corresponding
to all possible 2n inputs ordered lexicographically. Since the mapping defined by S�n,m�
consists of m Boolean functions f1, f2,�, fm, we could write down SLUT as follows:

SLUT �

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂\

f1�0,0,�,0� f2�0,0,�,0� � fm�0,0,�,0�
f1�0,0,�,1� f2�0,0,�,1� � fm�0,0,�,1�

� � � �

f1�1,1,�,0� f2�1,1,�,0� � fm�1,1,�,0�
f1�1,1,�,1� f2�1,1,�,1� � fm�1,1,�,1�

[____________________]
(2.2)

Definition 2.2.4 (S-box Coordinates). We define each column of the S�n,m� LUT as a
coordinate of S�n,m�. Each column represents the truth table of some Boolean function fi.
If S�n,m� is bijective vectorial Boolean function it follows that n � m and we have exactly n
coordinates.

Definition 2.2.5 (Polarity Look-up Table – PLUT). The polarity look-up table PLUT of
an S-box S�n,m�, denoted by SPLUT , is an �2n

,m� matrix with elements in r�1,1x, where
each element on row j and column k, denoted by SPLUT � j��k�, for j � 1,2,�,2n and
k � 1,2,�,m, is derived from SLUT � j��k� by

SPLUT � j��k� � ��1�SLUT � j��k�
� 1�2SLUT � j��k�

Since the mapping defined by S�n,m� consists of m Boolean functions f1, f2,�, fm, we
could write down SPLUT as follows:

SPLUT �

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂\

f̂1�0,0,�,0� f̂2�0,0,�,0� � f̂m�0,0,�,0�
f̂1�0,0,�,1� f̂2�0,0,�,1� � f̂m�0,0,�,1�

� � � �

f̂1�1,1,�,0� f̂2�1,1,�,0� � f̂m�1,1,�,0�
f̂1�1,1,�,1� f̂2�1,1,�,1� � f̂m�1,1,�,1�

[____________________]
, (2.3)

where f̂i�α� � ��1� fi�α�
� 1�2 fi�α�.

Definition 2.2.6 (S-box Extended WHT Spectrum Matrix – EWHTSM). The extended
Walsh-Hadamard transform spectrum matrix (EWHTSM) of an S-box S�n,m� is a �2n

,2m�
matrix F̂ExtS, which columns are represented by the Walsh-Hadamard transform spectra�F̂gv�w�� of the Boolean functions gv�x� � v1 f1�x�h v2 f2�x�h�h vm fm�x�, where w and
v are arranged lexicographically respectively in Bn and Bm.
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F̂ExtS �

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂\

F̂g0�0,0,�,0� � F̂g2m�1�0,0,�,0�
F̂g0�0,0,�,1� � F̂g2m�1�0,0,�,1�

� � �

F̂g0�1,1,�,0� � F̂g2m�1�1,1,�,0�
F̂g0�1,1,�,1� � F̂g2m�1�1,1,�,1�

[____________________]
(2.4)

The importance of the S-box extended Walsh-Hadamard transform matrix is to quantita-
tively describe the distance with a special measure, alike the Hamming distance, between
each linear combination of coordinates in the given S-box and each possible linear function.

Definition 2.2.7 (Linear Approximation Table – LAT). The linear approximation table of
an S-box S�n,m�, denoted by LAT S or SLAT , is a table with 2n rows and 2m columns, which
entries are given by:

SLAT �X��Y� � LAT S�X��Y� � 2n�1
�dH�X ,Y�, (2.5)

where Y is a consequent linear combination of coordinates of the current S-box and X is the
consequent linear function with length n.

Definition 2.2.8 (S-box Nonlinearity). The nonlinearity of an S-box S�n,m�, denoted by
SNL, is defined as:

SNL � 2n�1
�max�r¶ wi ¶x�, (2.6)

where r¶ wi ¶x is the set of all absolute values of elements in LAT, except the uppermost left
one.

Definition 2.2.9 (S-box ACNV). The average coordinate nonlinearity value, or SACNV , of a
given S-box S, is the average value of all nonlinearities of coordinates of S.

Definition 2.2.10 (S-box Decimal Look-up Table – DLUT). Each S-box is uniquely defined
by its LUT. Translating each row of the LUT as a decimal number uniquely defines the same
S-box as a decimal look-up table (DLUT).

A bijective S-box S�n,n� has exactly n coordinates. Each coordinate is defined by its
truth table, which consists of 2n elements from B. So, we have a total of n2n elements from B
which uniquely define S. Following this observation, we have a total of 2n2n

possible choices
of S-boxes. But not all of them are bijective. To further restrict our choices to bijective
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Table 2.1 DLUT example of a randomly-generated bijective �3,3� S-box.

Input bits Output bits Decimal
000 001 1
001 110 6
010 010 2
011 111 7
100 101 5
101 011 3
110 100 4
111 000 0

S-boxes only, we need to restrict the set of possible S-boxes with the observation that all
elements in the DLUT of S should be distinct. This reduces the possible choices of S-boxes
from 2n2n

to 2n!.

Definition 2.2.11 (XOR Table). The XOR table of an S-box S�n,m� is a (2n
�2m) binary

matrix SXORT , which columns consist of all linear combinations of SLUT columns ordered
lexicographically.

Definition 2.2.12 (S-box Minimal Algebraic Degree). The minimal algebraic degree of an
S-box S�n,m� is the minimum algebraic degree among all component functions of S.

SDEG � min�v"Bm�deg�gv� �
� min��v1,v2,�,vm�"Bm�deg�v1 f1�x�h v2 f2�x�h�h vm fm�x��, (2.7)

where f1, f2,�, fm are the coordinate Boolean functions of S�n,m�.

Definition 2.2.13 (S-box Absolute Indicator). The absolute indicator of a given S-box S,
denoted as SAC, is equal to the maximal absolute indicator among all absolute indicators of
component functions of S.

Definition 2.2.14 (S-box Differential Uniformity). Differential uniformity, or δ -uniformity
of a given S-box S�n,m�, denoted by Sδ , is defined by:

Sδ � max
α"Bn¯r0x

max
β"Bm

·r x " Bn ¶ S�x�hS�xhα� � β�x·
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2.3 Cryptographic Properties of Some Popular S-boxes

The cryptographic properties of vector boolean functions are thoroughly examined by intro-
ducing a rich list of desirable parameters an S-box should have to guarantee an acceptable
resistance to sophisticated cryptographic attacks such as the linear cryptanalysis [103][17],
the differential cryptanalysis [18], boomerang attack [147] or interpolation attack [79]. S-
boxes are widely used in modern cryptographic algorithms like AES [40], Whirlpool [11],
Camellia [7] and many others (see Table A.1 in the Appendix). For a given S-box S the goal
of the designer is to achieve high values of SNL and SDEG, as well as small values of Sδ and
SAC.

The S-boxes, created with the Finite Field Inversion method [114], as the Rijndael S-box
used in AES [40], have the best currently known cryptographic properties among all 8�8
S-boxes. However, some concerns about constructing S-boxes by using a purely algebraic
approach can make them vulnerable to algebraic attacks [34]. Hence, in some applications,
randomly or heuristically generated S-boxes are used. In table A.1 a collection of well-known
and published S-boxes used in popular cryptographic algorithms are analyzed, and one can
see that only 11 S-boxes, out of 47, are AES-alike. For a more detailed picture, the LAT
Spectras of the S-boxes is also provided, i.e. the real-valued vector of all absolute values
of LAT coefficients. The distribution of the SLAT coefficients of a given S-box S could also
provide some more insights into how S is constructed when the construction method is not
announced (intentionally or not) by the designers of S.

2.4 Design Strategies for Constructing S-boxes

The rich variety of proposed S-boxes constructions can be classified into four categories.
The first category TTT 111 for finding S-boxes with good cryptographic properties uses the
pseudo-random generation method. The highest reported nonlinearity (NL) of an �8,8�
S-box generated by this approach is 100 [110]. Table 2.2 presents statistics of our experi-
ments about pseudo-randomly generated S-boxes. We generated over one billion S-boxes
(1,387,914,282) and, for example, find that the probability to randomly construct an �8,8�
S-box with NL 100 is 2�25.978. Thus, the probability to find an S-box of NL 100, or higher,
at random is rather small.

The second category TTT 222 uses a more straightforward (deterministic) approach, like an
algebraic constructions like finite field inversion method, cellular automata based methods
[16], quasi-cyclic codes methods [25][19], affine-power-affine methods [38] or using some
other deterministic approach as Feistel and Misty constructions [29].
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Table 2.2 Statistics for �8,8� Sboxes generated by using T1

Nonlinearity Found Approx. probability

66 1 2�30.370

68 7 2�27.563

70 35 2�25.241

72 252 2�22.393

74 1467 2�19.852

76 8372 2�17.339

78 44954 2�14.914

80 223694 2�12.599

82 1032177 2�10.393

84 4412551 2�8.297

86 17459934 2�6.313

88 62726236 2�4.468

90 192298910 2�2.851

92 430567292 2�1.689

94 515198571 2�1.430

96 161572964 2�3.103

98 2366844 2�9.196

100 21 2�25.978

102 0 NA

The third category TTT 333 is about applying heuristic search methods to optimize pseudo-
randomly generated S-boxes. Members of this category are methods like hill climbing [107],
simulated annealing [32], genetic algorithms [108], special genetic algorithms combined
with total tree searching [145], special immune algorithms [78], and others [142][121].

The fourth category TTT 444 is using hybrid search, i.e starting from an S-box generated by
some T2 construction, and then obtaining a new one by using some T3 algorithm. Such
methods are suggested in [85][31][76][101][42][77][4]. It should be noted that categories T3

and T4 looks similar. However, the comparison between T3 and T4 methods is not entirely
fair, since the authors of the latest do not start from a pseudo-random state. Instead, they
initialize their algorithm with some highly competitive candidate. The same observation is
made in [121], p.9.
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The logic flow of the aforementioned categories is summarized in Figure 2.1. R denotes
some pseudo-random generated bijective S-box, H is a notation for some heuristic algorithm,
D is a notation for some deterministic construction, while F is the final state.

Rstart F

(a) T1

Dstart F

(b) T2

Rstart

H

F

(c) T3

Dstart

H

F

(d) T4

Fig. 2.1 Automata representation of S-box generation categories.

We should also address the S-box chaos-based constructions methods. They could belong
to either of categories T2, T3 or T4. However, in [50], S-boxes generated by using chaotic
functions (CF) are analyzed to measure their actual resistance to linear cryptanalysis. It
appears that most of the aforementioned papers emphasize the average nonlinearity of the
S-box coordinates (ACNV) only, ignoring the rest of the S-box components in the process.
Having this in mind, the majority of those studies should be re-evaluated. Integrating such
S-boxes in a given cryptosystem should be done with considerable caution. Furthermore, we
show that in the context of the nonlinearity optimization problem the profit of using chaos
structures appears to be negligible. By using two heuristic methods and starting from pseudo-
random S-boxes, we repeatedly reached S-boxes, that significantly outperform all previously
published CF-based S-boxes, in those cryptographic terms, that the aforementioned papers
utilize for comparison. Moreover, we have linked the multi-armed bandit problem to the
problem of maximizing an S-box average coordinate nonlinearity value, which further
allowed us to reach near-optimal average coordinate nonlinearity values significantly greater
than those known in the literature.

The methods involved in CF S-box constructions are manifold (see the comparison
table provided in [50]). The actual nonlinearity of an S-box is calculated by the minimum
nonlinearity of all the components of the S-box. For example, let us take an arbitrary S-box
F�5,5� with FLUT � � f0, f1, f2, f3, f4�. Each column of FLAT is determined by some linear
combination of coordinates of F , sorted lexicographically, from left to right, by the binary
representation of the column index, zero-filled to 5. Let FLAT �i� denotes the i-th column
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Fig. 2.2 Coordinate decomposition of a �5,5� S-box LAT

of FLAT . Then, for example, the FLAT �11� column holds the nonlinear characteristics of
the Boolean function f1h f3h f4, while FLAT �4� holds the nonlinear characteristics of the
Boolean function f3. In Figure 2.2 the coordinate decomposition of FLAT is visualized. Each
coordinate is associated with a distinct color. The number of segments in each column
corresponds to the number of terms in the respective linear combination of coordinates. Since
FLAT �0� is the trivial linear combination (all coefficients are equal to zero), we leave the first
column of Figure 2.2 colorless. For technical reasons and better illustration, the coordinate
decomposition example is based on a �5,5� S-box. However, it applies to S-boxes of any
dimension.

As defined in Definition 2.2.8, we seek the maximum absolute value v of all the elements
in S-box S�n,n� LAT, to find the nonlinearity of S, i.e. SNL � 2n�1

�v. In the context of block
ciphers, a low nonlinearity S-box value is associated with the cipher linear cryptanalysis
resistance [103][17][74]. As shown in [50], the average value of the nonlinearities of the
coordinates of a given S-box S doesn’t correspond to the actual nonlinearity of S. However,
from the designer’s perspective, when a higher value of ACNV is desirable, a simple heuristic
construction could be used instead.

In general, if we want to improve the nonlinearity of a given bijective S-box S�n,n�, a
strategy of lowering the absolute value of coefficients in SLAT makes sense. Moreover, the
elements of each column of SLAT are entangled by Parceval’s theorem [104]. Let’s denote as
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Fig. 2.3 Columns of interest of a �5,5� S-box LAT

Ci the array composed of the elements of SLAT �i�. Since we want to lower the nonlinearities of
coordinates of S only, an evaluating function E�S� is created, s.t. E�S� �<n�1

p�0<x"C2p ¶x¶M
,

where M denotes a magnitude of our choice. The restriction x "C2p narrows down the set of
possible columns of SLAT to be optimized, in terms of nonlinearity, to the set of coordinates of
S. As an example, in the case of a S�5,5� S-box, the evaluation function threats as significant
the elements inside the colored columns of SLAT illustrated in Figure 2.3.

By using stochastic1 hill climbing as a heuristic function, starting from arbitrary pseudo-
random S-box construction and by using E�S�, algorithm 1 is proposed.

1hill climbing without neighborhood search
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Algorithm 1 An algorithm for an S-box ACNV optimization

1: s� R�n� V the function R(n) generates pseudo-random bijective S-box S�n,n�
2: repeat
3: sdupl� s
4: RT(sdupl) V the function RT(S) make a random transposition in S
5: if E�sdupl� $ E�s� then
6: s� sdupl
7: end if
8: until STOP condition is reached V reaching n�n�1�

4 cycles

Given an S-box S�n,n�, and by using just one transposition, we can reach a total of�n
2� S-boxes. Let denote this set as ST . We further define a set SI , s.t. W " SI

¿ W "

ST
0E�W� $ E�S�. In case ¶SI¶ � 1, and we are allowed to randomly pick ¶ST ¶

2 elements
from ST , the probability some of the picked elements to belong to SI is 1

2 . The threshold
value of the stop condition in Algorithm 1 is constructed on this observation.

By using a magnitude of 10, we repeatedly generated S-boxes with high coordinate
nonlinearities. During our experiments, we tried various magnitude values. However, larger
or smaller values of the magnitude are respectively too aggressive or too tolerant to the
largest elements of the S-box LAT. In Figure 2.4 the DLUT, in a hexadecimal format, of
an optimized S-box Sc�8,8� is presented. The first row and column of the table correspond
respectively to the first and second half of the input in hexadecimal format. For example, the
input 11110101, equal to f5, is transformed by Sc to 5d.

By using Algorithm 1 we could repeatedly optimize pseudo-randomly generated S-boxes
to ACNV of 114.0, the highest reported in the literature. Moreover, by exploiting the
techniques discussed in the multi-armed bandit problem [15], we were able to reach ACNV
of 114.5 (see [50]). Algorithm 1 was implemented with the built-in tools provided by the
open-source mathematical software system SageMath [43].

2.5 Nonlinearity Optimization Using SAT Solvers

In this section, an interconnection between the S-box nonlinearity optimization problem and
binary integer programming is shown. A lightweight optimization routine is proposed, which
does not cause any significant computational burden. Moreover, the toolbox could be utilized
as proof of infeasibility.

A major drawback of the state-of-the-art heuristic techniques is their aggressiveness on
the initial S-box. Hence, in most cases, it is difficult to link the resulting S-box with the
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00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 ab f0 5e 3f fa e2 6f 8e 3c 36 30 db 29 73 da 45
10 87 f9 60 3b bf a4 c7 0c a9 c0 f3 cb 68 ff ee a6
20 90 57 f2 77 ef c2 78 b7 94 32 e6 4d 53 6d 26 98
30 c1 2c 2a 9a 12 2b ea e8 17 7c 5c 6e 50 d9 f6 88
40 83 69 5a 67 af b9 1a b8 8a d4 b4 a0 cc e1 24 c6
50 be 1f a1 51 9f 64 4e 4f 2f 85 6b 76 86 35 4b ed
60 81 84 39 13 62 c3 9e dc d0 66 5f 44 de 1c bd 34
70 1d 1e 2d 6c a2 46 97 c5 37 61 a3 56 fe f7 d5 38
80 ce 05 09 18 aa fc 91 28 9b 10 e9 0b 71 dd e7 23
90 7f 72 59 6a 43 fd d1 e4 f8 0d 55 74 c8 f5 27 65
a0 93 c4 19 49 00 20 3d 2e a8 d3 01 7d 25 0e f4 33
b0 02 04 0a 14 16 ae 31 11 cf 79 8f d8 8b d7 ca b3
c0 bb 3e 0f 92 df 40 4c cd ac 22 5b a5 bc f1 75 89
d0 96 b1 e3 d2 7a 1b 70 58 03 47 80 9c 06 ba c9 54
e0 ad 41 99 48 7e 3a 95 e0 ec 07 63 7b b2 21 b0 4a
f0 8d d6 15 fb 9d 5d 8c 42 08 b6 eb a7 b5 e5 52 82

Fig. 2.4 An optimized S-box Sc�8,8� using Algorithm 1, having ACNV of 114.0

initial S-box. It is difficult to prove that such a link exists in the first place. The fine-grained
optimization routine proposed in [51] allows us to optimize the nonlinearity value of a
given S-box with as minimum changes as possible. From the designer’s perspective, this
property is particularly beneficial, since we could focus the optimization routine on the weak
components of a given S-box, without degrading the remaining ones. The effectiveness of
the proposed algorithm is further demonstrated by increasing the nonlinearity of the Skipjack
S-box, developed by NSA, and Kuznyechik S-box, developed by the Russian Federation’s
standardization agency, by tweaking respectively 4 and 12 (out of 2048) bits only.

The currently known maximum nonlinearity value for 8-variable balanced Boolean
functions is 116 [122]. Furthermore, as shown in [133], the nonlinearity value of 8-variable
balanced Boolean functions is upper bounded by 120, which means that the maximum
theoretical ACNV of (8,8) bijective S-boxes is less or equal to 118.0. If a bijective S-box
with ACNV greater than 116.0 is found, at least one of its eight coordinates will possess
a nonlinearity value of 118, which will finally answer the long-standing problem of the
maximum possible nonlinearity value for 8-variable balanced Boolean functions. However,
there is academic skepticism that 8-variable balanced Boolean functions with nonlinearity
value 118 exist. Having this in mind, one open question to be answered is: Does bijective
(8,8) S-box with an ACNV value of 116 exist? By using the SAT solving techniques, we
showed that bijective (8,8) S-boxes with an ACNV value of 116.0 exist. However, despite our
attempts, we were not able to find an 8-variable balanced Boolean function with a nonlinearity
of 118.
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We first introduce the concept of couplings, coordinate decomposition, degree of de-
scendibility, S-box coordinate extended linear approximation table (CELAT), as well as some
useful properties and inner relationships. For convenience, let us denote as f �n�i the integer
extracted from n, by flipping its i-th bit of its binary representation. Obviously, f � f �n�i�i

� n.

Lemma 2.5.1 (The Parity Lemma). Tweaking a bijective S-box S by flipping just one bit in
its corresponding Look-up Table (LUT) will convert S to a non-bijective S-box.

Proof 2.5.1 (Proof of Lemma 2.5.1). We take an arbitrary bijective S-box S�n,n� and its
corresponding Look-up SLUT and Decimal Look-up SDLUT tables. We pick the flipped bit
to be somewhere inside the row with index i of SLUT . The resulted Look-up Table will be

denoted as S
¬

LUT . We will prove that the S-box S
¬

is not bijective.
Indeed, if SDLUT � �d0,d1,�,d2n�1�, then the resulted Decimal Look-up Table of the

S-box S
¬

is equal to S
¬

DLUT � �d0,d1,�,di,�,d2n�1�, where di is the decimal integer, which

corresponds to the bit-concatenation of all the bits from the i-th row of S
¬

LUT . However, from
the bijectivity property it follows that ¾i � i j j� di j d j. Furthermore, by definition (see
Lemma 2.2.2), SDLUT is in fact a permutation of all the 2n integers in the interval �0,2n

�1�.
Since S is with dimensions �n,n�, each element of SDLUT is represented by exactly 2n

bits. Having this in mind, the number of possible distinct values of di is 2n (di with the
first bit flipped, di with the second bit flipped, ..., or di with the last bit flipped). Since the
binary representations of all those distinct values consist of exactly n bits, their decimal
representations are values less or equal to 2n

� 1. Therefore, no matter which bit of di is

flipped, di will collide with exactly one d j, for some j j i. Hence, S
¬

DLUT will hold two

different elements, di and d j, with equal values, and therefore, S
¬

is a non-bijective S-box.

It is not possible to get a bijective S-box by modifying (flipping) a single bit of the SLUT

of another bijective S-box. However, as shown in the next Lemma, the minimum count of
bits we need to change in the LUT of a random bijective S-box to get a new bijective S-box
is 2.

Lemma 2.5.2 (Couplings Lemma). The smallest nonzero number of bits from the LUT of a
random bijective S-box that needed to be modified to obtain another bijective S-box is 2.

Proof 2.5.2 (Proof of Lemma 2.5.2). Let us take a bijective S-box S�n,n� and define the
DLUT of S as an array SDLUT � �d0,d1,�,d2n�1�. Since S is bijective, it follows that
¾i � ij j� di j d j. We recall that SDLUT is a permutation of all the 2n integers in the interval�0,2n

�1�.
Without loss of generality, we pick the first flipped bit to be somewhere inside the row

with index i of SLUT . Let us denote the resulted Look-up Table, when this bit is flipped, as
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S
¬

LUT . As shown in the previous lemma, the S-box S
¬

, which corresponds to the Look-up

Table S
¬

LUT , is not bijective. However, we will show that we could always flip another distinct

(non-trivial) bit, which could transform the S-box S
¬

to some bijective S-box S
¬¬

, where S
¬¬

j S.
Using the notations introduced throughout the proof of the previous lemma, we have

SDLUT � �d0,d1,�,d2n�1�,
and

S
¬

DLUT � �d0,d1,�,di,�,d2n�1�,
where di is the decimal integer, which corresponds to the bit-concatenation of all the bits

from the i-th row of S
¬

LUT . Following the same observation made in Lemma 2.5.1, no matter

which bit of di is flipped, di will collide with exactly one d j, for some j j i, and S
¬

DLUT will
hold two different elements, di and d j, with equal values

S
¬

DLUT � �d0,d1,�,d j,�,di,�,d2n�1�.
However, all the remaining 2n

�2 elements from S
¬

DLUT , i.e. all the elements in S
¬

DLUT

with d j and di excluded, differ from each other. Since d j � di, and di j di, we could highlight

two reasons for the non-bijectivity of the S-box S
¬

:

• The value di is missing from S
¬

DLUT .

• There are two identical values in S
¬

DLUT - d j and di.

Having this in mind, if we could modify d j to di, by using just a single flip, we could

convert S
¬

DLUT to S
¬¬

DLUT , where the S-box S
¬¬

, which corresponds to the Decimal Look-up

Table S
¬¬

DLUT , is bijective. It is trivial to be shown that this modification is possible. Let us
recall that di is created by flipping a single bit in di on position, for example, x. Therefore,
since d j � di, flipping the bit on position x in d j will convert d j back to di, and we will have

the DLUT S
¬¬

DLUT , s.t:

S
¬¬

DLUT � �d0,d1,�,di,�,d j,�,d2n�1�.
Since the elements in the S-box S

¬¬

, which corresponds to the Decimal Look-up Table

S
¬¬

DLUT , are now a permutation of all the 2n integers in the interval �0,2n
�1�, S

¬¬

is bijective.

Furthermore, the permutation S
¬¬

DLUT is exactly one transposition away from the permutation
SDLUT .
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We have shown that if we start from a random bijective S-box S it is possible to construct

another bijective S-box S
¬¬

by flipping exactly two bits from the LUT of S. It appears that the
first flip can be on a random element in the LUT, but the second flip is uniquely determined
by the first one. We define each such pair as coupling.

Definition 2.5.1 (Couplings). Let us take a bijective S-box S�n,n� and its corresponding
DLUT

SDLUT � �d0,d1,�,di,�,d2n�1�.
We define as a coupling each set rds, f �ds� jx, while the set of all couplings in S as rS �x.

Lemma 2.5.3 (Couplings Set Cardinality). Given a bijective S-box S�n,n�:

¶rS �x¶ � n2n�1
.

Proof 2.5.3 (Proof of Lemma 2.5.3). If we flip a bit on column i in the LUT of S, the
corresponding unique second flip we need to perform to guarantee the bijectivity property of
the newly created S-box has to be on column i as well, i.e. we are flipping two distinct bits
sharing the same S-box coordinate i. Thus, we have exactly n coordinates, each having 2n

2
distinct couplings, or a total of n2n�1 couplings.

Definition 2.5.2 (Couplings Pivot Set). We define the set rS �ix as the maximum subset of
the coupling set of a bijective S-box S(n,n), which holds couplings operating only on column
i of the SLUT , i.e. couplings of the form rdx, f �dx�ix. We call each such maximum subsetrS �ix a couplings pivot set operating on column i of SLUT .

Corollary 2.5.1 (Properties of Couplings Pivot Sets). Considering the definitions of the
Couplings Pivot Sets on bijective S-box S(n,n), the following properties hold:

• ¾i j j,rS �ix=rS � jx �o
• ¾i, ¶rS �ix¶ � 2n�1

• ¶�n
i�1rS �ix¶ � n2n�1

Definition 2.5.3 (Coordinate Decomposition). Let S be an �n,n� bijective S-box. We take a
random element with coordinates �x,y� of its corresponding linear approximation table SLAT .
We denote the binary representation of y as:

y�2� � bn�12n�1
�bn�22n�2

���b121
�b020
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The coordinate decomposition of an element with coordinates �x,y�, denoted by Wx,y, is the
set:

Wx,y �

n�1

�
i�0,bij0

rbi�n� i�1�x
Definition 2.5.4 (Nonlinearity Bottleneck Snapshot – NBS). We define the nonlinearity
bottleneck snapshot SNBS of a bijective S-box S�n,n� as a set of tuples holding all coordinates
of the elements of SLAT , which are holding down the nonlinearity value SNL of S, i.e.

�x,y� " SNBS� ¶LAT S�x��y�¶ � 2n�1
�SNL

Definition 2.5.5 (NBS Coordinate Decomposition – NBSCD). We define the nonlinearity
bottleneck snapshot coordinate decomposition of a bijective S-box S�n,n�, denoted by ∆S, as
a set of all SNBS coordinate decompositions, i.e.:

∆S � �
�x,y�"SNBS

Wx,y

Definition 2.5.6 (Degree of Descendibility – ΛS). For a given bijective S-box S�n,n�, we
define a family of sets ΨS, s.t.:

E "ΨS�¾Q " ∆S ¿q " Q � q " E

The degree of descendibility of S is the minimum cardinality of a set in ΨS, i.e.:

ΛS � min
¾A"ΨS

¶A¶
Corollary 2.5.2 (Basic properties of ΛS). For a given bijective S-box S�n,n�:

• ΛS " N

• ΛS " �1,n�
• ΛS � 1� ¶�s"∆S

¶ ' 1

• ΛS % 1� �s"∆S
�o

Definition 2.5.7 (Descendible Coordinate). For a given bijective S-box S�n,n�, we say that
coordinate j is descendible if the following properties hold:

• ΛS � 1
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• j "�s"∆S

Definition 2.5.8 (Couplings Transformation). For a given bijective S-box S�n,n� and some
coupling ci, we denote as Sci the S-box created by applying coupling ci on S. We define this
transform as coupling transform denoting it with the operator `, i.e.

Sci � S` ci

When we have a list of couplings rc1,c2,�,cix, which we want to use for transformation of
S in this exact order, we will use the following expression:

Sc1,c2,�,ci � S` c1 ` c2 `�` ci

Lemma 2.5.4 (Couplings Inverse). For a given bijective S-box S and any coupling c, the
following property holds:

S � S` c` c

Proof 2.5.4. Since c is, in fact, a transposition in the Decimal Look-up Table SDLUT of S
(swapping two elements in SDLUT ) applying the same transposition twice would cancel its
effect out.

Definition 2.5.9 (Coupling Transformation Matrix – CTM). For a given bijective S-box
S�n,n� and some coupling ci, we denote as Sci

LAT the transformed LAT of S caused by ci.
We define the coupling transformation matrix of ci on S, as:

Sci
CT M � Sci

LAT �SLAT

Lemma 2.5.5 (Pivot Couplings Commutativity). For a given bijective S-box S�n,n�, for any
two couplings ca and cb, which belongs to the same couplings pivot set rS �ix, we have the
following property:

S` ca ` cb � S` cb ` ca

Proof 2.5.5. In case ca � cb the theorem follows from lemma 2.5.4, i.e.

S` ca ` cb � S` ca ` ca � S

In the case when ca j cb, since they belong to the same coupling pivot set, it follows that
ca= cb �o, which concludes the proof.
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Corollary 2.5.3. For a given bijective S-box S�n,n�, for any couplings c j, which belongs to
the same couplings pivot set rS �ix, we have the following properties:

Sca,cb
LAT � Scb,ca

LAT � SLAT �Sca
CT M�Scb

CT M

Sc1,c2,�,ck
LAT � SLAT �

k

=
i�1

Sci
CT M

Lemma 2.5.6 (CTM Values). The value of each element in a CTM is -2, 0, or 2.

Proof 2.5.6. For a given bijective S-box S�n,n� and some coupling c � tdx, f �dx� jz, we
denote as Sc

LAT the transformed LAT of S caused by c. Let us take some element ex,y from
the LAT of S before the coupling transformation. We have:

ex,y � 2n�1
�dH�Lq,b1b2�b2n�,

for some linear function Lq and some linear combination in binary representation of the
coordinates of S : b � b1b2�b2n . If j � ∆x,y, ex,y is not affected after applying the coupling.
However, if j " ∆x,y, we know that exactly two of the bits of the linear combination b are
flipped. We denote them as bs and bt . Let us denote the element on position �x,y� on the

newly created LAT as e
¬

x,y.

e
¬

x,y � 2n�1
�dH�lq,b1b2�b̄s�b̄t�b2n�

� 2n�1
�dH�lq,b1b2�bs�b̄t�b2n��1

� 2n�1
�dH�lq,b1b2�bs�bt�b2n��1�1

� ex,y�1�1

(2.8)

Since the expression �1� 1 is equal to one of the three possible values: -2, 0, and 2, the
proof concludes.

Corollary 2.5.4. For a given bijective S-box S�n,n�, let us apply transformations of couplings
c1,c2,�,ck, which belongs to the same couplings pivot set rS �ix. The elements of the
resulting CTM are numbers in the interval ��2k,�2�k�1�,�,�2,0,2,�,2�k�1�,2k�.
Definition 2.5.10 (S-box Coordinate Extended LAT – CELAT). For a given bijective S-box
S�n,n�, and a given coordinate i, we can define the one-dimensional linear approximation
table of S as:

SLAT 1D�x� � SLAT �x © 2n��x % 2n�
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Furthermore, we denote all the couplings in the couplings pivot set rS �ix as c1,c2,�,c2n�1 .
We have:

Sc1
CT M � Sc1

LAT �SLAT

Sc2
CT M � Sc2

LAT �SLAT

�

S
c2n�1

CT M � S
c2n�1

LAT �SLAT

(2.9)

Following the same concept used in the construction of one-dimensional LAT of S, we can
define one-dimensional CTM, i.e.:

Sc1
CT M1D

� Sc1
LAT1D

�SLAT1D

Sc2
CT M1D

� Sc2
LAT1D

�SLAT1D

�

S
c2n�1

CT M1D
� S

c2n�1

LAT1D
�SLAT1D

(2.10)

Finally, we define S-box i-th Coordinate Extended LAT Si
CELAT as the following table:

Si
CELAT �

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂\

SLAT1D

Sc1
CT M1D

Sc2
CT M1D

�

S
c2n�1

CT M1D

[____________________]
Si

CELAT has 2n�1
�1 rows and 22n columns.

For example, let us consider an S-box S�2,2� with SDLUT � �0,2,1,3�. For n � 2 the
S2

CELAT has 22
�1 � 3 rows and 22

�2 � 16 columns. Considering coordinate 2, we have:

rS �2x � rc1,c2x � rr0,1x,r2,3xx Sc1
DLUT � �1,2,0,3� Sc2

DLUT � �0,3,1,2�
S2

CELAT �Ẑ̂̂̂
^̂̂̂̂̂
\

2 0 0 0 0 0 2 0 0 2 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 �2 0 �2 0 �2 0 �2
0 0 0 0 0 0 0 0 0 �2 0 2 0 2 0 �2

[__________]
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Definition 2.5.11 (Integer Programming – Optimization Problem). A pure integer linear
program is a problem of the form:

max cx
subject to Ax & b

x ' 0 integral

where the data consists of the row vector c with size n, �m,n� matrix A, and column vectors
b and x with respective sizes of m and n. The column vector x contains the variables to be
optimized. We say that the set S is the set of feasible solutions, i.e.:

S �� sx " Zn
� � Ax & by

Definition 2.5.12 (Binary Integer Linear Programming – BILP). A pure binary integer linear
program is a problem of the form:

max cx
subject to Ax & b

x ' 0 binary

where the data consists of the row vector c with size n, �m,n� matrix A, and column vectors
b and x with respective sizes of m and n. The column vector x contains the binary variables
to be optimized. We say that the set S is the set of feasible solutions, i.e.:

S �� sx " Bn
� Ax & by

Definition 2.5.13 (Binary Integer Programming – Feasibility or SAT Problem). A feasibility
binary integer program is a problem of the form:

subject to Ax & b
x ' 0 binary

where the data consists of �m,n�-matrix A and column vectors b and x with respective sizes
of m and n. The column vector x contains the binary variables to be optimized. We say that
the set S is the set of feasible solutions, i.e.:

S �� sx " Bn
� Ax & by
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In the context of the feasibility problem we are looking for just one element in the set S, not
the optimal one.

For an �n,n� S-box S, we denote 2n�1 by r and 22n by m. Let us construct its CELAT
using coordinate i i.e:

Si
CELAT �

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂\

SLAT1D

Sc1
CT M1D

Sc2
CT M1D

�

S
c2n�1

CT M1D

[____________________]
�

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂\

l1 l2 � lm
c11 c12 � c1m

c21 c22 � c2m

� � � �

cr1 cr2 � crm

[____________________]
We want to apply some coupling transformations subset P � p1, p2,�, pk which belongs

to the pivot coupling set rS �ix. From corollary 2.5.3 it follows that:

Sp1,p2,�,pk
LAT � SLAT �

k

=
i�1

Spi
CT M

We denote
Sp1,p2,�,pk

LAT1D
� �q1,q2,�,qm�

Then, we can construct the following system of equations:

q1 � l1� c11x1� c21x2��� cr1xr

q2 � l2� c12x1� c22x2��� cr2xr

�

qm � lm� c1mx1� c2mx2��� crmxr

(2.11)

where x � �x1,x2,�,xr� " Br, and xt � 1 iff pt " P. We have SNL � 2n�1
�maxm

j�1 abs�l j�.
If coordinate i is descendable, we can construct the following binary integer programming
feasibility problem:

subject to $ Si
CELAT

T
,x % & A

subject to $ Si
CELAT

T
,x % ' B

x ' 0 binary

where A is a column vector with 2n�1
�1 elements, each equal to 2n�1

�SNL�2, while B is
a column vector with 2n�1

�1 elements, each equal to SNL�2n�1
�2. Let us denote the SAT
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problem descending on coordinate i in equation 2.5 as ΩS,i. This is NP-hard2 problem with
a total of 2n�1 binary variables and 2n

�2 restrictions. However, we can further divide the
problem to an union of subproblems, i.e.:

ΩS,i �

n�1

�
d�1

Ω
d
S,i

where each subproblem Ω
d
S,i is modelled using the following restrictions:

subject to $ Si
CELAT

T
,x % & A

subject to $ Si
CELAT

T
,x % ' B

subject to <r
j�1 x j � d
x ' 0 binary

Solving any of the subproblems will yield a solution to the original problem.
For subproblems Ω

d
S,i of a binary integer programming feasibility problem ΩS,i, the

following property holds:
n�1

�
d�1

Ω
d
S,i �o

It is easy to show that the search space of the subproblem Ω
d
S,i for the bijective S-box

S�n,n� is �2n�1

d �.

Theorem 2.5.1. For a subproblem Ω
d
S,i, all restrictions with the participation of some l j for

which the following inequalities hold:

l j & 2n�1
�SNL�2d�2

l j ' SNL�2n�1
�2d�2

(2.12)

are always satisfied.
2The complexity class of decision problems that are intrinsically harder than those that can be solved by a

nondeterministic Turing machine in polynomial time.
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Proof 2.5.7. For a subproblem Ω
d
S,i we have the following restrictions:

l1� c11x1� c21x2��� cr1xr & 2n�1
�SNL�2

l1� c11x1� c21x2��� cr1xr ' SNL�2n�1
�2

l2� c12x1� c22x2��� cr2xr & 2n�1
�SNL�2

l2� c12x1� c22x2��� cr2xr ' SNL�2n�1
�2

�

lm� c1mx1� c2mx2��� crmxr & 2n�1
�SNL�2

lm� c1mx1� c2mx2��� crmxr ' SNL�2n�1
�2

x1� x2��� xr � d

(2.13)

From lemma 2.5.6, we know that the possible values of the elements ci j are -2, 0 or 2. Hence:

min
i, j

ci j � �2

max
i, j

ci j � 2

Since<x j � d, we have:

min
j
�c1 jx1� c2 jx2��� cr jxr� � �2d

max
j
�c1 jx1� c1 jx2��� cr jxr� � 2d

If for some l j the following inequalities hold:

l j & 2n�1
�SNL�2d�2

l j ' SNL�2n�1
�2d�2

(2.14)

then

l1� c11x1� c21x2��� cr1xr &

& l1�max�c11x1� c21x2��� cr1xr� &
& l1�2d &

& 2n�1
�SNL�2d�2�2d &

& 2n�1
�SNL�2

(2.15)
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and on the other hand

l1� c11x1� c21x2��� cr1xr '

' l1�min�c11x1� c21x2��� cr1xr� '
' l1�2d '

' SNL�2n�1
�2d�2�2d '

' SNL�2n�1
�2

(2.16)

which completes the proof.

Definition 2.5.14 (CELAT with radius R). For a given bijective S-box S�n,n�, and a given
coordinate i, we have:

Si
CELAT �

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂\

l1 l2 � lm
c11 c12 � c1m

c21 c22 � c2m

� � � �

cr1 cr2 � crm

[____________________]
We define as Si,R

CELAT a matrix constructed of those columns of Si
CELAT with first element

ρ , for which the following inequalities hold:

ρ % 2n�1
�SNL�2R�2

ρ $ SNL�2n�1
�2R�2

(2.17)

Hence, a given suproblem Ω
d
S,i could be further reduced and launched on Si,d

CELAT , instead
of its corresponding full (unreduced) version Si

CELAT .
By using automata notation, Figure 2.5 presents the distinct steps of the optimization

process. State S is the initial state of the automata. In this phase, we initialize and process the
input. We make some additional checks about the properties of the S-box. For example, we
check the bijectivity property of the S-box. We further analyze and extract the descendable
coordinates (if such exist).

Sstart

Re BIP

Fig. 2.5 Automata representation of the optimization process
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A few important properties of the automata should be emphasized. For a given S-box S, if
ΛS � 1, then at least one descendible coordinate, for example j, does exist. Thus, if a feasible
solution of Ω

R
S, j is found, the nonlinearity of S could be increased by activating exactly R

couplings. Therefore, we could not only optimize the nonlinearity of S but dictate the impact
of our changes to the original S-box as well - increasing the value of R will increase the total
count of flipped bits in S.

For example, if we first choose the coordinate j to descend into, we further calculate
the corresponding matrix S j

CELAT . Then, the adjacent state Re, by further processing the
generated matrix, and by using some radius R, generates the matrix S j,R

CELAT . Finally, state
BIP is translating the problem to a binary integer programming feasibility problem. In case a
feasible solution or proof that the problem is infeasible is found, the result is reported back
to state Re, the major role of which is to orchestrate the behavior of the optimization routine -
increasing the radius, changing the descendible coordinate, or giving up.

In those cases where ΛS % 1, the aforementioned algorithm, as we will later demonstrate,
is still applicable. We just pick a random coordinate j " ∆S instead of a descendible one. As
a consequence, finding a solution to the Ω

R
S, j problem will not increase the nonlinearity of S.

However, it will decrease the value of ΛS by 1. Thus, by repeating the reduction phase, we
would eventually reduce the initial problem to a problem having ΛS¬ � 1, for some S-box S¬,
yielded by the optimization routine, or the composition of optimization routines, performed
on S.

We have implemented the algorithm by using Python, for states S and Re, and the Gurobi
SAT Solver [71], for the BIP state itself. We analyzed two famous S-boxes: the Skipjack
S-box, developed by the U.S. National Security Agency (NSA) [138], which we will denote
as Sk, and the Kuznyechik S-box, standardized by the Russian Federation’s standardization
agency [53], which we will denote as Kk.

2.5.1 Skipjack (Case Sk)

The characteristics of Sk are SkNL � 100, SkNBS � r�138,89�,�125,168�,�77,168�x, ∆Sk �r�1,3,4,7�,�0,2,4�x and ΛSk � 1. Since the coordinate with index 4 is descendible, we first
try to solve the problem Ω

1
Sk,4, trying the minimum possible radius value of 1. The translated

BIP model consists of 51 rows, 128 columns, and 3420 nonzeros. By using a general-purpose
CPU, it took approximately 0.115 seconds to prove that Ω

1
Sk,4 is infeasible. However, by

increasing the radius value by 1, the translated BIP model of Ω
2
Sk,4, consisting of 189 rows,

128 columns, and 12640 nonzeros, a solution is found. The time required was 0.301 seconds.
The found solution coupling set is r�130,138�,�183,191�x. Indeed, the resulting S-box does
possess a nonlinearity of 102. Furthermore, the found solution required the flipping of only
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4 bits, since, by design, each activated coupling modifies exactly 2 bits in the S-box it was
launched on.

On the other hand, if we require a higher nonlinearity, combined with a greater impact
of the structure of Sk, we could significantly increase the value of R. Indeed, using a radius
value of 10, the translated BIP model of Ω

10
Sk,4 consists of 25125 rows, 128 columns, and

1621980 nonzeros. Despite the greater model, after 14.542 seconds, a solution was found,
yielding an S-box with nonlinearity 102, constructed from Sk by flipping exactly 20 bits.

2.5.2 Kuznyechik (Case Kk)

The characteristics of Kk are KkNL � 100, KkNBS � r (90,47), (184,105), (55,165), (102,103),
(222,151), (62,105), (72,85), (237,98), (110,15), (246,28), (65,106), (135,171), (76,167),
(251,54) x, ∆Kk � r (2,3,5,6), (1,2,5,6,7), (0,2,5,7), (1,3,5,7), (1,2,4,7), (0,2,5,6,7), (0,3,5,6,7),
(3,4,5), (0,2,4,6,7), (1,2,6), (1,2,4,6), (2,4,5,6,7), (4,5,6,7)x and ΛKk � 2. Since the de-
gree of descendibility is greater than 1, more precisely ∆Kk � r2,5x, we pick a random
coordinate from ∆Kk. Ω

1
Kk,5 and Ω

2
Kk,5 are reported back as infeasible. However, Ω

3
Kk,5,

consisting of 319 rows, 128 columns, and 20904 nonzeros, is feasible. Again, the solver
took less than a second to find a solution, i.e. the coupling set r�0,4�,�67,71�,�136,140�x.
Let’s denote the resulting S-box astKk. The characteristics oftKk aretKkNL � 100, KkNBS �r�65,106�,�135,171�,�62,105�,�237,98�,�184,105�x, ∆

tKk � r (0,2,4,6,7), (1,2,6), (1,2,4,6),
(1,2,4,7)x and Λ

tKk � 1. As expected, the value of Λ is decreased by 1. Thus, we continue the
optimization process by the descendible coordinate with index 2. First, the infeasibility of
the two models Ω

1
tKk,2 and Ω

2
tKk,2 are proved. However, the BIP model of Ω

3
tKk,2, consisting

of 379 rows, 128 columns, and 25344 nonzeros, yielded a solution for less than a second.
Indeed, the found coupling set r�95,127�,�207,239�,�108,157�x increased the nonlinearity
oftKk from 100 to 102. Hence, we have shown how Kk could be optimized to an S-box with
higher nonlinearity by tweaking just 12 bits.

2.5.3 The ACNV problem

The ACNV optimization problem could be represented as a special, and significantly lighter,
in terms of computational burden, case of Si,R

CELAT , where S denotes the initial S-box and i
denotes the coordinate of S to be optimized. Since our goal is ACNV optimization only, we
could significantly reduce the size of Si,R

CELAT . Let us denote as Si,R
ACNV , the matrix formed by

the matrix Si,R
CELAT , with columns corresponding to linear combinations of coordinates of S

removed. Indeed, this is a significant reduction of the feasibility model. For example, if S is
of dimension �n,n�, Si,R

CELAT has 2n�1
�1 rows and 22n columns, while Si,R

ACNV has 2n�1
�1
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rows and 2n columns. We further denote the corresponding feasibility problem corresponding
to Si,R

ACNV as ΨS,i. As usual, we could divide the problem ΨS,i to a union of subproblems Ψ
d
S,i.

We have initiated the optimization routine on a bijective S-box, for simplicity denoted as
S , from [50], possessing the highest, currently known, ACNV of 114.5. It is composed of 6
coordinates with a nonlinearity value of 114 and 2 coordinates with a nonlinearity value of
116. We will outline a possible trace of improvement, which led to an S-box with an ACNV
of 116.0.

• We launched Ψ
&9
S,4. After around 153 seconds a feasible solution, with exactly 9

couplings, was found. We activated the couplings to get S1. ACNV was lifted to
114.75.

• We launched Ψ
&8
S1,1. After around 16 seconds a feasible solution, with exactly 8

couplings, was found. We activated the couplings to get S2. ACNV was lifted to 115.

• We consequently launched Ψ
&9
S2,2, Ψ

&9
S2,3 and Ψ

&9
S2,5, to prove their infeasibility for

respectively 181, 274 and 173 seconds. However, by launching Ψ
&9
S2,7, after 257

seconds, a feasible solution with exactly 9 couplings was found. We activated the
couplings to get S3. ACNV was lifted to 115.25.

• We consequently launched Ψ
&9
S3,2, Ψ

10
S3,2 and Ψ

11
S3,2, to prove their infeasibility for

respectively 151, 698 and 3457 seconds. Then, we continued with Ψ
&9
S3,3 and Ψ

10
S3,3

to prove their infeasibility for respectively 240 and 1015 seconds. However, Ψ
11
S3,3

yielded a solution after 5171 seconds. We activated the 11 couplings to get S4. ACNV
was lifted to 115.5.

• We continued with Ψ
&9
S4,2 and Ψ

10
S4,2 to prove their infeasibility for respectively 170 and

715 seconds. However, Ψ
11
S4,2 yielded a solution after 1145 seconds. We activated the

11 couplings to get S5. ACNV was lifted to 115.75.

• Finally, we launched Ψ
&9
S5,5, and a feasible solution was found after 69 seconds. We

activated the 9 couplings to get S6. ACNV was lifted to 116.

We present S6 in Figure 2.6 in a hexadecimal format.
The overall nonlinearity of S6 is 92.
Significant efforts were made to reach higher ACNV - reaching higher ACNV would

reveal a balanced Boolean function having a nonlinearity of 118. Unfortunately, all instances
Ψ

x
S6,y, for ¾x,y � x & 21,y " �1,8�, were proofed infeasible. We want to emphasize that the

search routine is highly efficient. For example, Ψ
17
S6,y, for some y, was proved infeasible

for 1065 seconds or approximately 18 minutes. Since the given search space size is equal
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00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 a9 7b 99 49 0a 45 b3 c1 a3 5a 24 26 bf 72 b6 05
10 4a 73 e2 f1 2a d1 25 92 64 f3 f5 d7 ff dc cb 4e
20 de 7a 22 98 f9 87 b1 a5 28 9a b0 55 16 67 61 0c
30 27 33 53 2d c7 58 7e f6 37 71 1e 10 d0 e0 b7 c9
40 9e 91 6e 20 d9 5b fb 13 8a db ad a1 8c 39 a2 ee
50 89 4f 50 1a 07 35 65 bd 9f 18 cd 17 41 be 2f 00
60 ca 0d ae 3a 94 f7 a8 93 aa f8 e9 e6 b2 54 01 69
70 a7 81 5c 86 77 f4 29 d2 ec 0e e4 56 90 2e 1d 40
80 4c 51 75 11 3e d3 3d 8d 9c 6c 95 ef 76 c4 8b dd
90 23 b4 ce 43 62 d6 74 fe 82 02 7c 80 32 2b 78 fc
a0 c0 21 af e3 68 6f e1 eb 03 38 09 c2 d4 ed bc 12
b0 15 fa 5e bb c8 e7 c6 14 a4 b9 9d 04 cc d8 3f 9b
c0 e5 4d 31 63 79 1c d5 f0 47 7f 0b 46 f2 2c 70 b5
d0 cf 8e 4b 36 1f da a6 6a 6b 42 19 57 5d 48 ac 1b
e0 44 3c 5f ea a0 85 8f 30 ba ab 34 c3 59 96 fd 08
f0 b8 e8 84 6d 66 7d df 60 52 83 88 3b 0f 97 c5 06

Fig. 2.6 An optimized S-box Sc�8,8� with ACNV of 116.0 using SAT techniques

to �128
17 �, or approximately 269, this results in checking simultaneously roughly 259 distinct

cases per second. The results are published in [51].



Chapter 3

On the S-box Reverse Engineering

3.1 Introduction and motivation

The reasons for obfuscating the design of a given S-box are manifold. For example, the
initial S-boxes used in the Data Encryption Standard (DES) [55] were originally modified by
NSA. The reasons for applying those modifications were not known. However, in [33], D.
Coppersmith announces the motivation behind the S-box modifications. It appears that the
agency knew about the existence of differential attacks about 20 years before the academic
world. However, they kept that in secrecy. D. Coppersmith further commented on this secrecy
decision by saying:

... that was because [differential cryptanalysis] can be a very powerful tool,
used against many schemes, and there was concern that such information in the
public domain could adversely affect national security.

Another reason for hiding a given S-box design could be related to some hidden structure,
the knowledge of which could be exploited to gain a significant advantage in terms of
hardware implementation. For example, as discovered in [21], the S-boxes used in the hash
function Streebog and the 128-bit block cipher Kuznyechik, standardized by the Russian
Federation, are designed with such a hidden structure. A user knowing the not published
decomposition could implement the given S-box with a significantly smaller hardware
footprint, allowing him to reach an up to 8 times faster S-box look-up.

Another practical reason for hiding the design of a given S-box could be related to an
encapsulated trapdoor as discussed in [128]. Although the aforementioned trapdoor can be
easily detected, as shown in [151], the motivation for finding other trapdoor S-box techniques
should not be underestimated.
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There are various tools and techniques, which could help us to initiate some S-box reverse
engineering (see [119][20][120]). In the next section, the concept of S-box spectrography is
presented. A good example of using spectrography for S-box reverse engineering purposes is
the Pollock representation (see [21]).

3.2 S-box spectrography

We can isolate the coordinates, in terms of row and column indexes, of those elements
of the LAT of a given S-box S�n,m�, which are equal to some fixed value or, in the more
unrestricted case, belong to some set of values of our choice. We define each distinct isolation
as a spectra channel. For convenience, we denote as §E

S the spectra channel isolated from
an S-box S, by using restriction set E. We can further visualize the channel as a �2n

�2m�
matrix plot – those elements, which belong to the restriction set are colored in red, while the
remaining elements are left colorless.

In Figures 3.1a and 3.1b two spectra channels of the popular Rijndael S-box [39] are
presented. Since its dimensions, i.e. �8,8�, the LAT table has 28 rows and 28 columns, or a
total of 216 elements. For example, in Figure 3.1a only the elements from the corresponding
S-box LAT equal to �12 or 12 are colored, while in Figure 3.1b the restriction set E is
equivalent to r�2,2x.
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Fig. 3.1 Some spectra channels of Rijndael S-box

During our experiments, we repeatedly generated random bijective �8,8� S-boxes and
thoroughly analyzed their spectra channels. However, we didn’t find any anomalies, symme-



3.2 S-box spectrography 37

tries, or visual patterns. It is really difficult to distinguish visually their spectra channel plots
from plots populated with randomly scattered points.

In [132] a rich database of popular S-boxes is published. The rest of this section presents
our results in applying spectra channel analysis on the aforementioned S-box collection.
Anubis is a block cipher, which was submitted to the NESSIE project [127]. The Anubis
S-box is constructed by using involutions. It appears that such constructions are easily
detected by using some spectra channel plot of the form §�x,x. Indeed, as shown in Figure
3.2a, by applying the restriction r�10,10x the plot is symmetric with respect to the main
diagonal.

CLEFIA is a 128-bit block cipher supporting key lengths of 128, 192 and 256 bits [137].
The two S-boxes used by CLEFIA employ two different types of �8,8� S-boxes: the first S0 is
based on four 4-bit random S-boxes, while the second S1 is based on the inverse function over
GF(28). To achieve better hardware implementation, S0 is designed by using a combination
of 4 smaller linked S-boxes. We analyzed S0 to find anomalies in §0

Cle f iaS0
plot (see Figure

3.2b). There are respectively vertical and horizontal red lines immediately next to the x and y
axis, while a complete red square is visible in the upper-left of the matrix plot.
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Fig. 3.2 Some spectra channels of Anubis and Clefia S-boxes

The Cellular Message Encryption Algorithm (CMEA) is a US block cipher that was used
for securing mobile phone communications [126]. By analyzing the §0

CMEA plot we found
anomalies immediately next to the y-axis horizontal red lines (see Figure 3.3a). Crypton is
a new 128-bit block cipher algorithm proposal for AES. The S-box in the first version (S0)
[93] was further revised and replaced by four S-boxes (S1,S2,S3 and S4) [94]. In Figure 3.3b
the anomalies found in S0 are depicted, which are clearly visible by restriction r�8,8x.
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Fig. 3.3 Some spectra channels of CMEA and Crypton S-boxes
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All revised Crypton S-boxes possess anomalies in their spectra channel plots. As shown
in Figures from 3.3c to 3.3f, the plots are populated with horizontal and vertical lines by the
restriction r0x.

Another NESSIE project block cipher submission is the CS-cipher [144]. By using
spectra channel §0

CS a picturesque plot was discovered (see Figure 3.4a).
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Fig. 3.4 Some spectra channels for CS and CSS S-boxes

The content scrambling system (CSS) [13] is used to encode DVDs. We analyzed the
S-box implemented and the results are given in Figures 3.4b and 3.4c.

We further analyzed the S-boxes published in Enocoro [148], Fantomas [69], FLY [83],
Fox [82] and Iceberg [143]. Enocoro anomalies are clearly visible in spectra channel with
restriction E � r0x (see Figure 3.5a). White rectangular covering the lower values on x-
axis of Fantomas is detected on spectra channel §�4,4

Fantomas (see Figure 3.5b), while smaller
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almost perfect rectangulars are visible on the x-axis of FLY spectra channel §�8,8
FLY (see 3.5c).

Analyzing Fox by applying spectra channel §�4,4
Fox reveals a grid-alike structure (see 3.5d).

The Iceberg S-box is involution (see 3.6a).
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Fig. 3.5 Some spectra channels for Enocoro, Fantomas, FLY and Fox S-boxes

Anomalies are found in Iraqi [150], iScream [70], Khazad [10], Lilliput [3] and Picaro
[123]. In Figure 3.6b the spectra channel for §�1,1

Iraqi is given. It is distinguishable from pseudo-
randomly generated S-box by the striped-alike structure. Furthermore, we can deduce from
§�1,1

Iraqi that the Iraqi S-box is not bijective. Fractal-alike structure is revealed in plot §�4,4
iScream

(see Figure 3.6c), while involution is observed in §0
Khazad (see Figure 3.6d). Analyzing the

Lilliput S-box a Tetris-alike structure is revealed on spectra channel §�4,4
Lilliput (see Figure 3.6e),

while fence-alike structure is clearly visible in Picaro S-box on spectra channel §�8,8
Picaro (see

Figure 3.6f).
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Fig. 3.6 Some spectra channels for Iceberg, Iraqi, iScream, Khazad, Lilliput and Picaro
S-boxes
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By applying the same method we were able to detect anomalies in Safer [102], Scream
[30], SKINNY [5], SNOW 3G [117] and Twofish [134]. In Figure 3.7a the spectra channel
§0

Sa f er is plotted, while in Figure 3.7b §�4,4
Scream a very curious pattern in Scream S-box is

revealed. §�4,4
SKINNY is heavily partitioned (see 3.7c), while §�2,2

SNOW3G is completely blank (see
Figure 3.7d), which, for example, is completely unusual for a pseudo-randomly generated
S-box. In Twofish, two S-boxes π0 and π1 are used. Both of them are very similar in terms
of their spectra channels (see Figures 3.8a and 3.8b). Furthermore, they are distinguishable
from pseudo-randomly generated S-boxes as well (lines on the y-axis are visible).
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Fig. 3.7 Some spectra channels for Safer, Scream, SKINNY and SNOW3G S-boxes
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Fig. 3.8 Some spectra channels for Twofish S-boxes

Finally, we analyzed the S-boxes used in Whirlpool [12], Zorro [58] and ZUC [152] by
using spectra channels §0

Whirl pool (see Figure 3.9a), §�2,2
Zorro (see Figure 3.9b) and §�8,8

ZUCS0
(see

Figure 3.9c).

3.3 Automatic spectral analysis of S-box LAT, DDT, XORT,
ACT spectras

We could automate the process of anomaly discovery in a given S-box S LAT spectra.
Moreover, it could be easily generalized for other spectras of S like the DDT, ACT, and
XORT.

SLAT has 2n columns. We denote as ST
LAT �i� the i-th column of SLAT . We further denote

as σ�S, i,e� the total number of occurrences of e and �e in ST
LAT �i�, while σind�S,e� denotes

the set of indexes of columns of SLAT , s.t:

¾i1ji2,i1,i2"σind�S,e� � σ�S, i1,e� � σ�S, i2,e�.
For some reasonable threshold value t and two different values e1 and e2, in respect

of pseudo-randomly generated S-box, σind�S,e1� � σind�S,e2�, where σ�S, i,e1� ' t and
σ�S, i,e2� ' t, is highly unlikely. During our experiments, we generated more than 105

pseudo-random S-boxes. Only in 0.3% of all generated S-boxes a collision was found and
always with length 8. Let’s denote such collision as Γ�S, t,e1,e2, I�, where I is a set of
indexes of columns of SLAT . In Table A.2 (in the Appendix) we give the collisions found
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Fig. 3.9 Some spectra channels for Whirlpool, Zorro and ZUC S0 S-boxes

in some S-boxes. We have found a collision in the Russian Federation’s standardization
agency Kuznyechik S-box [68], which was not visible during our spectra channel analysis.
The indexes of the collision confirm the observations made in [21]. We can apply the same
strategy on LAT rows (instead of columns). In Table A.3 the collisions found in the state
standard of Republic of Belarus (BelT) [131] are given. We further analyzed various S-box
DDT spectra. The collisions found are given in Table A.4. We have found a collision in
π3 S-box of the new encryption standard of Ukraine Kalyna [116]. By applying the same
method to the transformed DDT, more collisions are found in Kalyna and BelT (see Table
A.5). We searched for collisions in S-boxes ACT spectra. In Table A.6 the found collisions
are given.
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We further analyzed the XORT of various S-boxes. A visual interpretation of some XORT
relies on the order in which the columns of XORT are populated. In the original definition,
the columns are populated in lexicographical order. However, we can tweak that order and
populate the XORT by first plotting the n coordinates of a given S-box S�n,n�, then all linear
combinations of S coordinates with two terms, three terms, and so on, until the last column,
which is the XOR of all n coordinates. Such rearrangement makes sense since we group the
XORs of the main building blocks of the S-box (the coordinates) into the most significant
columns of XORT (the left ones). For example, In Figures 3.10a and 3.10b we give the
respectively XORT and rearranged XORT plot of BelT S-box. The lexicographically sorted
XOR reveals some vertical lines, which is not unusual for XOR tables of pseudo-randomly
generated S-boxes. However, the rearranged XORT reveals some interesting leafs-alike
patterns in the upper left section. Furthermore, each consequent column is similar to the
previous column when upward-slide.
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Fig. 3.10 Some XORT spectra channels for BelT S-box





Chapter 4

Binary Sequences and Their
Autocorrelation

Sequences with low autocorrelation functions are necessary for a variety of signal and
information-processing applications. For example, in pulse codes-based compression for
radars and sonars, such sequences are used to obtain high resolution. The shifts of sequences
with low autocorrelation can be also used for better synchronization purposes or to identify
users in multi-user systems. Due to their big practical importance, these sequences have
been widely studied and various methods for constructing sequences with small values of
autocorrelation are developed.

Let B � �b0,b1,�,bn�1� be a binary sequence of length n % 1, where bi " r�1,1x,0 &
i & n�1. The aperiodic autocorrelation function (AACF) of B is given by

Cu�B� � n�u�1

=
j�0

b jb j�u, f or u " r0,1,�,n�1x.
We will note that the AACF is originally defined in the interval

r�n�1,�n�2,�,�2,�1,0,1,2,�,n�1x.
As the AACF is an even function with Cu�B� � �Cu�B�, we will consider it for the intervalr0,1,�,n�1x only. The C0�B� is called mainlobe and the rest Cu�B� for u " r1,�,n�1x
are called sidelobe levels. We define the peak sidelobe level (PSL) [146] of B as

PSL�B� � max
0$u$n

¶Cu�B�¶.
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The value of the PSL can also be represented in decibels

PSLdb�B� � 20log�PSL�B�
n 
 .

Another important measure of an AACF is the merit factor (MF), which gives the ratio
of the energy of the mainlobe level to the energy of sidelobe levels, i.e.

MF�B� � C0�B�
2<n�1

u�1¶Cu�B�¶2
.

The binary sequences of low autocorrelation are of special interest and some of the
well known such sequences are the Barker codes [9], M-sequences [67], Gold codes [66],
Kasami codes [84], Weil sequences [130], Legendre sets [124] and others (see [92][139]).
Barker sequences are known to have the best autocorrelation properties, but the longest
such sequence is of length 13. M-sequences, Gold codes, and Kasami sequences have ideal
periodic autocorrelation functions but have no constraints on the sidelobes of their aperiodic
autocorrelation functions. As summarized in [111], during the years a variety of analytical
constructions and computer search methods are developed to construct binary sequences
with relatively minimal PSL. By an exhaustive search the minimum values of the PSL for
n& 40[96], n& 48[8], n� 64[35], n& 68[88], n& 74[90], n& 80 [91], n& 82 [89] and n& 84
[87] are obtained. The best currently known values for PSL for 85 & n & 105 are published
in [112], and for n ' 106 in [54].

4.1 Efficient Generation of Low Autocorrelation Binary
Sequences

In this section an efficient and easy-to-implement heuristic algorithm is suggested and, as an
illustration of its effectiveness, it was further utilized for the generation of binary sequences
with lengths between 106 and 300. The generated sequences are better, in terms of PSL
values than a significant part of those obtained in [54] ones. The algorithm can also be used
for the generation of sequences with lengths greater than 300.

Since our goal is to lower the PSL of a given binary sequence, i.e. to lower the value
of PSL(B), it makes sense to simultaneously lower the values of each Cu�B�, for u "
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r1,�,n�1x. By making this observation, we define the following fitness function:

F�B� � n�1

=
u�1

¶Cu�B�¶P
�

n�1

=
u�1

���¶
n�u�1

=
j�0

b jb j�u¶
��
P

,

where P is the magnitude of the fitness function, i.e. the higher the magnitude is the higher the
fitness function intolerance to large absolute values of Cu�B�’s will be. We made experiments
with various values of P and the best results were obtained for values in the interval �3,5�.
Lower values of P make the fitness function too tolerant to higher absolute values of the
PSLs Cu�B�, while higher values of P are heavily populating the heuristic topology with
local minimums. We have fixed the magnitude P of the fitness function to 4.

Let’s denote the i-th position of a binary sequence B of length n as bi. Flipping the i-th
position of B is to interchange bi with �bi. By the neighborhood of the binary sequence B,
denoted by N�B�, we define the set of all binary sequences constructed from B by making a
single flip in B.

The optimization process takes as input the length of the binary sequence n, the fitness
function F , the threshold value t, the two integers hmin and hmax defining the flipping
allowance interval, and the goal G which is the desired final PSL value to be reached.

In the beginning, we generate a random binary sequence B of length n. Then, by searching
the neighborhood of B, we look for a better binary sequence, i.e. a binary sequence with
a smaller fitness value. If some X out of the neighbors of B has PSL equal to G we output
X and quit. If during the search of the neighborhood no better binary sequence is found,
we are stuck in some local minimum B¬. In order to escape the local minimum we flip h
randomly chosen elements of B¬, where h" �hmin,hmax�. We will call such try a quake. In the
case when t consecutive quakes are not sufficient to escape the local minimum, we start the
process from the beginning by randomly generating a new binary sequence, i.e. the shotgun
hill-climbing approach. The algorithm stops when a binary sequence with the searched value
of the PSL is found or when the preliminary defined number of restarts is reached. The
pseudo-code of the shotgun hill climbing (SHC) algorithm is given in Algorithm 2.
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Algorithm 2 Shotgun Hill Climbing algorithm for PSL optimization
1: procedure HC(n,F, t,hmin,hmax,G)
2: BinSeq� R�n� V random binary sequence BinSeq with length n
3: thresholdLe f t � t; bestFit � F�BinSeq�
4: globFit � bestFit; BinSeqCopy� BinSeq
5: repeat
6: NB� N�BinSeq� V generation of all neighbors
7: FLAG� True
8: for X " NB do
9: if PSL(X)==G then Output X and Quit

10: end if
11: if F�X� $ bestFit then V a better candidate is found
12: bestFit � F�X�
13: BinSeq� X
14: FLAG� False
15: end if
16: end for
17: if FLAG then
18: if bestFit $ globFit then V a better candidate is found
19: globFit � bestFit; BinSeqCopy� BinSeq
20: thresholdLe f t � t
21: else V a better candidate was not found
22: thresholdLe f t � thresholdLe f t�1
23: if thresholdLe f t % 0 then
24: BinSeq� BinSeqCopy
25: h� RI�hmin,hmax) V h is random integer " �hmin,hmax�
26: FLIP(BinSeq,h) V flip h random bits in BinSeq
27: bestFit � F�BinSeq�
28: else V the threshold is reached
29: BinSeq� R�n�
30: thresholdLe f t � t
31: bestFit � F�BinSeq�
32: globFit � bestFit
33: BinSeqCopy� BinSeq
34: end if
35: end if
36: end if
37: until STOP condition reached V reaching 105 restarts
38: end procedure
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The fitness function is the critical resource demanding routine of the algorithm. However,
its complexity is comparable to the complexity of the binary sequence PSL calculation
itself. The additional negligible overheat is caused by the calculation of the sum of all the
P-powered mainlobes.

The parameter hmin should be tolerant to possible optimizations involving any small
number of flips. Having this in mind and without any restrictions, we choose hmin � 1. On
the other hand, fixing a value of the parameter hmax is a trade-off between accuracy and
flexibility - smaller values of hmax will decrease the algorithm’s chances to escape from a
given local minimum, while higher values of hmax will greatly defocus the climbing routines
(for example, hopping from hill A to another hill B, before reaching the local minimum of
A). During our experiments, we have fixed the value of hmax as *Ón 0, where n is the length
of the starting binary sequence.

Another important parameter is the threshold value t. Choosing a small value of t allows
us to restart the process of searching a binary sequence with a low PSL value and, instead
of losing more time in trying to escape the current local minimum we have stuck at, we
reinitialize the searching procedure by starting from the beginning.

We have tried different meta-heuristic strategies like, for example, the simulated annealing
method and tabu search. However, it appears that regularly reinitializing the current state of
the algorithm, i.e. the core concept of the shotgun hill-climbing method is a more productive
strategy to utilize than the aforementioned ones. The initial state does matter and by having a
low value of t we increase our chances to reinitialize the algorithm from a highly-competitive
candidate. During our experiments, we used a threshold of t � 103.

We present in Table B.1 the obtained by Algorithm 2 results for binary sequences of
lengths from 106 to 300. The second column contains the best-known by us value of the
PSL for the corresponding length. In the third column, we present the best value of the
PSL obtained by the Algorithm 2 and in the fourth the corresponding sequence with this
value of the PSL. The sequences are given in a hexadecimal format where -1’s are replaced
by zeros and the leading -1’s are omitted. For example, the binary sequence of length 11
B � ��1,�1,1,1,�1,1,1,�1,1,1,1� is given by 1b7. The decoding procedure requires the
length of the binary sequence. The corresponding values of the PSL in decibels and of the
merit factor are calculated and given in the fifth and sixth columns respectively.

We improve the PSL values for 95 from the included 195 lengths. The remaining
100 binary sequences have the same values of the PSL as the currently known best ones.
Furthermore, all of them are unique and unpublished before. The obtained in this thesis
results and the best previously known ones are plotted in Fig. 4.1.
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Fig. 4.1 An overview of the shotgun hill climbing algorithm results

The suggested in this section algorithm is highly parallelizable so that a multicore
architecture can be fully utilized. It is implemented in Python on a single mid-range computer
with an octa-core CPU. During our experiments, the time required to reach a given PSL
goal was between a few minutes to several hours. Furthermore, with each instance of the
algorithm, we repeatedly reached binary sequences with lower or the same PSL than the
state-of-the-art algorithms. The results are published in [48].

4.2 On the Generation of Long Binary Sequences with
Record-Breaking PSL Values

M-sequences, Gold codes, and Kasami sequences have ideal periodic autocorrelation func-
tions but have no constraints on the sidelobes of their aperiodic autocorrelation functions, i.e.
their PSL value is not pre-determined. The same is true for Legendre sets and Rudin-Shapiro
sequences. Furthermore, it is difficult to calculate the growth of the PSL of the aforemen-
tioned families of binary sequences. It is conjectured that the PSL values of m-sequences
grow like O�Ón�, making them one of the best methods to straightforwardly construct a
binary sequence with near-optimal PSL value. However, as stated in [81]:
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The claim that the PSL of m-sequences grows like O�Ón�, which appears fre-
quently in the radar literature, is concluded to be unproven and not currently
supported by data.

As summarized in [111], during the years a variety of analytical constructions and
computer search methods are developed to construct binary sequences with relatively minimal
PSL. It appears that the current state of art computer search methods, like CAN [73], ITROX
[140], MWISL-Diag, MM-PSL [141] or DPM [86], could yield better, or at least not worse
PSL values, than the algebraic constructions. However, when the length of the generated
by a given heuristic algorithm binary sequences rises, so is the overall time and memory
complexity of the routine. As concluded in [109]:

As an indication of the runtime complexity of our EA1, the computing time is
58009 s or 16.1136 h for L=1019. For lengths up to 4096, the computing time
required empirically shows a seemingly quadratic growth with L.

Thus, the main motivation of this section is to create an efficient and lightweight algorithm,
in terms of time and memory complexity, to address the heuristic generation of very long
binary sequences with near-optimal PSL values.

Let us denote Cn�i�1�B� by Ĉi�B�. Since this is just a rearrangement of the sidelobes of
B, it follows that:

BPSL � max
0$u$n

¶Cu�B�¶ � max
0&u$n�1

¶Ĉu�B�¶.
We will graphically represent the calculation of values of Ĉi�B� for a binary sequence

of length 8 in Figure 4.2. The x-axis indexes represent the elements of B � �b0,b1,�,b7�,
while the y axes represents the elements of B in reverse order, i.e. �b7,b6,�,b0�. Each cell
of the graphics corresponds to the product provided by the x and y-axis values. To calculate
Ĉi�B� � <i

j�0 b jb j�n�i�1 for some i (0 & i & 7), we start from the cell with coordinates�bi,b7�. Then, by decreasing both indexes of the current cell by 1 we jump to the next cell�bi�1,b6� which will be added to the sum. We continue this process until we reach the cell�b0,b7�i�.
As the value of the mainlobe Ĉ7�B� is always 8, we can exclude it from the PSL calcula-

tion. Having this in mind, we can define the PSL of the binary sequence B as the diagonal
in Figure 4.2 with the highest absolute sum of its elements compared to all other diagonals,
excluding the main one.

Let us denote by bi the flipped bit bi, i.e. bi � �bi and by Ĉi�B j� the sidelobe of the
binary sequence B j, obtained from B by flipping the bit on position j.

1EA stands for Evolutionary Algorithm
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[____________________________]
Fig. 4.2 A visual interpretation of the sidelobe calculation process, for a binary sequence
with length 8

We can further exploit the relations between the value of the sidelobe Ĉi�Ψ� of a given
binary sequence Ψ with length n, and the value of the sidelobe Ĉi�Ψ f �, s.t. the binary
sequence Ψ f is equal to the binary sequence Ψ with the bit on position f flipped. We denote
as ΩΨ the array of all the consequent sidelobes of Ψ, i.e:

ΩΨ � �Ĉ0�Ψ�,Ĉ1�Ψ�,�,Ĉn�2�Ψ��
We denote as ΩΨ f the array of all the consequent sidelobes of Ψ f , i.e:

ΩΨ f � �Ĉ0�Ψ f �,Ĉ1�Ψ f �,�,Ĉn�2�Ψ f ��
For convenience, we further denote the i-th element of a given array A as A�i�. For

example, ΩΨ�3� � Ĉ2�Ψ�.
The calculation of ΩΨ, corresponding to some random binary sequence Ψ, is not linear.

The time complexity of the trivial computational approach is O�n2� (two nested for cycles).
However, as shown in Wiener–Khinchin–Einstein theorem [149], the autocorrelation function
of a wide-sense-stationary random process has a spectral decomposition given by the power
spectrum of that process, we can use one regular and one inverse Fast Fourier Transform
(FFT), to achieve a faster way of calculating ΩΨ. Despite its time complexity of O�n logn�,
its memory requirement is significantly higher than the trivial computational approach.

By exploiting the observations made in this section, we present an algorithm that can cal-
culate the array ΩΨ f , if we hold the array ΩΨ in memory, with time and memory complexity
of O�n�. The pseudo-code of the algorithm is given in Algorithm 3. The following notations
are used:

• min�x,y� : returns x, if x & y; otherwise, returns y.
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• max�x,y� : returns x, if x ' y; otherwise, returns y.

• x �� y : same as x � x� y

• x �� y : same as x � x� y

Algorithm 3 An algorithm for an in-memory flip inside a binary sequence
1: procedure FLIP( f ,Ψ,ΩΨ,n)
2: δmin�min�n� f�1, f �
3: δmax�max�n� f , f �
4: if f & n�1

2 then
5: for q " �0,δmax�δmin�1� do
6: ΩΨ�δmin�q� �� 2Ψ� f �Ψ�n�q�1�
7: end for
8: else
9: for q " �0,δmax�δmin� do

10: ΩΨ�δmin�q� �� 2Ψ� f �Ψ�q�
11: end for
12: end if
13: if f & n�1

2 then
14: for q " �0,n�δmax� do
15: ΩΨ�δmax�q�1� �� 2Ψ� f ��Ψ�2 f �q��Ψ�q��
16: end for
17: else
18: for q " �0,n�δmax�1� do
19: ΩΨ�δmax�q� ��
20: 2Ψ� f ��Ψ�δmax�δmin�q��Ψ�n�q�1��
21: end for
22: end if
23: Ψ� f � �� �1
24: end procedure

The procedure introduced in Algorithm 3 performs an in-place memory update of ΩΨ

when a single bit on position f of Ψ is flipped. Therefore, when the procedure ends, both Ψ

and Ω are transformed to Ψ f and ΩΨ f . We will note that the procedure is reversible, i.e. if
an in-place memory update of ΩΨ f is made, when a single bit on position f of Ψ f is flipped,
both Ψ f and ΩΨ f are transformed back to Ψ and ΩΨ.

The basic ingredients of some heuristic algorithms could be summarized as:

• A: metaheuristic algorithm, like hill climbing, simulated annealing, tabu search, etc.

• I: search operator, which is used to generate the candidates
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• F : fitness function, which is used to compare the candidates

In the previous section, we have used the shotgun hill-climbing as A, a neighborhood
search as I, and the following fitness function as F :

F�B� � n�1

=
u�1

¶Cu�B�¶4
�

n�1

=
u�1

���¶
n�u�1

=
j�0

b jb j�u¶
��
4

,

where B is a binary sequence with length n. However, using shotgun hill-climbing meta-
heuristic algorithm for finding very long binary sequences with low PSL is not time efficient
because the number of hops required to reach some local optimum grows exponentially when
the length of the binary sequence increases.

Using a neighborhood search to consequently pick the best candidate among all neighbors
could be beneficial in finding LBS with low PSL. However, in the aspect of very long binary
sequences, this search strategy is extremely slow. For example, in the case of a binary
sequence with length 216, and I equivalent to a single flip, in each optimization step we need
to fitness all the 216 neighbors of the current state S and to pick the one with the best score
yielded by F . This observation is still true, even if all the neighbors of S have better scores.

To overcome the disadvantages mentioned above, we choose the following strategy:

• A: stochastic hill climbing metaheuristic algorithm. We visit a random neighbor of
the current state S and accept it if it is a better candidate than S. Otherwise, we pick
another neighbor of S and repeat the process.

• I: we choose a single flip as the search operator, so we can exploit the memory and
time efficiency of Algorithm 3.

• F : since Ĉ�B�s are rearrangements of the sidelobes of B, we can use the same fitness
function F�B� as in [48], i.e:

F�B� � n�2

=
u�0

¶Ĉu�B�¶4
�

n�2

=
u�0

Ĉu�B�4

We need to further address the strategy described in A of picking the next candidate,
or neighbor, of S. Let us consider an approach of consistently probing x pseudo-randomly
chosen neighbors. In case a better candidate is found, we accept it; otherwise, we try again,
until we have accumulated a total number of t consequent fails. Then, we announce that we
have reached a local optimum. This model can be described by the Bernoulli distribution.
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The probability to achieve exactly r successes in N trials is equal to:

P�X � r� � �N
r �prqN�r

,

where p and q are the probabilities of success and failure respectively, i.e. q � 1� p. We can
easily calculate P�X � 0�:

P�X � 0� � �N
0�p0qN�0

� qN
� �1� p�N

We further calculate P�X ' 1�:

P�X ' 1� � 1�P�X � 0� � 1� �1� p�N

Thus, relying solely on pseudorandom choices of neighbors is not efficient and there is
always a chance to miss the better candidate. We can increase the probability of finding the
eventual better candidate, but that significantly overhead the optimization process. Missing a
better candidate is undesirable behavior of the optimization process, especially when we are
dealing with very long binary sequences.

The number of neighbors of a binary sequence B with length n is n. Let us denote those
neighbors as i1, i2,�, in, where the j-th neighbor i j is equal to B with flipped bit on position
j. We suggest the following simple search strategy::

1. we pick a pseudorandomly generated neighbor ir

2. we consequently try, for all x " �1,n�1�, the neighbors i�r�x� mod n

We want to emphasize the extreme situation when the local optimum is already reached,
i.e. k � 0. The suggested search strategy will detect that in exactly n steps, which is an
optimal scenario. Furthermore and more importantly, we never miss a better candidate, if
any, and we keep the non-deterministic nature of the search routine at the same time.

We suggest Algorithm 4 for finding very long binary sequences with low PSL which is
based on the above described �A,I,F�. The following notations and functions are used in
the pseudo-code:

• Ψ is a random (initial) binary sequence.

• x,y� a,b is equivalent to the statements x � a and y � b.

• R�n� : a function, which generates a pseudo-random integer number " �0,n�.
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• Q�x,B,ΩB� : a function, which makes x flips at random bit positions in B. We pass
ΩB as an argument, so we can use the in-place memory function Flip. We apply this
function to escape the local minimum when we are stuck in such.

• beacon: we further implant a beacon in the cost function F , so we can simultaneously
calculate the PSL of the given binary sequence. Such an approach adds a negligible
overhead, if any, to the cost function routine.

Algorithm 4 An algorithm for long binary sequences PSL optimization

1: BestCost, Cost� F�ΩΨ�, 0
2: isGImpr, isLImpr� True, False
3: while true do
4: if isGImpr then
5: r� R(n)
6: for i " �0,n� do
7: Flip��r� i�%n,Ψ,ΩΨ,n�
8: Cost� F�ΩΨ� V * the beacon is here *
9: if BestCost % Cost then

10: BestCost� Cost
11: isLImpr� True
12: break
13: else
14: Flip��r� i�%n,Ψ,ΩΨ,n�
15: end if
16: end for
17: if isLImpr then
18: isGImpr, isLImpr� True, False
19: continue
20: else
21: isGImpr� False
22: end if
23: else
24: r� R(4)
25: Q(1+r, Ψ, ΩΨ)
26: isGImpr, isLImpr� True, False
27: end if
28: end while

We emphasize that the complexity of Algorithm 4 mainly depends on the complexity
of Algorithm 3, because in each iteration during the optimization process, Algorithm 3
is called twice, in case the new candidate is worse than the current one, and once, if the
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new candidate is better. The in-memory flip function applied in Algorithm 3 passes only
once through ΩΨ array, without creating any memory overheads, to reach time and memory
complexities of O�n�. The same observation is true for the simple cost function F - it passes
only once through ΩΨ to sum all quadrupled values of its elements. The function Q is a
random number of calls of F (between 1 and 4). The remaining part of Algorithm 4 consists
of simple automaton, which rule the continuous optimization process. Therefore, both time
and memory complexities of Algorithm 4 are O�n�.

We have implemented Algorithm 4 by using the C language and a mid-range computer
station. Given the linear time and memory complexity of the algorithm, we were able to
repeatedly generate binary sequences with record-breaking PSL values for less than a second.
As stated in [109], the time required to reach a PSL value 26, for a binary sequence with
length 1019, is 58009 seconds or 16.1136 hours. For comparison, by using Algorithm 4, we
reach this value for less than a second.

We present the results achieved by Algorithm 4, for binary sequences with lengths x2 for
x" �18,44�, compared with the currently known state of art algorithms found in the literature,
like CAN [73], ITROX [140], MWISL-Diag, MM-PSL [141], DPM [86], 1bCAN [95]. We
will refer to this collection of algorithms as collection A. We want to emphasize, that the
differences between the proposed algorithm with algorithms from collection A are manifold.
For example, we do not use converging functions, mini regular or quadratic optimization
problems, or floating-based arithmetic. Furthermore, the provided algorithm does not suffer
from a unique navigation trace through the sequence search space. The experiments were
based on 12 instances of each algorithm (each ran to a distinct thread of the processor).
Furthermore, the lifetime of our algorithm is restricted to 1 minute. As shown in Figure 4.3,
we significantly outperform the best results achieved by state of art algorithms. In fact, for
some of the lengths, less than a second was needed to reach a record-breaking PSL.

In contrast to some other state-of-the-art algorithms, the computing complexity of the
algorithm presented in this work does not grow quadratically. Maybe this is the reason for
the lack of published results for binary sequences of lengths greater than 212. Nevertheless,
the results with which we can further compare are m-sequences. However, such sequences
exists only for lengths 2n

�1, n ' 1,n " N.
In Table 4.11 we present the best PSL values of binary m-sequences with length n (with

or without rotation), yielded by some primitive polynomial of degree n over GF�2� from
[52] denoted by MF

n and the binary sequences generated by Algorithm 4 denoted by An for
lengths 2n

�1 and 13 & n & 17. As it can be seen from Table 4.11, our results significantly
outperform the best results achieved by m-sequences. The results are published in [49].
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Fig. 4.3 Comparison to other state of the art algorithms known in literature

Table 4.1 Reached PSL values compared to known results from m-sequences exhaustive
search

n 2n
�1 MF

n An

13 8191 85 77
14 16383 125 115
15 32767 175 171
16 65535 258 254
17 131071 363 360

4.3 Hybrid Constructions of Binary Sequences with Low
Autocorrelation Sidelobes

An m-sequence M � �x0,x1,�,x2m�2� of length 2m
�1 is defined by:

xi � ��1�Tr�βα
i�
, for 0 & i $ 2m

�1,

where α is a primitive element of the field F2m , β " F2m , and Tr is denoting the trace function
from F2m to F2.
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Given an odd prime p, a Legendre sequence L with length p is defined by:

Li �

~��������
1, if i is a quadratic residue mod p

�1, otherwise.

We denote as B� ρ the binary sequence obtained from B, by left-rotating it ρ times. By
definition, B� ¶B¶ � B. Furthermore, if bi is the element of B on position i, we will denote
as b

�ρ

i the element of B� ρ on position i.
A comparison, in terms of algorithm efficiency (the ratio of the beneficial work performed

by the algorithm to the total energy invested) and actual effectiveness (the quality of the
achieved results), was made. The best results were achieved by the SHC algorithm, regarding
the binary sequences with lengths less than 300, and HC, for all the remaining lengths.
However, the approximated binary sequence’s length, from which HC starts outperforming
SHC, is fuzzy and yet to be determined.

In Table 4.2 a comparison between the most significant components of SHC and HC was
made. In summary, both heuristic algorithms are not deterministic, i.e. starting from two
identical states rarely results in two identical ending states. The search operator used in both
SHC and HC is the single flip operator. Thus, each modification is a simple composition of
single flips. One major difference between the two algorithms is their complexity. Indeed,
in HC the time complexity of the flip operation is linear, which is a significant advantage
compared to the quadratic one to be found in SHC. Another major difference between HC
and SHC is the probability of missing (failing to detect) a better binary sequence, which is
just 1 flip away from the current position.

As observed in Section 4.2 of the thesis or in our work [49], the PSL-optimization process
of very long binary sequences is a time-consuming routine, despite the algorithm’s linear
time and memory complexities. Thus, HC avoids restarts, i.e. re-initializing the starting state
with a pseudo-random binary sequence. However, re-initialization appears to be significantly
beneficial when dealing with PSL optimization of binary sequences with relatively small
lengths, such as the SHC algorithm.

By considering the observations made above, we have revisited the SHC algorithm:

• The quadratic flip operator was interchanged with the linear flip operator.

• The probing strategy (searching for better candidates) was interchanged with the more
efficient probing strategy introduced in HC.

The complete pseudo-code of the kernel of the revisited SHC algorithm is summarized in
Algorithm 5. For brevity, the following notations were used:
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Table 4.2 A comparison between SHC and HC

SHC HC

Deterministic No No
Search Operator Flip Flip
Complexity O�n2� O�n�
Fitness Function x4 x4

Restarts Yes No
Missing Probability % 0 � 0

• n - the binary sequence’s length

• T - the threshold value of the instance

• F - a fixed fitness function

• V , V� - respectively the current best and the overall best fitness value

• c - the counter. The algorithm quits if the counter c reaches the threshold T

• Z�n - the set of all positive integer numbers strictly less than n

• L, G - binary variables: L (local) is activated if V is improved, while G (global) is
activated if V� is improved

• Bn - the set of all n-dimensional binary sequences with elements from r�1,1x
• Q - the quaking function as defined in Section 4.2. For example, if the input triplet of

Q is x,L,SL, the function flips x random bits in L, and at the same time, in-memory
updating the sidelobe array SL

Considering the significant changes made in the SHC algorithm, the fitness function
parameters are carefully analyzed, re-evaluated, and updated. Given a binary sequence Ψ,
both algorithms (SHC and HC) are sharing the same fitness function F , s.t:

F�Ψ� � =
x"ΩΨ

¶x¶4
� =

x"ΩΨ

x4

During our previous experiments, we reached to the conclusion that interchanging the power
4 with larger or smaller value, is respectively too intolerant or too tolerant to the largest
elements in ΩΨ. However, since significant changes to the kernel of SHC were made, this
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Algorithm 5 The Shotgun Hill Climbing revisited kernel
1: procedure SHC(n,T)
2: pick Ψ " Bn

3: V�, V , G, L, c� F�ΩΨ�, 0, True, False, 0
4: while c $ T do
5: c �� 1
6: if G then
7: pick r " Z�n
8: for i " �0,n� do
9: flip��r� i�%n,Ψ,ΩΨ�

10: if V� % F�ΩΨ� then
11: V�, L� F�ΩΨ�, True
12: break
13: else
14: flip��r� i�%n,Ψ,ΩΨ�
15: end if
16: end for
17: if L then
18: G, L� True, False
19: continue
20: else
21: G� False
22: end if
23: else
24: pick r " Z�4
25: Q(1+r, Ψ, ΩΨ)
26: G, L� True, False
27: end if
28: end while
29: end procedure
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observation is to be re-evaluated by a series of experiments. More precisely, given a fixed
threshold T, and the fitness function <x"ΩΨ

¶x¶α , a comparison between the efficiency of
different α values is measured.

In Table 4.3 the results regarding binary sequences with length 100 are given. Each row
of the table corresponds to a different experiment. For a more informative measurement of
the overall efficiency of the experiments, another variable VY was introduced. It measures
the median value of all the best values V�. More formally, if ti denotes the thread i of a given
experiment E with R restarts, and if the best results achieved by ti is denoted as V�i , then

VY �
<i"EV�i

R

At first, the numerical experiments suggest α � 3 as a near-optimal value for achieving the
best results. Indeed, given a binary sequence with length 100, and �α,R,T� � �3,102

,104�,
the value of VY is smaller compared to the other experiments’ values. This observation
is more clearly visible throughout the experiments with binary sequences having length
256 summarized in Table 4.4 and binary sequences with length 500 (see Table 4.5 and
the triplet �α,R,T� � �3,102

,104� with VY � 11.51). However, this tendency of α � 3
supremacy over integer values of α is not observable throughout larger values of n. As
summarized in Table 4.6, the triplet �α,R,T� � �4,102

,104� yields better characteristics
than �α,R,T� � �3,102

,104�. In fact, the quality of the binary sequences yielded by the
triplet �α,R,T�� �4,102

,103�, having VY equal to 24.81, is almost the same as those binary
sequences generated by the triplet �α,R,T� � �3,102

,104� with VY � 24.98. Since the first
threshold value (103) is ten times smaller than the second one (104), and given the negligible
difference of the binary sequences’ quality (0.17), this correlation is particularly beneficial
and could be further exploited to reduce the overall time needed for the binary sequences
optimization routines.

During the final two experiments, considering the bigger sizes of the binary sequences,
the threshold value is fixed at 103. However, the data gathered throughout the previous
experiments suggested that if we have a triplet �n,R,T1� measured with VY1 , then, given
T1 ' 103 and some threshold value T2 %% T1, such that the triplet �n,R,T2� is measured
with VY2 , then VY2 $VY1 .

In Tables 4.7 and 4.8, triplets of the form �α,102
,103� were analyzed, corresponding to

binary sequences with respective lengths of 2048 and 4096. It appears that the longer the
binary sequence is (n), the larger the aggression of the optimization routine should be (α).
Indeed, in the case of n � 2048, the best value of VY � 36.74 is calculated by using α � 5,
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Table 4.3 Efficiency and comparison of various triplets �α,T,100�
n α R T V� VY

100 1 102 103 7 7.63
100 1 102 104 6 7.00
100 2 102 103 6 6.95
100 2 102 104 6 6.72
100 3 102 103 6 6.94
100 3 102 104 6 6.70
100 4 102 103 7 7.00
100 4 102 104 6 6.94
100 5 102 103 7 7.00
100 5 102 104 6 6.95
100 6 102 103 7 7.10
100 6 102 104 7 7.00
100 7 102 103 7 7.23
100 8 102 103 8 8.26

Table 4.4 Efficiency and comparison of various triplets �α,T,256�
n α R T V� VY

256 1 102 103 13 14.66
256 1 102 104 13 13.94
256 2 102 103 11 11.98
256 2 102 104 11 11.72
256 3 102 103 11 11.92
256 3 102 104 11 11.51
256 4 102 103 11 11.99
256 4 102 104 11 11.84
256 5 102 103 12 12.22
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Table 4.5 Efficiency and comparison of various triplets �α,T,500�
n α R T V� VY

500 1 102 103 21 23.19
500 1 102 104 21 22.10
500 2 102 103 17 17.83
500 2 102 104 16 17.04
500 3 102 103 16 16.94
500 3 102 104 16 16.61
500 4 102 103 16 17.04
500 4 102 104 16 16.89

Table 4.6 Efficiency and comparison of various triplets �α,T,1024�
n α R T V� VY

1024 1 102 103 34 38.50
1024 1 102 104 34 35.96
1024 2 102 103 27 28.27
1024 2 102 104 26 27.12
1024 3 102 103 24 25.43
1024 3 102 104 24 24.81
1024 4 102 103 24 24.98
1024 4 102 104 24 24.16
1024 5 102 103 25 25.32
1024 6 102 103 25 25.98
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Table 4.7 Efficiency and comparison of various triplets �α,T,2048�
n α R T V� VY

2048 1 102 103 58 65.64
2048 2 102 103 41 44.32
2048 3 102 103 37 38.27
2048 4 102 103 36 36.99
2048 5 102 103 36 36.74
2048 6 102 103 36 36.91

Table 4.8 Efficiency and comparison of various triplets �α,T,4096�
n α R T V� VY

4096 1 102 103 99 110.11
4096 2 102 103 64 68.48
4096 3 102 103 55 57.47
4096 4 102 103 53 54.91
4096 5 102 103 53 54.17
4096 6 102 103 53 54.16
4096 7 102 103 53 54.28

while in the case of binary sequences with lengths n � 4096, the best value of VY � 54.16 is
yielded by using α � 6.

As previously discussed, binary sequences with lengths up to 84 and PSL-optimal values
have been already discovered by using various exhaustive search strategies. This data is
particularly beneficial for measuring the efficiency of a given PSL-optimizing algorithm.
In other words, given a search space with binary sequences with some fixed length n & 84,
and some PSL-optimizing algorithm A with a reasonable threshold value, the best results
achieved by A could be compared with the already known optimal PSL values.

During our experiments, we used a single general-purpose computer with a 6-cored central
processing unit architecture, capable of running 12 threads simultaneously. Surprisingly, by
using the SHC revisited kernel, as well as a fixed value of α � 2, we were able to reach binary
sequences with optimal PSL values for each length in �1,82�. Given the linear time and
memory complexities of the algorithm, for the majority of those lengths, the PSL-optimal
binary sequences were reached for less than a minute. However, for some border cases, the
needed time was a few hours. The best results yielded by our experiments are summarized in
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Table B.2. A remark should be made, that we have included just one PSL-optimal binary
sequence for a given length. However, for almost each fixed length, the algorithm was able to
find more than one binary sequence having an optimal PSL value. The binary sequences are
given in a hexadecimal format, by omitting the leading zeroes. In the last column of Table
B.2, beside the corresponding optimal PSL value of the hexadecimal binary sequence given
in column 2, the symbol + was used to illustrate some approximation of the time needed for
Algorithm 2 to reach a PSL-optimal binary sequence:

• + � minute

• ++ � hour

• +++ � day

For all other cases, the algorithm was able to reach the optimal PSL for less than a minute,
and in some cases, for less than a second.

The results achieved throughout the experiments described in this section demonstrated
the efficiency of Algorithm 5. Thus, we have further launched the algorithm on binary
sequences with lengths up to 300. The results are given in Table B.3. The binary sequences
with record-breaking PSL values are further highlighted with the symbol ] (the black
triangle pointing down). Almost all of the results known in the literature were improved.
More precisely, we have improved 179 out of 195 cases. Curiously, for some lengths, we
have even revealed binary sequences with record-breaking PSL values, having a distance
of 2 to the previously known PSL record value. We will mark those improvements with a
double black triangle symbol. An example of such length is 229.

In [36], the best results achieved by the D-Wave 2 quantum computer for binary sequences
with length 128 is PSL 8, while Algorithm 5 could reach PSL 6. For longer lengths, for
example, binary sequences with lengths 256, the best PSL achieved by the D-Wave 2 quantum
computer was 12, while during our experiments we reached PSL values of 10. We reached
PSL values of 10 for binary sequences up to 271. For completeness, since the D-Wave 2
quantum computer is tested on binary sequences with length 426, we have further launched
Algorithm 2 on the same length. Surprisingly, the algorithm was able to find binary sequences
with PSL values of 17 (the best value achieved by the quantum computer) for less than a
second. It reached PSL values of 16, and even 15, for less than a second as well. However,
PSL value of 14 (see Table B.4) was noticeable harder to reach (199 seconds). During this
optimization routine, and driven by the results provided in Table 4.5 (since 500 is close to
426), we have updated the α value to 3.

Recently, in [37] a multi-thread evolutionary search algorithm was proposed. By using
Algorithm 5 we were able to improve almost all of the best PSL values from the aforemen-
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tioned paper - usually for less than a second. For example, the best PSL value for binary
sequences with length 3000 achieved in [37] is 51. We have launched Algorithm 2 on binary
sequences with the same length. It should be emphasized (see Tables 4.7 and 4.8), that the α

parameter should be increased to 6. Record-breaking PSL values of 44 and 43 were reached
for respectively 111 and 371 seconds. In Table B.4 an example of such binary sequence
(2nd row) is given. The last column of the table provides a more quantitative measure of the
record: ]x denotes that the corresponding binary sequences possess a record-breaking PSL
equal to P� x, where P was the previously known record.

The reasoning behind announcing one binary sequence as long, or short, is ambiguous.
Measuring the largeness of a given binary sequence is probably more related to the capabilities
of the used algorithm than the actual length itself. From a practical point of view, some
algorithms, or their implementations, would not even start the optimization (or construction)
process, since their computational capabilities (or hardware restrictions) would not be able
to process the desired length. For example, as discussed in [36], the usage of a 512-qubit
D-Wave 2 quantum computer limits the code length that can be handled, to at most 426,
due to a combination of overhead operations and qubits unavailability. Moreover, it was
estimated that a 2048-qubit D-Wave computer could handle binary sequences with lengths
up to 2000. Hence, the exact fixed value differentiating short from long binary sequences is
still unclear.

In Table 4.9 some detailed time measurements of binary sequences with lengths 2g
�1,

for g " N,g " �13,17� are given. The binary sequences are specially chosen to exactly
match the lengths of the well-known m-sequences, generated by some primitive polynomial
of degree g over GF�2� denoted by M (see [52]) and the binary sequences generated by
Algorithm 5 denoted by A. The α parameter was fixed to 4. The last column (A) denotes
the time needed for Algorithm 5 to reach the corresponding PSL (s, m, h, and D denote
respectively seconds, minutes, hours and days). Evidently, the longer the m-sequence, the
harder for Algorithm 5 to find binary sequences with better PSL values is. For example,
Algorithm 5 required approximately 3 days to find a binary sequence of length 131071 with
lower PSL than the optimal m-sequence having the same size. Given a PSL-optimizing
algorithm A we will reference the length n of a binary sequence as A -long if the expected
time from A , starting from a pseudo-randomly generated binary sequence with length n,
to reach a binary sequence with PSL p, s.t. p & �Ón$, and by using single general purpose
processor, is more than 1 day. Otherwise, we will reference it as A -short. Throughout the
radar literature statements that the asymptotic PSL of m-sequences grows no faster than orderÓ

n, were frequently made. However, as shown in [81], this assumption was not supported
by theory or by data. Nevertheless, it appears that the PSL-optimal m-sequences are very
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Table 4.9 Time required to find better PSL values compared to known results from m-
sequences exhaustive search

g n � 2g
�1 MF

n(PSL) A (PSL) T
13 8191 85 84 19s
13 8191 85 83 23s
13 8191 85 82 28s
13 8191 85 81 1.5m
13 8191 85 80 6.95m
13 8191 85 79 4.37h
13 8191 85 78 8.04h
13 8191 85 77 13.24h
14 16383 125 124 44s
14 16383 125 123 1.16m
14 16383 125 122 4.70m
14 16383 125 121 4.72m
14 16383 125 120 5.30m
14 16383 125 119 14.15m
14 16383 125 118 20.26m
14 16383 125 117 20.37m
14 16383 125 116 1.49h
14 16383 125 115 1.49h
15 32767 175 174 47.27m
15 32767 175 173 47.28m
15 32767 175 172 3.09h
15 32767 175 171 3.10h
16 65535 258 257 9.42m
16 65535 258 256 22.79m
16 65535 258 255 22.80m
16 65535 258 254 22.81m
17 131071 363 362 2.95D
17 131071 363 361 2.95D
17 131071 363 360 2.95D
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close to
Ó

n (see [44]). Thus, the threshold value of �Ón$ is based on the expectation that the
optimal PSL value for a given binary sequences with length n is less than *Ón0.

From now on, we denote Algorithm 5 as A with fixed α value to 4 if not specified
otherwise. During our experiments and by using A , we have reached the conclusion that all
binary sequences with lengths n, s.t. n% 105 are A -long. In this section, we have investigated
some hybrid constructions which could be applied in those cases when the binary sequences
are A -long.

4.3.1 Using A as an m-sequences extension

The following procedure is proposed:

• Choose a primitive polynomial f over F2m

• Fix an initial element a over F2m

• Convert f to a linear-feedback shift register L

• Expand the L to a binary sequence L, ¶L¶ � 2m
�1.

• Launch A with L as an input

The primitive polynomials over F2m could be calculated in advance. Furthermore, the
PSL of L, where L is seeded by some initial element a over F2m , could be specially chosen to
have the minimum possible value. This is easily achievable by using the theorems discussed
later in this chapter (see Subsection 4.3.3):

The aforementioned procedure could be better illustrated by an example. If we fix m� 17,
we could pick the primitive polynomial f � x17

�x14
�x12

�x10
�x9

�x�1 over F217 . Before
converting f to a linear-feedback shift register L , we should fix the starting state of L .
Throughout this example, a is fixed to the initial state of L :

�0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1�
Then, L is expanded to L. By using single instruction, multiple data (SIMD) capable
device and starting with L, we could efficiently enumerate all 217 different binary sequences
generated by all possible starting states, to find the one generating the minimum PSL value.
More formally, a value ρmax, s.t. ¾ρ � �L� ρmax�PSL & �L� ρ�PSL. Considering f and
the fixed value of a, in this specific case the value of ρmax is 15150, or more precisely,�L� ρmax�PSL � 363.
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Experiments with initializing A (α=6) with L� ρmax, instead of pseudo-randomly
generated binary sequences, were made. We were able to repeatedly reach record-breaking
binary sequences of length 131071 having PSL equal to 359. The time required was less than
2 minutes, which was a significant improvement over the time required for A (starting from
pseudo-randomly generated sequences) to reach binary sequences with PSL close to 359:
approximately 3 days. Leaving A to work for another 46 minutes it even reached binary
sequences of length 131071 with PSL 356.

The proposed procedure, as demonstrated, is highly efficient and is capable to reach
binary sequences with A -long lengths and record-breaking PSL values for a few minutes.
Unfortunately, it is applicable on binary sequences with lengths of the form 2n

� 1 only.
However, throughout the next section, we provide another procedure that can generate binary
sequences with length p and record-breaking PSL values, where p is a prime number.

4.3.2 Using A as an Legendre-sequences extension

The following procedure is proposed:

• Choose a prime number p

• Generate the sequence L � �t1, t2,�, tp�
• For i, s.t. i " N, 1 & i & p, and in case i is a quadratic residue mod p, replace ti with 1.

Otherwise, replace ti with -1.

• Launch A with L as an input

As the numerical experiments suggested in [44], it is highly unlikely that a Legendre
sequence with length p, for p % 235723, or any rotation of it, would yield a PSL value less
than

Ó
p. Having this in mind, experiments with initializing A (α=8) with a rotation of

Legendre sequence with length 235747 were made (the next prime number after 235723).
Again, by using SIMD-capable devices, we have extracted the PSL-optimal rotation among
all possible rotations of a Legendre sequence with length 235747. More precisely, on rotation
60547, a binary sequence with PSL equal to 508 was yielded. Surprisingly, A was able
to significantly optimize this binary sequence. As shown in Table 4.10, for less than 25
minutes, using only 1 thread of a Xeon-2640 CPU with a base frequency of 2.50 GHz, a
binary sequence with PSL equal to 408 was found.

Since
Ó

235747 � 485.54, it follows that 408 is significantly smaller than the expected
value of 485.54. In fact, by leaving A for a total of 2.21 hours, a binary sequence with length
235747 and PSL 400, or 108], was reached. More details could be found in [47].
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Table 4.10 Time required for A to reach smaller PSL values, when launched from a rotated
Legendre sequence with length 235747 and rotation value 60547.

PSL T

496 1s
482 6s
462 15s
442 24s
422 9.75m
411 12.4m
410 18.9m
409 23.4m
408 23.7m

4.3.3 On the Aperiodic Autocorrelations of Rotated Binary Sequences

The maximal length shift register sequences, or m-sequences, is a well-known algebraic
design [67]. Unfortunately, they are defined for lengths 2n

�1 only (n " N). Nevertheless, as
shown in [52], their extensive study could provide valuable insights into understanding the
world of binary sequences possessing low aperiodic autocorrelation characteristics. However,
finding the PSL-optimal m-sequences is a rigid and tedious task - during each iteration, the
PSL value of a given binary sequence B, altogether with all possible rotations of B, should
be calculated. In [81], an exhaustive search of PSL-optimal m-sequence with lengths up
to 215

� 1 is given. Later, in [52], the exhaustive search study was extended with results
regarding m-sequences with lengths 216

�1 and 217
�1. Since then, no progress was made.

Similar to the problem of finding PSL-optimal m-sequences, finding PSL-optimal Legen-
dre sequences involves a significant computational burden - during each iteration, the PSL
value of the binary sequence, altogether with all possible rotations of B, should be calculated.
This explains why the numerical results regarding the PSL-optimal Legendre sequences are
scarce. For example, in [135], Fig.4, a list of all PSL-optimal Legendre sequences, up to
length 3500 only, is given.

The routine of finding the minimum PSL among all the possible rotations of a given
binary sequence plays an important role in the overall computational burden. By making
some observations of the behavior of the sidelobes array in a rotated sequence, we were
able to project the routine to a perfectly balanced parallelizable algorithm. This allows us to
efficiently utilize the computational possibilities of modern GPUs. Hence, we were able to
exhaustive search all m-sequences with lengths 218

�1, 219
�1 and 220

�1, as well as finding
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all optimal Legendre sequences with lengths up to 432100 - something out of reasonable
computational reach until now.

We denote as B� ρ the binary sequence obtained from B, by left-rotating it ρ times. By
definition, B� ¶B¶ � B. Furthermore, if bi is the element of B on position i, we will denote
as b

�ρ

i the element of B� ρ on position i.

Theorem 4.3.1. Given a binary sequence B � b0b1�bn�1 with length n, the following
property holds:

Ĉi�B� 1��Ĉi�B� � b0 �bi�1�bn�i�1�
Proof 4.3.1. By definition,

Ĉi�B� � i

=
j�0

b jb j�n�i�1

Since B� 1 is the left-rotated version of B,

Ĉi�B� 1� � i

=
j�0

b� j�1 mod n�b� j�1�n�i�1 mod n�

Thus, Ĉi�B� 1��Ĉi�B� is equal to:

i

=
j�0

b� j�1 mod n�b� j�1�n�i�1 mod n��
i

=
j�0

b jb j�n�i�1 � (4.1)

i

=
j�0

b� j�1 mod n�b� j�n�i mod n��
i

=
j�0

b jb j�n�i�1 � (4.2)

i

=
j�0

b� j�1 mod n�b� j�n�i mod n��
i�1

=
j��1

b j�1b j�1�n�i�1 � (4.3)

i

=
j�0

b� j�1 mod n�b� j�n�i mod n��
i�1

=
j��1

b j�1b j�n�i � (4.4)

i�1

=
j�0

b� j�1 mod n�b� j�n�i mod n��b�i�1 mod n�b�i�n�i mod n�� (4.5)

i�1

=
j�0

b j�1b j�n�i�b�1�1b�1�n�i (4.6)

Since i$ n�1 and j & i�1, we have j $ i$ n�1. Thus, � j�1� mod n� j�1. However,
since j $ i, or j� i $ 0, we have j� i� n $ n. Thus, � j� n� i� mod n � j� n� i. Hence,
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Ĉi�B� 1��Ĉi�B� could be further simplified to:

i�1

=
j�0

b j�1b j�n�i�bi�1b�n mod n�� (4.7)

i�1

=
j�0

b j�1b j�n�i�b0bn�i�1 � (4.8)

bi�1b0�b0bn�i�1 � b0�bi�1�bn�i�1� (4.9)

Theorem 4.3.2. Given a binary sequence B � b0b1�bn�1 with length n, the difference
Ĉi�B� ρ��Ĉi�B� �ρ �1�� is equal to b�ρ�1� mod n�b�i�ρ� mod n�b�n�i�ρ�2� mod n�.

Proof 4.3.2. Since B � b0b1�bn�1, it follows that B� 1 � b�1
0 b�1

1 �b�1
n�1, or in the more

general case B� j � b� j
0 b� j

1 �b� j
n�1. Thus, by using Theorem 4.3.1:

Ĉi�B� ρ��Ĉi�B� �ρ �1�� � (4.10)

b
��ρ�1�
0 �b

��ρ�1�
i�1 �b

��ρ�1�
n�i�1 	 (4.11)

However, by definition, b�1
i is the element of B� 1 on position i. Thus, b�1

i � b�i�1� mod n.
In the general case, b�x

i � b�i�x� mod n. By using those relations, we can substitute:

b
��ρ�1�
0 �b

��ρ�1�
i�1 �b

��ρ�1�
n�i�1 	 � (4.12)

b�0�ρ�1� mod n �b�i�1�ρ�1� mod n�b�n�i�1�ρ�1� mod n� � (4.13)

b�ρ�1� mod n �b�i�ρ� mod n�b�n�i�ρ�2� mod n� (4.14)

Let us denote as ΩB the array of all the sidelobes of a some binary sequence B with
length n, or more formally: ΩB � �Ĉ0�B�,Ĉ1�B�,�,Ĉn�2�B��. By using Theorem 4.3.2 and
the inherited relationship between elements of ΩB�ρ and ΩB��ρ�1�, we can calculate ΩB�ρ ,
given ΩB��ρ�1�, by using n� 1 distinct parallel threads. Two very beneficial properties
should be emphasized:

• The threads are independent of each other.

• The pool of the threads is perfectly balanced in terms of synchronization, i.e. if we
have two distinct threads ti and t j, the arithmetic operations involved throughout the
calculation process of ti and t j are the same.
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This scenario suits well in the context of the single instruction, multiple data (SIMD)
model [56]. We could dedicate the calculation of Ĉi�B� ρ� to a thread ti only since the
aforementioned calculation is independent of other threads’ results. Moreover, to optimize
the routine further, we could just in-memory replace the values of Ĉi�B�, i.e. ΩB, with the
consequent values of Ĉi�B� ρ�, i.e. ΩB�ρ , for ρ " �1,n�1�. The pseudo-code of the
algorithm is given in Algorithm 6. Throughout the pseudo-code, we have used the following
notations:

• x� y: same as x � y

• x� � y: same as x � x� y

• ΩB�i�: the i-th element of ΩB, i.e. Ĉi�B�
• max ¶ΩB¶: the maximum absolute value of ΩB

• **s**y**n**c**: we await all threads to synchronize (otherwise max ¶ΩB¶ could lead
to an ambiguous result)

Algorithm 6 A GPU algorithm for extracting the minimum PSL value of B, and all possible
rotations of B

1: procedure EXTRACT(B,n)
2: ΩB� �Ĉ0�B�,Ĉ1�B�,�,Ĉn�2�B��
3: minPSL� n
4: for ρ " �0,n�1� do
5: ti �ΩB�i�� �
6: b�ρ�1� mod n �b�i�ρ� mod n�b�n�i�ρ�2� mod n�
7: **s**y**n**c**
8: if max ¶ΩB¶ $ minPSL then
9: minPSL�max ¶ΩB¶

10: end if
11: end for
12: end procedure

The observations made in the previous section allow us to design a fast routine for finding
the minimum PSL among all the possible rotations of a given binary sequence. Our first
practical application was an exhaustive search of all m-sequences with fixed lengths. The
proposed algorithm could be summarized as follow:

• Choose a primitive polynomial f over F2m

• Fix an initial element β over F2m .
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• Convert f to a linear-feedback shift register Γ with a starting state set to β .

• Expand the Γ period to a binary sequence L with length 2m
�1.

• Launch Algorithm 6.

• Output the value reached by the previous step.

Since the period of the LSFR L is equal to 2m
�1, the proposed algorithm would iterate

through all possible starting states of expanded LSFRs constructed from f . Thus, we
can conclude that the aforementioned algorithm will find the smallest achievable PSL by
m-sequence generated by f with all possible starting states.

The proposed algorithm could be also successfully utilized in finding optimal Legendre
sequences. Thus, the following routine is proposed:

• Choose a prime number p.

• Generate the sequence X � �x1,x2,�,xp�.

• For i, s.t. i " N, 1 & i & p, and in case i is a quadratic residue mod p, replace xi with 1.
Otherwise, replace xi with -1.

• Launch Algorithm 6.

• Output the value reached by the previous step.

We have implemented the m-sequence exhaustive search algorithm by using an amalgam
of programming languages2 and GPUs as SIMD-capable devices. To analyze the efficiency
of our implementation, we have further compared it to the popular scientific computing
library NumPy [115]. More specifically, we compare the proposed algorithm with the naive
approach of PSL re-calculation by using NumPy. The following notations are used:

• s, m, h, D, Y - seconds, minutes, hours, days, years

• *X* S - the time library X required for a single PSL calculation

• *X* R - the overall time which a given library X required for the PSL calculations of
all the distinct rotations of a given binary sequence

2C, Python, SageMath, CUDA
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Table 4.11 GPU algorithm vs CPU NumPy naive approach

n 2n
�1 NumPy S NumPy R (estimation) CUDA R

15 32767 1.3s 11.8h 1s
16 65535 4.3s 78.3h 2s
17 131071 16.3s 25D 4s
18 262143 1m4s 194D 14s
19 524287 4m15s 4.2Y 48s
20 1048575 18m5s 36Y 3m11s

During the comparison, a mid-range GPU with approximately 1200 CUDA cores and a
mid-range CPU with 6 cores (12 threads) were used. The results are given in Table 4.11. For
example, by using a single mid-range GPU, altogether with the aforementioned algorithm,
the time required to find the PSL-optimal binary sequence, among the set comprised of a
binary sequence B of length 220

�1 and all the possible rotations of B, would be 191 seconds.
For completing the same calculation on a mid-range CPU, and by using a single thread, the
required time would be approximately, based on estimation, 36 years. This results in an
approximate speed-up factor of 222.5.

The proposed algorithm allowed us to successfully exhaust search all possible m-
sequences with lengths 218

� 1, 219
� 1 and 220

� 1. To achieve that, we first created a
list of all the primitive polynomials of the corresponding degree. Then, for each polynomial,
we launched the proposed algorithm. In Table 4.12 we present the optimal PSL values
achieved by the exhaustive search routine. The best PSL values known before this work,
to be found in [52], are denoted as π , while the optimal PSL values achieved by our work
are denoted as Π. It should be emphasized, that the comparison provided in Table 4.11, for
some n, does not reflect the actual time needed for exhaustive search of all m-sequences
with length 2n

�1, but just the minimum PSL yielded by all possible rotations of a binary
sequence generated by just one primitive polynomial. For example, the actual time needed
for finding the optimal PSL value among all m-sequences with length 220

�1, with or without

rotations, is approximately 191 seconds multiplied by
φ�220

�1�
20 � 24000, or a total of 54

GPU days. However, by using NumPy and a naive approach, the time required would be
approximately 864000 (single-thread) CPU years. Example of primitive polynomials yielding
the PSL-optimal m-sequences, when rotated, could be found in 4.15, 4.16 and 4.17.

x18
� x15

� x14
� x13

� x6
� x3

� x2
� x�1 (4.15)

x19
� x17

� x14
� x10

� x9
� x8

� x6
� x5

� x3
� x2

�1 (4.16)
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Table 4.12 Optimum PSL values achieved during the exhaustive search

n 2n
�1 π Π �Ó2n�1$

18 262143 544 507 511
19 524287 775 731 724
20 1048575 1066 1024 1023

Fig. 4.4 A complete map of the optimal PSL values of all the Legendre sequences with
lengths less than 432100, with or without rotation.

x20
� x16

� x15
� x14

� x13
� x12

� x11
� x10

� x9
� x8

� x7
� x6

� x4
� x�1 (4.17)

We were able to successfully reveal all the optimal PSL values for Legendre sequences
up to length 432100. In Figure 4.4, an overview of the optimal Legendre sequences is given.

It could be observed (depicted with a dashed line), in the beginning, the resulting trace
stays very close to the line y �

Ó
n. It appears, that the beam comprised of the PSL-optimal

Legendre sequence values, at least up to length 217, is still able to cover the y trace. However,
a tendency of overall PSL-increasing, compared to line y, could be noticed. Indeed, during
our experiments, we were not able to find a Legendre sequence B, having length n greater
than 235723, such that B, or rotations of B, yield a PSL value less or equal to

Ó
n. Combining

this fact with the overall tendency of PSL beam increasing, we conjecture that all Legendre
sequences, with or without rotation, and with lengths n % 235723, could not reach a PSL
value less or equal to

Ó
n. The results are published in [44].





Chapter 5

Binary Sequences and the Merit Factor
Problem

The merit factor problem is of practical importance to manifold domains, such as digital
communications engineering, radars, system modulation, system testing, information theory,
physics, and chemistry. However, the merit factor problem is referenced as one of the most
difficult optimization problems and it was further conjectured that stochastic search proce-
dures will not yield merit factors higher than 5 for long binary sequences (sequences with
lengths greater than 200). Some useful mathematical properties related to the flip operation
of the skew-symmetric binary sequences are presented in this chapter. By exploiting those
properties, the memory requirement of state-of-the-art stochastic merit factor optimization
algorithms could be reduced from O�n2� to O�n�. As a proof of concept, a lightweight
stochastic algorithm was constructed, which can optimize pseudo-randomly generated skew-
symmetric binary sequences with long lengths (up to 105

� 1) to skew-symmetric binary
sequences with a merit factor greater than 5. An approximation of the required time is also
provided. The numerical experiments suggest that the algorithm is universal and could be
applied to skew-symmetric binary sequences with arbitrary lengths.

5.1 On the Skew-Symmetric Binary Sequences and the
Merit Factor Problem

If Fn denotes the optimal (greatest) value of the merit factor among all sequences of length
n, then the merit factor problem could be described as finding the value of limsupn��Fn.
Several conjectures regarding the limsupn��Fn value should be mentioned. The first
conjecture published in [75] assumes that limsupn��Fn � 6. A more extreme conjec-
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ture that limsupn��Fn �� is given by Littlewood [97]. In [28], it was conjectured that
limsupn��Fn � 5. Golay [63] assumed that the expected value of limsupn��Fn is very
close to 12.32. However, in [64] he added that "...no systematic synthesis will ever be found
which will yield higher merit factors [than 6]...". Nevertheless, in [22] it was conjectured that
limsupn��Fn % 6.34. The latest assumption is based on the specially constructed infinite
family of sequences.

Since the merit factor problem has resisted more than 50 years of theoretical attacks,
a significant number of computational pieces of evidence were collected. They could be
divided into exhaustive search methods and heuristic methods.

Regarding the exhaustive search methods, the optimal merit factors for all binary se-
quences with lengths n & 60 are given in [105]. Twenty years later, the list of optimal merit
factors was extended to n & 66 [118]. The two largest known values of Fn are 14.1 and
12.1 for n equals respectively 13 and 11. It should be mentioned that both of those binary
sequences are comprised of the Barker sequences [9]. In fact, in [80] the author published
a personal selection of challenges concerning the merit factor problem, arranged in order
of increasing significance. The first suggested challenge is to find a binary sequence X of
length n % 13 for which F�X� ' 10.

A reasonable strategy for finding binary sequences with near-optimal merit factors is
to introduce some restriction on the sequences’ structure. A well-studied restriction on the
structure of the sequence has been defined by the skew-symmetric binary sequences, which
were introduced by Golay [60]. Having a binary sequence �b0,b1,�,b2l� of odd length
n � 2l�1, the restriction is defined by

bl�i � ��1�ibl�i for i � 1,2,�, l.

Golay observed that odd-length Barker sequences are skew-symmetric. Therefore, an
idea of binary sequences’ sieving was proposed [62]. Furthermore, as shown in [60], all
aperiodic autocorrelations of a skew-symmetric sequence with even indexes are equal to 0.

The optimal merit factors for all skew-symmetric sequences of odd length n & 59 were
given by Golay himself [62]. Later, the optimal merit factors for skew-symmetric sequences
with lengths n & 69 and n & 71 were revealed respectively in [65] and [41], while the optimal
skew-symmetric solutions for n & 89 and n & 119 were given in respectively [125] and [118].

It should be noted, that the problem of minimizing Fn is also known as the "low au-
tocorrelated binary string problem", or the LABS problem. It has been well studied in
theoretical physics and chemistry. For example, the LABS problem is correlated with the
quantum models of magnetism. Having this in mind, the merit factor problem was attacked
by various search algorithms, such as the branch and bound algorithm proposed in [118], as
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well as stochastic search algorithms like tabu search [72], memetic algorithm combined with
tabu search [57], as well as evolutionary and genetic algorithms [41] and [106]. However,
since the search space grows like 2n, the difficulty of finding long binary sequences with
near-optimal Fn significantly increases. Bernasconi predicted that [14] " ... stochastic search
procedures will not yield merit factors higher than about Fn � 5 for long sequences". By
long sequences, Bernasconi was referring to binary sequences with lengths greater than
200. Furthermore, in [41] the problem was described as " ... amongst the most difficult
optimization problems".

The principle behind basic search methods could be summarized as moving through
the search space by doing tiny changes inside the current binary sequence. In the case of
skew-symmetric binary sequences, Golay suggested [61] that only one or two elements
should be changed at a given optimization step. In case the new candidate has a better merit
factor, the search method accepts it as a new current state and continues the optimization
process. Having this in mind, a strategy of how to choose a new sequence when no acceptable
neighbor sequence exists should be considered as well.

The best results regarding skew-symmetric binary sequences with high merit factors are
achieved by [24], [26], [27], and [57]. In [57], the authors introduced a memetic algorithm
with an efficient method to recompute the characteristics of a given binary sequence L¬,
such that L¬ is one flip away from L, and assuming that some products of elements from
L have been already stored in memory. More precisely, a square �n� 1,n� 1� tau table
τ�S�, such that τ�S�i j � s jsi� j for j & n� i was introduced. Later, in [24] the principle of
self-avoiding walk [100] was considered. By using Hasse graphs the authors demonstrated
that considering the LABS problem, a basic stochastic search method could be easily trapped
in a cycle. To avoid this scenario, the authors suggested the usage of a self-avoiding walk
strategy accompanied by a hash table for efficient memory storage of the pivot coordinates.
Then, in [26] an algorithm called xLastovka was presented. The concept of a priority queue
was introduced. In summary, during the optimization process, a queue of pivot coordinates
altogether with their energy values is maintained. Recently, some skew-symmetric binary
sequences with record-breaking merit factors for lengths from 301 to 401 were revealed [27].

The aforementioned state-of-the-art algorithms are benefiting from the tau table τ�S�
previously discussed. It significantly increases the speed of evaluating a given one-flip-
away neighbor, reaching a time complexity of O�n�. However, the memory requirement of
maintaining τ�S� is like O�n2�. Having this in mind, the state-of-the-art algorithms could be
inapplicable to very long binary sequences due to hardware restrictions.

In this section, by using some mathematical insights, an alternative to the τ�S� table is
suggested, the usage of which significantly reduces the memory requirement of the discussed
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state-of-the-art algorithms from O�n2� to O�n�. This enhancement could be easily integrated.
For example, in an online repository [23] a collection of currently known best merit factors
for skew-symmetric sequences with lengths from 5 to 449 is given. The longest binary
sequence is of length 449, having a merit factor of 6.5218. As a proof of concept, by using
just a single budget processor Xeon-2640 CPU with a base frequency of 2.50 GHz, the price
of which at the time of writing this work is about 15 dollars, and our tweaked implementation
of the lssOrel algorithm introduced in [23], we were able to find a skew-symmetric binary
sequence with better merit factor of 6.5319. The time required was approximately one day.
As a comparison, the currently known optimal results were acquired by using the Slovenian
Initiative for National Grid (SLING) infrastructure (100 processors) and a 4-day threshold
limitation per length.

It should be noted, that despite the significant memory complexity optimization intro-
duced, the state-of-the-art algorithms could still suffer from memory and speed issues. As
previously discussed, additional memory-requiring structures were needed, such as, for ex-
ample, a set of all previously visited pivots [24] or a priority queue with 640 000 coordinates
and a total size of 512MB [26].

Another issue is the "greedy" approach of collecting all the neighbors to determine the
best one. This could dramatically decrease the optimization process, especially when very
long binary sequences are involved. This side-effect is already discussed in Section 4.2.

Having those observations in mind, an almost memory-free optimization algorithm is
suggested. More precisely, both the time and memory complexities of the algorithm are linear.
This could be particularly beneficial for multi-thread architectures or graphical processing
units. During our experiments, and by using the aforementioned algorithm, we were able to
find skew-symmetric sequences with merit factors strictly greater than Fn � 5 for all the tested
lengths up to 105

�1. Thus, Bernasconi’s prediction that no stochastic search procedure will
yield merit factors higher than Fn � 5 for binary sequences with lengths greater than 200 was
very pessimistic.

Let us consider a skew-symmetric binary sequence defined by an array L� �b0,b1,�,bn�1�
with an odd length n � 2l�1. If the corresponding to L sidelobes’ array is denoted by an
array W , we have:

W � �Cn�1�L�,Cn�2�L�,�,C1�L�,C0�L�� ,
where

Cu�L� � n�u�1

=
j�0

b jb j�u, f or u " r0,1,�,n�1x.
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In this section, for convenience, we will use the reversed version of W , denoted by S, s.t:

S � �Ĉ0�L�,Ĉ1�L�,�,Ĉn�2�L�,Ĉn�1�L�� ,
where Ĉn�i�1�L� �Ci�L�, for i " r0,1,�,n�1x. Thus,

Ĉi�L� �Cn�i�1�L� � n��n�i�1��1

=
j�0

b jb j��n�i�1�.

Hence,

Ĉi�L� � i

=
j�0

b jb j�n�i�1, f or i " r0,1,�,n�1x.
Furthermore, we will denote the i-th element of a given array A as A�i�. It should be noted
that the first index of an array is 0, not 1. For example,

W�n�1� � S�0� � Ĉ0�L� �Cn�1�L�.
Since L is a skew-symmetric binary sequence, the following properties hold:

• S�i� � 0, for odd values of i.

• L�l� i� � ��1�iL�l� i�.
Having this in mind, the array of sidelobes S could be represented as follows:

S � �Ĉ0�L�,0,Ĉ2�L�,0,�,0,Ĉn�3�L�,0,Ĉn�1�L�� .
For convenience, we will use the notation Si which represents the �i�1�-th element of a

given array S, or more formally Si � S�i�1�.
Thus, for every odd value r, we have

Sr � Ĉr�1�L� � r�1

=
j�0

b jb j�n�r�1�1 �

r�1

=
j�0

b jb j�n�r �

r

=
j�1

b j�1b j�1�n�r.

In terms of L, the previous relationship could be written down as follows:

Sr �

r

=
j�1

b j�1b j�1�n�r �

r

=
i�1

L�i�1�L�n� i� r�1�.
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We could further substitute i � l�q, for q " r0,1,�, lx into the major property of the
skew-symmetric sequences to show that:

L�l� l�q� � ��1�l�qL�l� l�q� ¼
L�q� � ��1�l�qL�l� l�1�q�1� ¼ L�q� � ��1�l�qL�n�q�1�.

Hence, given a skew-symmetric sequence L with length n � 2l�1, if we flip both the
elements on positions q and n� q� 1, for some fixed q " r0,1,�, lx, the resulted binary
sequence Lq will be skew-symmetric as well. Let’s denote the array of sidelobes of Lq as Sq:

Sq
� �Ĉ0�Lq�,0,Ĉ2�Lq�,0,�,0,Ĉn�3�Lq�,0,Ĉn�1�Lq�� .

As a consequence of the previously aforementioned observations, we have:

Sq
r �

r

=
i�1

Lq�i�1�Lq�n� i� r�1�.
In Theorem 5.1.1 a more detailed picture of the S array transformation to the Sq array is

provided.

Theorem 5.1.1. Given two skew-symmetric sequences L and Lq with length n � 2l�1, and
with sidelobes arrays respectively S and Sq, where q $ l, the following properties hold:

I For ¾e, s.t. e is an even number, Sq
e �Se � 0.

II If r is an odd number and r & q, Sq
r �Sr � 0.

III If r is an odd number and r % q, and r $ n�q, and q j r�q�1, then:

Sq
r �Sr � �2�L�q�L�n�q� r��L�r�q�1�L�n�q�1�� .

IV If r is an odd number and r % q, and r $ n�q, and q � r�q�1, then Sq
r �Sr � 0.

V If r is an odd number and r ' n�q, and q j r�q�1, then:

Sq
r �Sr � �2L�n�q�1�L�2n�q� r�1��2L�q� r�n�L�q��

�2L�q�L�n�q� r��2L�r�q�1�L�n�q�1�.
VI If r is an odd number and r ' n�q, and q � r�q�1, then:

Sq
r �Sr � �2L�n�q�1�L�2n�q� r�1��2L�q� r�n�L�q�.
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Proof 5.1.1. Property I: For ¾e, s.t. e is an even number, Se � 0 and Sq
e � 0, since both S

and Sq are skew-symmetric sequences. Therefore, Sq
e �Se � 0.

Property II: If r is an odd number and r & q, then

Sq
r �Sr �

r

=
i�1

Lq�i�1�Lq�n� i� r�1�� r

=
i�1

L�i�1�L�n� i� r�1�.
By construction, Lq�q�j L�q�, Lq�n�q�1�j L�n�q�1� and¾x" �0,1,�,n�1�,xj

q & x j n�q�1 � Lq�x� � L�x�. Since, by considering the initial condition r & q, it follows
that r�1 $ q. Therefore, for i " r1,2,�,rx, i�1 & r�1 $ q and Lq�i�1� � L�i�1�. On
the other hand, for i " r1,2,�,rx, n� i� r�1 ' n�1� r�1 � n� r, but since r & q, then
n� r ' n�q % n�q�1, which means that Lq�n� i� r�1� � L�n� i� r�1�.

By combining the aforementioned observations:

Sq
r �Sr �

r

=
i�1

Lq�i�1�Lq�n� i� r�1�� r

=
i�1

L�i�1�L�n� i� r�1� �
�

r

=
i�1

L�i�1�L�n� i� r�1�� r

=
i�1

L�i�1�L�n� i� r�1� � 0.

(5.1)

Property III We consider r as an odd number, r % q, r $ n�q, and q j r�q�1. Since
r % q, we have r�1 ' q, which means that at least one element from the elements defined
by Lq�i� 1�, for i " r1,2,�,rx, will coincide with Lq�q�. However, since r $ n� q, or
r� 1 $ n� q� 1, there will be no element from the elements defined by Lq�i� 1�, for
i " r1,2,�,rx, that will coincide with Lq�n�q�1�.

For i " r1,2,�,rx, n� i� r�1 ' n� r. If n� r & q then n�q & r, which contradicts the
initial condition of r $ n�q. Therefore, n� r % q and n� i� r�1 % q, and there will be no
element from the elements defined by Lq�n� i� r�1�, for i " r1,2,�,rx, that will coincide
with Lq�q�. On the other hand, for i " r1,2,�,rx, n� i� r� 1 ' n� r, and since r % q,
n� r $ n�q. Thus n� r & n�q�1, which means there will be an element from the elements
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defined by Lq�n� i� r�1�, for i " r1,2,�,rx, which will coincide with Lq�n�q�1�.
Sq

r �Sr �

r

=
i�1

Lq�i�1�Lq�n� i� r�1�� r

=
i�1

L�i�1�L�n� i� r�1� �
� � q

=
i�1

Lq�i�1�Lq�n� i� r�1���Lq�q�Lq�n�q� r�� � r

=
i�q�2

Lq�i�1�Lq�n� i� r�1���
� � q

=
i�1

L�i�1�L�n� i� r�1���L�q�L�n�q� r�� r

=
i�q�2

L�i�1�L�n� i� r�1�.
(5.2)

However, since it is given that q j r�q�1, then n�q� r j n� r�q�1� r � n�q�1.
Thus, the coinciding elements are still to be determined inside the sequences defined for
i " rq�2,q�3,�,rx. Furthermore, as previously shown, we have:

q

=
i�1

Lq�i�1�Lq�n� i� r�1� � q

=
i�1

L�i�1�L�n� i� r�1�.
Hence:

Sq
r �Sr �

� Lq�q�Lq�n�q� r�� � r

=
i�q�2

Lq�i�1�Lq�n� i� r�1���
�L�q�L�n�q� r�� r

=
i�q�2

L�i�1�L�n� i� r�1� �
� Lq�q�Lq�n�q� r�� �r�q�1

=
i�q�2

Lq�i�1�Lq�n� i� r�1���
�Lq�r�q�1�Lq�n� r�q� r�1��
� � r

=
i�r�q�1

Lq�i�1�Lq�n� i� r�1���
�L�q�L�n�q� r�� r�q�1

=
i�q�2

L�i�1�L�n� i� r�1��
�L�r�q�1�L�n� r�q� r�1�� r

=
i�r�q�1

L�i�1�L�n� i� r�1�.

(5.3)

Since we have isolated all coincidences, it follows:
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r�q�1

=
i�q�2

Lq�i�1�Lq�n� i� r�1� � r�q�1

=
i�q�2

L�i�1�L�n� i� r�1�.
r

=
i�r�q�1

Lq�i�1�Lq�n� i� r�1� � r

=
i�r�q�1

L�i�1�L�n� i� r�1�.
Thus,

Sq
r �Sr � Lq�q�Lq�n�q� r��Lq�r�q�1�Lq�n�q�1��
�L�q�L�n�q� r��L�r�q�1�L�n�q�1�. (5.4)

However, since Lq is identical to L with q-th and n� q� 1-th bits flipped, we have
Lq�q� � �L�q� and Lq�n�q�1� � �L�n�q�1�.

Sq
r �Sr � �L�q�Lq�n�q� r��Lq�r�q�1�L�n�q�1��
�L�q�L�n�q� r��L�r�q�1�L�n�q�1� �
� �L�q�L�n�q� r��L�r�q�1�L�n�q�1��
�L�q�L�n�q� r��L�r�q�1�L�n�q�1� �
� �2�L�q�L�n�q� r��L�r�q�1�L�n�q�1�� .

(5.5)

Property IV This property is almost identical to Property III. However, this time the fact
that q � r�q�1 should be considered. More precisely, we should revisit the equation:

Sq
r �Sr � Lq�q�Lq�n�q� r�� � r

=
i�q�2

Lq�i�1�Lq�n� i� r�1���
�L�q�L�n�q� r�� r

=
i�q�2

L�i�1�L�n� i� r�1�.
(5.6)

Since q� r�q�1, or 2q� r�1, and n�q�r � n�q�2q�1� n�q�1, both coincides
appeared on the same monomial:

r

=
i�q�2

Lq�i�1�Lq�n� i� r�1� � r

=
i�q�2

L�i�1�L�n� i� r�1�.
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Therefore,

Sq
r �Sr � Lq�q�Lq�n�q� r��L�q�L�n�q� r� �
� Lq�q�Lq�n�q�1��L�q�L�n�q�1� �
� �L�q�Lq�n�q�1��L�q�L�n�q�1� �
� L�q�L�n�q�1��L�q�L�n�q�1� � 0.

(5.7)

Property V We have that r ' n�q, while in the same time q j r�q�1. We continue the
proof of this and the consequence properties by following the same method and observations
made throughout the proof of Properties III and IV. A total of 4 coincides between Lq and L
are possible:

• i�1 � q, or i � q�1.

• n� i� r�1 � q, or i � q� r�n�1.

• i�1 � n�q�1, or i � n�q.

• n� i� r�1 � n�q�1, or i � r�q.

Sq
r �Sr �

r

=
i�1

Lq�i�1�Lq�n� i� r�1�� r

=
i�1

L�i�1�L�n� i� r�1� �
�

r

=
i�1,i©"rq�1,q�r�n�1,n�q,r�qx

Lq�i�1�Lq�n� i� r�1��
�Lq�q�Lq�n�q� r��Lq�q� r�n�Lq�q��
�Lq�n�q�1�Lq�2n�q� r�1��
�Lq�r�q�1�Lq�n�q�1��
�

r

=
i�1,i©"rq�1,q�r�n�1,n�q,r�qx

L�i�1�L�n� i� r�1��
�L�q�L�n�q� r��L�q� r�n�L�q��
�L�n�q�1�L�2n�q� r�1��
�L�r�q�1�L�n�q�1�.

(5.8)

Since Lq is identical to L with q-th and n�q�1-th bits flipped, it follows that both sums
are comprised of non-flipped bits, and therefore they are equal. Thus:



5.1 On the Skew-Symmetric Binary Sequences and the Merit Factor Problem 91

Sq
r �Sr � Lq�q�Lq�n�q� r��Lq�q� r�n�Lq�q��
�Lq�n�q�1�Lq�2n�q� r�1��
�Lq�r�q�1�Lq�n�q�1��
�L�q�L�n�q� r��L�q� r�n�L�q��
�L�n�q�1�L�2n�q� r�1��
�L�r�q�1�L�n�q�1� �
� �L�q�L�n�q� r��L�q� r�n�L�q��
�L�n�q�1�L�2n�q� r�1��
�L�r�q�1�L�n�q�1��
�L�q�L�n�q� r��L�q� r�n�L�q��
�L�n�q�1�L�2n�q� r�1��
�L�r�q�1�L�n�q�1� �
� �2� �L�q�L�n�q� r��L�q� r�n�L�q��
�L�n�q�1�L�2n�q� r�1��L�r�q�1�L�n�q�1��.

(5.9)

Property VI This property is very similar to the previous Property V. However, since
q � r�q�1, and by using the similar approach shown throughout the proof of Property IV,
we could exactly pinpoint those monomials that include a double coincide. Indeed, when
q � r�q�1, n�q� r � n� �r�q�1�� r � n�q�1. Thus:

Sq
r �Sr �

r

=
i�1

Lq�i�1�Lq�n� i� r�1�� r

=
i�1

L�i�1�L�n� i� r�1� �
�

r

=
i�1,i©"rq�1,q�r�n�1,n�q,r�qx

Lq�i�1�Lq�n� i� r�1��
�Lq�q�Lq�n�q� r��Lq�q� r�n�Lq�q��
�Lq�n�q�1�Lq�2n�q� r�1��
�

r

=
i�1,i©"rq�1,q�r�n�1,n�q,r�qx

L�i�1�L�n� i� r�1��
�L�q�L�n�q� r��L�q� r�n�L�q��
�L�n�q�1�L�2n�q� r�1�.

(5.10)
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However:

Lq�q�Lq�n�q� r��L�q�L�n�q� r� �
� Lq�q�Lq�n�q�1��L�q�L�n�q�1� �
� ��1�L�q���1�L�n�q�1��L�q�L�n�q�1� � 0.

(5.11)

Thus:

Sq
r �Sr �

�

r

=
i�1,i©"rq�1,q�r�n�1,n�q,r�qx

Lq�i�1�Lq�n� i� r�1��
Lq�q� r�n�Lq�q��
�Lq�n�q�1�Lq�2n�q� r�1��
�

r

=
i�1,i©"rq�1,q�r�n�1,n�q,r�qx

L�i�1�L�n� i� r�1��
L�q� r�n�L�q��
�L�n�q�1�L�2n�q� r�1�.

(5.12)

Following the same observations made throughout the proof of Property V, the equation
could be further simplified to:

Sq
r �Sr � �2�L�q� r�n�L�q��L�n�q�1�L�2n�q� r�1��. (5.13)

We should emphasize, that Theorem 5.1.1 covers all the possible sidelobes positions and
all the possible flip bit choices. Indeed, let’s define the sidelobe position as s, while the flip
bit position as q. Furthermore, we denote property X as δX . Then:

¾s¾q � �¾e � e � 0 mod 2�¾q��¾r � r � 1 mod 2�¾q �

� δ1��¾r � r � 1 mod 2��¾q � r & q��
��¾r � r � 1 mod 2��¾q � r % q� �
� δ1�δ2��¾r � r � 1 mod 2��¾q � r % q,r $ n�q��
��¾r � r � 1 mod 2��¾q � r % q,r ' n�q�.

(5.14)
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For convenience, we will substitute �¾r � r � 1 mod 2� as ¾r "O:

δ1�δ2��¾r "O��¾q � r % q,r $ n�q��
��¾r "O��¾q � r % q,r ' n�q� �
� δ1�δ2��¾r "O��¾q � r % q,r $ n�q,q j r�q�1��
��¾r "O��¾q � r % q,r $ n�q,q � r�q�1��
��¾r "O��r ' n�q� � 4

�
i�1

δi��¾r "O��r ' n�q� �
�

4

�
i�1

δi��¾r "O��r ' n�q,q j r�q�1��
��¾r "O��r ' n�q,q � r�q�1� � 6

�
i�1

δi.

(5.15)

Furthermore,�6
i�1 δi �o. Theorem 5.1.1, as well as the observations made throughout

this section, are summarized as a pseudo-code in Algorithm 7. The following notations were
used:

• n � 2l�1: the odd length of the sequence.

• q: the bit position which is to be flipped. Defined for q $ l. Please note, that besides
q, the algorithm is going to flip n� q� 1 as well, since we want to keep the skew-
symmetric property of the binary sequence.

• L: a binary skew-symmetric sequence.

• S: the sidelobes array corresponding to L.

When the algorithm finishes, L is going to be modified to Lq, while S is going to
correspond to the sidelobes array of Lq. This is accomplished in O�n� for both time and
memory complexities.

Theorem 5.1.2. Given two skew-symmetric sequences L and Lq with length n � 2l � 1,
where Lq corresponds to L with q-th and n�q�1-th bit flipped for some fixed q $ l, and
with sidelobes arrays denoted respectively as S and Sq, the following property holds:
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Algorithm 7 An algorithm for in-memory flip of skew-symmetric binary sequence in linear
time and memory complexities

1: procedure FLIP(q,L,S)
2: for r � 1;r $ n�1;r� � 2 do
3: if r & q then
4: continue
5: end if
6: ε1 � L�q�,ε2 � L�n�q� r�,ε3 � L�r�q�1�
7: ε4 � L�n�q�1�,ε5 � L�2n�q� r�1�,ε6 � L�q� r�n�
8: if r $ n�q then
9: if q j r�q�1 then

10: Sr � Sr�2�ε1ε2� ε3ε4�
11: end if
12: else
13: if q j r�q�1 then
14: Sr � Sr�2�ε1ε2� ε3ε4� ε4ε5� ε6ε1�
15: else
16: Sr � Sr�2�ε4ε5� ε6ε1�
17: end if
18: end if
19: end for
20: L�q� � �L�q�,L�n�q�1� � �L�n�q�1�
21: end procedure
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E�Lq� � E�L�� n�q�1

=
r�q�1,rj2q�1

�16�σκε1�� n�1

=
r�n�q,rj2q�1

�κ�ε2�σε1��32�32σε1ε2��
� =

r'n�q,r&n�1,r�2q�1

�16�κε2�,
(5.16)

where σ � ��1�l�q, κ � �8SrL�q�, ε1�r� � L�r�q�1�, ε2�r� � L�q� r�n�.
Proof 5.1.2.

E�Lq��E�L� � n�1

=
i�1

�Sq
i �2
�

n�1

=
i�1

�Si�2
�

n�1

=
i�1

��Sq
i �2
� �Si�2� �

�

6

=
j�1

=
i"D�δ j�

��Sq
i �2
� �Si�2� � 6

=
j�1

=
i"D�δ j�

��Si�δ j�2
� �Si�2� �

�

6

=
j�1

=
i"D�δ j�

�2Siδ j�δ
2
j �.

(5.17)

We proceed with the calculation of δ
2
i , for i " �3,5,6�.

δ
2
3 � ��2�L�q�L�n�q� r��L�r�q�1�L�n�q�1���2

�

� 4�L�q�2L�n�q� r�2
�L�r�q�1�2L�n�q�1�2

�

�2L�q�L�n�q� r�L�r�q�1�L�n�q�1��.
(5.18)

However, L�x�2
� 1 for any x, therefore:

δ
2
3 � 4�1�1�2L�q�L�n�q� r�L�r�q�1�L�n�q�1��. (5.19)

Furthermore, from the main property of the skew-symmetric binary sequences, we know
that L�q� � ��1�l�qL�n�q�1�. Thus:

L�n�q� r� � ��1�l��n�q�r�L�n� �n�q� r��1� �
� ��1�l�n�q�rL�n�n�q� r�1� �
� ��1�l�n�q�rL�r�q�1�.

(5.20)
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However, since r� n� 1 mod 2, we know that r�n� 0 mod 2 and therefore ��1�l�n�q�r
���1�l�q. Having this in mind, we can further simplify δ

2
3 :

δ
2
3 � 8�8L�q�L�n�q� r�L�r�q�1�L�n�q�1�� �
� 8�8L�q���1�l�qL�r�q�1��L�r�q�1���1�l�qL�q� �
� 8�8L�q�2��1�2�l�q�L�r�q�1�2

� 8�8 � 16.

(5.21)

The calculation of δ
2
5 is similar to the calculation of δ

2
3 . Indeed:

δ
2
5 � ��2L�n�q�1�L�2n�q� r�1��2L�q� r�n�L�q��
�2L�q�L�n�q� r��2L�r�q�1�L�n�q�1���2

.
(5.22)

We could simplify L�2n�q� r�1�:
L�2n�q� r�1� �
� ��1�l��2n�q�r�1�L�n� �2n�q� r�1��1� �
� ��1�l�2n�q�r�1L��n�q� r�.

(5.23)

Since r is odd, r�1 is even, and therefore r�1�2n� 0 mod 2. Therefore, ��1�l�2n�q�r�1�
���1�l�q

� ��1�l�q��1�2q
� ��1�l�q. Thus:

δ
2
5 � 4�L�n�q�1�L�2n�q� r�1��L�q� r�n�L�q��
�L�q�L�n�q� r��L�r�q�1�L�n�q�1���2

�

� 4���1�l�qL�q���1�l�qL�r�q�n��L�q� r�n�L�q��
�L�q���1�l�qL�r�q�1��L�r�q�1���1�l�qL�q��2

�

� 4�2L�q�L�r�q�n��2L�q�L�r�q�1���1�l�q�2
�

� 16L�q�2�L�r�q�n��L�r�q�1���1�l�q�2
�

� 16�L�r�q�n�2
� �L�r�q�1���1�l�q�2

�

�2L�r�q�n�L�r�q�1���1�l�q� �
� 32�32L�r�q�n�L�r�q�1���1�l�q

.

(5.24)
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Finally, we simplify δ
2
6 :

δ
2
6 � 4�L�n�q�1�L�2n�q� r�1��L�q� r�n�L�q��2

�

� 4�L�n�q�1�2L�2n�q� r�1�2
�L�q� r�n�2L�q�2

�

�2L�n�q�1�L�2n�q� r�1�L�q� r�n�L�q�� �
� 4�2�2��1�l�qL�q���1�l�qL�r�q�n�L�q� r�n�L�q� �
� 4�2�2��1�2�l�q�L�q�2L�q� r�n�2� � 16.

(5.25)

We have:

E�Lq��E�L� � 6

=
j�1

=
i"D�δ j�

�2Siδ j�δ
2
j � �

� =
j"r1,2,4x

=
i"D�δ j�

�2Siδ j�δ
2
j �� =

j"r3,5,6x
=

i"D�δ j�
�2Siδ j�δ

2
j �.

(5.26)

However, since δ j, for j " r1,2,4x is 0, we have:

E�Lq��E�L� � =
j"r3,5,6x

=
i"D�δ j�

�2Siδ j�δ
2
j � �

�

n�q�1

=
r�q�1,rj2q�1

�2Srδ3�δ
2
3 �� n�1

=
r�n�q,rj2q�1

�2Srδ5�δ
2
5 ��

� =
r'n�q,r&n�1,r�2q�1

�2Srδ6�δ
2
6 �.

(5.27)

and:

δ3 � �2�L�q�L�n�q� r��L�r�q�1�L�n�q�1�� �
� �2�L�q���1�l�qL�r�q�1��L�r�q�1���1�l�qL�q�� �
� �4��1�l�qL�q�L�r�q�1� � �4σL�q�ε1.

(5.28)

δ5 � �2�L�n�q�1�L�2n�q� r�1��L�q� r�n�L�q��
�L�q�L�n�q� r��L�r�q�1�L�n�q�1�� �
� �4�L�q�L�r�q�n��L�q�L�r�q�1���1�l�q� �
� �4L�q��L�r�q�n��L�r�q�1���1�l�q� �
� �4L�q��ε2� ε1σ�.

(5.29)
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δ6 � �2�L�n�q�1�L�2n�q� r�1��L�q� r�n�L�q�� �
� �2���1�l�qL�q���1�l�qL�q� r�n��L�q� r�n�L�q�� �
� �4��1�l�qL�q�L�q� r�n� � �4σL�q�ε2.

(5.30)

we could substitute and further simplify the difference between the merit factors of Lq and L,
i.e:

E�Lq��E�L� � n�q�1

=
r�q�1,rj2q�1

�2Sr��4σL�q�ε1��16��
�

n�1

=
r�n�q,rj2q�1

�2Sr��4L�q��ε2� ε1σ���32�32ε2ε1σ��
� =

r'n�q,r&n�1,r�2q�1

�2Sr��4σL�q�ε2��16�.
(5.31)

However, if we use κ , where κ � �8SrL�q�:
E�Lq��E�L� � n�q�1

=
r�q�1,rj2q�1

��8SrσL�q�ε1�16��
�

n�1

=
r�n�q,rj2q�1

��8SrL�q��ε2� ε1σ���32�32ε2ε1σ��
� =

r'n�q,r&n�1,r�2q�1

��8SrσL�q�ε2�16� � n�q�1

=
r�q�1,rj2q�1

�κσε1�16��
�

n�1

=
r�n�q,rj2q�1

�κ�ε2� ε1σ���32�32ε2ε1σ�� =
r'n�q,r&n�1,r�2q�1

�κσε2�16�.

(5.32)

In Algorithm 8 a pseudo-code of the derivative function is given. The input of the function
consists of a bit position q to be flipped, a skew-symmetric sequence L with an odd length
n � 2l � 1, as well as the corresponding sidelobe array S. We recall that besides the bit
position q, s.t. q $ l, the bit position n�q�1 is flipped as well, to keep the skew-symmetric
property of the binary sequence. The output of the function consists of a single integer value
∆, which corresponds to the difference between the energies of L and Lq. In other words,
if ∆ $ 0, then the energy of the sequence Lq is lower than the merit factor of the sequence
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Table 5.1 A comparison between the memory required by the tau table and the memory
required by the proposed in-memory flip algorithm.

n The memory required by
using the tau table

The memory required
by using the proposed
method

256 256.0 KB 1.0 KB
512 1.0 MB 2.0 KB
1024 4.0 MB 4.0 KB
5000 95.37 MB 19.53 KB
20000 1525.88 MB 78.12 KB
99999 37.25 GB 390.62 KB

L. Therefore, the merit factor of L is going to be higher than the merit factor of Lq. More
formally,

∆ $ 0 ¼ E�Lq��E�L� $ 0 ¼ E�Lq� $ E�L� ¼ 2E�Lq� $ 2E�L� ¼
¼

1
2E�Lq� % 1

2E�L� ¼ n2

2E�Lq� % n2

2E�L� ¼ MF�Lq� %MF�L�. (5.33)

The derivative function allows us to reduce the memory requirement of some state-of-the-
art algorithms from O�n2� to O�n�. In Table 5.1, a comparison between the space required
by the tau table and the memory requirement by the proposed method is presented. During
the calculations, an assumption was that both memory structures are comprised of integers (4
Bytes). For example, by using just one thread of the processors, the tau table corresponding
to binary sequences with length 5000 would require approximately 95.37 Megabytes to be
allocated for the tau table expansion routine, while the sidelobe array presented in this work
would require the allocation of approximately 19.53 Kilobytes. It should be emphasized, that
interchanging the tau table used by the state-of-the-art algorithms with the proposed sidelobe
array structure would not impact the time complexity of the tweaked algorithm. However,
from a practical point of view, the significant memory reduction could greatly enhance the
overall time performance of a tweaked algorithm, since the size of the sidelobe array could
be usually saved inside the CPU cache layers, instead of saving it to the slower memory
banks. Furthermore, interchanging the tau table with the proposed sidelobe array could allow
the multithreading capabilities of modern CPUs, and even GPUs, to be fully utilized.

For example, we have implemented a lightweight version of the lssOrel algorithm [24]
with the tau table reduced. The pseudo-code of the enhanced implementation is given in
Algorithm 9. The following notations were used:
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• Ψ - a binary sequence with length n.

• ΩΨ - the corresponding sidelobe array of Ψ - the replacement of the tau table.

• H - a set of fingerprints, or hashes, of visited candidates.

• Ti - an inner threshold value. When the inner counter wi reaches Ti, the set is flushed
and the whole routine restarts. The threshold value Ti constrains the size of the set H.

• To - an outer threshold value. When the outer counter wo reaches To, the program is
terminated. However, To could be an expression as well.

• H.add(hash�Ψ�) - adding the hash of the binary sequence Ψ to the set H.

• C�ΩΨ� - the cost function, i.e. the sum of the squares of all elements in the sidelobe
array ΩΨ, which is equal to the energy of Ψ, or E�Ψ�.

• pickBestNeighbor�Ψ,ΩΨ,H� - a function, which returns the index of the best unex-
plored neighbor of Ψ, i.e. the binary sequence Ψ

f with a distance of exactly 1 flip
away from Ψ, s.t. hash�Ψ

f � does not belong to the set H. The pseudo-code of this
helper function is given in Algorithm 10.

Several notations were used throughout the pseudo-code presentation shown in Algorithm
10.

• MAX - the maximum possible value, which the type of the variable bestDelta could
hold. For example, if the variable bestDelta is of type INT (4 Bytes) then MAX �

7FFFFFFF16 � 2,147,483,647

• P,Q - two odd prime numbers, which are used to calculate the hash of the binary
sequence. During our experiments, they were fixed to P � 315223 and Q � 99041. It
should be noted, that no additional efforts were made to find better, in terms of hash
collision false positives or false negatives rates, values of P and Q.

Algorithm 9 was implemented (C++) on a general-purpose computer equipped with a
budget processor Xeon-2640 CPU, having a base frequency of 2.50 GHz. A skew-symmetric
binary sequence with length 449 and a record-breaking merit factor of 6.5319 was found
after approximately one day. It should be noted that all 12 threads of the CPU were launched
in parallel. As a comparison, the currently known optimal results (a merit factor of 6.5218)
were acquired by using the Slovenian Initiative for National Grid (SLING) infrastructure
(100 processors) and 4-day threshold limitation [23]. The binary sequence is given in a
hexadecimal format in Table 5.2.
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Algorithm 8 Lightweight flip probing of skew-symmetric binary sequences in linear both
time and memory complexities

1: function DERIVATIVE(q,L,S)
2: ∆ � 0
3: σ � ��1�l�q

4: for r � 1;r $ n�1;r� � 2 do
5: if r & q then
6: continue
7: end if
8: κ � �8SrL�q�
9: ε1 � L�r�q�1�

10: ε2 � L�q� r�n�
11: if r $ n�q then
12: if q j r�q�1 then
13: ∆ � ∆�16�κσε1
14: end if
15: else
16: if q j r�q�1 then
17: ∆ � ∆�32�κ�ε2� ε1σ��32ε2ε1σ

18: else
19: ∆ � ∆�16�κσε2
20: end if
21: end if
22: end for
23: return ∆

24: end function
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Algorithm 9 Heuristic algorithm, with tau table reduction, searching for binary skew-
symmetric sequences with a high merit factor.

1: procedure MF(n,Ti,To)
2: bestMF, wo� 0,0
3: while True do
4: H,wi,� rox ,0
5: Ψ� random
6: H.add(hash�Ψ�)
7: V �C�ΩΨ�
8: while True do
9: bestN� pickBestNeighbor�Ψ,ΩΨ,H�

10: if bestN �� �1 then
11: break
12: end if
13: Flip(bestN, Ψ,ΩΨ)
14: V �C�ΩΨ�
15: wi �� 1
16: H.add(hash�Ψ�)

17: if n2

2V % bestMF then

18: bestMF� n2

2V
19: end if
20: if wi % Ti then
21: wo �� 1
22: break
23: end if
24: end while
25: if wo % To then
26: break
27: end if
28: end while
29: end procedure
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Algorithm 10 Pseudo-code of the helper function pickBestNeighbor
1: function PICKBESTNEIGHBOR(Ψ,ΩΨ,H)
2: bestN = -1
3: bestDelta = MAX
4: for q � 0;q $ *n

20;q�� do
5: δ = Derivative�q,Ψ,ΩΨ�
6: if δ & bestDelta then
7: hash=P
8: for i � 0; i $ *n

20; i�� do
9: if q �� i then

10: hash=hash�Q - Ψ�i�
11: else
12: hash=hash�Q + Ψ�i�
13: end if
14: end for
15: if hash�Ψ� "H then
16: continue
17: end if
18: bestDelta = δ

19: bestN=q
20: end if
21: end for
22: return bestN
23: end function
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Table 5.2 An example of a skew-symmetric binary sequence with length 449 and a record
merit factor found by Algorithm 9. The sequence is presented in HEX with leading zeroes
omitted.

n Sequence in HEX MF

449 96f633d86fe825794ed23a9dfd7d4c3
abd080cf76cbf9bdab9a7b2533e3161
901d1950c774ca8bd012cfd7d5d8123
c4f97e285469d327478

6.5319

It should be emphasized that the flip operation for the middle index of the skew-symmetric
binary sequence Ψ is not permitted. However, this is not affecting the search space by cutting
some parts of it. Indeed, let’s define the binary sequence B � b1b2�blMbl�1bl�2�b2l of
length n � 2l�1 and the binary sequence B as the binary sequence B with all the bits flipped,
i.e. B � b1b2�blMbl�1bl�2�b2l . It could be easily shown that all sidelobes of B and B are
identical. Indeed,

Cu�B� � n�u�1

=
j�0

b jb j�u �

n�u�1

=
j�0

��1�2b jb j�u �Cu�B�.

5.1.1 On the Bernasconi Conjecture

As previously discussed, in [14] Bernasconi conjectured that stochastic search procedures
will not yield merit factors higher than 5 for long sequences (greater than 200). It should be
mentioned that this prediction was made in 1987. Since then, many years have passed and
pieces of evidence that stochastic search procedures could perform better than the prediction’s
expectations were found. Indeed, heuristic algorithms that could find odd binary sequences
with lengths up to about 500 and merit factors greater than 5 were discovered. However,
the Bernasconi conjecture appears valid when the threshold of the binary sequence’s length
is updated and lifted. Since during the last 35 years the computational capabilities of
modern CPUs are rising almost exponentially such actualization would be fair. However, if
a stochastic search procedure is found, a procedure that could reach extremely long binary
sequences with merit factors greater than 5, by using a mid-range general-purpose computer,
then the barriers predicted by Bernasconi could be very pessimistic.

Some more experiments were made by using Algorithm 9 and skew-symmetric binary
sequences with lengths greater than 1000. For example, within several seconds, a binary
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sequence with length 1001 and a merit factor greater than 5 was discovered. By leaving the
routine for a minute, binary sequences with merit factors up to 5.65 were reached. Then,
within several seconds as well, a binary sequence with a length of 2001 and a merit factor
greater than 5 was discovered. However, this time the routine needed almost an hour to reach
binary sequences with merit factors up to 5.40. When the length is increased to 5001, the
algorithm required half a day to reach a binary sequence with MF greater than 5.10. Finally,
the algorithm failed to reach a binary sequence with length 10001 and a merit factor greater
than 5 within 24 hours (by using all the twelve threads of the processor). The numerical
experiments suggest that Algorithm 9 is not able to find binary sequences with lengths greater
than 10000 and merit factor greater than 5.

Indeed, the Algorithm 9 property of avoiding Hasse cycles, or the self-avoiding walk
(SAW) property, yields binary sequences with near-optimal merit factors. However, the
efficiency of this strategy melts away when binary sequences with bigger lengths are used.
This is not surprising, since the bigger the length, the larger the search space is. For example,
the search space of the set of all skew-symmetric binary sequences with length 10001 is
25001. More importantly, several more computational burdens were introduced by Algorithm
9 itself:

• The pickBestNeighbor function (see Algorithm 10) is looking for the best neighbor of
the current binary sequence Ψ. Thus, each calling of the function would trigger the
Derivative function exactly n times.

• As previously discussed, Algorithm 9 is using a hashing technique to keep an unordered
set of the already visited notes. Such an approach is causing a significant computation
burden to the algorithm for larger values of n:

1. The unordered set strategy requires at least GXnTo bytes of memory, where G is
the count of the threads used by the processor, while X is the size in bytes of the
used variable type.

2. Frequently, when a candidate Ψ
q with lower score δ is found (see line 6 from

Algorithm 10), a hash of the candidate should be calculated, so to be further
checked was the binary sequence Ψ

q met before.

To annihilate all the aforementioned computational burdens, an Algorithm 11 is proposed.
In summary, the following simplifications were introduced:

1. The pickBestNeighbor function straightforwardly accepts the first met neighbor having
a strictly better score.
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2. By introducing the previous tweak, the algorithm cycle trapping is avoided. It should be
noted that if small values of n are used, this could greatly worsen the quality, in terms
of the high merit factor, of the binary sequences found. However, when considering
larger values of n, the numerical experiments suggest that this tweak could be highly
efficient. Thus, the need of using an unordered set could be annihilated and the memory
complexity of the algorithm significantly reduced.

3. Since the unordered set was annihilated, the hash routines are removed as well.

In Algorithm 11 the following notations were used:

• T - the threshold value of the instance.

• C - the cost function.

• V , V� - respectively the current best and the overall best score values.

• c - the counter. The algorithm quits if the counter c reaches the threshold T.

• L, G - binary variables: L (local) is activated if V is improved, while G (global) is
activated if V� is improved.

• Quake function - the function flips Q random bits in Ψ.

During our experiments, by using Algorithm 11, we were able to reach skew-symmetric
binary sequences with lengths up to 100,001 and merit factors greater than 5. However, the
greater the length of the binary sequence is, the larger the value of Q should be. Some of
those Q values, used during our experiments, are given in Table 5.3. It should be emphasized,
that those Q values guarantee to reach a skew-symmetric binary sequence with merit factors
greater than 5.0, but it is highly unlikely that exactly those values would yield the best results.

For example, by using Algorithm 11, a binary sequence with length 10,001 and a merit
factor greater than 5 was reached for approximately one minute. Leaving the algorithm for
another minute would reach merit factors of 5.10 and higher. Doubling the length of the
binary sequence to 20,001 required from Algorithm 11 approximately 4 minutes to reach a
skew-symmetric binary sequence with a merit factor greater than 5.

Binary sequences with a length of 50,001 and a merit factor greater than 5 were reached
for leaving the algorithm for approximately 40 minutes, while binary sequences with a
length of 100,001 and a merit factor greater than 5 were reached for approximately 5 hours.
However, it should be emphasized that the larger the sequence, the larger the number of
quakes Q should be. In Table 5.3 the values of Q corresponding to the binary sequences’
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Algorithm 11 A heuristic algorithm, with a tau table, unordered set, and hashing routines
reduced, for searching long skew-symmetric binary sequences with a high merit factor. Both
the time and memory complexity of the algorithm are O�n�.

1: procedure SHC(n,T)
2: Ψ� random
3: V�, V , G, L, c�C�ΩΨ�, 0, True, False, 0
4: while c $ T do
5: c �� 1
6: if G then
7: pick random r " �0,�n

2$�
8: for q " �0,�n

2$� do
9: δ = Derivative��r�q� mod �n

2$,Ψ,ΩΨ�
10: if δ % 0 then
11: continue
12: end if
13: Flip(�r�q� mod �n

2$,Ψ,ΩΨ)
14: V �� δ

15: if V� %C�ΩΨ� then
16: V�, L�C�ΩΨ�, True
17: break
18: else
19: Flip(�r�q� mod �n

2$,Ψ,ΩΨ)
20: end if
21: end for
22: if L then
23: G, L� True, False
24: continue
25: else
26: G� False
27: end if
28: else
29: Quake(Q,Ψ,ΩΨ)
30: G, L� True, False
31: end if
32: end while
33: end procedure
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lengths used throughout the experiments are given. Small cuts from the history of the search
traces are provided within the four complimentary files. Each file holds skew-symmetric
binary sequences of fixed length - 2454

�1, 2554
�1, 2455

�1 or 2555
�1. All sequences

possess merit factors greater than 5.

Table 5.3 The number of quakes used throughout our experiments.

Length n Quake Q
999 1

1499 2
1999 3
2999 4
4999 6

10001 14
20001 30
50001 70

100001 160

Fig. 5.1 A linear regression made to all the �n,Q� pairs from Table 5.3. The equation
representing the linear fit is Q � 0.001578787n�1.546093.

The numerical experiments suggest that the value of Q grows linear with the length of the
binary sequence. This is visible in Figure 5.1. The time required (in seconds) to reach binary
sequences with a merit factor strictly greater than 5 is given in Figure 5.2. As expected, the
time required to reach a binary sequence with a merit factor greater than 5 grows quadratic
with the size of the binary sequences n.

Both the regression models are rough approximations of the algorithm’s behavior. For
a more precise estimation - more instances of the algorithm should be analyzed. However,
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one very important property of Algorithm 11 should be further highlighted. When a counter
to the function Quake is attached, during the optimization routine a total of approximately
2000-2500 calls to the function are made before a binary sequence with a merit factor greater
than 5 is reached. This observation, as well as the numerical pieces of evidence found
through our experiments, suggest that given an arbitrary binary sequence B with length n,
and by using a general-purpose computer with 12 threads, as well as C++ implementation
of Algorithm 11 launched with variable Q close to *0.001578787n� 1.5460930, B could
be optimized to a binary sequence with merit factor greater than 5, after an approximately
177.2867�0.0562043n�0.000002340029n2 seconds.

Fig. 5.2 A quadratic regression of all �n,T� measurements. The equation representing the
quadratic fit is T � 177.2867�0.0562043n�0.000002340029n2.

5.1.2 New Classes of Binary Sequences with High Merit Factor

Despite the rich results regarding the skew-symmetric binary sequences, the search for binary
sequences with even lengths and high MF was scarcely researched. This is not surprising,
since the sieving proposed by Golay applies to odd-length sequences only.

In this section, motivated by the absence of computationally efficient sieving for binary
sequences with even lengths and high merit factor values, several new classes of binary
sequences are proposed. We start with the definition of a class of finite binary sequences,
called pseudo-skew-symmetric, with alternate auto-correlation absolute values equal to one.
The class is defined by using sieving suitable for even-length binary sequences. Then, by
using some mathematical observations, we show how state-of-the-art algorithms for searching
skew-symmetric binary sequences with high merit factor and length 2n�1 could be easily
converted to algorithms searching pseudo-skew-symmetric binary sequences with high merit
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factor and lengths 2n or 2n� 2. More importantly, this conversion does not degrade the
performance of the modified algorithm.

Then, by using number partitions [6], an additional sieving strategy for both skew-
symmetric and pseudo-skew-symmetric sequences is proposed. A method of finding sub-
classes of binary sequences with high MF is further discussed. The experiments revealed
that the classes defined in this section are highly promising. By using a single mid-range
computer, we were able to improve all records for skew-symmetric binary sequences with
lengths above 225, which were recently reached by various algorithms and a supercomputer
grid. We further revealed that binary sequences with even or odd length n, for n & 28, and
with merit factor strictly greater than 8, and binary sequences with even or odd length n, for
n & 29 and with a merit factor strictly greater than 7 do exist.

Finally, we demonstrate the efficiency of the proposed algorithm by launching it on two
extremely hard search spaces of binary sequences of lengths 573 and 1009. The choice of
those two specific lengths is motivated by the approximation numbers given in [24], Figure 7,
showing how much time the state-of-the-art stochastic solver lssOrel_8 need to reach binary
sequences with the aforementioned lengths and merit factors close to 6.34. More precisely,
it was estimated that finding solutions with a merit factor of 6.34 for a binary sequence
with length 573 requires around 32 years, while for a binary sequence with length 1009, the
average runtime prediction to reach the merit factor of 6.34 is 46774481153 years. By using
the proposed in this section algorithm, we were able to reach such candidates within several
hours.

Definition 5.1.1 (Pseudo-Skew-Symmetric Binary Sequence). We call a given sequence
P � a¶¶X � Y ¶¶b a pseudo-skew-symmetric binary sequence, if either X or Y are skew-
symmetric binary sequences, for some a " r�1,1x or b " r�1,1x.

Proposition 5.1.1. The sidelobes array of pseudo-skew-symmetric binary sequences consists
of alternating � ones.

Proof 5.1.3. Let us denote the pseudo-skew-symmetric binary sequence as P. By definition,
P could be represented as a¶¶A or B¶¶b, for some skew-symmetric binary sequences A or B.

If P � B¶¶b, for some skew-symmetric binary sequence B � �b0,b1,�,bn�1�, then P ��b0,b1,�,bn�1,bn�, where bn � b.
Thus,

Ĉi�P� � i

=
j�0

b jb j�n�i, f or i " r0,1,�,nx.
Therefore, the sidelobes of P could be further simplified:
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Ĉi�P� � i

=
j�0

b jb j�n�i �

i�1

=
j�0

b jb j�n�i�bibi�n�i �

i�1

=
j�0

b jb j�n�i�bibn � Ĉi�1�B��bibn.

The last substitution arises from the definition of the sidelobe array:

Ĉi�1�B� � i�1

=
j�0

b jb j�n��i�1��1 �

i�1

=
j�0

b jb j�n�i.

The sidelobe array of P, denoted as SP, could be then simplified:

SP � �Ĉ0�P�,Ĉ1�P�,�,Ĉn�1�P�,Ĉn�P�� �
� �Ĉ0�P�,Ĉ0�B��b1bn,Ĉ1�B��b2bn,�,Ĉn�2�B��bn�1bn,Ĉn�1�B��bnbn� �
� �b0bn,Ĉ0�B��b1bn,b2bn,�,bn�1bn,Ĉn�1�B��bnbn� .

(5.34)

Note that Ĉx�B� � 0, for odd values of x. Since bi " r�1,1x, Ĉx�P� � bxbn � �1, for
even values of x, which completes the proof of the first case, or more formally:

SP � ��1,Ĉ0�B��b1bn,�1,�,�1,Ĉn�1�B��bnbn� .
Let us consider the second case. If P � a¶¶A, then Prev

� Arev¶¶a will possess the same
sidelobes array as P, where Arev denotes the reversed version of a given binary sequence A.
Since A is skew-symmetric sequence, Arev is a skew-symmetric as well. Thus, by applying
the first case, we have:

SP � SPrev � ��1,Ĉ0�Arev��a1an,�1,�,�1,Ĉn�1�Arev��anan� ,
where Arev

� �a0,a1,�,an�1,an� and an � a, which completes the proof.

This property is beneficial for the energy E�P� of the pseudo-skew-symmetric binary
sequence P. Indeed,

E�P� � n�1

=
u�0

Ĉu�P�2
�

n�1

=
u�0,ueven

Ĉu�P�2
�

n�1

=
u�0,uodd

Ĉu�P�2
�

�

n�1

=
u�0,ueven

�12
�

n�1

=
u�0,uodd

Ĉu�P�2
� �n

2$�
n

=
u�1,uodd

Ĉu�P�2
.
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The following property allows us to convert an existing algorithm for searching skew-
symmetric binary sequences with high merit factor to an algorithm searching pseudo-skew-
symmetric binary sequences and high merit factor.

Proposition 5.1.2. Given a skew-symmetric binary sequence B � �b0,b1,�,bn�1� with
sidelobes array

SB � �Ĉ0�B�,Ĉ1�B�,�,Ĉn�2�B�,Ĉn�1�B�� ,
the following property holds:

E�P� � E�B��n�2bnδ ,

where P is the pseudo-skew-symmetric sequence B¶¶bn and δ �<n�2
u�0,ueven

Ĉu�B�bu�1.

Proof 5.1.4. Using the result from the previous proposition proof we have:

SP � ��1,Ĉ0�B��b1bn,�1,�,�1,Ĉn�1�B��bnbn� .
By using the definition of energy of a binary sequence we have:

E�P��E�B� � n�1

=
u�0

Ĉu�P�2
�

n�2

=
u�0

Ĉu�B�2
� 1�

n�1

=
u�1

Ĉu�P�2
�

n�2

=
u�0

Ĉu�B�2
�

1�
n�2

=
u�0

Ĉu�1�P�2
�Ĉu�B�2

�

� 1�
n�2

=
u�0,ueven

Ĉu�1�P�2
�Ĉu�B�2

�

n�2

=
u�0,uodd

Ĉu�1�P�2
�Ĉu�B�2

�

� 1�
n�2

=
u�0,ueven

�Ĉu�B��bu�1bn�2
�Ĉu�B�2

�

n�2

=
u�0,uodd

�12
�02

�

� 1�
n�2

=
u�0,ueven

�Ĉu�B��bu�1bn�2
�Ĉu�B�2

� �n�1
2 $ �

� 1�
n�2

=
u�0,ueven

2Ĉu�B�bu�1bn� �bu�1bn�2
� �n�1

2 $ �
� 1�

n�2

=
u�0,ueven

2Ĉu�B�bu�1bn�

n�2

=
u�0,ueven

�bu�1bn�2
� �n�1

2 $ �
� 1�

n�2

=
u�0,ueven

2Ĉu�B�bu�1bn� �n�1
2 $� �n�1

2 $ � n�2bn

n�2

=
u�0,ueven

Ĉu�B�bu�1.

(5.35)
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The last property is of significant importance when converting an algorithm searching
for skew-symmetric binary sequences, denoted as A , to an algorithm searching for pseudo-
skew-symmetric binary sequences B and a high merit factor. Indeed, despite the complexity
of algorithm A we can decompose it to a tape �¶¶L1¶¶�¶¶L2¶¶�¶¶Ln¶¶�, where Li are
stages of A , where better candidates could be announced. They are known as local optimums
in heuristic search literature. We could easily replace Li with Li¶¶Ti, where Ti is a simple
routine with memory and time complexity of O�n�, which calculates the pseudo-skew-
symmetric sequences Li¶¶1 and Li¶¶�1 merit factors, where Li is the current best candidate.
It should be noted that B ��¶¶L1¶¶T1¶¶�¶¶L2¶¶T2¶¶�¶¶Ln¶¶Tn¶¶� does not interfere
with the normal work of A by design. Furthermore, since those linear time complexity
checkups are initiated on local optimums only, the delay of B compared to A caused by the
additional instructions Ti is negligible.

We could further extend the search of highly-competitive pseudo-skew-symmetric se-
quences by the following observation:

Proposition 5.1.3. Given a skew-symmetric binary sequence B � b0¶¶B¬¶¶bn�1 both binary
sequences b0¶¶B¬ and B¬¶¶bn�1 are pseudo-skew-symmetric.

Proof 5.1.5. From the main property of the skew-symmetric sequences follows that B¬ is
skew-symmetric as well. Thus, the pseudo-skew-symmetry of b0¶¶B¬ and B¬¶¶bn�1 follows
directly from definition 5.1.1.

Proposition 5.1.4. Given a skew-symmetric binary sequence B� �b0,b1,�,bn�1�� b0¶¶B¬¶¶bn�1

with sidelobes array

SB � �Ĉ0�B�,Ĉ1�B�,�,Ĉn�2�B�,Ĉn�1�B�� ,
the following property holds:

E�P� � E�B��n�3�2bn�1δ ,

where P is the pseudo-skew-symmetric sequence b0¶¶B¬ and δ �<n�2
u�1,ueven

�Ĉu�B�bu.

Proof 5.1.6. We have B � �b0,b1,�,bn�1� and P � �b0,b1,�,bn�2�. Furthermore,

Ĉi�P� � i

=
j�0

b jb j�n�2�i, f or i " r0,1,�,n�2x.
Decomposing Ĉi�B� reveals the following:
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Ĉi�B� � i

=
j�0

b jb j�n�1�i �

i�1

=
j�0

b jb j�n�1�i�bibi�n�1�i � bibn�1�Ĉi�1�P�
In other words, Ĉi�1�P� � Ĉi�B��bibn�1. Thus, by using the sidelobes array of B,

SB � �Ĉ0�B�,0,Ĉ2�B�,0,�,0,Ĉn�3�B�,0,Ĉn�1�B�� ,
we could represent the sidelobes array of P:

SP � �Ĉ0�P�,Ĉ1�P�,Ĉ2�P�,�,Ĉn�2�P�� �
� �Ĉ1�B��b1bn�1,Ĉ2�B��b2bn�1,Ĉ3�B��b3bn�1,�,Ĉn�1�B��bn�1bn�1� . (5.36)

By using the definition of energy of a binary sequence we have:

E�P��E�B� � n�3

=
u�0

Ĉu�P�2
�

n�2

=
u�0

Ĉu�B�2
�

n�3

=
u�0

Ĉu�P�2
��1�

n�2

=
u�1

Ĉu�B�2� �
� �1�

n�2

=
u�1

Ĉu�1�P�2
�Ĉu�B�2

�

� �1�
n�2

=
u�1,ueven

Ĉu�1�P�2
�Ĉu�B�2

�

n�2

=
u�1,uodd

Ĉu�1�P�2
�Ĉu�B�2

�

� �1�
n�2

=
u�1,ueven

�Ĉu�B��bubn�1�2
�Ĉu�B�2

�

n�2

=
u�1,uodd

�12
�02

�

� �1�
n�2

=
u�1,ueven

��2Ĉu�B�bubn�1� �bubn�1��2
� �n�2

2 $ �
� �1�

n�2

=
u�1,ueven

�2Ĉu�B�bubn�1�

n�2

=
u�1,ueven

�bubn�1�2
� �n�2

2 $ �
� �1�

n�2

=
u�1,ueven

�2Ĉu�B�bubn�1� �n�2
2 $� �n�2

2 $ � n�3�2bn�1

n�2

=
u�1,ueven

�Ĉu�B�bu.

(5.37)

The last property further enhances the power of the algorithm. Thus now we can modify
each algorithm A , searching for skew-symmetric binary sequences with odd length n and
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high merit factor, to an algorithm B, searching simultaneously skew-symmetric binary
sequences with odd length n and pseudo-skew-symmetric binary sequences with even lengths
n�1 and n�1.

Definition 5.1.2 (Restriction Class of Binary Sequence). We will call the class of binary
sequences of length n, with the first k elements fixed, a restriction class of order k on
binary sequences with length n. We will denote this set as Rk

n. If the binary sequence is
skew-symmetric we will use the notation R

k
n .

It should be noted that R
k
n L Rk

n. More precisely, the magnitude of Rk
n is 2n�k, while the

magnitude of R
k
n is 2l�k�1, where n � 2l�1, since R

k
n is defined over the skew-symmetric

binary sequences only.
A well-studied area in number theory and combinatorics is the number partition problem

- distinct ways of writing a given integer number n as a sum of positive integers. We define
the number of possible partitions of a non-negative integer n as the partition function p�n�.
No closed-form expression for p�n� is known. However, the partition functions for some
different values of n could be found in the online encyclopedia of integer numbers (OEIS),
sequence A000041 [1].

Theoretically, searching for skew-symmetric binary sequences of length n with high merit
factors could be parallelized to ¶ R

k
n ¶ instances. To minimize the total number of instances

needed, we should consider several actions to a given skew-symmetric binary sequence
B � �b0,b1,�,bn�1�:

• Reversing B defined as operator δ1: δ1�B� � �bn�1,�,b1,b0�
• Complementing B defined as operator δ2: δ2�B� � �b0,b1,�,bn�1�, where bi � �bi

• Alternating complementing of B defined as operator δ3 :
δ3�B� � ��,bi�2,bi�1,bi,bi�1,bi�2,��

All three operators leave the energy of B intact. If we further add the identity operator
δ0 we construct a group G of order 8. By using some group theory [118], we could derive a

closed formula of the exact number of symmetry classes with length k: 2k�3
�2� k

2 $�2��k mod 2�.
The same formula arises from the row sums of the Losanitsch’s triangle (OEIS, sequence
A005418 [2]) - named after the S. Lozanić, in his work related to the symmetries exhibited
by rows of paraffins [99]. This fact could be used to partition the search space from p�k�
covering subsets to 2k�3

� 2� k
2 $�2��k mod 2� non-covering subsets. A similar partitioning

was used in [118] to efficiently parallelize a branch and bound algorithm for exhaustively
searching binary sequences with optimal merit factors. Since exhaustive search is inapplicable
for large values of n, the following characteristic is proposed:
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Definition 5.1.3 (Potential of a Restriction Subclass). For a skew-symmetric binary sequence
B � �b0,b1,�,bn�1�, we fix a partitioning with length k: t0, t1,�, tg, s.t. <g

i�0 ti � k. The
partitioning could be projected to a skew-symmetric binary sequence with the following
procedure:

R� a�aÍ ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
t0

a�aÍ ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
t1

a�aÍ ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
t2

a�aÍ ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
t3

���1�ga���1�gaÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
tg

u1u2u3�un�2k�2un�2k�1un�2kÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
non-fixed (free) elements

f1 f2 f3� fk�2 fk�1 fkÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
last elements are fixed

The last k elements fi are fixed due to the first k elements of the sequence and its skew-
symmetric property. Please note that all elements a,a,��1�ga,ui, fi " r�1,1x. We define
the potential of the binary skew-symmetric sequence R as the energy of the ternary sequence
Rz, where:

Rz
� a�aÍ ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ

t0

a�aÍ ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
t1

a�aÍ ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
t2

a�aÍ ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
t3

���1�ga���1�gaÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
tg

000�000Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
n�2k zeroed elements

f1 f2 f3� fk�2 fk�1 fkÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
last elements are fixed

Rz is ternary since we have introduced a new element 0. This way we could not only focus
on the complete sidelobes of R but take under consideration the non-complete fragments of
sidelobes of R, where the fixed elements of the sequence play a role. For example, let us
consider a skew-symmetric binary sequence Q with length n � 21, a restriction k � 6 and a
partition 1,1,2,2:

Q � aÍÑÏ
1

aÍÑÏ
1

aaÍÑÏ
2

aaÍÑÏ
2

u1u2u3�u9Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
non-fixed (free) elements

f1 f2 f3 f4 f5 f6Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
elements are fixed

Since Q is skew-symmetric we know that Q�l� i� � ��1�iQ�l� i�, for n � 2l� 1. If
we take i � l we have Q�0� � ��1�lQ�n� 1�. In the current example, n � 21 and l � 10.
Therefore f6 � Q�20� � Q�0���1�l

� Q�0�. By following the same routine we could reveal
all values of fi:

Q � aÍÑÏ
1

aÍÑÏ
1

aaÍÑÏ
2

aaÍÑÏ
2

u1u2u3�u9Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
non-fixed (free) elements

aÍÑÏ
1

aaÍÑÏ
2

aaaÍ ÒÒÒÑÒÒÒ Ï
3

We could easily derive Qz:

Qz
� aÍÑÏ

1

aÍÑÏ
1

aaÍÑÏ
2

aaÍÑÏ
2

000000000Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
9

aÍÑÏ
1

aaÍÑÏ
2

aaaÍ ÒÒÒÑÒÒÒ Ï
3



5.1 On the Skew-Symmetric Binary Sequences and the Merit Factor Problem 117

Table 5.4 A list of unique partitions in R6
21

Partition � Notation

6 [’+’, ’+’, ’+’, ’+’, ’+’, ’+’]
5,1 [’+’, ’+’, ’+’, ’+’, ’+’, ’-’]
4,1,1 [’+’, ’+’, ’+’, ’+’, ’-’, ’+’]
4,2 [’+’, ’+’, ’+’, ’+’, ’-’, ’-’]
3,1,2 [’+’, ’+’, ’+’, ’-’, ’+’, ’+’]
3,2,1 [’+’, ’+’, ’+’, ’-’, ’-’, ’+’]
3,3 [’+’, ’+’, ’+’, ’-’, ’-’, ’-’]
2,1,2,1 [’+’, ’+’, ’-’, ’+’, ’+’, ’-’]
2,1,1,2 [’+’, ’+’, ’-’, ’+’, ’-’, ’-’]
2,2,2 [’+’, ’+’, ’-’, ’-’, ’+’, ’+’]

Without loss of generality, let us fix a � 1. Then, we have a � �1, and

Qz
� �1,�1,1,1,�1,�1,0,0,0,0,0,0,0,0,0,1,�1,�1,1,1,1�

Thus, the potential of the partition 1,1,2,2 is equal to E�Qz�. The sidelobes’ array of Qz

is:
SQz � �1,0,1,0,1,0,�5,0,3,0,�1,0,0,0,0,0,0,0,�4,0� ,

therefore E�Qz��<u SQz
2
u � 54. The cardinality of the set R6

21 is ¶R6
21 ¶� 26�3

�2� 6
2 $�2��6 mod 2�

�

23
�21

� 10. A list of unique partitions in R
6
21 could be find in Table 5.4. For simplicity,

we denote as R
k¶m
n those partitions of size k over n, which posses exactly m elements. For

example, referring Table 5.4, the partition �6� is in R
6¶1
21 , partitions �5,1�, �4,2� and �3,3�

are in R
6¶2
21 , partitions �4,1,1�, �3,1,2�, �3,2,1� and �2,2,2� are in R

6¶3
21 , while partitions

�2,1,2,1� and �2,1,1,2� are in R
6¶4
21 .

Given a partition t0, t1,�, tg of size k, we will denote the set of skew-symmetric binary
sequences defined by the partition as B

t0,t1,�,tg
n . Please note that B

t0,t1,�,tg
n LR

k¶g�1
n LR

k
n.

Finally, the potential of a given partition set S is denoted as U �S�.
A few remarks regarding the sidelobes of a given potential ternary sequence should be

made. In case we are interested in the potential of R
k
n , the sidelobes of the ternary sequence

could be divided into three distinct sections:

• Head: the first k sidelobes. They are shared among all sequences in this class, i.e. they
are immutable.

• Body: the mid n�2k sidelobes. They are all equal to zero.
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Table 5.5 Some partitions with optimal and normalized potentials

Class U optimal U U
� optimal U

�

R
39¶4
n 18,11,6,4 3731 18,11,6,4 1082

R
41¶6
n 17,9,6,4,3,2 2217 17,9,6,4,3,2 813

R
47¶9
n 18,8,5,4,3,3,2,2,2 1859 11,9,5,5,5,3,3,3,3 830

R
56¶4
n 27,14,9,6 12856 27,14,9,6 3472

R
68¶7
n 25,11,10,7,5,5,5 9596 25,12,9,8,6,4,4 3040

R
79¶9
n 26,12,10,7,6,6,6,4,2 11667 28,14,10,7,6,6,4,2,2 3702

• Tail: the last k sidelobes. Ignoring the sidelobes equal to zero, the remaining sidelobes
are even numbers. They are not shared among the sequences in this class, i.e. they are
mutable. However, partial information about their final value is gathered.

The actual calculation of the potential U �Rk
n� gives an equal priority to the value of the

elements in the head and the tail. However, we could tweak the actual energy calculation
while minimizing the energy of the elements to prefer minimizing the elements in the
head more, than minimizing the elements in the tail. All elements inside the tail are even
numbers. This arises from the simple observation, that each summand of the form bib j, which
participates in a given sidelobe inside the tail, is accompanied by the symmetry summand
b jbi. Having this in mind, if we prefer to minimize the energy of the summands, rather than
minimizing their overall sums, we could normalize the tail by dividing its sidelobes values
by 2. We will define this value as a normalized potential, denoted as U

��Rk
n�.

As a final remark, please note that despite R
k
n,R

k
n�1,R

k
n�2,� is an infinite sequence

of non-intersecting finite sets, their potentials and normalized potentials are equal. More
formally, ¾i ' n¾ j ' i �U �Rk

i � �U �Rk
j�&U

��Rk
i � �U

��Rk
j�.

During our research, by using an exhaustive search, we have calculated all the potentials,
as well as normalized potentials, of set partitions of the form R

k¶g
n , for 38 $ k $ 115 and

some values of g " �4,12�. For speeding up the exhaustive routine, the following restriction
of the partitions were further applied: ¾i � ti ' ti�1. As an illustration, various partitions
having an optimal potential and normalized potential are given in Table 5.5.
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5.1.3 Algorithm for Finding Binary Sequences with Arbitrary Length
and High Merit Factor

By achieving both linear time and memory complexities, we can utilize all the threads of a
given central processing unit. Furthermore, the memory requirements of a given algorithm
are significantly reduced.

In Algorithm 12 a pseudo-code of the proposed routine is presented. The following
additional notations and remarks should be considered:

• n - an odd integer number

• t0, t1,�, tg - the partition search space to search through.

• Ti - an inner threshold value. When the inner counter wi reaches Ti, the set is flushed
and the whole routine restarts. The threshold value Ti constrains the size of the set H.

• To - an outer threshold value. When the outer counter wo reaches To, the program is
terminated.

• Ta - an activator threshold value. For example, the probability of finding a pseudo-
skew-symmetric sequence with length n� 1 or n� 1 and merit factor X , from a
skew-symmetric sequence with length n and merit factor X �1, is negligible for higher
values of X . Thus, we could save time and effort to repeatedly probe the adjacent
pseudo-skew-symmetric sequences.

• án�1,án,án�1 - the best candidates found, in terms of merit factor value, for re-
spectively pseudo and not pseudo-skew-symmetric sequences of lengths n�1,n and
n�1.

• H - a set of hashes of the visited candidates. We make sure to avoid already visited
nodes.

• H.add(hash�B�) - adding the hash of the binary sequence B to the set H.

• pickBetterNeighborIndex - a function, which returns the index of a better-unexplored
neighbor of B, i.e. the binary sequence with a distance of exactly 1 flip away from B,
s.t. its hash does not belong to the set H. An optimized derivative-based pseudo-code
of this helper function is discussed in our previous work [45].

Algorithm 12 was implemented (C++) on a general-purpose computer equipped with
a central processing unit with 8 cores and 16 threads. Despite using just a single low-
budget personal computer, we were able to improve all the results, for all skew-symmetric
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Algorithm 12 An algorithm for searching skew-symmetric and pseudo-skew-symmetric
binary sequences with arbitrary lengths and high merit factors.

1: procedure MF(n, t0, t1,�, tg,Ti,To,Ta)
2: án�1,án,án�1, wo� 0,0,0,0
3: while True do
4: H,wi,� rox ,0
5: B� random , s.t. B " B

t0,t1,�,tg
n LR

k
n, for k �<g

i�0 ti.
6: H.add(hash�B�)
7: V � E�B�
8: while True do
9: bestN� pickBetterNeighborIndex�B�

10: if bestN �� �1 then
11: break
12: end if
13: Flip(bestN, B)
14: V � E�B�
15: wi �� 1
16: H.add(hash(B))
17: if n2

2V %án then

18: án�
n2

2V
19: end if
20: if n2

2V ' Ta then

21: if �n�1�2

2�V�n�2bnδ� %án�1 then

22: án�1�
�n�1�2

2�V�n�2bnδ�
23: end if
24: if �n�1�2

2�V�n�3�2bn�1δ� %án�1 then

25: án�1�
�n�1�2

2�V�n�3�2bn�1δ�
26: end if
27: end if
28: if wi % Ti then
29: wo �� 1
30: break
31: end if
32: end while
33: if wo % To then
34: break
35: end if
36: end while
37: end procedure
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lengths in the range 225-451, announced in literature and reached by using a supercomputer
grid. Furthermore, by using classes of pseudo-skew-symmetric sequences, we were able to
simultaneously reach binary sequences of even lengths between 225 and 512, and beyond,
with merit factors greater than 7. We demonstrate the efficiency of our approach by publishing
a complete list of binary sequences, for both even and odd lengths up to 28, and merit factors
greater than 8. The list is further accompanied by a complete list of binary sequences, for
both even and odd lengths up to 29, and merit factors greater than 7 (see Tables B.5 - B.15).

We further demonstrate the power and efficiency of the proposed algorithm by launching
it on binary sequences of lengths 573 and 1009. As mentioned earlier, the choice of those two
specific lengths is motivated by the approximation numbers given in [24], Figure 7, presented
during a discussion of how much time the state-of-the-art stochastic solver lssOrel_8 will
need to reach binary sequences with the aforementioned lengths and merit factors close to
6.34. It was estimated that finding solutions with a merit factor of 6.34 for a binary sequence
with length 573 requires around 32 years, while for binary sequences with length 1009, the
average runtime prediction to reach the merit factor of 6.34 is 46774481153 years. By using
the proposed algorithm, we were able to reach such candidates within several hours (see
Table B.16). By further applying some operators on the skew-symmetric binary sequence of
length 1009 found, several sequences of lengths 1006, 1007, 1008, and 1010 with MF greater
than 6.34 were also revealed. The same argument is true for the other sequence of length
573, but since the results are too many we omit the data.

For convenience, we denote the operators acting on binary sequences as shown in Table
5.6. Please note that operator η0 activated on a given skew-symmetric binary sequence
a¶¶L¶¶b will yield another skew-symmetric binary sequence L, while all other operators
activated on the same skew-symmetric binary sequence will yield a pseudo-skew-symmetric
sequence. Throughout the tables with reported records, the classes denoted with Ω represent
the best-known result to be found in the literature for the current length (all in Table B.5,
for the lengths between 172 and 226). It should be emphasized, that all records achieved
by starting from a sequence of class Ω, are directly calculated without the usage of any
additional stochastic routine. All other records throughout the tables (classes B) are achieved
by using a heuristic search. All sequences are presented in hexadecimal format with zeroes
omitted. It should be noted, that as soon as the algorithm finds a record sequence of a given
length, it automatically continues to the next search space. In some cases, we required a little
bit more demanding goal, i.e. MF greater than 8 (for sequences with lengths less than about
256), or MF greater than 7 (for sequences with lengths less than about 512). Some records
were found for several minutes, while others required a little bit more effort of several hours.
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Table 5.6 A list of used operators acting on binary sequences

Operator Action

η0 a¶¶L¶¶b`η0 � L
η1 L`η1 � L¶¶1
η2 L`η2 � L¶¶�1
η3 a¶¶L`η3 � L
η4 L¶¶b`η4 � L
η5 L`η5 � 1¶¶L
η6 L`η6 � �1¶¶L

5.2 Using Aperiodic Autocorrelation functions for an S-box
reverse engineering

We can treat all �n
2� columns of two-term linear combinations of coordinates of an S-box

S�n,n� as binary sequences and analyze their sidelobe levels. Such a strategy makes sense
since sidelobe levels can reveal hidden inner relationships between the coordinates of S.
In Figure 5.3 the obtained results are given. The absolute values of side lobes values are
interchanged with a gradient palette starting from darker (lower values) to lighter (higher
values). In Figure 5.3a the side lobes plot of the trivial �8,8� S-box, i.e. the identity
permutation, is plotted, while Figure 5.3b is an example of a random �8,8� S-box side lobes
plot. The anomalies in S-boxes of BelT, CSS, Safer, and SKINNY are visible.
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Fig. 5.3 Anomalies detected in various S-boxes’ side lobes spectra
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Appendix A

S-box Characteristics and Collisions

A.1 Detailed characteristics of popular S-boxes

Table A.1 S-boxes overview.

S SNL Sδ SAC SDEG Spectra

Anubis 94 8 96 7
6896, 12520, 11331, 9978, 7750,
5970, 4335, 2760, 1861, 1046,
572, 282, 138, 78, 10, 2, 2, 4

BelT 102 8 88 6
6277, 11745, 11387, 9943, 8250,

6301, 4793, 3344, 1836,
979, 428, 190, 52, 10

CLEFIA S0 100 10 96 6
14160, 0, 22280, 0, 15596,

0, 8387, 0, 3535, 0,
1185, 0, 340, 0, 52

CMEA 96 12 104 6
7338, 12050, 11742, 9575, 7930,

5931, 4212, 2773, 1798, 1046, 576,
286, 162, 72, 30, 11, 3

Crypton_1_0 S0

Crypton_1_0 S1

Crypton_1_0 S2

Crypton_1_0 S3

96 10 96 6
13926, 0, 22058, 0, 15948,
0, 8460, 0, 3731, 0, 1094,

0, 276, 0, 36, 0, 6

Continue on the next page
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S-boxes overview (continued).

S SNL Sδ SAC SDEG Spectra

Crypton_0_5 88 16 128 4

20891, 0, 11596, 0, 22018,
0, 4812, 0, 5236, 0,
468, 0, 370, 0, 20,
0, 112, 0, 0, 0, 12

CSA 94 12 104 7
7073, 12586, 11246, 9747, 7865,
6041, 4231, 2777, 1733, 1117,
581, 308, 139, 54, 22, 7, 5, 3

CS_cipher 96 16 128 3
33183, 0, 0, 0, 23264,

0, 0, 0, 8448, 0, 0,
0, 288, 0, 0, 0, 352

Enocoro 96 10 128 6
14248, 0, 21982, 0, 15824,

0, 8369, 0, 3572, 0,
1179, 0, 300, 0, 54, 0, 7

E2 100 10 104 6
6730, 12172, 11248, 9841, 8000,

6217, 4644, 2983, 1765,
991, 507, 272, 120, 36, 9,

Fantomas 96 16 128 2
26877, 0, 11568, 0, 15584, 0,

4220, 0, 5816, 0, 572,
0, 544, 0, 24, 0, 330

Fox 96 16 128 4
19196, 0, 18171, 0, 15888,

0, 6405, 0, 4280, 0,
983, 0, 352, 0, 41, 0, 219

Iceberg 96 8 96 7
6929, 12610, 11291, 9774, 7881 ,

6060, 4166, 2892, 1887, 940,
566, 288, 137, 62, 33, 14, 5

iScream 96 16 128 4
23103, 0, 14728, 0, 15888, 0,

4824, 0, 5536, 0, 904, 0,
240, 0, 24, 0, 288

Kalyna π0 104 8 72 7
6317, 11616, 10829, 9829, 8542,

6834, 4912, 3317, 1880,
897, 371, 147, 44

Continue on the next page
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S-boxes overview (continued).

S SNL Sδ SAC SDEG Spectra

Kalyna π1 104 8 72 7
6280, 11426, 10769, 9948, 8500,

6970, 5112, 3267, 1855,
907, 351, 122, 28

Kalyna π2 104 8 72 7
6307, 11643, 10808, 9681, 8540,

6895, 4981, 3415, 1854,
898, 363, 108, 42

Kalyna π3 104 8 72 7
6371, 11451, 10804, 9887, 8422,

6985, 5019, 3310, 1878,
883, 361, 124, 40

Khazad 96 8 104 7
7030, 12594, 11426, 9876, 7573,
5938, 4268, 2836, 1877, 1058,
524, 264, 153, 58, 30, 16, 14

Kuznechik 100 8 96 7
6534, 11645, 10761, 10166, 8793,

6804, 4474, 2796, 1693, 971,
535, 219, 91, 39, 14

MD2 90 10 88 6

7082, 12669, 11306, 9702, 7819,
5899, 4244, 2850, 1776, 1033,

619, 286, 151, 60, 22,
11, 3, 1, 1, 1

newDES 92 12 96 6
6995, 12491, 11309, 9828, 7860,
6021, 4355, 2784, 1765, 1020,

557, 282, 154, 71, 25, 14, 1, 1, 2

Scream 96 8 128 3
19583, 0, 11392, 0, 23952, 0,

4416, 0, 5344, 0, 576,
0, 112, 0, 0, 0, 160,

SKINNY8 64 64 128 2

40383, 0, 5810, 0, 9904,
0, 1846, 0, 5624, 0, 388,
0, 464, 0, 118, 0, 892, 0,
22, 0, 0, 0, 4, 0, 24, 0, 2,

0, 0, 0, 2, 0, 52

Continue on the next page
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S-boxes overview (continued).

S SNL Sδ SAC SDEG Spectra

Skipjack 100 12 96 6
7005, 12456, 11244, 9799,

7882, 6032, 4354, 2813, 1814,
1041, 567, 317, 154, 54, 3

SNOW3G 96 8 96 5
25715, 0, 0, 0, 32324,
0, 0, 0, 6924, 0, 0, 0,

556, 0, 0, 0, 16

Streebog 100 8 96 7
6534, 11645, 10761, 10166, 8793,

6804, 4474, 2796, 1693, 971,
535, 219, 91, 39, 14

Turing 94 12 96 6
6998, 12383, 11444, 9705, 7997,
5922, 4320, 2852, 1800, 1045,
551, 265, 145, 72, 21, 11, 3, 1

Twofish p0 96 10 128 6
14221, 0, 22376, 0, 15506,
0, 8298, 0, 3545, 0, 1194,

0, 314, 0, 68, 0, 13

Twofish p1 96 10 112 6
14151, 0, 22385, 0, 15667,

0, 8209, 0, 3512, 0,
1189, 0, 353, 0, 57, 0, 12

AES
ARIA S2

Camellia
CLEFIA S1

DBlock
Hierocrypt3

Hierocrypt31
SEED S0

SEED S1

SMS4
ZUC S1

112 4 32 7
4590, 12240, 9180, 10200, 8670,

6120, 9180, 4080, 1275

Whirlpool 100 8 96 7
7399, 12400, 11084, 9960, 7580,
5882, 4229, 3028, 1870, 1048,

563, 260, 134, 62, 36

Continue on the next page
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S-boxes overview (continued).

S SNL Sδ SAC SDEG Spectra

ZUC S0 96 8 128 5
26655, 0, 0, 0, 31200,

0, 0, 0, 7232, 0, 0, 0, 288,
0, 0, 0, 160

Zorro 96 10 112 5

10115, 6322, 17157, 4921,
11652, 3036, 6519, 1393,

2562, 536, 891, 131,
208, 36, 41, 9, 6

A.2 Collisions search by using absolute LAT spectra

Table A.2 Collisions search by using absolute LAT spectra

Sbox Collision Γ ¶I¶ I
FLY Γ��,4,0,8, I� 12 22, 54, 86, 97, 99, 101, 103, 105, 107, 118, 150, 182
FLY Γ��,4,0,8, I� 8 60, 94, 188, 195, 203, 207, 229, 252
FLY Γ��,4,0,8, I� 12 30, 126, 159, 189, 190, 219, 225, 231, 235, 239, 249,

254
PICARO Γ��,4,2,6, I� 96 0, 1, 9, 11, 13, 14, 16, 17, 25, 27, 29, 30, 32, 33, 41,

43, 45, 46, 48, 49, 57, 59, 61, 62, 64, 65, 73, 75, 77,
78, 80, 81, 89, 91, 93, 94, 96, 97, 105, 107, 109, 110,
112, 113, 121, 123, 125, 126, 128, 129, 137, 139, 141,
142, 144, 145, 153, 155, 157, 158, 160, 161, 169, 171,
173, 174, 176, 177, 185, 187, 189, 190, 192, 193, 201,
203, 205, 206, 208, 209, 217, 219, 221, 222, 224, 225,
233, 235, 237, 238, 240, 241, 249, 251, 253, 254

PICARO Γ��,4,0,8, I� 16 9, 11, 13, 14, 29, 43, 57, 78, 109, 125, 137, 174, 185,
219, 238, 251

Continue on the next page



140 S-box Characteristics and Collisions

Collisions search by using absolute LAT spectra (continued)

Sbox Collision Γ ¶I¶ I
PICARO Γ��,4,2,10, I� 96 0, 1, 9, 11, 13, 14, 16, 17, 25, 27, 29, 30, 32, 33, 41,

43, 45, 46, 48, 49, 57, 59, 61, 62, 64, 65, 73, 75, 77,
78, 80, 81, 89, 91, 93, 94, 96, 97, 105, 107, 109, 110,
112, 113, 121, 123, 125, 126, 128, 129, 137, 139, 141,
142, 144, 145, 153, 155, 157, 158, 160, 161, 169, 171,
173, 174, 176, 177, 185, 187, 189, 190, 192, 193, 201,
203, 205, 206, 208, 209, 217, 219, 221, 222, 224, 225,
233, 235, 237, 238, 240, 241, 249, 251, 253, 254

PICARO Γ��,4,2,10, I� 12 19, 34, 52, 69, 99, 115, 132, 165, 180, 210, 229, 242
PICARO Γ��,4,2,10, I� 12 26, 44, 63, 72, 106, 122, 143, 168, 191, 220, 232, 252
PICARO Γ��,4,2,10, I� 12 82, 83, 84, 85, 146, 147, 148, 149, 194, 195, 196, 197
PICARO Γ��,4,2,10, I� 12 23, 39, 54, 70, 103, 119, 134, 166, 182, 215, 230, 247
PICARO Γ��,4,4,12, I� 204 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 42, 43, 44, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 60, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 86,
87, 88, 90, 92, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 106, 108, 109, 111, 112, 113, 114, 115, 116, 117,
118, 119, 120, 122, 124, 125, 127, 128, 129, 130, 131,
132, 133, 134, 135, 136, 137, 138, 140, 143, 144, 146,
147, 148, 149, 150, 151, 152, 154, 156, 159, 160, 161,
162, 163, 164, 165, 166, 167, 168, 170, 172, 174, 175,
176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186,
188, 191, 192, 194, 195, 196, 197, 198, 199, 200, 202,
204, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216,
218, 219, 220, 223, 224, 225, 226, 227, 228, 229, 230,
231, 232, 234, 236, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 250, 251, 252, 255
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Collisions search by using absolute LAT spectra (continued)

Sbox Collision Γ ¶I¶ I
PICARO Γ��,4,10,14, I� 96 0, 1, 9, 11, 13, 14, 16, 17, 25, 27, 29, 30, 32, 33, 41,

43, 45, 46, 48, 49, 57, 59, 61, 62, 64, 65, 73, 75, 77,
78, 80, 81, 89, 91, 93, 94, 96, 97, 105, 107, 109, 110,
112, 113, 121, 123, 125, 126, 128, 129, 137, 139, 141,
142, 144, 145, 153, 155, 157, 158, 160, 161, 169, 171,
173, 174, 176, 177, 185, 187, 189, 190, 192, 193, 201,
203, 205, 206, 208, 209, 217, 219, 221, 222, 224, 225,
233, 235, 237, 238, 240, 241, 249, 251, 253, 254

PICARO Γ��,4,10,14, I� 12 28, 42, 56, 79, 108, 124, 136, 175, 184, 218, 239, 250
PICARO Γ��,4,12,14, I� 12 23, 39, 54, 70, 103, 119, 134, 166, 182, 215, 230, 247
Iraqi Γ��,4,0,4, I� 130 0, 2, 3, 4, 5, 10, 11, 12, 13, 18, 19, 20, 21, 26, 27, 28,

29, 32, 33, 38, 39, 40, 41, 42, 46, 47, 48, 49, 54, 55,
56, 57, 62, 63, 66, 67, 68, 69, 74, 75, 76, 77, 82, 83,
84, 85, 90, 91, 92, 93, 96, 97, 102, 103, 104, 105, 110,
111, 112, 113, 118, 119, 120, 121, 126, 127, 128, 129,
134, 135, 136, 137, 142, 143, 144, 145, 150, 151, 152,
153, 158, 159, 162, 163, 164, 165, 170, 171, 172, 173,
178, 179, 180, 181, 186, 187, 188, 189, 192, 193, 198,
199, 200, 201, 206, 207, 208, 209, 214, 215, 216, 217,
222, 223, 226, 227, 228, 229, 234, 235, 236, 237, 242,
243, 244, 245, 250, 251, 252, 253

Iraqi Γ��,4,2,6, I� 129 0, 2, 3, 4, 5, 10, 11, 12, 13, 18, 19, 20, 21, 26, 27, 28,
29, 32, 33, 38, 39, 40, 41, 46, 47, 48, 49, 54, 55, 56,
57, 62, 63, 66, 67, 68, 69, 74, 75, 76, 77, 82, 83, 84,
85, 90, 91, 92, 93, 96, 97, 102, 103, 104, 105, 110,
111, 112, 113, 118, 119, 120, 121, 126, 127, 128, 129,
134, 135, 136, 137, 142, 143, 144, 145, 150, 151, 152,
153, 158, 159, 162, 163, 164, 165, 170, 171, 172, 173,
178, 179, 180, 181, 186, 187, 188, 189, 192, 193, 198,
199, 200, 201, 206, 207, 208, 209, 214, 215, 216, 217,
222, 223, 226, 227, 228, 229, 234, 235, 236, 237, 242,
243, 244, 245, 250, 251, 252, 253
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Collisions search by using absolute LAT spectra (continued)

Sbox Collision Γ ¶I¶ I
FOX Γ��,4,4,12, I� 16 0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187,

204, 221, 238, 255
Fantomas Γ��,4,0,8, I� 10 102, 110, 114, 122, 195, 215, 230, 238, 242, 250
Fantomas Γ��,4,4,12, I� 128 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 36, 40, 44, 48, 52, 56, 60, 64, 65, 68, 69, 72, 73,
76, 77, 80, 81, 84, 85, 88, 89, 92, 93, 96, 98, 100, 102,
104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124,
126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146,
148, 150, 152, 154, 156, 158, 160, 164, 168, 172, 176,
180, 184, 188, 192, 195, 196, 199, 200, 203, 204, 207,
208, 211, 212, 215, 216, 219, 220, 223, 224, 226, 228,
230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250,
252, 254

Lilliput Γ��,4,0,8, I� 16 80, 83, 85, 86, 112, 115, 117, 118, 224, 226, 229, 231,
232, 234, 237, 239

Lilliput Γ��,4,4,12, I� 64 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154,
155, 156, 157, 158, 159, 176, 177, 178, 179, 180, 181,
182, 183, 184, 185, 186, 187, 188, 189, 190, 191

Lilliput Γ��,4,4,12, I� 32 19, 23, 25, 29, 80, 86, 98, 106, 115, 117, 131, 134,
137, 140, 163, 166, 169, 172, 192, 194, 196, 198, 200,
202, 204, 206, 224, 226, 233, 235, 243, 255

Lilliput Γ��,4,4,12, I� 8 20, 26, 50, 60, 132, 142, 164, 174
CMEA Γ��,4,0,4, I� 5 0, 56, 118, 178, 252
CMEA Γ��,4,2,6, I� 12 0, 5, 61, 75, 78, 115, 138, 143, 183, 193, 196, 249
CryptonS0 Γ��,4,0,8, I� 19 96, 103, 104, 105, 111, 117, 124, 162, 164, 167, 168,

171, 173, 174, 197, 207, 231, 235, 236
CryptonS0 Γ��,4,4,12, I� 12 0, 16, 18, 47, 76, 97, 142, 163, 192, 239, 253, 255
CryptonS0 Γ��,4,4,12, I� 5 99, 158, 179, 208, 210
SKINNY Γ��,4,0,8, I� 8 193, 197, 201, 205, 225, 229, 233, 237
SKINNY Γ��,4,0,8, I� 8 74, 78, 106, 110, 202, 206, 234, 238
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Collisions search by using absolute LAT spectra (continued)

Sbox Collision Γ ¶I¶ I
SKINNY Γ��,4,0,8, I� 12 21, 23, 29, 31, 55, 63, 151, 159, 181, 183, 189, 191
SKINNY Γ��,4,4,12, I� 128 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,

32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110,
112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132,
134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154,
156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176,
178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198,
200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220,
222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242,
244, 246, 248, 250, 252, 254

SKINNY Γ��,4,4,12, I� 12 19, 21, 27, 29, 147, 149, 155, 157, 195, 199, 203, 207
SKINNY Γ��,4,4,12, I� 8 83, 87, 91, 95, 243, 247, 251, 255
SKINNY Γ��,4,4,12, I� 36 17, 23, 25, 31, 49, 55, 57, 63, 81, 85, 89, 93, 117, 125,

145, 151, 153, 159, 177, 183, 185, 191, 193, 197, 201,
205, 213, 221, 225, 229, 233, 237, 241, 245, 249, 253

SKINNY Γ��,4,0,16, I� 8 30, 62, 90, 122, 158, 190, 218, 250
SKINNY Γ��,4,12,20, I� 8 133, 135, 141, 143, 165, 167, 173, 175
SKINNY Γ��,4,16,24, I� 12 21, 23, 29, 31, 55, 63, 151, 159, 181, 183, 189, 191
ZUCS0 Γ��,4,0,8, I� 16 22, 23, 54, 55, 86, 87, 118, 119, 150, 151, 182, 183,

214, 215, 246, 247
ZUCS0 Γ��,4,0,8, I� 32 6, 7, 26, 27, 38, 39, 58, 59, 70, 71, 90, 91, 102, 103,

122, 123, 134, 135, 154, 155, 166, 167, 186, 187, 198,
199, 218, 219, 230, 231, 250, 251

Kuznyechik Γ��,4,2,14, I� 16 0, 26, 32, 58, 68, 94, 100, 126, 138, 144, 170, 176,
206, 212, 238, 244

Kuznyechik Γ��,4,2,16, I� 16 0, 26, 32, 58, 68, 94, 100, 126, 138, 144, 170, 176,
206, 212, 238, 244

Scream Γ��,4,0,8, I� 8 67, 71, 75, 79, 99, 103, 107, 111
Scream Γ��,4,0,8, I� 8 200, 201, 202, 203, 204, 205, 206, 207
Scream Γ��,4,0,8, I� 12 88, 90, 92, 94, 112, 114, 116, 118, 121, 123, 125, 127
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Collisions search by using absolute LAT spectra (continued)

Sbox Collision Γ ¶I¶ I
Scream Γ��,4,4,12, I� 64 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33,

34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154,
155, 156, 157, 158, 159, 176, 177, 178, 179, 180, 181,
182, 183, 184, 185, 186, 187, 188, 189, 190, 191

Scream Γ��,4,4,12, I� 6 23, 25, 49, 52, 58, 63
CSS Γ��,4,0,16, I� 128 4, 5, 6, 7, 8, 9, 10, 11, 20, 21, 22, 23, 24, 25, 26, 27,

36, 37, 38, 39, 40, 41, 42, 43, 52, 53, 54, 55, 56, 57,
58, 59, 64, 65, 66, 67, 76, 77, 78, 79, 80, 81, 82, 83,
92, 93, 94, 95, 96, 97, 98, 99, 108, 109, 110, 111, 112,
113, 114, 115, 124, 125, 126, 127, 128, 129, 130, 131,
140, 141, 142, 143, 144, 145, 146, 147, 156, 157, 158,
159, 160, 161, 162, 163, 172, 173, 174, 175, 176, 177,
178, 179, 188, 189, 190, 191, 196, 197, 198, 199, 200,
201, 202, 203, 212, 213, 214, 215, 216, 217, 218, 219,
228, 229, 230, 231, 232, 233, 234, 235, 244, 245, 246,
247, 248, 249, 250, 251

SNOW3G Γ��,4,0,8, I� 8 56, 98, 100, 104, 172, 202, 216, 232
SNOW3G Γ��,4,0,8, I� 8 59, 81, 131, 141, 205, 207, 213, 251
SNOW3G Γ��,4,0,8, I� 8 22, 28, 38, 122, 150, 178, 180, 198
SNOW3G Γ��,4,0,8, I� 8 32, 42, 44, 112, 130, 144, 160, 228
SNOW3G Γ��,4,0,8, I� 8 9, 67, 119, 127, 129, 143, 145, 149
SNOW3G Γ��,4,0,8, I� 8 61, 71, 89, 97, 137, 159, 235, 247
SNOW3G Γ��,4,0,8, I� 10 7, 13, 40, 53, 83, 96, 99, 101, 153, 187
SNOW3G Γ��,4,0,8, I� 8 25, 115, 133, 135, 157, 179, 197, 203
SNOW3G Γ��,4,0,8, I� 24 14, 15, 17, 23, 26, 41, 52, 87, 105, 107, 117, 118, 156,

163, 169, 189, 191, 193, 210, 215, 238, 239, 241, 246
SNOW3G Γ��,4,0,8, I� 8 19, 121, 155, 165, 173, 181, 227, 231
SNOW3G Γ��,4,0,8, I� 8 31, 33, 35, 95, 167, 185, 225, 245
iScream Γ��,4,0,8, I� 8 129, 145, 161, 177, 193, 209, 225, 241
iScream Γ��,4,4,12, I� 32 0, 1, 16, 17, 32, 33, 48, 49, 64, 65, 80, 81, 96, 97, 112,

113, 128, 129, 144, 145, 160, 161, 176, 177, 192, 193,
208, 209, 224, 225, 240, 241
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Collisions search by using absolute LAT spectra (continued)

Sbox Collision Γ ¶I¶ I
iScream Γ��,4,4,12, I� 8 34, 38, 50, 54, 71, 87, 99, 115
Zorro Γ��,4,2,6, I� 128 0, 1, 4, 5, 10, 11, 14, 15, 18, 19, 22, 23, 24, 25, 28, 29,

34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 52, 53, 58, 59,
62, 63, 64, 65, 68, 69, 74, 75, 78, 79, 82, 83, 86, 87,
88, 89, 92, 93, 98, 99, 102, 103, 104, 105, 108, 109,
112, 113, 116, 117, 122, 123, 126, 127, 128, 129, 132,
133, 138, 139, 142, 143, 146, 147, 150, 151, 152, 153,
156, 157, 162, 163, 166, 167, 168, 169, 172, 173, 176,
177, 180, 181, 186, 187, 190, 191, 192, 193, 196, 197,
202, 203, 206, 207, 210, 211, 214, 215, 216, 217, 220,
221, 226, 227, 230, 231, 232, 233, 236, 237, 240, 241,
244, 245, 250, 251, 254, 255

CS Γ��,4,0,8, I� 24 36, 37, 38, 39, 40, 41, 42, 43, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175

CS Γ��,4,0,8, I� 16 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,
235, 236, 237, 238, 239

CS Γ��,4,0,8, I� 16 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
94, 95

CS Γ��,4,0,8, I� 16 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186,
187, 188, 189, 190, 191

CS Γ��,4,0,8, I� 16 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122,
123, 124, 125, 126, 127
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A.3 Collisions search by using absolute transposed LAT
spectra

Table A.3 Collisions search by using absolute transposed LAT spectra

Sbox Collision Γ ¶I¶ I

BelT Γ��,4,0,8, IT � 16 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192
BelT Γ��,4,0,8, IT � 6 7, 14, 28, 56, 80, 160
BelT Γ��,4,8,12, IT � 6 7, 14, 28, 56, 80, 160

A.4 Collisions search by using DDT spectra

Table A.4 Collisions search by using DDT spectra

Sbox Collision Γ ¶I¶ I
FLY Γ��,4,0,4, I� 8 6, 7, 14, 15, 96, 112, 224, 240
FLY Γ��,4,4,8, I� 8 6, 7, 14, 15, 96, 112, 224, 240
PICARO Γ��,0,2,12, I� 12 23, 57, 73, 93, 107, 121, 139, 157, 167, 183, 205, 235
PICARO Γ��,0,2,12, I� 12 19, 53, 69, 95, 97, 117, 129, 159, 163, 179, 207, 225
PICARO Γ��,0,2,12, I� 10 2, 4, 6, 7, 9, 10, 11, 12, 13, 14
Lilliput Γ��,0,4,8, I� 8 16, 32, 48, 80, 96, 112, 160, 224
SKINNY Γ��,0,0,2, I� 12 232, 233, 234, 235, 236, 237, 248, 249, 250, 251, 252,

253
SKINNY Γ��,0,0,4, I� 8 53, 54, 98, 99, 114, 115, 197, 213
SKINNY Γ��,0,4,12, I� 6 24, 25, 26, 27, 42, 43
Kalyna π3 Γ��,0,0,2, I� 6 65, 67, 127, 145, 151, 250
ZUCS0 Γ��,0,0,2, I� 8 133, 135, 141, 143, 149, 151, 157, 159
ZUCS0 Γ��,0,0,2, I� 16 66, 70, 74, 78, 82, 86, 90, 94, 209, 211, 213, 215, 217,

219, 221, 223
ZUCS0 Γ��,0,0,4, I� 5 4, 6, 10, 20, 28
ZUCS0 Γ��,0,4,6, I� 8 224, 226, 228, 230, 240, 242, 244, 246
ZUCS0 Γ��,0,0,8, I� 8 35, 39, 43, 47, 51, 55, 59, 63
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Collisions search by using DDT spectra (continued)

Sbox Collision Γ ¶I¶ I
ZUCS0 Γ��,0,0,8, I� 8 161, 163, 169, 171, 177, 179, 185, 187
Kuznyechik Γ��,0,2,4, I� 5 4, 18, 36, 38, 48
Scream Γ��,0,0,2, I� 8 33, 49, 97, 113, 161, 177, 225, 241
Scream Γ��,0,0,8, I� 8 32, 64, 80, 96, 160, 192, 208, 224
CSS Γ��,0,0,16, I� 108 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34,

35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 53, 54, 55, 57,
58, 59, 85, 86, 87, 89, 90, 91, 101, 102, 103, 105, 106,
107, 113, 114, 115, 117, 118, 119, 121, 122, 123, 125,
126, 127, 149, 150, 151, 153, 154, 155, 165, 166, 167,
169, 170, 171, 177, 178, 179, 181, 182, 183, 185, 186,
187, 189, 190, 191, 209, 210, 211, 213, 214, 215, 217,
218, 219, 221, 222, 223, 225, 226, 227, 229, 230, 231,
233, 234, 235, 237, 238, 239, 245, 246, 247, 249, 250,
251

SNOW3G Γ��,0,0,2, I� 8 67, 87, 97, 103, 138, 170, 192, 243
SNOW3G Γ��,0,0,2, I� 8 128, 133, 135, 144, 238, 248, 251, 255
SNOW3G Γ��,0,0,4, I� 8 67, 87, 97, 103, 138, 170, 192, 243
SNOW3G Γ��,0,2,4, I� 24 22, 23, 42, 63, 70, 83, 98, 101, 110, 111, 113, 118,

122, 123, 124, 125, 137, 155, 169, 175, 194, 196, 227,
241

CS Γ��,0,0,2, I� 8 131, 147, 163, 179, 195, 211, 227, 243
CS Γ��,0,0,2, I� 8 11, 27, 43, 59, 203, 219, 235, 251

A.5 Collisions search by using transposed DDT spectra

Table A.5 Collisions search by using transposed DDT spectra

Sbox Collision Γ ¶I¶ I
Fox Γ��,4,0,8, IT � 8 34, 51, 102, 119, 153, 170, 204, 255
Kalyna π3 Γ��,0,0,2, IT � 5 1, 12, 55, 76, 199
BelT Γ��,0,0,2, IT � 9 28, 31, 67, 98, 114, 124, 201, 216, 223
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Collisions search by using transposed DDT spectra (continued)

Sbox Collision Γ ¶I¶ I
BelT Γ��,0,0,2, IT � 6 57, 64, 143, 156, 184, 224
BelT Γ��,0,0,2, IT � 6 24, 32, 46, 56, 139, 195
BelT Γ��,0,0,2, IT � 5 16, 30, 34, 113, 197
BelT Γ��,0,0,2, IT � 5 11, 17, 88, 120, 176
BelT Γ��,0,2,4, IT � 5 11, 17, 88, 120, 176
BelT Γ��,0,2,4, IT � 5 16, 30, 34, 113, 197
BelT Γ��,0,2,4, IT � 6 24, 32, 46, 56, 139, 195

A.6 Collisions search by using ACT spectra

Table A.6 Collisions search by using ACT spectra (some results are omitted)

Sbox Collision Γ ¶I¶ I

FLY Γ��,4,0,16, I� 12 1, 3, 5, 7, 13, 15, 16, 48, 80, 112, 208, 240
PICARO Γ��,4,0,16, I� 12 88, 90, 92, 95, 152, 154, 156, 159, 200, 202, 204, 207
Iraqi Γ��,4,0,8, I� 129 0, 2, 3, 4, 5, 10, 11, 12, 13, 18, 19, 20, 21, 26, 27, 28,

29, 32, 33, 38, 39, 40, 41, 46, 47, 48, 49, 54, 55, 56,
57, 62, 63, 66, 67, 68, 69, 74, 75, 76, 77, 82, 83, 84,
85, 90, 91, 92, 93, 96, 97, 102, 103, 104, 105, 110,
111, 112, 113, 118, 119, 120, 121, 126, 127, 128, 129,
134, 135, 136, 137, 142, 143, 144, 145, 150, 151, 152,
153, 158, 159, 162, 163, 164, 165, 170, 171, 172, 173,
178, 179, 180, 181, 186, 187, 188, 189, 192, 193, 198,
199, 200, 201, 206, 207, 208, 209, 214, 215, 216, 217,
222, 223, 226, 227, 228, 229, 234, 235, 236, 237, 242,
243, 244, 245, 250, 251, 252, 253

Fox Γ��,4,8,24, I� 16 0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187,
204, 221, 238, 255

Fantomas Γ��,4,0,64, I� 5 84, 136, 148, 200, 212
Continue on the next page
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Collisions search by using ACT spectra (continued)

Sbox Collision Γ ¶I¶ I
Lilliput Γ��,4,8,24, I� 24 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 40, 41,

42, 43, 44, 45, 46, 47
Crypton S0 Γ��,4,8,24, I� 16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
SKINNY Γ��,4,0,64, I� 16 20, 24, 52, 56, 84, 88, 116, 120, 132, 140, 164, 172,

196, 204, 228, 236
ZUCS0 Γ��,4,0,8, I� 16 20, 21, 52, 53, 84, 85, 116, 117, 148, 149, 180, 181,

212, 213, 244, 245
Kuznyechik Γ��,4,0,16, I� 5 68, 94, 138, 144, 212
Kuznyechik Γ��,4,32,40, I� 16 0, 26, 32, 58, 68, 94, 100, 126, 138, 144, 170, 176,

206, 212, 238, 244
Scream Γ��,4,8,24, I� 32 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33,

34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47
CSS Γ��,4,0,64, I� 64 68, 69, 70, 71, 72, 73, 74, 75, 84, 85, 86, 87, 88, 89,

90, 91, 100, 101, 102, 103, 104, 105, 106, 107, 116,
117, 118, 119, 120, 121, 122, 123, 132, 133, 134, 135,
136, 137, 138, 139, 148, 149, 150, 151, 152, 153, 154,
155, 164, 165, 166, 167, 168, 169, 170, 171, 180, 181,
182, 183, 184, 185, 186, 187

SNOW3G Γ��,4,0,8, I� 8 9, 67, 119, 127, 129, 143, 145, 149
iScream Γ��,4,0,16, I� 8 129, 145, 161, 177, 193, 209, 225, 241
Zorro Γ��,4,8,24, I� 8 0, 49, 86, 103, 129, 176, 215, 230
CS Γ��,4,0,8, I� 16 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,

235, 236, 237, 238, 239





Appendix B

Binary Sequences

B.1 Shotgun Hill climbing results

Table B.1 An overview of the shotgun hill climbing algorithm results

n Old New Binary sequence in HEX db MF
106 7 6 1366453fff339abc3d613eab4f2 -24.943 5.030
107 7 6 3e525b707207bb6280c08c733aa -25.025 4.497
108 7 6 9d31b81bc465b48ab7ae0801834 -25.105 5.533
109 7 6 1c80e7c337e7ea64d55da750ca5b -25.186 5.636
110 7 6 825bebaee519f060d42d81cc8d4 -23.926 5.984
111 7 6 1cb387b52c8ed4cfeb048855305c -24.004 5.138
112 7 6 68a5614a61368ddf1743207fe706 -24.082 4.931
113 7 6 1ae5cb4fe90feae29779ec120644e -24.160 4.409
114 7 6 19ed6101bcf959e19a5583a622e81 -24.236 5.375
115 7 7 56d413e9ca1c1992f37994f88c502 -24.312 3.952
116 7 7 43f475cbd4e3b98d5d0cb6c4840db -24.387 3.925
117 7 7 5d8caed643dfa1480b11c347164c1 -24.462 4.108
118 7 7 3ce9d9c9ad524fb5f415fade2e1186 -24.536 3.976
119 7 7 4b24ce6b455b8b02001de1753c5297 -24.609 4.331
120 7 7 d91e13e197ad463b9e2d9d5fed2544 -24.682 4.639
121 7 7 3fbd241b987f4b8ed966614a888e89 -24.754 4.141
122 7 7 28d7ab4e488ce60018781f34d704ae9 -24.825 3.999
123 8 7 7d9b6c7bf11e94507c2556d6e6a8c31 -24.896 3.736
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An overview of the shotgun hill climbing algorithm results (continued)

n Old New Binary sequence in HEX db MF
124 8 7 703ffe14662bdc7cd3f4eb262a49a93 -24.966 4.884
125 8 7 a8e0e42fc6af59cfb7b640cff64bb2c -25.036 4.134
126 8 7 ca666b72aa45167f4cc39f00521c2d2 -25.105 4.544
127 7 7 73fef5c8d1d95d05cc26917ce097bc2d -25.174 4.815
128 8 7 915fca044f23e83a942393ada7bb73e7 -25.242 4.911
129 8 7 1856351aa9ada9798eb0070b267d80836 -25.310 3.955
130 8 7 7ea03973917046150ca103459afb7b49 -25.377 4.692
131 8 7 169633c2e13890d5e540afdd64c811c09 -25.443 4.403
132 8 7 f4bf06b4afe88af3c79dd76badcd94c8 -24.350 4.431
133 8 7 18fe45f33afd90cba4888b9d2b534841e1 -24.415 4.323
134 8 8 2b35983c61b4f3bbf3752c69fabe0897a8 -24.480 3.742
135 8 8 12c3755bb64459418f4a242e731e1697e -24.545 3.876
136 8 8 30ed813f6f583c925aaa2f53e6722f5bcf -24.609 3.925
137 8 8 d569ca74eebccc573b0208187a6f82fa09 -24.673 4.066
138 8 8 3d128917da3431938e6dfd1ef7a2e68bc2f -24.736 3.771
139 8 8 3c0e1d9b35f9bd5342a80db491c406d6f10 -24.798 3.808
140 8 8 bdcf8e3944f5b152fbbbf01b66a2d0b890a -24.861 4.026
141 9 8 115e1f52e273d156c9af48cc8007b6c649e

5
-24.923 3.923

142 8 8 71338901166bd08b7d05ac1a4edf87d1531 -24.984 3.724
143 8 8 67aa81c2c56fde794f6365fc0b30db92253

7
-25.045 3.940

144 8 8 39716d38490502a3765215eb20ee1bb84ca
3

-25.105 3.886

145 8 8 1791bb0ba63bccda7c2a3678dfd6825c792
a0

-25.166 4.477

146 8 8 3708999ea4c1f08e12ae8ebcdf092d1215a
20

-25.225 3.975

147 9 8 40c48cac0843a2f917ccab14215dd87b792
c7

-25.285 4.122

148 8 8 2c24f9cb675dcd540bb0943d629030d83cd
c0

-25.343 5.291
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An overview of the shotgun hill climbing algorithm results (continued)

n Old New Binary sequence in HEX db MF
149 8 8 5a0f857ae7b62266299eee68a141d70085a

58
-25.402 3.698

150 9 8 3d63df1b948ddc2689a895072984b2ba7e6
008

-25.460 4.329

151 8 8 2640cc90388e31881fe5535d5ac2c2456f2
f16

-25.518 3.999

152 9 8 6501a71c13b1fec21d82cfddb2bb3a5d569
536

-25.575 4.068

153 9 8 1752e3434eae633cc3817375b05becd5f40
5224

-25.632 3.917

154 9 8 3cbe58528eb47f0efe6afbc2ed521dcf988
626d

-25.689 3.864

155 8 8 aaa430985f6a183d3fc9edd8217b0732ef1
b74

-25.745 3.987

156 9 8 dcaf489c2264f8ff9aeb8d7433f708165a1
6928

-25.801 4.713

157 8 8 8c91dbe342975ba661d860071a06d745771
7b0b

-25.856 4.241

158 9 8 11f07cda85b2c794875eea635521ffdf727
5c666

-25.911 4.479

159 9 8 665f717b678d7c472844d61aad3a2e77814
1dbfb

-25.966 4.366

160 9 8 62088e74b483f5cf4daeb02e3d169de44e9
cd5df

-26.021 3.765

161 9 8 e720b7b8987caaa3ca7e454a0ecc9108245
a5cf

-26.075 4.096

162 9 8 112db024584a1c7a44aa9b729ab138c0531
f8bf83

-26.129 4.408

163 9 8 5af97f061a5a10317fa15510778b32ce219
9c89c2

-26.182 4.104

164 9 8 10f81f8297d4226c9428d39b575b9cab2f3
f9a18a

-26.235 4.189
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An overview of the shotgun hill climbing algorithm results (continued)

n Old New Binary sequence in HEX db MF
165 9 8 b8089b446cab2ffa99c97939df6953879e4

6bc6f8
-26.288 4.394

166 9 8 856dff4fad1b0b93a6195558e3130d69940
67e81a

-26.340 4.212

167 8 8 ecad8e1a6be074ff88322c5b3cd5680dc82
5a1198

-26.393 4.656

168 9 8 37f80dbe33864f68ef1fa5a951eeecd274d
5c6c506

-25.421 4.324

169 9 9 18a745f218b371c6f21132f7f2f3ec9d290
f9eaae6f

-25.473 3.636

170 9 9 3835d25fe470f32ed7c4ccabe4f2b5e6601
1584a5bb

-25.524 4.234

171 9 9 20acaa4d24c6028139c5fd39f3065ca87cd
082f5f84

-25.575 4.171

172 9 9 9c92f90c3ec2109c08862ec8ea5be45911d
7abb6143

-25.626 3.928

173 9 9 1e58f6cad6917eeaee691536d57df81c5cb
901c43387

-25.676 4.025

174 9 9 6c99808556a9e44f04a4af397f90dac63b5
c151f770

-25.726 3.797

175 9 9 810552f57861b5543b90c9bc298de721699
f922627

-25.776 3.923

176 9 9 ac277413353446ebbec34fbda6a08305ea7
07e8b14a3

-25.825 3.792

177 9 9 bfd3bffc44db1369bde8c4956de06a2f3cc
e38a9d0f9

-25.875 4.366

178 9 9 c40a317538cacb189615811a82f8a6da26c
bc12fff85

-25.924 3.905

179 9 9 755e7001560439f469090f9492191af2766
0ba19b2555

-25.972 3.953

180 10 9 20e89f547a266727ad2c0e2dfbfab4eb790
0d6f11e714

-26.021 4.147
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An overview of the shotgun hill climbing algorithm results (continued)

n Old New Binary sequence in HEX db MF
181 9 9 112569db006c60067a7aee0fc75d29142a7

734da259170
-26.069 4.143

182 10 9 55c099a8f91f8000d786cd73ce63b798a96
866a94bab6

-26.117 4.434

183 10 9 567d0f51bc62247232345e7bd5c5073a4b4
d5002d822d

-26.164 3.946

184 10 9 9fb510fddd6402a513b7317c6506389a1e0
59a4b11bc65

-26.212 4.121

185 10 9 992f9283fb8240a96fc5d5862d296463ce5
debb71d8ccd

-26.259 4.055

186 10 9 2efef5d4dde19fe9026e6db13acb718d287
83c9f8ef52a8

-26.305 4.052

187 10 9 14f80f5c2591e69ce6e755251fbd683512c
2b6376eeedb

-26.352 4.899

188 10 9 d22ffdd5f6a233a8bea58a16e81943e370e
6912d33c3136

-26.398 3.936

189 10 9 123dbffccf13e5b1b781ed982dba92a278e
2573d64eaa9d

-26.444 4.663

190 10 9 2bfec663b8b80160e29f16b506d8b6e8955
261676066b042

-26.490 4.246

191 9 9 11eac5b0b8ca5ad4c2d2744038c59fe6fe4
d07dd6c98b3f1

-26.536 4.192

192 10 9 ad3aaa94f48d92334e31e476fe2f033dffc
37f9042c32697

-26.581 5.236

193 10 9 aeb347c1d1da654e18f519cce85fc9df2c3
23bf65bfebc90

-26.626 4.272

194 10 9 152b11e12881902387f696de45c5a36c92f
8a0ac77638caa7

-25.756 4.200

195 10 9 1d47bac00fecaac330e5c6d93a68ce265e9
4ba9db0b030128

-26.716 3.980

196 10 10 e1be82e1e81af93cca3cd9dd75ec888046b
132b152c78404b

-25.845 4.436
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An overview of the shotgun hill climbing algorithm results (continued)

n Old New Binary sequence in HEX db MF
197 10 10 1e71d8a9e4c75c8904f6dfea5e35495f00d

ae91a0a1326ae05
-25.889 3.716

198 10 10 2edba6c2298993d0ff35b502b939c8283fc
5bdf78ab63e79d4

-25.933 3.959

199 10 10 213212bd5e84d6fbe8f059e2e39fbcb6399
b22ae39859b705f

-25.977 4.012

200 10 10 97f408aee9f17082e252ed9dd6354035128
4c780c85cf0cd0d

-26.021 4.016

201 10 10 1b8e271803e8f153e16ed49261efaeeda0d
b5e9ac6ea62467f5

-26.064 4.558

202 10 10 28896a25f8804e58cd76e40638bd0786ebc
e96957888301b22a

-26.107 3.896

203 10 10 169c3c36a07652906d0deec88865527c4e8
c03e629baefe639e

-26.150 3.765

204 10 10 cf67c809f660c8a7d9bc7aa4763d21c2105
135a2f235294545e

-26.193 4.130

205 10 10 159b65cba243039145c6500c7c65a7fe42d
0077ac87d1be36a54

-26.235 4.511

206 10 10 12765377a7b55d926a14886701cfa80e3b0
5009f57a430e28cf8

-26.277 4.546

207 10 10 3eda512837a306f55c4e618f6282b984c0a
22449efc32625e92f

-26.319 4.124

208 10 10 d8c49d521383658069e764209165efb173a
c434b843e15d4756b

-26.361 3.913

209 10 10 92bb7527a734817aab8268f1be66a10f871
3dc86dca35bd6dfe7

-26.403 4.024

210 10 10 2e4b2cdb5d5d06708dddbda17e1097f8294
5cce2040c1e27438b7

-26.444 4.416

211 10 10 3006f3f70992440f19518c5b08c22b12234
35582bfa5f3d26b7c0

-26.486 3.853

212 10 10 2c1c395d9b2bad230839514a11bc85c866a
6389a27fac0fa2107e

-26.527 4.197
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An overview of the shotgun hill climbing algorithm results (continued)

n Old New Binary sequence in HEX db MF
213 10 10 1ecb7a82ac839c1634e9a3c03160de3d009

43a2f549afed919bdc8
-26.568 4.314

214 11 10 4391784839e2ba9e384fe40899ac6c696fd
5eba9949d3feb66914

-26.608 4.004

215 11 10 54eba39307033259c5dd1ae000ba95a041b
ef2b9be2d87f2e35ac2

-26.649 4.294

216 11 10 70835039c47a166461a51e2e0bb2a4d756f
29f7f04bfbc9920127d

-26.689 4.160

217 11 10 11c2d59cc49c9469e9d6922094e8dba2617
501ec028d3fc705f3fcd

-26.729 3.999

218 11 10 12e61da78ed3e653f9cb64b6e8bf2145ee8
06877e7e76a8a819a9a1

-26.769 4.162

219 11 10 2b37e41114e882ec5e59c25a9c57a203c0c
6b9699493c357c59ddf7

-26.809 4.174

220 11 10 62a2bc0a38b1605f8321a7c8a13719d34a9
6f3446f6effc21148636

-26.848 4.229

221 11 10 f45bafe7673953bce07d5e74b7c041472ed
a23e2cb7d49d32b1260b

-26.888 4.093

222 11 10 d91d6ed119acea81c5f47ec6bd6d3be95a1
9ef9e465a0159070f764

-26.927 4.046

223 10 10 4a70894496d298c01381155df82667e4cb3
21f97347c235e38170ae7

-26.966 3.734

224 11 10 1e2e7c3249469a3537e2fe24612a5c9f520
5f4fa9a9bdec67bee2bb2

-27.005 4.353

225 11 10 1dea3e715a9881e3e0054954159db182909
d36f961a4743e446b34ff1

-27.044 4.609

226 11 10 32cc5e0c945afb4c12f3de9199312138c1d
88669015a8da3fd5474581

-27.082 4.244

227 10 10 22ebf7574cc9779ebc090324b0cc61927b4
257f143313950f857ea553

-27.121 4.251

228 11 10 fa53a40f36c2f6374864b9c2c9ef7b2a284
c5fa79677ee1fea555b141

-27.159 3.988
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An overview of the shotgun hill climbing algorithm results (continued)

n Old New Binary sequence in HEX db MF
229 11 11 a75ce55b5d23ecac9137d372bf947ea0c3a

221a1b30befb4b108fcf72
-26.369 3.719

230 11 11 f7332341300147a52cd1491971e815e65f1
036b8769a8aaf7159f2c47

-26.407 3.854

231 11 11 2a808dc4d85ca8bd9682006611f9a363c8e
9ea6bebd2348d72c51a7c43

-26.444 3.861

232 11 11 5656966e6e18f1dc48803edef7d24bb54ee
d93e77334ebe02d3aab03d8

-26.482 3.748

233 11 11 17d4bccaaf3086f2ab017b84178db7eec81
e279f5cbca7cbe68b5cd8da9

-26.519 3.898

234 11 11 2007f0ac7762cac4e0e43831c4aa1a2240a
3dbb58536dead2cd534c61b6

-26.556 4.009

235 11 11 479662251d2130781bcca255d6a87bbc42c
407c05258e8eac92838dbb66

-26.594 3.830

236 11 11 240060c71fd710e97cbacb6a9de5b0aeb67
4353f352edc33609dd2f1337

-26.630 3.901

237 11 11 19cc87e8436ee1b65ea0c8410034dd70a64
78e0d6a9d1575c5b89cb537

-26.667 4.368

238 11 11 14cc4b3fad9b12199c1f4e96dfa8f5cd30e
7b50817c2f41ab8a362cf7a9a

-26.704 3.985

239 11 11 266ffb94a4f5bea647aa418dc69d151f1a2
9e6818ec9e5ee6e80f900720e

-26.740 3.560

240 12 11 fe9c900f2c6ade00a1e0b104e12ce6b0fdd
2d54466a2146cfa2789ddb059

-26.776 4.179

241 11 11 1c6b10f278e927d5b453595862437ec1f73
b713a9b86042153e2ec0054e8

-26.812 4.170

242 11 11 83a8ab66dbf3e2e774631ee7e01f0d8957e
20e723dfc9512d2e3069a5eb4

-26.848 4.425

243 11 11 4bb8a96e2929d4ed371fe8b99b623e16350
ffe48c167f6f3c22b9021952a8

-26.884 4.251

244 11 11 a0e8e4f0e137dc06decc6ad51bc2b11e12d
085843a610d47ffb4b20449b31

-26.920 4.220
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An overview of the shotgun hill climbing algorithm results (continued)

n Old New Binary sequence in HEX db MF
245 11 11 15e76533db7e903cd514700224afd24b2b4

033672fc1528f4308fa91ce0f1b
-26.955 3.877

246 11 11 abfcd0b3f80b03974d8248b8a2b39b7fa5f
8c1ac676f61cd5fb7e729512bc

-26.991 3.756

247 12 11 55779587d0bc0a753acb17dbc71ae24d857
b967ef8529f3dfdd8466cb4c4cc

-27.026 3.966

248 11 11 fee01b4a6b639587aefd2079b02a0fe1f51
a71ac419b55b5cb6666ebe7fa61

-27.061 4.243

249 12 11 e69021ef914b3dc4b720d828f4e78ad391e
8d0671766745d035a2ac6441440

-27.096 4.444

250 12 11 1d82eb11b055fee7570494f67cadeeadebd
60e61c4e48a30f2b0495bd826c9e

-27.131 4.658

251 11 11 185b66591f9adfd4fcb9711a1ed865fd10e
b1d31b5da95875bc4222eeef0b04

-27.166 4.101

252 11 11 89e034220ae08d514bdaa363aaa4c2b7ed7
308c45bcdb44de44c3c7023cd85a

-27.200 4.033

253 12 11 1ed2db2821fbfae1870f40e99545e8e8f72
856cccdea1deb2ec37f91da769ac6

-27.235 3.996

254 12 11 2e00e40a057f47b7764b2e91f2e1dc36752
0e74fc9857f5e9298cf5f6b6b1ac7

-27.269 4.468

255 12 11 4e48792994ce3896f2363f70b53c43853aa
aaed7c0b528101a17f4018136c933

-27.303 3.993

256 12 11 9b77e41cc0d9278fdd5a54b331946a53564
37b53baa902f780a61805078f2083

-27.337 4.264

257 12 11 797b093ac095d0d53d4ce60de43928b1442
cb679e16ef7b80d5e76eddf8b45c9

-27.371 4.116

258 12 11 f19ccb67644aab3fac44bc02a8b7e62f7f4
ed5f6179f428da5d9b4983dc73c2c

-27.405 3.962

259 12 11 44c930912a770de24230e07dd434aca15a1
9580de8ab79ea8b37f1d90987cc182

-27.438 4.534

260 12 11 a50e2e9f7f7c415d2eb2cfab9be4ea46ab1
980f27c4cce6edc475ae09d216d382

-27.472 4.370
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An overview of the shotgun hill climbing algorithm results (continued)

n Old New Binary sequence in HEX db MF
261 11 11 10867d02c11be5517e4f4f5cbd4135e3f29

b15ffecae6e0d2d66479d064a678e79
-27.505 3.920

262 12 11 128b8716cdead0448f3f6e7265ac6435c10
cefa2987f8c417035121484d40f452f

-27.538 4.198

263 12 11 c5e44bf69b228002a7b29e90ef252a10727
0065cca0f0fea6d579de3acdc732ec

-27.571 4.430

264 12 11 838bacc30044321f263b7f2245bed79543d
b437f5612e9d956a63389f8177469e7

-27.604 4.264

265 12 11 1832e784ed916573709c6abcffb07ab5fea
0b3d5998abc9f0161ea37f7ad965a69

-27.637 3.928

266 12 11 330bd8bc510f9d0045d9af80815954ee7d9
0a321066096387ec978dd496872d233c

-27.670 4.073

267 11 11 df45ddba45d345ced1fb81f37be31a52a00
14bdf11cacc3a3e3589f5a5e490ca4f

-27.702 4.327

268 12 11 52b43d5792b8524e4edf6efb9b965597cf2
53c12f86ee5320c66efa122ff629c730

-28.563 4.549

269 12 11 152b43d5792b8524e4edf6efb9b965597cf
253c12f86ee5320c66efa122ff629c730

-27.767 4.388

270 12 11 21e5eea4f7cf140f85bea242277dde7bcd9
ca65dc4afae6f990be2a0678b4a966270

-27.799 4.237

271 12 11 344052dfa92b00930cd10f1c58098a2a1cd
afa3b9b962b0724c86837e291fc18ae56

-27.832 3.838

272 12 11 fcdde3a5833a16db6ed41cb0d2cc19c6fae
cacb3a7ffa0dab51ba1cf6281b9d570fa

-27.864 4.393

273 12 12 44fd6cbb59dc119fee359596843d96f3db2
8c5eab59b0e2febc09f04560c206e4ab7

-27.140 4.141

274 12 12 2084a897ae41a524bbff40ff05d12b96043
b5385d1fbb747137baa7399e5bc6c74dcd

-27.171 3.609

275 12 12 4092e0bb2873535a4739c7cf18ade8c273c
08cced32765fe95a0f45f6d66d564fafd5

-27.203 3.980

276 12 12 3ad05cc5750b304c44d870be582126af4a6
7af40533e139a6afbdc6463ce0768206d8

-27.235 3.563
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An overview of the shotgun hill climbing algorithm results (continued)

n Old New Binary sequence in HEX db MF
277 12 12 183c883b5cb9366c4426e16eb70b50d862e

ae61914bfa6805a78a29402e20758df57f
-27.266 3.912

278 12 12 3c474578ffdc1943abea11a0613a85b2970
d2665b3a7a4d4216113e233f348859d013c

-27.297 4.077

279 12 12 7c815fd557ac5dce82804d1cf4b59b3ca8c
e63cc72d2b270145a7220d82501fe8e049

-27.328 3.983

280 12 12 d27923a83fe74ff88a80248e14ad48d99ea
5ecf0d1f6d5dc6c18b773a8b167bb8c49ed

-27.360 4.465

281 12 12 15a63b833b92922bda94f25432f9906e7d6
cb080b802c9d120101f66ae0d857078d3c6
3

-27.391 3.823

282 12 12 4a0aa392e5296934d26cf8b8c007b8599be
e514e4e7040326316ec4722f5abf06e4fef

-27.421 3.949

283 12 12 131adc329deb49d4484ac1abfb560dd06c6
e9bb893abf288981e6107a08775c30a25f1
8

-27.452 3.844

284 13 12 750721671bd43b577672bdbb85d72e9eb6d
8c2f778197470da082cefd9bfd061b61f63
6

-27.483 3.961

285 12 12 cfefe3c9a98b339b78784d6de752452df67
4bf76ef115867605ae316a075c142fe2451
a

-27.513 4.153

286 12 12 1e5f4df33a080874311aecb106e6bcf8aa4
e9fe29d34b36e7e427f23d71a8fbca3f4e2
d5

-27.544 4.409

287 12 12 2d6fff0088403555d21c1be4513646065a4
2c2cde2742f397650ef9c8b432e8e5c0f6b
14

-27.574 4.220

288 12 12 d19696cc4945e90993653bcafae44afe6bf
3e1c872f1dfbf815e2a8c82f037d74dea9e
72

-27.604 4.002
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An overview of the shotgun hill climbing algorithm results (continued)

n Old New Binary sequence in HEX db MF
289 12 12 185bffdf5540ebb9cc935f8bcc4dabf1974

b54c1d5a9cf42b6383636e49c33ef889bc8
287

-27.634 3.803

290 13 12 1954ea11d44ddb89d82999525ce70f41858
f24832d2eb011c1c81e6b0047edf5b71b47
e88

-27.664 3.673

291 13 12 25e47f4fc982622a311acd9dcbbec0f2e9a
9f0cfda9dbe1823df5d7638c6d6194afe08
296

-27.694 4.513

292 13 12 a3b9c7d13899707f33a824ea27782dbb9bc
e68925256b14fbb10795a0528e89010c3c7
68c

-27.724 4.072

293 13 12 17a57eb128c330309f040d6583d5e227709
75373e10547bf24a2e93d0cc8f996730a50
14c5

-27.754 3.940

294 13 12 8dc9840017534c6eaf61cf1fbc58f568fa9
4403739476e14d72826e0bd289a4792fcd0
9c1

-27.783 3.870

295 13 12 681faa2e4adff123767204b2af92e18b266
51a67e7c718c0619580c14a2b3f110cb42a
6da5

-27.813 4.341

296 12 12 fb1038796d64e801dc88d702cad89970a41
3091a431977d7be4ba8aa4eb721e3ba1409
acea

-27.842 4.238

297 12 12 6d0fb7212d379086a9e86c2a54fcc87ccfb
a7ff6b9d4eca11b8f1e6c13eabafc448a39
a7d7

-27.872 3.976

298 13 12 3aff50e3839b63e273c7ed3402274894e21
3b169fb37555558be5cc425a760b79f690c
eba5f

-27.901 4.131

299 13 12 68ef75bbad75d36c63e30b296cd65f93e7e
0141f5bb84b81738c63ee47adab72a0f3b0
2cfb

-27.930 4.139
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An overview of the shotgun hill climbing algorithm results (continued)

n Old New Binary sequence in HEX db MF
300 13 12 b25be8354bc61f73a63b94ea06430063068

27e386dc8e36058b22aabb5a123b284c9fd
f9504

-27.959 4.365

B.2 Reached optimal PSL solutions

Table B.2 Reached optimal solutions

n Sequence in HEX PSL
10 37a 3
11 712 1
12 b3 2
13 a60 1
14 2a60 2
15 3dba 2
16 a447 2
17 1c0a6 2
18 2650f 2
19 52447 2
20 87b75 2
21 129107 2
22 14f668 3
23 56ce01 3
24 4a223c 3
25 9b501c 2
26 2e7e935 3
27 24bb9f1 3
28 e702a49 2
29 10e2225b 3
30 2a31240f 3
31 2d079910 3
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Reached optimal solutions (continued)

n Sequence in HEX PSL
32 2857d373 3
33 16915cc18 3
34 1a43808dd 3
35 5569e0199 3
36 87885776d 3
37 10c1237a2b 3
38 7caacc212 3
39 29ca6c7c80 3
40 22471e86fa 3
41 7c64d77ade 3
42 4447b874b4 3
43 550e7f99b49 3
44 cb4b8778888 3
45 b6cab731e3f 3
46 16959a2e3003 3
47 69a7e851988 3
48 e6e9bd5bc10f 3
49 103f6eda6ae71 4
50 31dceade9920f 4
51 71c077376adb4 3
52 600dc3cb4cd56 4
53 1671848a940fcb 4
54 2622a797806912 4
55 6006a578ea6933 4
56 61e4b3229420af 4
57 143606103beca35 4
58 215081f5644f2ce 4
59 3b06774134bdf5e 4
60 4df905215263a39 4
61 193c99e12d6010aa 4
62 25695564e679ff83 4
63 707d54b9c99ef690 4
64 d4ef33d372e082be 4
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Reached optimal solutions (continued)

n Sequence in HEX PSL
65 1f75f6c8f84c6b50 4
66 28a59401e57b1c993 4
67 5ba4d417723078421 4
68 d155a49d98c7bf7e1 4
69 18ff3eb05d654b6665 4
70 2b5aae6765e79b600f 4
71 8cea0ff5e92cb9726 4
72 dbcf036102615ab2a 4+

73 164da9aab5398f1ffe1 4+

74 8c9c6dab51e57580f 4+

75 5ff692ba8d62f1e3326 4
76 87ad414fa9fcbb99a6c 4
77 fe00861c0d932958aca 4
78 328b457f0461e4ed7b73 4++

79 55fae4fdb42732de2ce2 4+

80 fe00a22a539352e3659e 4
81 dc9df3ff085a6c3aae53 4++

82 2bf0fceee2499527bc61a 4+++

B.3 Revised Shotgun Hill climbing results

Table B.3 An overview of the revised shotgun hill climbing algorithm results

n Sequence in HEX PSL
106 35101a2373a0160d982f6b4e39a 6
107 2408504b2beac46b8d93cc85f86 6
108 727184e79679234058155e880bd 6
109 5db00f58363f65c08452544632b 6
110 2b5085f188c82cbb79e1ae25c1bb 6
111 700f7ceb4b8a926c793caafcdcee 6
112 1c62bf5e0e2bf9bdb9db524d921b 6
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An overview of the revised shotgun hill climbing algorithm results (continued)

n Sequence in HEX PSL
113 10e8e632f9a52d803cd7eac6eddd5 6
114 3fad9a9fa616431ee6a6b8746ba74 6
115 637c6cdec32bd4cbaecaf2ffe1610 6]
116 a03feff259d626e9c4f46471a5168 6]
117 1b33da4cc6d5dc7f8a55c9007cb8f0 6]
118 23c598f4ac7f6afde47b84c05dd592 6]
119 60835d6bb25f775d6b588d9e361f81 6]
120 98cc2e429c2f810668dfdf14bab0b2 6]
121 178ffe7181c3f443365313724aac95a 6]
122 30d4e9ae516cf0320ad003177377485 6]
123 369ec917afe507e53bdc97151138738 6]
124 f15ce151edfd7f0ca9eb4496d833233 6]
125 1b8730333bcdf414d92203c581a554a5 6]
126 3b9275a7ba7661bb8dbf8e078ad41257 6]
127 2933b32d40937c4b6f08e03a851c2c2a 6]
128 84528942da6f07e733404ee8ba70c3ae 6]
129 1f80f99bf3cc5c3d6f1aacd4209aa925b 6]
130 2678ae07e71929fb587022ed6bfdb576d 6]
131 3cbf4b091ea86cea277167ac6304c812 6]
132 410028af0ea52e93f029f908ce74d8c99 6]
133 10c27978f1888d4fb0a97c9326ecafe97f 6]
134 3f01b89e464dccaabce38e920492b56810 6]]
135 550c944868887c4b7b8709d8263de6c81a 7]
136 dc789e3aa4f65db16085033ab4b40aee42 7]
137 1bdfe2817aaa3b39d39daf366d86bc0f49

2
7]

138 1e618e9ba6c707dc94f05ad723357b2bff
d

7]

139 2bd70f3cde89ad5316439120fe3b9b480b
5

7]

140 79f8036d08785fbef98ba3b2eb54652eb3
3

7]
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An overview of the revised shotgun hill climbing algorithm results (continued)

n Sequence in HEX PSL
141 fdf5f77808f6cf055b0dd9295c878ad32e

2
7]

142 343638ce5ed915e8abcc9a0beef8128148
94

7]

143 554e194c63ca5a65f47de2fd999fc0227e
bd

7]

144 e757f83fd667a6c479d5296908879f6c8d
2e

7]

145 1051d14d00c893e49498fdba0570862f53
9ca

7]

146 1c8f3f584efe71220e0da5d4d58d10ed11
ec1

7]

147 2072a669eade89e6058251c9cc2628a5f5
602

7]

148 136cbb11363a7078d55f1dc696f217b588
520

7]

149 152214204e428bf4553661919fe41c0db6
9e18

7]

150 4fc361d2f104c9510a54c53e9afa612346
7f6

7]

151 3b93bb695ed592557b82497047438f87c4
318 0

7]

152 62913b08d6326c46c082e52e3feb0e0b6d
7505

7]

153 152b80f95df5a4a0e1a2e30cbf68cf76e9
ccdeb

7]

154 183f0383fe80cccbf38ac495965dae7bd7
9a695

7]

155 1431f0be9440e92cdd1c4d5680659df937
7adca

7]

156 bbbd712a19673174fdbc9ad3e78d06f40b
b1a84

7]
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An overview of the revised shotgun hill climbing algorithm results (continued)

n Sequence in HEX PSL
157 1444313cfc12546b26e36eb70568dc11b7

06bcf5
7]

158 18785b52d7074935b31708ef988f769911
040aa7

7]

159 41c5d5f8d8012c40f00d6ba24d35a539cd
8a573a

7]

160 7277c5d1140ae6e5638c47ab40937830f2
1b684b

7]

161 1c9d7e8ec413f2eddacc7be1a45a4318ba
3ab2b46

7]

162 36280d42653b385e990c70aec3d64845dd
59413e

7]

163 ff4a2a50fadfb069cb64a79bb8eafdf55e
660cc4

7]

164 8cbd592237b8e9d5dd7fddb148e13a7c0e
f03696c

8

165 bdfe78f96cd0a73e41fa8764667b9e82d1
54d6544

8

166 12c242012b761f803271ab9649f67432ee
288d398a

8

167 349aab4a5752c6459e4cd43f18708fd980
18044fc3

8

168 a18f9ca18bdb8eaf44a84db7f3f92ddd36
0ec23bc4

8

169 f77f9c30338bec86cb76455ec4af4d4394
769e17de

8]

170 1647c513e17c8b5ac12f169cf4008e77de
aeedd71d9

8]

171 455bce3cd34aa5199a53b3f9900ed684d8
11607828e

8]

172 8a862f714aa517b5e1d4c9e784b66d0c07
eccfd9f61

8]
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An overview of the revised shotgun hill climbing algorithm results (continued)

n Sequence in HEX PSL
173 9087c81b16785b95b1f63942ab8829d1da

e83048267
8]

174 3a595abedb5fb13e998250683feaa608f1
b10f721e8c

8]

175 75f9a9db5111b640009d36bc18a71887a8
d4f60f5079

8]

176 f8b81eb83c80faa526c53d6c43bbb18d34
c2b7df7bb3

8]

177 ceca7a7c3d3d4ed8893081464daa5d50cf
40905fe630

8]

178 240603787909825762b567fe0a338e0aeb
85db46e98a4

8]

179 d27d4a3d8ce26560a137f967fd5b2a22fe
7ea4e9cb1e

8]

180 45f880bba360f4fe67321649f77be67971
e729d54b4a5

8]

181 16e90d659806f9ad47ab399481f7975581
4e0cc9805074

8]

182 2ad575a76ca6eb9f36b207790cec2047db
f70dd1f07095

8]

183 3080a6b5d518e2437cbe03e83276091f3d
9ad5bb717275

8]

184 bd09e4073d719c5290dc81d3edc090b050
3345a2aaddb7

8]

185 1b0245da96f15f3faaf6f0e71c5a6c6e2e
7ba4fa2190aff

8]

186 d6c3079d747a0496d4eab7337a91236c73
cefba0eff4f4

8]

187 34999dc9c93025871f7aaceb517d0e451c
07b504a75da01

8]

188 36766a797988a55100a42a91e73c43f005
b76d60705f364

8]
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An overview of the revised shotgun hill climbing algorithm results (continued)

n Sequence in HEX PSL
189 880723487ff2acbc3e65d1eba13327b9a0

5965bd52d14e7
8]

190 21e50af105ba1d87a44214221d935bba27
35951f776101cf

8]

191 6122466d46065abb2e2595ed350f45d4a7
f173881f4c33ef

8]

192 1fbfab7bc285711fb852eb5f00b2ba9c36
98e27cd26a66c9

8]

193 11e5e2e1ea52cd9c13f6ec031979a99549
b90fb8c2600a288

8]

194 35d745068d86b74ca0a6d8c73a39676ea7
7bd2b4bc0fc0267

8]

195 1c841bd699c259b0d801b20e4fd8bebe1c
6567ae3abd08a95

8]

196 b6a64ce8063c6116f91dd3cfc332f8aac5
f7bdc8a0bad6d2a

9]

197 2b7ceef5fba16ec29257b30a65a26ac34f
1841ddc7c0e0de7

9]

198 2da669214cb962a811544e5d3d37a000f8
c0c60dced1ed0bce

9]

199 1144b275da9c8adb8fffce37c87ba0d2c3
c6bda983f4dc032b

9]

200 66c30c122f4ee5d8b01ab9155a1ca5afed
0d37d4df0775bd84

9]

201 82a1c892ca09589a5f1ba194c682ef0f71
d182378a64895ff4

9]

202 1d045e3d7d3e006c938fb456d5f2a4bf5e
4dcce9c41ca663186

9]

203 6413fc8964522104171ca948e5d4c4e1cf
ade1a82d03b3e640d

9]

204 6730c61d894ad6db47d7db1707d109a8fd
7e9912cfee2df887d

9]
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An overview of the revised shotgun hill climbing algorithm results (continued)

n Sequence in HEX PSL
205 d24ff6dfd7766450d28c6f1d08aa13c6f5

060b93ef182d5e847
9]

206 7372ccbe4d517dc500e9ed586a99c9fc60
a442016a06fd0c961

9]

207 5b92dad3371cc960e08e1993a80ac0a9f5
73c2708165ba02bf5f

9]

208 d47fffd42e8257a630ef1673359f05eb26
ce173462e0ecb498d2

9]

209 1bf64d73ea8531230afd6c614fceee5aad
2714cd7c1674125f01e

9]

210 31da42975a5a3c741f6506fc77598874bf
77e37f2ae29fb1304dd

9]

211 252e50a7cd40fd82e13aae3096361608b2
3030076fbbd84ca636e

9]

212 87d63ff093d2c932221b74ae6e9443ac63
33b42e0b890a5754141

9]

213 54614010e30c87b5366b6baa6400fc7e8b
57067a894e9b3f898e4

9]

214 e7d4a6d69fda9cf9843db94242a88c5cd7
77cd24165c2f913e0fc

9]

215 301c7898c56aa56687800ffbf3e65a5787
6867c9426eb3dd5d46d3

9]

216 d332ccdcab19af1972f93007baf8af8057
c3af4b59e4d040624b52

9]

217 a87867118f48a6922d161093f015d7f8dd
b57c80cb5aedd1b0b177

9]

218 4c91d36554864c73c5ae223a17dd60ec62
96849685d7fb81f3f881

9]

219 536a2df324baa32c8488880d9ae152f5bd
0b808ebcf131fc0c293c7

9]

220 bc39257be78b79101abf2c3edb9b3c01e4
157240d46a6319c5789d2

9]
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An overview of the revised shotgun hill climbing algorithm results (continued)

n Sequence in HEX PSL
221 fadda9f6d109fcc882a91bab8478e6ebc5

713826d19fd06b485a061
9]

222 1e1a28caa7a070d16e6300965eba9752b3
4e37e66d02139025cfc84f

9]

223 49e28e14ca6daa3c6fc973368464a08c55
94bf408129cfa607b303d1

9]

224 b5a435ab97a31e722120bbf812cd251cc7
032281cc0aa29f07f9b66e

9]

225 1f61bc4168c021782f9e50c6b52a1c546a
da0864fd9313b32a9bfae98

9]

226 3bbbf1c19f6ec551ff0ab982ab334dae01
29a63cc6b58b61e968d0d80

9]

227 378320814f8021439fe15e5a12add18b76
0cd0788aba8ed3630926333

9]

228 ac5471683c569456b21141ec539fa32e00
78998f3800d377665b36fa

9]

229 a18ea64e0c7d887c6fb51278b686a8b401
66199ef8050906a7c1516b3

9]]

230 25474a4ba6e7c3434d1c724ef643ea3181
2c8fa1bbfc877bf6ee5488f7

9]]

231 180e1d36289672c3086a1511d58dfeb4a7
f13ca44b44fec5d024664dde

9]]

232 886bf85a5bf40b7b2fab51ee8712e2bba7
5b358384435d3ccc99dbf7e6

9]]

233 5dda7518a3629e66f6ec3823f6cc6c373b
4bac795efacf416fe1a1ab00

9]]

234 f8e141d03a5bb1d91ce20721cdb6207f56
b699d33bf575955694dfa930

10]

235 3feaa21651ef22c8cb05ab35df33b138a0
8c83e1a1ed24685592035e152

10]

236 5453ea9ffc1e60c3285de3d07b64a1bcc0
95366d4c437dfccd5d8f4fcea

10]
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An overview of the revised shotgun hill climbing algorithm results (continued)

n Sequence in HEX PSL
237 165567767124fabcb4d08f0da7140abd81

f42e5c9a831dda76fffd894c71
10]

238 c81ea65bf4b9df2e7f7066454c2d3c8e6a
2841e27963c8229db40a0afd8

10]

239 6a66b95e25a3cb20e16c7b36b1b22e5988
21242ffc69eeaed03bf9f9d753

10]

240 dcd3bec7a1856d4ea4febb5c0dcc52e119
ffaa69d4c86df1470530793374

10]

241 15cabbcb3c965d13d1baf6581833a05593
c6ff73c18dfca9e96272a467f29

10]

242 2cf51c98f2793804326afb59471b2243a9
12fa50b7abce08ef22607d03941

10]

243 66346d9c9f2d3393fdeaa0075e7f573ef2
7a1b4b8630b4a322df02f9ba47d

10]

244 cde4bae1750d2d31e5e3b193df44580f92
245b262ffaaf6e42c6bde7b9532

10]

245 1af4e7a8ed850811188970ae2af8180736
3afb0113d0f9166b49916df928d6

10]

246 30b36a460dbd8ab690c173b8d8ca8c0351
cb3a170bba020a9417843dd76dd3

10]

247 5de6adef6aa7775d3812b0cd7831689b5e
39682e61899e9ba3f039b00e27b4

10]

248 f41f437cb07cf0a0aadf0c67b3f7fe114c
c66b766ccd153185293943089549

10]

249 10242f665effd3eb4875a1fab42f9d4515
fc9e251dae3c607319a69e49366ef

10]

250 2007616f89095843f3ced5634bf501cfff
55adb4589658662e8ba374f65c676

10]

251 275419d5069976e3bdde14b3329284641e
6164276b8012963f4d383e161fcba

10]

252 1b55a5dadcac2ee8c3ef41026edcc98eab
f592878208e314f6349886407e13d

10]
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An overview of the revised shotgun hill climbing algorithm results (continued)

n Sequence in HEX PSL
253 16fa06a49b5776c2a804a3f64b59e4fd20

3a358e8a77d8f79f159d7c34654e60
10]

254 20d5c99925b7a51f543e49ff428d5d4e54
8a26e1280a1a2d9fc5cc33018c70ce

10]

255 10008133c4e8b9aa47e1546b8b75a0a4fb
cc1d2c7925637235e4866f23d20cf2

10]

256 6e6053b51d9f80a561e97e2cc13cae1d56
38728f2013377e867fbbee26bada65

10]

257 1a24b6e6c465cf993425fe01cb10c2ac88
2285c51cea5697d378bc40305c6e753

10]

258 dafc4a13dbc909c653b76970b24085986f
f0fd93e73d6bcd8bba9aae855ce8af

10]

259 23c7a45f27e3ff8fb66d31f630620d9f6f
959318ea2754cff5256657508bdad2c

10]

260 94db24992764caf16520a31303c3d0a967
2e74e01e8012d787381aaaeae319def

10]

261 28d24a7097956e9f7a63b183c0d97211ee
4f99b9f94a3de360ff75f75082fb55d

10]

262 2547150b862f86ac277033a8d7de1cfd81
8cd1012db7104817cbf15c29924695c9

10]

263 58333ccc921a4318cbddf299f4a0d055a3
3a13554056c856a9380b4ff0e1c60d3f

10]

264 7a4dd00f8bbafc5095a2f5f00da7131ba7
d6f7ac4ce20662e388a6b0c21273204b

10]

265 154ab3ecf9568391efd8918b059f988d67
a21805a46107cb6b89bd30f4c47405c51

10]

266 3c690152ba0daf7d5b4f7a3ee3c88ab33f
6bb8252dc786c8ccd668169c4bbc4cfc2

10]

267 15e1810bfa1308e523b851c7078b2be464
f66df69c7492775594b91644a16e77aff

10]

268 32c38e387faae3e8b74eb7d4675bfa49f5
00cac6c56b4de44a8b7f9d8372666090b

10]

Continue on the next page
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An overview of the revised shotgun hill climbing algorithm results (continued)

n Sequence in HEX PSL
269 e6fbaa465ee2a294646b484fbf7d498512

837f32dc48de2872f0781741941892680
10]

270 ca6d5d2e2898349ca6f36814244ad6e204
8fc50210d8a0fe07fcd5d7f135261c718

10]

271 4fd6ffb4ef673619e25b08bdb8157332e6
15587d1c72ee2d9302c5feb706b0acdab4

10]

272 eb8a2f2227f60eca7d47a60d44193beef1
4b2502f3b5a198f69d3ed7dfb4eca72b41

11

273 1b007f99648f37cf3f43ffdb61260d2d33
b65231ad1cbc3353a1ec6e4bc5555d5ab9
5

11

273 1d92f5d3696863c9fa0972f85e9023bf72
63e0d0472f3a817d42462388332a9db3ba
d

11]

274 2a377a8cd8e836fc187135c97cb4f69fad
ef3a4367b96014b1b9a79bb40d1120baa7
5

11]

275 5991082785400a4fec7053b34aeba361d9
542b51c7533d37b28524c29f747f285b8c

11]

276 af8eb78a4018df61ad9e2d5c980dd38ea4
dbd3cc1d37126245796adbfad9dccfe27

11]

277 4a97467cb36e66d3c4062908017d0aa39c
6a04ad0f2f27b6c10b1dbaec226a396dc1
d

11]

278 96655611a994569ea5924430f8fbaace17
8f1df22f07a48c180bef02336e65223642
b

11]

279 7425c1ec9da091b4d0ee98297cf8a600cb
b43c455e0031c4f15c642251892bdbcbd5
d7

11]

280 55bef3e1c6a79c1a03aad609724c2da00b
ba2ad6484112fe95db18d81f99948c6f0b
32

11]

Continue on the next page
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An overview of the revised shotgun hill climbing algorithm results (continued)

n Sequence in HEX PSL
281 1424e102f4fde1aa05941514283b49ba3e

1786dae904facc4c6db8ac6632ef12acc8
9ce

11]

282 3e88983536cd657fd8069a3360e796e35a
dc35cb8ab5c6f0ebeeefee25ad9daecc06
81f

11]

283 5f08ad54acf01756103661f0e35a1c815c
d9465bf0909bdcbca2081b5ce79bbb96e7
4d

11]

284 d1195f2440f108379fb13357dd894f83ff
89e0e313269f6b5f48f675acb1218d5769
aeb

11]

285 1fd2b9a522fa0ba0363cefa32874704a1a
f558b374eb3eadff9593c7925bbc98e4f6
62d7

11]

286 12410ee79818cd60c7230ad510aadec039
2e476e0f0a036f167bf2be2cab02c0d6d4
4d81

11]

287 63dac2f781e251694b5e9978aa03ca24f2
a20ad51bbba930e99d93590608f330099d
e606

11]

288 69a4d15a39cd274d62e3f41c235b3b280f
0336af0833a646b21eb0a04085c40b5fab
1aae

11]

289 16d9909ffc2421af02de219e1d86e042cd
bfaff9be97237531d2e1ab96739b5eab8b
166aa

11]

290 15c7ff0aef22f9dbdf7394c8094b13871a
c35a9bcd81a472251e5024efd3605951fa
0d157

11]

291 a1c202c94a731846da997686016197dbcd
6a6ca7cc264437646ac0c0fcbd11ff5ae0
7555

11]

Continue on the next page
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An overview of the revised shotgun hill climbing algorithm results (continued)

n Sequence in HEX PSL
292 6e7871e089cc8db9274cf3a22f22d3d452

3d272db2952ab2ac27188b6fbf47faef01
bbdf6

11]

293 4e6aa8af6a0ead457af0ad0ca55efe940e
310e4e6f21b73cf0006124c90360db0b98
7db6c

11]

294 1a5b6d16eca315188a6c5271c7a7ab9eb3
a5ee0efdaabf07b9578110e7fcfe06ccd0
a47ecc

11]

295 4707bfcc051613d674df4982da568161be
90f8cb12bf339535d1a7488f0468c03112
ae1157

11]

296 b71a2ac9b154ef459223e3b03cd2394c7e
3c15f1ac6a2272deea2c235a20fb4bdbdf
3b7fb4

11]

297 2ff21574c741f68aa9d0872b97acc757c6
fdb374791dee45c4a41c274d6c6df59200
62de92

11]

298 32c7b45b87be1884edfec5712d7e3efcef
2e825460a6d5dc1b9d4335581e4e33b454
d9126b4

11]

299 587814353b51d6b1d029f7fe73bd9c88ad
984a394357ee609923a3ec1923e0bb4047
492ea83

11]

300 5b2a550cad8a468cac4ac82be6ad333849
c865361c6d800818ef9387d6513e8cb81d
0f23ff6

11]
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B.3.1 Revised Shotgun Hill climbing results for longer binary sequences

Table B.4 An overview of the revised shotgun hill climbing algorithm results for longer
binary sequences

n Sequence in HEX PSL ]

426 3075e0e3e3c1581d2af808dfee48904
226a942d671d897292c4613c5b19a5d
d22a6799309414418db4ba724a9fd8f
fd1dd109b71493

14 ]3

3000 9c9d1dd018fecf19c744616ad4b166
50e04945bf3f38486f3e52499f8687b
d6a090f4b79735ec64f9987f6ac4985
ba941983ecdb9d1d0fd861dfdc7ed4a
dd34ac12f08b559aa8c22cf70b4724a
d819dbb4ddf4678582db3601786cc56
7f8d290b90cbf46e2939152989bba06
5e1644ec8b1d995e9d8d68221ff5166
66bff43b0a993eaa9ba440f0b79f00e
083acd93b1b64ee5acc52cb1a3bc77e
7c01a14a8a7d8003c62fc5778be6a05
df09b9fc03b70dc2df6850a61ed7045
398c52aa1b5baf036848553d7dd27f8
cb72ed847c6796f7216a975dc497149
ef6eab576508ac77dc3c8837d54d952
1d151694dea17e2bb4969a2c4461616
fafaacb172e35685b3bd63152287a79
e329c65b01a41030bf595ec7ef87188
b37a4d3552e73fadefcdf57b05cc618
904a2fdfd52ff7e8a8c1ea9fdf9db08
957495f01fd6ca7ff219ae3c4624100
d4eee30cc0db5aa8e9f548c31b10593
f138b2c7d22c3f7c16279b7b2f65de7
d17494944967d341c6c0c4e70863b00
201984a

43 ]8
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B.4 New Classes of Binary Sequences with High (RECORD)
Merit Factor

Table B.5 A list of binary sequences with record merit factor values and lengths between 172
and 237

n Class Record sequence in HEX Old MF New MF

172 Ω173 `η4 fe03184fe780309206b6663e571d355a6ac59356a 8.8363 9.052631578947368
178 Ω179 `η4 2c7bd3a7034ccbfe886e8a084688550ccf2b613d16c 8.2125 9.29149560117302
180 Ω179 `η1 b1ef4e9c0d332ffa21ba28211a2154333cad84f45b0 8.5353 8.553326293558607
182 Ω183 `η4 3cfe712191dc7d1c57c81ec5a8d7edbd6ddb9a3b654d2 8.2194 8.928301886792452
184 Ω183 `η2 f3f9c4864771f4715f207b16a35fb6f5b76e68ed9534a 8.2980 8.636734693877552
186 Ω185 `η1 233da5ef19ed00149bc0c4644d4b9c1550e992e878b375 8.3606 8.627431421446383
190 Ω187 `η0 `η0 `η4 190c8d2692191f17dba56aff75407e11d7b5b9a3863c8cb9 8.5021 9.195109526235354
192 Ω195 `η4 `η4 `η4 190c8d2692191f17dba56aff75407e11d7b5b9a3863c8cb9 8.0000 8.930232558139535
193 Ω195 `η4 `η4 32191a4d24323e2fb74ad5feea80fc23af6b73470c791973 8.6868 9.11179060665362
193 Ω195 `η0 `η0 `η1 `η1 c864693490c8f8bedd2b57fbaa03f08ebdadcd1c31e465cf 8.6868 9.238343253968255
194 Ω195 `η0 `η0 `η1 `η1 `η1 190c8d2692191f17dba56aff75407e11d7b5b9a3863c8cb9f 8.0522 8.644005512172715
196 Ω199 `η4 `η4 `η4 937e64c9f4bc13e78367a16729653ad0f58ce65738aaa 8.0910 8.521739130434783
198 Ω199 `η4 24df99327d2f04f9e0d9e859ca594eb43d633995ce2aaa 8.3662 8.786194531600179
200 Ω199 `η2 937e64c9f4bc13e78367a16729653ad0f58ce65738aaaa 8.2919 8.756567425569177
202 Ω199 `η2 `η1 `η6 126fcc993e97827cf06cf42ce52ca75a1eb19ccae715555 8.0291 8.568668626627467
204 Ω205 `η4 3c7877d72fc246a45d9aaedfb63a8eff98847e474af20a25a4b 8.1858 8.276849642004773
206 Ω207 `η4 2492010c9e4ed276a103f76a13a07752ba0763c4e58cbaa38e2 7.7921 8.436580516898609
208 Ω211 `η0 `η4 38e383be228cf9981fc150c0fafad4d014a9599acdf76bb5b6db 7.9529 8.96849087893864
209 Ω211 `η4 `η4 38e383be228cf9981fc150c0fafad4d014a9599acdf76bb5b6db 8.6394 8.849473257698541
209 Ω211 `η0 71c7077c4519f3303f82a181f5f5a9a02952b3359beed76b6db6 8.6394 9.254449152542373
210 Ω211 `η4 71c7077c4519f3303f82a181f5f5a9a02952b3359beed76b6db6 7.9862 9.153175591531756
212 Ω213 `η4 2a2fbaa406cf5693c8d89b658f12d8639d8dcb1e02ce547fbaf7f 7.8082 9.262984336356142
214 Ω213 `η1 a8beea901b3d5a4f23626d963c4b618e76372c780b3951feebdfd 8.1808 9.17755511022044
216 Ω215 `η1 7c361f6410df47fc0c506cc111bbacc6becad56f5cbae75a72d6b 7.8598 8.589101620029455
218 Ω217 `η1 1a403f08432daddf13836660a67d66635b1288f8f345d2b547955 7.4888 8.328776726253066
220 Ω221 `η4 3f06f260dece7d91c596a6d0009d550e7e184918a6ce8d672e52b

5
7.2848 8.479327259985984

222 Ω223 `η4 1f1f0fa3be027fcc798db8f201889aa3491c996cd562a51214b5b
5a

7.6742 8.71666077113548

224 Ω223 `η2 7c7c3e8ef809ff31e636e3c806226a8d247265b3558a944852d6d
6a

7.3962 8.521739130434783

226 Ω225 `η1 e060603dfef3807b8dce68f58e36d82de6c8dba55b2ea8b565656
d5

7.1555 8.487205051512131

227 B15,11,7
n 7fff001fc3cdfb67e939a58cc0d8658d4cd879b1ea63a8cb4a955

2aaa
7.5578 8.069057312871907

228 B17
228 ffff9c31639d28ccf5ab85cba46d3c6e10de901f4cc83d927b2d9

5555
7.2888 8.18903591682

229 B228 `η5 1ffff9c31639d28ccf5ab85cba46d3c6e10de901f4cc83d927b2d
95555

7.5476 8.55202217873

230 B228 `η1 `η5 3ffff3862c73a5199eb570b9748da78dc21bd203e99907b24f65b
2aaab

7.1739 8.16610064835

231 B16
231 7fffb612c7d8bc368ed13b8379234c371a35bb10ede34bd8a4f16

3aaaa
7.4381 8.18671371586

232 B233 `η4 fffad0296b1ca397ca63d8cedc5b991edc4c9d260d7920db0782b
c1555

7.1727 8.05748502994

233 B13
233 1fff5a052d639472f94c7b19db8b7323db8993a4c1af241b60f05

782aaa
7.3522 8.22560606061

234 B233 `η5 3fff5a052d639472f94c7b19db8b7323db8993a4c1af241b60f05
782aaa

7.1651 8.27379873073

235 B15
233 `η5 `η5 7fff5a052d639472f94c7b19db8b7323db8993a4c1af241b60f05

782aaa
7.3496 8.44677271337

236 B233 `η1 `η5 `η5 fffeb40a5ac728e5f298f633b716e647b7132749835e4836c1e0a
f05555

7.5797 8.37282020445

237 B239 `η0 1fff3863ff634e14a46fe933d8c162c27ac9d338546e0fa4f2755
2693555

7.8230 8.65203327172
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Table B.6 A list of binary sequences with record merit factor values and lengths between 238
and 278

n Class Record sequence in HEX Old MF New MF

238 B14
239 `η4 3fff3863ff634e14a46fe933d8c162c27ac9d338546e0fa4f2755

2693555
7.7573 8.34226804124

239 B19
239 7ffff0c39e1f03f01ef8967c933666e66331ca61dae952b52969b

4d2aaaa
7.6962 8.19056495555

240 B14
239 `η2 fffcff800f3c398721e6e43326f40dcaf46332e465a36992d34aa

954d554
7.2948 8.24742268041

241 B241 1ffffc4235e31e3c1ee6079bc2973b0b13782d196a645ad25b25f
22ed5555

8.0668 8.26893507973

242 B241 `η2 3ffff8846bc63c783dcc0f37852e761626f05a32d4c8b5a4b64be
45daaaaa

7.1893 8.14973559699

243 B18
243 7ffff8c0e7381f840fe3960f3a4c66ce64c7b2d61b6ad45a95b26

d4daaaaa
7.2488 8.46216680997

244 B243 `η1 fffff181ce703f081fc72c1e7498cd9cc98f65ac36d5a8b52b64d
a9b55555

7.1730 8.51974813967

245 B243 `η1 `η5 1fffff181ce703f081fc72c1e7498cd9cc98f65ac36d5a8b52b64
da9b55555

7.3237 8.5799028016

246 B243 `η1 `η1 `η5 3ffffe3039ce07e103f8e583ce9319b39931ecb586dab516a56c9
b536aaaab

7.1650 8.33324153126

247 B243 `η1 `η1 `η2 `η5 7ffffc60739c0fc207f1cb079d2633673263d96b0db56a2d4ad93
6a6d55556

7.109 8.22889128675

248 B243 `η1 `η1 `η2 `η5 `η6 7ffffc60739c0fc207f1cb079d2633673263d96b0db56a2d4ad93
6a6d55556

- 8.01668404588

249 B16
249 1ffffc212fe40e94e19e33d2972665b1b1e663783d3259a4f84ae

543a2d5555
8.1323 8.20119047619

250 B249 `η2 3ffff8425fc81d29c33c67a52e4ccb6363ccc6f07a64b349f095c
a8745aaaaa

7.1988 8.19564647259

251 B249 `η2 `η1 7ffff084bf903a538678cf4a5c9996c6c7998de0f4c96693e12b9
50e8b55555

7.5632 8.2354248366

252 B253 `η4 ffffe03198f80ce61e0f2cf07a25ce2176c877a52cf2d6966cd5a
d99356aaaa

7.2394 8.49438202247

253 B19
253 1ffffc06331f019cc3c1e59e0f44b9c42ed90ef4a59e5ad2cd9ab

5b326ad5555
7.3036 8.95481253497

254 B253 `η2 3ffff80c663e03398783cb3c1e8973885db21de94b3cb5a59b356
b664d5aaaaa

7.0325 8.51808819646

255 B253 `η2 `η2 7ffff018cc7c06730f0796783d12e710bb643bd296796b4b366ad
6cc9ab55554

7.2849 8.22892938497

256 B259 `η0 `η4 fff65cbd0a16c7841bd24913277f2064c6572a27311c70b945a4e
17d0bc862aa

7.1483 8.12698412698

257 B259 `η0 1ffffc380df2781e7233e42db41b66c64e6c671af1c2e532365a9
635ca92d5555

7.3847 8.32270665323

258 B259 `η4 3ffffc380df2781e7233e42db41b66c64e6c671af1c2e532365a9
635ca92d5555

7.0738 8.25241755517

259 B19
259 7ffff8701be4f03ce467c85b6836cd8c9cd8ce35e385ca646cb52

c6b9525aaaaa
8.0918 8.18659995118

260 B16
259 `η1 ffff3e0648fcf2598f931e43a9538a717b6093f812e5b39499e34

d48e6a53555
- 8.26405867971

261 B261 1fffff21274a5ec18d9e601cf948f139c2d93b48f94daa659c9ac
5e0f63a35555

- 8.04452054795

262 B16
263 `η4 3ffff3d98cc67b60b077887e1c1eed486c68fc45ada568976b0a7

166cc99d3555
- 8.08146927243

263 B16
263 7fffe7b3198cf6c160ef10fc383dda90d8d1f88b5b4ad12ed614e

2cd9933a6aaa
7.2006 8.22852724245

264 B265 `η4 ffffec3731980ffc25863ed306f12b6b503e3f12e530eb65874aa
d5993234eaaa

- 8.17260787993

265 B267 `η0 1ffffe3943ca79588ed4f2ccc37e13e24dce253a572ccc34fc489
f960d2f925555

7.0963 8.71710526316

266 B265 `η1 3ffffb0dcc6603ff09618fb4c1bc4adad40f8fc4b94c3ad961d2a
b5664c8d3aaaa

- 8.10492554410

267 B20
267 7ffffc728794f2b11da9e59986fc27c49b9c4a74ae599869f8913

f2c1a5f24aaaa
7.0765 8.07715839565

268 B267 `η2 `η2 `η3 fffff1ca1e53cac476a796661bf09f126e7129d2b96661a7e244f
cb0697c92aaaa

7.0004 8.01965163019

269 B22,11
269 1fffff800ff0699b6c1f21f0db3632786c6c69632731cb5a35ac7

1986b54aa955555
7.3092 7.4414849856

270 B269 `η1 3fffff001fe0d336d83e43e1b66c64f0d8d8d2c64e6396b46b58e
330d6a9552aaaab

7.0056 7.27399720615

271 B21
271 7ffffe89502ef15b2327cc786c3c6784ad0fc5a64b4e5a4ca7373

812ef501deaaaaa
7.5386 7.69015706806

272 B271 `η1 fffffd12a05de2b6464f98f0d878cf095a1f8b4c969cb4994e6e7
025dea03bd55555

- 7.35719968178

273 B22,11
273 1fffff800ff0338dbc2761b32787386c3e4e52c693696331a762d

1c932b54aa955555
- 7.21062306502

274 B273 `η2 3fffff001fe0671b784ec3664f0e70d87c9ca58d26d2c6634ec5a
392656a9552aaaaa

- 7.1843062201

275 B22,11
275 7ffffe003f63918fc8c7a478f24e63c1e247694b66c72da47a4dc

ad91b62b556aaaaa
- 7.50099186669

276 B275 `η1 fffffc007ec7231f918f48f1e49cc783c48ed296cd8e5b48f49b9
5b236c56aad55555

- 7.47703180212

277 B275 `η1 `η5 1fffffc007ec7231f918f48f1e49cc783c48ed296cd8e5b48f49b
95b236c56aad55555

- 7.45520792849

278 B275 `η1 `η2 `η5 3fffff800fd8e463f231e91e3c9398f07891da52d9b1cb691e937
2b646d8ad55aaaaaa

- 7.12557624931
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Table B.7 A list of binary sequences with record merit factor values and lengths between 279
and 312

n Class Record sequence in HEX Old MF New MF

279 B275 `η1 `η2 `η1 `η5 7fffff001fb1c8c7e463d23c792731e0f123b4a5b36396d23d26e
56c8db15aab555555

- 7.05209277043

280 B281 `η4 fffffc007936c187ec0dd8f03db13cda71b39278cb138b52d88d4
ea594e31a554aaaaa

- 7.27002967359

281 B22,11
281 1fffff800f26d830fd81bb1e07b6279b4e36724f1962716a5b11a

9d4b29c634aa955555
7.5058 7.7050156128

282 B281 `η2 3fffff001e4db061fb03763c0f6c4f369c6ce49e32c4e2d4b6235
3a96538c69552aaaaa

- 7.38933283776

283 B22,11
283 7ffffe003f9c0f3c38d867139330e53e47a17a46b06d331b12658

db4b2d49ab556aaaaa
7.5088 8.17067945317

284 B283 `η1 fffffc007f381e7871b0ce272661ca7c8f42f48d60da663624cb1
b6965a9356aad55555

- 7.89815902859

285 B22,11
285 1fffff800ff218fc31e07b06d24f26c6c6d999c6c6c634e3c6b16

a5b2d49a354aa955555
7.0142 7.46827877896

286 B285 `η1 3fffff001fe431f863c0f60da49e4d8d8db3338d8d8c69c78d62d
4b65a9346a9552aaaab

- 7.22707192083

287 B22,11
287 7ffffe003fe06d8db331e63e16e4b4c78c6d0e4da4c3c6e16b669

3338d8e56ab556aaaaa
- 7.47314461985

288 B287 `η1 fffffc007fc0db1b6663cc7c2dc9698f18da1c9b49878dc2d6cd2
6671b1cad56aad55555

- 7.21503131524

289 B22,11,6
289 1fffff800ff619ccc3c4e6723d3a5e35b0f24e34b1f25e13d2366

4ed2ccd9a754aa955555
- 7.1312329235

290 B291 `η4 3fffff001fec4a76992c5a7072d0cd969cc9b18cd879ccbc36b61
ec398760ec55aab55555

- 7.36040609137

291 B22,11,6
291 7ffffe003fd894ed3258b4e0e5a19b2d39936319b0f399786d6c3

d8730ec1d8ab556aaaaa
- 7.71370012753

292 B291 `η1 fffffc007fb129da64b169c1cb43365a7326c63361e732f0dad87
b0e61d83b156aad55555

- 7.58846564614

293 B291 `η1 `η5 1fffffc007fb129da64b169c1cb43365a7326c63361e732f0dad8
7b0e61d83b156aad55555

- 7.47032718413

294 B291 `η1 `η1 `η5 3fffff800ff6253b4c962d38396866cb4e64d8c66c3ce65e1b5b0
f61cc3b0762ad55aaaaab

- 7.33129770992

295 B22,11,6
295 7ffffe003fc319e87b0f1cc672969a589c69c49e49d879e1f264c

92d3a5e9934ab556aaaaa
- 7.28730530899

296 B295 `η1 fffffc007f8633d0f61e398ce52d34b138d3893c93b0f3c3e4c99
25a74bd326956aad55555

- 7.13950456323

297 B22,11,6
297 1fffff800fce123d389c6a5e972c63932799399399633926c3785

e06d893d23a4d4aa955555
- 7.1551752109

298 B297 `η2 3fffff001f9c247a7138d4bd2e58c7264f32732732c6724d86f0b
c0db127a4749a9552aaaaa

- 7.26829268293

299 B297 `η2 `η5 7fffff001f9c247a7138d4bd2e58c7264f32732732c6724d86f0b
c0db127a4749a9552aaaaa

- 7.38485048736

300 B301 `η4 b7e00048d23dbb673e05a41e139b4cb590bd183cc39b16947856b
263b8b70dc5556a3d55

- 7.67132628708

301 B12
301 16fc00091a47b76ce7c0b483c2736996b217a307987362d28f0ad

64c7716e1b8aaad47aaa
7.7173 8.24544958136

302 B301 `η1 2df80012348f6ed9cf81690784e6d32d642f460f30e6c5a51e15a
c98ee2dc371555a8f555

- 8.092635315

303 B301 `η1 `η1 5bf00024691eddb39f02d20f09cda65ac85e8c1e61cd8b4a3c2b5
931dc5b86e2aab51eaab

7.9488 8.16370264983

304 B301 `η1 `η1 `η1 b7e00048d23dbb673e05a41e139b4cb590bd183cc39b16947856b
263b8b70dc5556a3d557

- 8.24553890079

305 B301 `η1 `η1 `η1 `η2 16fc00091a47b76ce7c0b483c2736996b217a307987362d28f0ad
64c7716e1b8aaad47aaae

7.5117 8.12587351502

306 B301 `η1 `η1 `η1 `η6 `η5 2000b7e00048d23dbb673e05a41e139b4cb590bd183cc39b16947
856b263b8b70dc5556a3d557

- 8.18353434714

307 B301 `η1 `η1 `η1 `η6 `η5 `η6 2000b7e00048d23dbb673e05a41e139b4cb590bd183cc39b16947
856b263b8b70dc5556a3d557

7.4932 8.27180972442

308 B301 `η1 `η1 `η1 `η2 `η6 `η5 `
η6

40016fc00091a47b76ce7c0b483c2736996b217a307987362d28f
0ad64c7716e1b8aaad47aaae

- 8.15823873409

309 B301 `η1 `η1 `η1 `η2 `η2 `η6 `
η5 `η6

8002df80012348f6ed9cf81690784e6d32d642f460f30e6c5a51e
15ac98ee2dc371555a8f555c

7.5229 8.08338977311

310 B309 `η6 8002df80012348f6ed9cf81690784e6d32d642f460f30e6c5a51e
15ac98ee2dc371555a8f555c

- 7.96716962361

311 B309 `η6 `η5 48002df80012348f6ed9cf81690784e6d32d642f460f30e6c5a51
e15ac98ee2dc371555a8f555c

7.4229 7.88786494862

312 B309 `η2 `η6 `η5 90005bf00024691eddb39f02d20f09cda65ac85e8c1e61cd8b4a3
c2b5931dc5b86e2aab51eaab8

- 7.69152970923



182 Binary Sequences

Table B.8 A list of binary sequences with record merit factor values and lengths between 313
and 345

n Class Record sequence in HEX Old MF New MF

313 B24,11,9,4
313 1fffffe003fe04b878f0b32666cda7c2c5a4f98f4994e1ec2d61c

c666330b49690ea552aa555555
7.5547 7.62048848787

314 B313 `η1 3fffffc007fc0970f1e1664ccd9b4f858b49f31e9329c3d85ac39
8ccc661692d21d4aa554aaaaab

- 7.31315828512

315 B23,10,7,4
315 7fffff003f87c0f184fe339cf0c6179e38de666466668db69a164

d2c9b36ac592d4a5ab552aaaaa
7.4661 7.5204638472

316 B315 `η2 fffffe007f0f81e309fc6739e18c2f3c71bcccc8cccd1b6d342c9
a59366d58b25a94b56aa555554

- 7.25908694388

317 B317 1ffffff003f920d9f36093b4ec686396db0f225e25e234b1c7926
86c4f138a7359ca3952ab555555

- 7.46131571132

318 B317 `η2 3fffffe007f241b3e6c12769d8d0c72db61e44bc4bc469638f24d
0d89e2714e6b39472a556aaaaaa

- 7.23658222413

319 B25,10,7
319 7fffffc00fe0674e1939ce09ccf92963cd83c378da34b58cb61f1

acc9d6c9b196c2656ad54aaaaaa
7.4224 7.45720357614

320 B319 `η2 ffffff801fc0ce9c32739c1399f252c79b0786f1b4696b196c3e3
5993ad93632d84cad5aa9555554

- 7.48976009362

321 B323 `η0 1fffffc003f9807e330e1ce9c63d0e61e0cd83c9998d29cca5a64
bd26d84da4b3256a9952aad55555

7.3183 7.73116746699

322 B323 `η4 3fffffc003f9807e330e1ce9c63d0e61e0cd83c9998d29cca5a64
bd26d84da4b3256a9952aad55555

- 7.76891952645

323 B24,12,7
323 7fffff8007f300fc661c39d38c7a1cc3c19b0793331a53994b4c9

7a4db09b49664ad532a555aaaaaa
7.743 7.80788804071

324 B323 `η2 ffffff000fe601f8cc3873a718f4398783360f266634a73296992
f49b613692cc95aa654aab555554

- 7.68491947291

325 B323 `η2 `η1 1fffffe001fcc03f19870e74e31e8730f066c1e4ccc694e652d32
5e936c26d25992b54ca9556aaaaa9

7.5167 7.61206399539

326 B323 `η2 `η1 `η6 1fffffe001fcc03f19870e74e31e8730f066c1e4ccc694e652d32
5e936c26d25992b54ca9556aaaaa9

- 7.50642746151

327 B25,12,11,6
327 7fffffc003ff81ec63781ce43c19c39e1e66786619665a666969b

4994b46c95a364e95aab554aaaaaa
7.3009 7.76761586518

328 B323 `η2 `η1 `η1 `η6 `η6 3fffffc003f9807e330e1ce9c63d0e61e0cd83c9998d29cca5a64
bd26d84da4b3256a9952aad555553

- 7.22622246104

329 B327 `η1 `η2 1ffffff000ffe07b18de07390f0670e787999e19865996999a5a6
d2652d1b2568d93a56aad552aaaaaa

7.2782 7.33340108401

330 B327 `η1 `η2 `η1 3fffffe001ffc0f631bc0e721e0ce1cf0f333c330cb32d3334b4d
a4ca5a364ad1b274ad55aaa5555555

- 7.22819593787

331 B24,12,8,2
331 7fffff8007f83c0fcc36f0de9667261b24cb1a5b63638793cc739

672661e8d2e34cad4b5aa555aaaaaa
7.3501 7.44603778714

332 B331 `η2 ffffff000ff0781f986de1bd2cce4c36499634b6c6c70f2798e72
ce4cc3d1a5c6995a96b54aab555554

- 7.2117246794

333 B24,12,8,3
333 1fffffe001fe3181fc303c963e42f18cc6c63a670b70b66126c6c

c9b42e5278d2b2d5a9b255aaa555555
7.2743 7.29724927613

334 B333 `η2 3fffffc003fc6303f860792c7c85e3198d8c74ce16e16cc24d8d9
93685ca4f1a565ab5364ab554aaaaaa

- 7.06855911798

335 B25,12,8,2
335 7fffffc003fc81e67b3698760f1b0f0cb46e46b61e6963e46e43c

d2d392d6259e33a6695cab554aaaaaa
7.3302 7.46276100545

336 B335 `η2 ffffff8007f903ccf66d30ec1e361e1968dc8d6c3cd2c7c8dc879
a5a725ac4b3c674cd2b956aa9555554

- 7.27422680412

337 B25,12,8,2
337 1ffffff000ff219cc6f03790f81e4f25a6931cb399b19930db386

1e34e5a94b972b46cd9a354aab555555
7.3327 7.35550518135

338 B337 `η2 3fffffe001fe43398de06f21f03c9e4b4d26396733633261b670c
3c69cb52972e568d9b346a9556aaaaaa

- 7.26280991736

339 B26,13,10,2
339 7fffffe000ffc231ec37835a670f85a749ccd8db61b9638d8cc9c

2785ad267835a34e9374aad556aaaaaa
7.3961 7.77228459353

340 B339 `η1 ffffffc001ff8463d86f06b4ce1f0b4e9399b1b6c372c71b19938
4f0b5a4cf06b469d26e955aaad555555

- 7.7500670421

341 B339 `η1 `η5 1ffffffc001ff8463d86f06b4ce1f0b4e9399b1b6c372c71b1993
84f0b5a4cf06b469d26e955aaad555555

7.317 7.72939377825

342 B339 `η1 `η1 `η5 3ffffff8003ff08c7b0de0d699c3e169d2733636d86e58e363327
09e16b499e0d68d3a4dd2ab555aaaaaab

- 7.67984241628

343 B339 `η1 `η1 `η5 `η6 3ffffff8003ff08c7b0de0d699c3e169d2733636d86e58e363327
09e16b499e0d68d3a4dd2ab555aaaaaab

7.1921 7.63260672116

344 B339 `η1 `η1 `η1 `η5 `η6 7ffffff0007fe118f61bc1ad3387c2d3a4e66c6db0dcb1c6c664e
13c2d6933c1ad1a749ba556aab5555557

- 7.36286709806

345 B27,13,10,6
345 1ffffffc001ff8187e1f2364edc38f18e730f933a53a13e13394b

3649b492dc4e7235a569a955aaad555555
7.2612 7.48773276296



B.4 New Classes of Binary Sequences with High (RECORD) Merit Factor 183

Table B.9 A list of binary sequences with record merit factor values and lengths between 346
and 380

n Class Record sequence in HEX Old MF New MF

346 B339 `η1 `η1 `η1 `η1 `η2 `η5 `
η6

1ffffffc001ff8463d86f06b4ce1f0b4e9399b1b6c372c71b1993
84f0b5a4cf06b469d26e955aaad555555e

- 7.10818192614

347 B26,13,10,0
347 7fffffe000ffcc0f1e19c327c33966f03f21d8e17a6367a16d897

2b52e61b34a73499692d4caad556aaaaaa
7.1698 7.23177177177

348 B347 `η2 ffffffc001ff981e3c33864f8672cde07e43b1c2f4c6cf42db12e
56a5cc36694e6932d25a9955aaad555554

- 7.13888233907

349 B24,9,9,9
349 1fffffe00ff8033e76c49b0a79274c36a5ad0f0399b3931992b4b

c1e072cf63960b18ec76532a954aa555555
7.1295 7.24488460623

350 B349 `η2 3fffffc01ff0067ced893614f24e986d4b5a1e073367263325697
83c0e59ec72c1631d8eca6552a954aaaaaa

- 7.14619064287

351 B349 `η2 `η1 7fffff803fe00cf9db126c29e49d30da96b43c0e66ce4c664ad2f
0781cb3d8e582c63b1d94caa552a9555555

7.0911 7.14043120436

352 B349 `η2 `η1 `η5 ffffff803fe00cf9db126c29e49d30da96b43c0e66ce4c664ad2f
0781cb3d8e582c63b1d94caa552a9555555

- 7.05603644647

353 B23,9,9,9
353 1fffffc01ff006cf9f21e06d8e74c72667963c1b8b6b4f07091ad

27966636cf649c6a5a3594c6ab55aad55555
7.1385 7.26498367537

354 B355 `η4 3fffff803fe00f39e1b8784d2f26ccd9cc63c0f307c24e2d6b34a
d26cd9ccc6343ce9691a5934aa552a955555

- 7.18472652219

355 B23,9,9,9
355 7fffff007fc01e73c370f09a5e4d99b398c781e60f849c5ad6695

a4d9b3998c6879d2d234b26954aa552aaaaa
7.232 7.39496537965

356 B355 `η2 fffffe00ff803ce786e1e134bc9b3367318f03cc1f0938b5acd2b
49b3673318d0f3a5a46964d2a954aa555554

- 7.20582215147

357 B26,12,6
357 1ffffff8007f876cc33e58e06f198373723c78d293d29983d383c

96d23737299b46a49e532cc76956aa9555555
7.2201 7.48467230444

358 B357 `η2 3ffffff000ff0ed9867cb1c0de3306e6e478f1a527a53307a7079
2da46e6e53368d493ca6598ed2ad552aaaaaa

- 7.27625752243

359 B357 `η2 `η2 7fffffe001fe1db30cf96381bc660dcdc8f1e34a4f4a660f4e0f2
5b48dcdca66d1a92794cb31da55aaa5555554

7.1896 7.33361784454

360 B357 `η2 `η2 `η5 ffffffe001fe1db30cf96381bc660dcdc8f1e34a4f4a660f4e0f2
5b48dcdca66d1a92794cb31da55aaa5555554

- 7.12714474263

361 B357 `η2 `η2 `η5 `η6 ffffffe001fe1db30cf96381bc660dcdc8f1e34a4f4a660f4e0f2
5b48dcdca66d1a92794cb31da55aaa5555554

7.1229 7.17310656099

362 B363 `η4 3ffffff000fde381fac783318cb427c3396999ce1ccbc4ed0cda4
d9987932d62f0c9b3296c15a925d4aab555555

- 7.86295451818

363 B26,12,6
363 7fffffe001fbc703f58f066319684f8672d3339c399789da19b49

b330f265ac5e1936652d82b524ba9556aaaaaa
7.6 7.92929353713

364 B363 `η1 ffffffc003f78e07eb1e0cc632d09f0ce5a66738732f13b433693
6661e4cb58bc326cca5b056a49752aad555555

- 7.68003709715

365 B363 `η1 `η2 1ffffff8007ef1c0fd63c198c65a13e19cb4cce70e65e276866d2
6ccc3c996b17864d994b60ad492ea555aaaaaaa

7.2421 7.46274927179

366 B363 `η1 `η2 `η2 3ffffff000fde381fac783318cb427c3396999ce1ccbc4ed0cda4
d9987932d62f0c9b3296c15a925d4aab5555554

- 7.43291532571

367 B363 `η1 `η2 `η2 `η2 7fffffe001fbc703f58f066319684f8672d3339c399789da19b49
b330f265ac5e1936652d82b524ba9556aaaaaa8

7.0216 7.28600021638

368 B363 `η1 `η2 `η2 `η2 `η2 ffffffc003f78e07eb1e0cc632d09f0ce5a66738732f13b433693
6661e4cb58bc326cca5b056a49752aad5555550

- 7.07692307692

369 B363 `η5 `η5 `η6 `η5 `η6 `η6 5ffffffe001fbc703f58f066319684f8672d3339c399789da19b4
9b330f265ac5e1936652d82b524ba9556aaaaaa

7.074 7.19667019027

370 B369 `η6 5ffffffe001fbc703f58f066319684f8672d3339c399789da19b4
9b330f265ac5e1936652d82b524ba9556aaaaaa

- 7.02988600185

371 B23,9,9,9
371 7fffff007fc01f9de489b87b439839334cc34a5a736938cdb1e32

787c34cc331b59b43a5b9dc689a954aa552aaaaa
7.333 7.44730007575

372 B371 `η1 fffffe00ff803f3bc91370f687307266998694b4e6d2719b63c64
f0f869986636b36874b73b8d1352a954aa555555

- 7.53561315618

373 B371 `η1 `η5 1fffffe00ff803f3bc91370f687307266998694b4e6d2719b63c6
4f0f869986636b36874b73b8d1352a954aa555555

7.2147 7.62601403201

374 B371 `η1 `η2 `η5 3fffffc01ff007e779226e1ed0e60e4cd330d2969cda4e336c78c
9e1f0d330cc6d66d0e96e771a26a552a954aaaaaa

- 7.51133068414

375 B371 `η1 `η2 `η5 `η5 7fffffc01ff007e779226e1ed0e60e4cd330d2969cda4e336c78c
9e1f0d330cc6d66d0e96e771a26a552a954aaaaaa

7.0011 7.40209495736

376 B371 `η1 `η2 `η2 `η1 `η5 ffffff007fc01f9de489b87b439839334cc34a5a736938cdb1e32
787c34cc331b59b43a5b9dc689a954aa552aaaaa9

- 7.28141738772

377 B27,13,10,5
377 1ffffffc001ff80e783ce03cce4f872786f07b0db0d99c6666d99

cb1cb16b46963694e4cd2a4d2964a955aaad555555
7.2249 7.35048613984

378 B377 `η2 3ffffff8003ff01cf079c0799c9f0e4f0de0f61b61b338cccdb33
963962d68d2c6d29c99a549a52c952ab555aaaaaaa

- 7.11786390356

379 B27,13,10,5
379 7ffffff0007fe0761e4f90f21fc30f06d8d86cf09b319a6367993

39d2ce58d8e52d34a972d1ac696256aa5552aaaaaa
7.2422 7.33685769742

380 B379 `η1 `η1 `η3 ffffffc001ff81d8793e43c87f0c3c1b6361b3c26cc6698d9e64c
e74b39636394b4d2a5cb46b1a5895aa9554aaaaaab

- 7.01924946529



184 Binary Sequences

Table B.10 A list of binary sequences with record merit factor values and lengths between
381 and 414

n Class Record sequence in HEX Old MF New MF

381 B27,13,10,5
381 1ffffffc001ff818f0787c0d9e13e0cf0e49e43cc39c667333666

d92cd2e58e4b4ca53a59cad696b49a955aaad555555
7.106 7.2018753721

382 B381 `η2 3ffffff8003ff031e0f0f81b3c27c19e1c93c8798738cce666ccd
b259a5cb1c96994a74b395ad2d69352ab555aaaaaaa

- 7.08437712399

383 B27,13,10,5
383 7ffffff0007fe07319cce478e730f318f01bc1e3963c3f27272b4

b61b694b952d932d326da46cc993256aa5552aaaaaa
7.0314 7.07480466866

384 B383 `η1 `η2 `η3 ffffffc001ff81cc673391e39cc3cc63c06f078e58f0fc9c9cad2
d86da52e54b64cb4c9b691b3264c95aa9554aaaaaaa

- 7.08923076923

385 B27,13,10,7
385 1ffffffc001ff80d8c72d86c73343b439960f721f8d2d61b331a7

c3c95a374a7992f12f336c69c36c9ca955aaad555555
7.0772 7.24887519562

386 B385 `η2 3ffffff8003ff01b18e5b0d8e668768732c1ee43f1a5ac366634f
8792b46e94f325e25e66d8d386d93952ab555aaaaaaa

- 7.1296774811

387 B27,13,10,5
387 7ffffff0007fe033c1f66139c2d327c96786f078d8dc39b33339b

48d8da52e5a61ca730f49b166294b356aa5552aaaaaa
7.1502 7.19974040958

388 B387 `η1 ffffffe000ffc06783ecc27385a64f92cf0de0f1b1b8736666736
91b1b4a5cb4c394e61e9362cc52966ad54aaa5555555

- 7.06248827172

389 B391 `η0 1ffffff8003ff01c39c3e47876c1da64f931b70cda1e723633272
365a1ccb71b394e61dac7696e52d92dab552aa9555555

7.0461 7.39305256987

390 B391 `η4 3ffffff8003ff01c39c3e47876c1da64f931b70cda1e723633272
365a1ccb71b394e61dac7696e52d92dab552aa9555555

- 7.27403156385

391 B27,13,10,7,1
391 7ffffff0007fe0387387c8f0ed83b4c9f2636e19b43ce46c664e4

6cb43996e36729cc3b58ed2dca5b25b56aa5552aaaaaa
7.1553 7.16070257611

392 B391 `η1 ffffffe000ffc070e70f91e1db076993e4c6dc336879c8d8cc9c8
d968732dc6ce539876b1da5b94b64b6ad54aaa5555555

- 7.1832460733

393 B391 `η1 `η2 1ffffffc001ff80e1ce1f23c3b60ed327c98db866d0f391b19939
1b2d0e65b8d9ca730ed63b4b7296c96d5aa9554aaaaaaa

7.0952 7.19304210134

394 B391 `η1 `η2 `η5 3ffffffc001ff80e1ce1f23c3b60ed327c98db866d0f391b19939
1b2d0e65b8d9ca730ed63b4b7296c96d5aa9554aaaaaaa

- 7.22095078612

395 B391 `η1 `η2 `η5 `η5 7ffffffc001ff80e1ce1f23c3b60ed327c98db866d0f391b19939
1b2d0e65b8d9ca730ed63b4b7296c96d5aa9554aaaaaaa

7.0991 7.23610982284

396 B395 `η1 ffffffe000ffc0664e333c1e1e703721f9927c19cf1a65b0f34b1
e61b4d9ad63995a372b65a5ad3324e66ad54aaa5555555

- 7.15270935961

397 B27,13,8
397 1ffffffc001ff9213e36cf18664c8978353c49d2c9da358e948f8

49f21d8c3d8ed3f29788ce669b4c7253a3955aaad555555
7.0829 7.19675799087

398 B399 `η4 3ffffff8003fe69c336f097b072cd296cf04ed8b53ad278d99999
c963c13f09c4eb4c783cc36b178b4732d86552aa9555555

- 7.12056099973

399 B27,13,8
399 7ffffff0007fcd3866de12f60e59a52d9e09db16a75a4f1b33333

92c7827e1389d698f07986d62f168e65b0caa5552aaaaaa
7.1487 7.23180703189

400 B399 `η1 ffffffe000ff9a70cdbc25ec1cb34a5b3c13b62d4eb49e3666667
258f04fc2713ad31e0f30dac5e2d1ccb61954aaa5555555

- 7.10479573712

401 B27,13,9
401 1ffffffc001ff901e1c3cd32370b1b0f16e06e4392664db258b09

e31ce66392e46a47b4b1b0b7233cd2da5ab955aaad555555
7.0084 7.01820006983

402 B407 `η0 `η0 `η4 3fffffe001fc8787c06f0f067337903d892d23cc1a79db198e764
99b1d961acd23c389d2b973366b4b46ad6968d5aaa555555

- 7.05755961219

403 B407 `η0 `η0 7fffffc003f90f0f80de1e0ce66f207b125a479834f3b6331cec9
3363b2c359a478713a572e66cd6968d5ad2d1ab554aaaaaa

- 7.10264147643

404 B407 `η0 `η4 ffffffc003f90f0f80de1e0ce66f207b125a479834f3b6331cec9
3363b2c359a478713a572e66cd6968d5ad2d1ab554aaaaaa

- 7.02911283376

405 B407 `η4 `η4 1ffffffc003f90f0f80de1e0ce66f207b125a479834f3b6331cec
93363b2c359a478713a572e66cd6968d5ad2d1ab554aaaaaa

- 7.09082656061

406 B407 `η4 3ffffff8007f21e1f01bc3c19ccde40f624b48f3069e76c6639d9
266c76586b348f0e274ae5ccd9ad2d1ab5a5a356aa9555555

- 7.03765690377

407 B27,12,6
407 7ffffff000fe43c3e0378783399bc81ec49691e60d3ced8cc73b2

4cd8ecb0d6691e1c4e95cb99b35a5a356b4b46ad552aaaaaa
- 7.11856467555

408 B407 `η2 ffffffe001fc8787c06f0f067337903d892d23cc1a79db198e764
99b1d961acd23c389d2b973366b4b46ad6968d5aaa5555554

- 7.1801242236

409 B407 `η2 `η6 ffffffe001fc8787c06f0f067337903d892d23cc1a79db198e764
99b1d961acd23c389d2b973366b4b46ad6968d5aaa5555554

- 7.24285590578

410 B407 `η2 `η2 `η6 1ffffffc003f90f0f80de1e0ce66f207b125a479834f3b6331cec
93363b2c359a478713a572e66cd6968d5ad2d1ab554aaaaaa8

- 7.0767028711

411 B28,14,11,8,4
411 7ffffff8001ffc03c6b678721f0d30dce4da41f861d984f2399c9

9b72c598965a9478c6c8d30d29725a63e4b54aa9555aaaaaaa
- 7.13047699451

412 B411 `η1 fffffff0003ff8078d6cf0e43e1a61b9c9b483f0c3b309e473393
36e58b312cb528f18d91a61a52e4b4c7c96a9552aab5555555

- 7.01537444206

413 B28,14,10,6
413 1ffffffe0007fe06f0cfc3189e43ce49c9c9c333c0fc3c338cf0c

b4c932d2d4ad332d8d8d8e4d2e589b2d4cb46a556aaa5555555
- 7.02855612329

414 B415 `η4 3ffffffc000ffc0783ccf807b61bc3c9e4b198d398721b4a76699
86760f1a36993c99b0e58d2d1a716a94cd296ad54aaad555555

- 7.09714285714
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Table B.11 A list of binary sequences with record merit factor values and lengths between
415 and 441

n Class Record sequence in HEX Old MF New MF

415 B28,14,10,6
415 7ffffff8001ff80f0799f00f6c378793c96331a730e43694ecd33

0cec1e346d32793361cb1a5a34e2d5299a52d5aa9555aaaaaaa
- 7.25891427126

416 B415 `η1 fffffff0003ff01e0f33e01ed86f0f2792c6634e61c86d29d9a66
19d83c68da64f266c39634b469c5aa5334a5ab552aab5555555

- 7.04855001629

417 B28,13,12,8,6,6,4
417 1ffffffe000fff00fc0fc92787993c3e0793934f867264730c739

936cb36e636694f39396a52d39969638d4ad4ab554aaa5555555
- 7.22610538564

418 B417 `η2 3ffffffc001ffe01f81f924f0f32787c0f27269f0ce4c8e618e73
26d966dcc6cd29e7272d4a5a732d2c71a95a956aa9554aaaaaaa

- 7.13683522588

419 B417 `η2 `η5 7ffffffc001ffe01f81f924f0f32787c0f27269f0ce4c8e618e73
26d966dcc6cd29e7272d4a5a732d2c71a95a956aa9554aaaaaaa

- 7.05120893244

420 B421 `η4 fffffff0007ff807e07f031b2d86c9cc670cd8786d23c9c399b0c
d399b49cb70e5a58cd264c9ce58f39352a56a55aaa5552aaaaaa

- 7.04585397028

421 B28,13,12,8,6,6,4
421 1ffffffe000fff00fc0fe06365b0d9398ce19b0f0da4793873361

9a73369396e1cb4b19a4c9939cb1e726a54ad4ab554aaa5555555
- 7.25327385824

422 B421 `η1 3ffffffc001ffe01f81fc0c6cb61b27319c3361e1b48f270e66c3
34e66d272dc39696334993273963ce4d4a95a956aa9554aaaaaab

- 7.05842251288

423 B28,14,11,8,4
423 7ffffff8001ffc03cc366f03d907b07993e4e1f21e1c3c66d2727

27270e64b49697296c6b19a53a518b52e634cb54aa9555aaaaaaa
- 7.17150300601

424 B423 `η1 fffffff0003ff807986cde07b20f60f327c9c3e43c3878cda4e4e
4e4e1cc9692d2e52d8d6334a74a316a5cc6996a9552aab5555555

- 7.08448928121

425 B28,14,10,6
425 1ffffffe0007fe03c25bc93927f0bc3326799334f07e4c9d90db7

0b71cb9d8ce56b4f339966332d0b563938d1e2d2a556aaa555555
5

- 7.0667057903

426 B429 `η0 `η4 3ffffff8001ffc03f07e1330b4e0e721a5e24d8e664e34e1e49b0
dcb18e5a4f24e6649ce25e1a364a4f0b33a56b52ad55aaa955555
5

- 7.05528341498

427 B429 `η0 7ffffff0003ff807e0fc266169c1ce434bc49b1ccc9c69c3c9361
b9631cb49e49ccc939c4bc346c949e16674ad6a55aab5552aaaaa
a

- 7.22782050266

428 B429 `η4 fffffff0003ff807e0fc266169c1ce434bc49b1ccc9c69c3c9361
b9631cb49e49ccc939c4bc346c949e16674ad6a55aab5552aaaaa
a

- 7.13889321902

429 B28,14,11,8,4
429 1ffffffe0007ff00fc1f84cc2d3839c86978936399938d387926c

372c639693c93999273897868d9293c2cce95ad4ab556aaa55555
55

- 7.05354131535

430 B431 `η4 3ffffffc000ffe01e786f1c27b0cf61f0e633c1e9c3998ce46e52
d9c3e46e4c9992d85ad3264b5a74cb162db46965aa554aaad5555
55

- 7.0021964705

431 B28,14,11,8,4
431 7ffffff8001ffc03cf0de384f619ec3e1cc6783d3873319c8dca5

b387c8dc993325b0b5a64c96b4e9962c5b68d2cb54aa9555aaaaa
aa

- 7.08849118522

432 B431 `η1 fffffff0003ff8079e1bc709ec33d87c398cf07a70e663391b94b
670f91b932664b616b4c992d69d32c58b6d1a596a9552aab55555
55

- 7.04560555723

433 B28,13,12,8,6,6,4
433 1ffffffe000fff00fc0fc333247c1e1e0c7387999a5b8d3c619ce

1cda4d9a6d3c91e19996936ca5a5ad6e3332d4ad4ab554aaa5555
555

- 7.05482390126

434 B433 `η2 3ffffffc001ffe01f81f866648f83c3c18e70f3334b71a78c339c
39b49b34da7923c3332d26d94b4b5adc6665a95a956aa9554aaaa
aaa

- 7.06140811277

435 B433 `η2 `η1 7ffffff8003ffc03f03f0ccc91f0787831ce1e66696e34f186738
73693669b4f24786665a4db29696b5b8cccb52b52ad552aa95555
555

- 7.06854688084

436 B433 `η2 `η1 `η5 fffffff8003ffc03f03f0ccc91f0787831ce1e66696e34f186738
73693669b4f24786665a4db29696b5b8cccb52b52ad552aa95555
555

- 7.07307635065

437 B433 `η2 `η1 `η5 `η5 1fffffff8003ffc03f03f0ccc91f0787831ce1e66696e34f18673
873693669b4f24786665a4db29696b5b8cccb52b52ad552aa9555
5555

- 7.07816901408

438 B441 `η4 `η4 `η4 3ffffff0007fe0479c679c39c3873b1ce523c4e1f09784e46c3f0
cdc8cd2b4e46c5a1d296c4b706c93b25b49b49a649a456aa5552a
aaaa

- 7.01645819618

439 B441 `η0 7fffffc001ff811e719e70e70e1cec73948f1387c25e1391b0fc3
372334ad391b16874a5b12dc1b24ec96d26d269926915aa9554aa
aaaa

- 7.07544606799

440 B441 `η4 ffffffc001ff811e719e70e70e1cec73948f1387c25e1391b0fc3
372334ad391b16874a5b12dc1b24ec96d26d269926915aa9554aa
aaaa

- 7.16400236827

441 B26,13,10,6
441 1ffffff8003ff023ce33ce1ce1c39d8e7291e270f84bc272361f8

66e46695a72362d0e94b625b83649d92da4da4d324d22b552aa95
55555

- 7.25458818263
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Table B.12 A list of binary sequences with record merit factor values and lengths between
442 and 464

n Class Record sequence in HEX Old MF New MF

442 B441 `η2 3ffffff0007fe0479c679c39c3873b1ce523c4e1f09784e46c3f0
cdc8cd2b4e46c5a1d296c4b706c93b25b49b49a649a456aa5552a
aaaaa

- 7.07994491556

443 B441 `η2 `η1 7fffffe000ffc08f38cf3873870e7639ca4789c3e12f09c8d87e1
9b919a569c8d8b43a52d896e0d92764b6936934c9348ad54aaa55
55555

- 7.06694274397

444 B441 `η2 `η1 `η2 ffffffc001ff811e719e70e70e1cec73948f1387c25e1391b0fc3
372334ad391b16874a5b12dc1b24ec96d26d269926915aa9554aa
aaaaa

- 7.07798362775

445 B27,13,10,7,3,3
445 1ffffffc001ff80e1cce3c34c6783d2663e14b913b461ec631e07

98736996a5b26c5a6f13b90fa52663d2966cf2d24cda4a955aaad
555555

- 7.05317709075

446 B445 `η2 3ffffff8003ff01c399c78698cf07a4cc7c29722768c3d8c63c0f
30e6d32d4b64d8b4de27721f4a4cc7a52cd9e5a499b4952ab555a
aaaaaa

- 7.12296784359

447 B445 `η2 `η5 7ffffff8003ff01c399c78698cf07a4cc7c29722768c3d8c63c0f
30e6d32d4b64d8b4de27721f4a4cc7a52cd9e5a499b4952ab555a
aaaaaa

- 7.19410239793

448 B445 `η2 `η2 `η5 fffffff0007fe0387338f0d319e0f4998f852e44ed187b18c781e
61cda65a96c9b169bc4ee43e94998f4a59b3cb4933692a556aab5
555554

- 7.168

449 B445 `η2 `η2 `η5 `η6 fffffff0007fe0387338f0d319e0f4998f852e44ed187b18c781e
61cda65a96c9b169bc4ee43e94998f4a59b3cb4933692a556aab5
555554

6.5218 7.1428925737

450 B451 `η4 3ffffffc000ffe01e1a70db06de07e34b5a46c93661e499938678
3733337296693998e5a6738c6e1f0f256a5c6b1cb61a5aa554aaa
d555555

- 7.01517356059

451 B28,14,11,8,4
451 7ffffff8001ffc03c34e1b60dbc0fc696b48d926cc3c933270cf0

6e6666e52cd27331cb4ce718dc3e1e4ad4b8d6396c34b54aa9555
aaaaaaa

- 7.17362629611

452 B451 `η2 fffffff0003ff807e1f0fc1a7c0f349b1e89ce1c6cc6693e24f0d
8726369cb4e253866cc6da4d885b18f34ad61ad4b5a56a9552aab
5555554

- 7.04399393187

453 B28,14,11,8,4
453 1ffffffe0007ff00fc0fcf03c66679933387859e0db07938c7987

8c79396c96996c9396b1ca59e969333996666d2b4d4ad4ab556aa
a5555555

- 7.04991754844

454 B453 `η2 3ffffffc000ffe01f81f9e078cccf326670f0b3c1b60f2718f30f
18f272d92d32d9272d6394b3d2d266732cccda569a95a956aad55
4aaaaaaa

- 7.04381108605

455 B28,14,11,8,4,4
455 7ffffff8001ffc03c3781e199cc785bc31ccc6696607f094f216d

8cc724cd8e172c1d2a5661e64cc934b85a4c999695a34b54aa955
5aaaaaaa

- 7.10791045801

456 B455 `η2 fffffff0003ff80786f03c33398f0b7863998cd2cc0fe129e42db
198e499b1c2e583a54acc3cc99926970b499332d2b4696a9552aa
b5555554

- 7.01159967629

457 B28,14,11,8,4,4,3
457 1ffffffe0007ff00f0f9cce60f3e19e4f24f6316e163391cb370b

c70b670b6d0b730db9327a47b274e34e59a534a64cd94b4ab556a
aa5555555

- 7.01966254369

458 B461 `η4 `η4 `η4 3ffffffc000ffe01e1ec66f03f834b34b1b598dce1e729cda34d8
d86691e658d8c378c9f2696c8d98393c33c35ab52e64e96956aad
554aaaaaa

- 7.11884884273

459 B461 `η0 7ffffff0003ff80787b19bc0fe0d2cd2c6d66373879ca7368d363
619a479963630de327c9a5b23660e4f0cf0d6ad4b993a5a55aab5
552aaaaaa

- 7.25635461872

460 B461 `η4 fffffff0003ff80787b19bc0fe0d2cd2c6d66373879ca7368d363
619a479963630de327c9a5b23660e4f0cf0d6ad4b993a5a55aab5
552aaaaaa

- 7.39549839228

461 B28,14,11,8,4,4
461 1ffffffe0007ff00f0f633781fc1a59a58dacc6e70f394e6d1a6c

6c3348f32c6c61bc64f934b646cc1c9e19e1ad5a973274b4ab556
aaa5555555

- 7.53941393501

462 B461 `η1 3ffffffc000ffe01e1ec66f03f834b34b1b598dce1e729cda34d8
d86691e658d8c378c9f2696c8d98393c33c35ab52e64e96956aad
554aaaaaab

- 7.38509445713

463 B461 `η1 `η1 7ffffff8001ffc03c3d8cde07f069669636b31b9c3ce539b469b1
b0cd23ccb1b186f193e4d2d91b3072786786b56a5cc9d2d2ad55a
aa95555557

- 7.25248663644

464 B461 `η1 `η1 `η1 fffffff0003ff80787b19bc0fe0d2cd2c6d66373879ca7368d363
619a479963630de327c9a5b23660e4f0cf0d6ad4b993a5a55aab5
552aaaaaaf

- 7.13467656416
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Table B.13 A list of binary sequences with record merit factor values and lengths between
465 and 485

n Class Record sequence in HEX Old MF New MF

465 B461 `η1 `η1 `η1 `η1 1ffffffe0007ff00f0f633781fc1a59a58dacc6e70f394e6d1a6c
6c3348f32c6c61bc64f934b646cc1c9e19e1ad5a973274b4ab556
aaa5555555f

- 7.08469855832

466 B461 `η1 `η1 `η1 `η1 `η2 3ffffffc000ffe01e1ec66f03f834b34b1b598dce1e729cda34d8
d86691e658d8c378c9f2696c8d98393c33c35ab52e64e96956aad
554aaaaaabe

- 7.09057663423

467 B30,15,12,10,6,6,6
467 7ffffffe0003ffc00fc0fc1e0c39e19ce1c725e1399933cc8db83

6691e6691e635b8dccb3199b16872496c9969b4d694ad4ad54aab
5556aaaaaaa

- 7.0075509286

468 B469 `η4 fffffffe0003ffc03f03f19c781f870e6631e8c63ccc78f138f1c
c9c96ce1c9cc92db12da4ccb64de93666d25a95a4992b52b54aab
5556aaaaaaa

- 7.16795392067

469 B469 1fffffffc0007ff807e07e338f03f0e1ccc63d18c7998f1e271e3
99392d9c3939925b625b49996c9bd26ccda4b52b493256a56a955
6aaad5555555

- 7.3743127263

470 B469 `η1 3fffffff8000fff00fc0fc671e07e1c3998c7a318f331e3c4e3c7
32725b38727324b6c4b69332d937a4d99b496a569264ad4ad52aa
d555aaaaaaab

- 7.25165780316

471 B469 `η1 `η2 7fffffff0001ffe01f81f8ce3c0fc3873318f4631e663c789c78e
64e4b670e4e6496d896d2665b26f49b33692d4ad24c95a95aa555
aaab55555556

- 7.12719270064

472 B469 `η1 `η2 `η2 fffffffe0003ffc03f03f19c781f870e6631e8c63ccc78f138f1c
c9c96ce1c9cc92db12da4ccb64de93666d25a95a4992b52b54aab
5556aaaaaaac

- 7.07340614681

473 B29,15,11,9,6,6,4
473 1fffffff0001ffc01f81f2661c3ec1b324ce61e3c363633c396cd

0edc2e4e42dc4bcc792d327272d25a64ce331ac52da6635a95aad
55aaab5555555

- 7.38087226181

474 B473 `η2 3ffffffe0003ff803f03e4cc387d8366499cc3c786c6c67872d9a
1db85c9c85b89798f25a64e4e5a4b4c99c66358a5b4cc6b52b55a
ab5556aaaaaaa

- 7.31129189717

475 B473 `η2 `η5 7ffffffe0003ff803f03e4cc387d8366499cc3c786c6c67872d9a
1db85c9c85b89798f25a64e4e5a4b4c99c66358a5b4cc6b52b55a
ab5556aaaaaaa

- 7.24410839273

476 B473 `η2 `η2 `η5 fffffffc0007ff007e07c99870fb06cc9339878f0d8d8cf0e5b34
3b70b9390b712f31e4b4c9c9cb49699338cc6b14b6998d6a56ab5
56aaad5555554

- 7.07430997877

477 B29,15,11,9,6,6,4
477 1fffffff0001ffc01f81e6f03c78c3e61e463e0f3333cccb4cb78

c67878c2c96966c970cf0ccd33334a526e5a652c96d2b465a95aa
d55aaab5555555

- 7.27859884837

478 B477 `η2 3ffffffe0003ff803f03cde078f187cc3c8c7c1e66679996996f1
8cf0f18592d2cd92e19e199a666694a4dcb4ca592da568cb52b55
aab5556aaaaaaa

- 7.18548336373

479 B29,15,11,9,6,6,4
479 7ffffffc0007ff007e07e72331c993c61b619d25ccb0f03c4b31b

0c3c1b4c394b4d3933c4b52d3cc8709963964b19c933726a56a55
2aa5554aaaaaaa

- 7.12063186643

480 B479 `η1 fffffff8000ffe00fc0fce466393278c36c33a4b9961e07896636
1878369872969a7267896a5a7990e132c72c96339266e4d4ad4aa
554aaa95555555

- 7.05882352941

481 B29,15,11,9,6,6,4
481 1fffffff0001ffc01f81fc27e1b6cc92f0cda6627a52f2d33b273

9a49e2d33c258e19363133c343e162661ccb438cc71a562d5a95a
ad55aaab5555555

- 7.26636306533

482 B481 `η1 3ffffffe0003ff803f03f84fc36d9925e19b4cc4f4a5e5a6764e7
3493c5a6784b1c326c62678687c2c4cc399687198e34ac5ab52b5
5aab5556aaaaaab

- 7.15944530046

483 B481 `η1 `η2 7ffffffc0007ff007e07f09f86db324bc3369989e94bcb4cec9ce
69278b4cf0963864d8c4cf0d0f858998732d0e331c6958b56a56a
b556aaad5555556

- 7.17503229378

484 B481 `η1 `η2 `η6 7ffffffc0007ff007e07f09f86db324bc3369989e94bcb4cec9ce
69278b4cf0963864d8c4cf0d0f858998732d0e331c6958b56a56a
b556aaad5555556

- 7.08406919076

485 B481 `η1 `η2 `η6 `η6 7ffffffc0007ff007e07f09f86db324bc3369989e94bcb4cec9ce
69278b4cf0963864d8c4cf0d0f858998732d0e331c6958b56a56a
b556aaad5555556

- 7.11165195308
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Table B.14 A list of binary sequences with record merit factor values and lengths between
486 and 505

n Class Record sequence in HEX Old MF New MF

486 B487 `η4 3fffffff0007ff807e07cf038f8c79c1e60f8799b0dc9f30f3391
b0e730f48f4b364b1b9334b358dcb199694a65ad96c9492b4d6a5
6a9556aab5555555

- 7.14230420321

487 B30,13,12,8,6,6,5
487 7ffffffe000fff00fc0f9e071f18f383cc1f0f3361b93e61e6723

61ce61e91e966c9637266966b1b96332d294cb5b2d9292569ad4a
d52aad556aaaaaaa

- 7.19784522003

488 B487 `η1 fffffffc001ffe01f81f3c0e3e31e707983e1e66c3727cc3cce46
c39cc3d23d2cd92c6e4cd2cd6372c665a52996b65b2524ad35a95
aa555aaad5555555

- 7.19033816425

489 B30,15,12,8,6,4
489 1fffffff8000fff00fc2c7e07878e1ec1f8c6d927c99626679339

86d24f264e634e3c6993396662798d639c6c95ac5a49696a56c2d
4ab554aaa95555555

- 7.20070464948

490 B489 `η2 3fffffff0001ffe01f858fc0f0f1c3d83f18db24f932c4ccf2673
0da49e4c9cc69c78d32672ccc4f31ac738d92b58b492d2d4ad85a
956aa95552aaaaaaa

- 7.09305760709

491 B489 `η2 `η1 7ffffffe0003ffc03f0b1f81e1e387b07e31b649f2658999e4ce6
1b493c99398d38f1a64ce59989e6358e71b256b16925a5a95b0b5
2ad552aaa55555555

- 7.08519955328

492 B495 `η0 `η4 fffffff0001ffc01f81f06d836cc2fc30d9c3b659b4e4ed38d8da
4e72666961e66726c78d8db0ec6c39863b498d34af4ce358e5295
a954aa95552aaaaaa

- 7.07045215563

493 B495 `η4 `η4 1fffffff0001ffc01f81f06d836cc2fc30d9c3b659b4e4ed38d8d
a4e72666961e66726c78d8db0ec6c39863b498d34af4ce358e529
5a954aa95552aaaaaa

- 7.0810220254

494 B495 `η1 `η3 `η3 3ffffff8000ffe00fc0f836c1b6617e186ce1db2cda72769c6c6d
27393334b0f3339363c6c6d876361cc31da4c69a57a671ac7294a
d4aa554aaa95555555

- 7.07637882039

495 B29,15,11,9,6,6,4
495 7ffffffc0007ff007e07c1b60db30bf0c3670ed966d393b4e3636

939c999a587999c9b1e3636c3b1b0e618ed2634d2bd338d6394a5
6a552aa5554aaaaaaa

- 7.01233472612

496 B495 `η1 fffffff8000ffe00fc0f836c1b6617e186ce1db2cda72769c6c6d
27393334b0f3339363c6c6d876361cc31da4c69a57a671ac7294a
d4aa554aaa95555555

- 7.01459854015

497 B495 `η1 `η5 1fffffff8000ffe00fc0f836c1b6617e186ce1db2cda72769c6c6
d27393334b0f3339363c6c6d876361cc31da4c69a57a671ac7294
ad4aa554aaa95555555

- 7.01730113636

498 B27,15,11,11,7,7,7,7
497 `η2 3ffffff8000ffe003f80fe03c9c86321b0e61a7387983ccb724e6

696c3d26636670b4e1e66c723ccb59a5b27966d397365c9cb56ad
5ab556aad555aaaaaaa

- 7.00378424174

499 B29,15,11,9,6,6,4
499 7ffffffc0007ff007e07d87431ed839c0e4f86ce46978d8f49b67

2d9b19b4c9cc399398f2639c2d8da1e46ce5ac6d49b58e934258a
56a552aa5554aaaaaaa

- 7.16797167367

500 B499 `η1 fffffff8000ffe00fc0fb0e863db07381c9f0d9c8d2f1b1e936ce
5b3633699398732731e4c7385b1b43c8d9cb58da936b1d2684b14
ad4aa554aaa95555555

- 7.04542892571

501 B30,15,12,8,6,4
501 1fffffff8000fff00fc1e4f30f865f207e0f34da63598c5e0d939

bc360e4d8ccc9ce4a72d1939ca5ec99f261cf34a56a35e694b34e
5ad4ab554aaa95555555

- 7.16572456321

502 B501 `η2 3fffffff0001ffe01f83c9e61f0cbe40fc1e69b4c6b318bc1b273
786c1c9b199939c94e5a327394bd933e4c39e694ad46bcd29669c
b5a956aa95552aaaaaaa

- 7.27872451043

503 B501 `η2 `η5 7fffffff0001ffe01f83c9e61f0cbe40fc1e69b4c6b318bc1b273
786c1c9b199939c94e5a327394bd933e4c39e694ad46bcd29669c
b5a956aa95552aaaaaaa

- 7.39489682586

504 B501 `η2 `η2 `η5 fffffffe0003ffc03f0793cc3e197c81f83cd3698d663178364e6
f0d83936333273929cb464e7297b267c9873cd295a8d79a52cd39
6b52ad552aaa55555554

- 7.21964529332

505 B501 `η2 `η2 `η1 `η5 1fffffffc0007ff807e0f27987c32f903f079a6d31acc62f06c9c
de1b0726c6664e7253968c9ce52f64cf930e79a52b51af34a59a7
2d6a55aaa5554aaaaaaa9

- 7.09980512249
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Table B.15 A list of binary sequences with record merit factor values and lengths between
506 and 527

n Class Record sequence in HEX Old MF New MF

506 B501 `η2 `η2 `η1 `η1 `η5 3fffffff8000fff00fc1e4f30f865f207e0f34da63598c5e0d939
bc360e4d8ccc9ce4a72d1939ca5ec99f261cf34a56a35e694b34e
5ad4ab554aaa955555553

- 7.05994595489

507 B29,15,11,9,6,6,4
507 7ffffffc0007ff007e07c1b30db303f0e1c9c6d99996e58f4f0e7

863948cf183592cdc1b65a6d2c2d86e19998e49c96d2b5338d339
4a56a552aa5554aaaaaaa

- 7.23144657627

508 B507 `η1 fffffff8000ffe00fc0f83661b6607e1c3938db3332dcb1e9e1cf
0c72919e306b259b836cb4da585b0dc33331c9392da56a671a672
94ad4aa554aaa95555555

- 7.10293955741

509 B26,13,12,9,7,6,6,4,2
509 1ffffff8003ffc01fc0fc3078f266781f81f393278cda4cb1c78d

2649c6963ccccd2786d8e63c96db0ce1cc9633935a95a96663496
b2d4ad5aad552aa9555555

- 7.03489193005

510 B511 `η4 3ffffffe0007ffc007f01fc079b43c5b0ce72761e437872d2cccb
4e4db61b18ccc9b1a71ce4f0ccc3c36972e5a76364cb1ed2f196a
d5ab56aad556aaa5555555

- 7.00889248181

511 B27,15,11,11,7,7,7,7
511 7ffffff0001ffc007f01fc079258d264c3613c61b1b1c8d8665a5

8c78c6c4b4b3c3c4e4da4d8786658dc9393964b1634c670d871a5
4a952a554aa95552aaaaaa

- 7.22166602135

512 B511 `η1 ffffffe0003ff800fe03f80f24b1a4c986c278c3636391b0ccb4b
18f18d8969678789c9b49b0f0ccb1b927272c962c698ce1b0e34a
952a54aa9552aaa5555555

- 7.09417622862

513 B29,14,13,10,7,7,7,7,2
513 1fffffff0003ffe007f01fc078c6f0cc799c9e1b36b4e3ca52d61

c7a49ce66679966664d8e16da7c3e0d24f0731a58d996ccb46c96
ad5ab56aa5552aab5555555

- 7.11729229771

514 B513 `η2 3ffffffe0007ffc00fe03f80f18de198f3393c366d69c794a5ac3
8f4939ccccf32cccc9b1c2db4f87c1a49e0e634b1b32d9968d92d
5ab56ad54aaa5556aaaaaaa

- 7.02014136153

515 B517 `η0 7fffffff0001ffe007e07c3c1d83e493b670b658c79c3a5c3cdb1
32c66c70f263672d24e64f3138cb487b49a4d863d263b1c6b5894
b4a56a556aa95552aaaaaaa

- 7.00874689498

516 B517 `η4 ffffffff0001ffe007e07c3c1d83e493b670b658c79c3a5c3cdb1
32c66c70f263672d24e64f3138cb487b49a4d863d263b1c6b5894
b4a56a556aa95552aaaaaaa

- 7.01190350785

517 B27,15,11,11,7,7,7,7
517 1ffffffc0007ff001fc07f01e1e0f0f270cf03e19cc3c664d86d8

7c63932d999ccd999c33926d69c69ce66d2cd9a52b4cb634b4a5a
5ab56ad5aab556aaad555555

- 7.12922756855

518 B517 `η2 3ffffff8000ffe003f80fe03c3c1e1e4e19e07c339878cc9b0db0
f8c7265b33399b33386724dad38d39ccda59b34a56996c69694b4
b56ad5ab556aad555aaaaaaa

- 7.20719849584

519 B27,15,11,11,7,7,7,7
519 7ffffff0001ffc007f01fc07c36493e1b64d25b0f87cc793ccf98

da7271b0f1999992d3927278d9accb1a4ca5ad3870c6396b1c634
a54a952a554aa95552aaaaa

- 7.18717647687

520 B519 `η1 ffffffe0003ff800fe03f80f86c927c36c9a4b61f0f98f2799f31
b4e4e361e3333325a724e4f1b3599634994b5a70e18c72d638c69
4a952a54aa9552aaa555555

- 7.06078963860

521 B27,15,11,11,7,7,7,7
521 1ffffffc0007ff001fc07f01b2c4996c7c36d0f60f358f0e63639

c9d878cce1e4f4e5a4cc969d8d927264b49f34a74bc72d6c798ec
31ab56ad5aab556aaad55555

- 7.01760599793

522 B521 `η2 3ffffff8000ffe003f80fe03658932d8f86da1ec1e6b1e1cc6c73
93b0f199c3c9e9cb49992d3b1b24e4c9693e694e978e5ad8f31d8
6356ad5ab556aad555aaaaaa

- 7.06759350521

523 B521 `η2 `η5 7ffffff8000ffe003f80fe03658932d8f86da1ec1e6b1e1cc6c73
93b0f199c3c9e9cb49992d3b1b24e4c9693e694e978e5ad8f31d8
6356ad5ab556aad555aaaaaa

- 7.11833133816

524 B521 `η2 `η2 `η5 fffffff0001ffc007f01fc06cb1265b1f0db43d83cd63c398d8e7
2761e3338793d39693325a763649c992d27cd29d2f1cb5b1e63b0
c6ad5ab56aad55aaab555555

- 7.08181161663

525 B521 `η2 `η2 `η5 `η6 fffffff0001ffc007f01fc06cb1265b1f0db43d83cd63c398d8e7
2761e3338793d39693325a763649c992d27cd29d2f1cb5b1e63b0
c6ad5ab56aad55aaab555555

- 7.04634931997

526 B521 `η2 `η2 `η1 `η1 `η5 3ffffffc0007ff001fc07f01b2c4996c7c36d0f60f358f0e63639
c9d878cce1e4f4e5a4cc969d8d927264b49f34a74bc72d6c798ec
31ab56ad5aab556aaad555555

- 7.03401637260

527 B517 `η2 `η2 `η1 `η1 `η2 `η5 `
η6 `η6 `η5 `η5

67ffffff8000ffe003f80fe03c3c1e1e4e19e07c339878cc9b0db
0f8c7265b33399b33386724dad38d39ccda59b34a56996c69694b
4b56ad5ab556aad555aaaaaaa6

- 7.08239404294
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Table B.16 A list of binary sequences with record merit factor values of lengths 573, 1006,
1007, 1008, 1009 and 1010

n Class Record sequence in HEX Old MF New MF

573 B27,15,11,11,7,7,7,7
573 1ffffffc0007ff001fc07f01e7c2787b0e1e5a7e3cf0f64bc39ce

372d9b399ac9b26e333333246318c199319c3724d92d0e74b4d25
61e5a4b16962d65ab56ad5aab556aaad55555

- 6.82937432399

1006 B1009 `η0 `η4 3fffffffff000007fff0001ff801fe01e03fc0be03e9c60fb70e1
f039b0e3c762c73ca479ccc6f0d9c9327c97879938d8dcd937330
e1793867d8761e19f1b59f1b59a5a769d669397a4b33739cdc9c9
3996978d6338d9cb46ccd96e0d36c276d24b192b5a4b714a6d852
a50ad52a5aa55aa955aaab5556aaaab55555555

- 6.35677047348

1007 B1009 `η0 7ffffffffe00000fffe0003ff003fc03c07f817c07d38c1f6e1c3
e07361c78ec58e7948f3998de1b39264f92f0f3271b1b9b26e661
c2f270cfb0ec3c33e36b3e36b34b4ed3acd272f49666e739b9392
732d2f1ac671b3968d99b2dc1a6d84eda4963256b496e294db0a5
4a15aa54b54ab552ab5556aaad55556aaaaaaaa

- 6.41941303825

1008 B1009 `η4 fffffffffe00000fffe0003ff003fc03c07f817c07d38c1f6e1c3
e07361c78ec58e7948f3998de1b39264f92f0f3271b1b9b26e661
c2f270cfb0ec3c33e36b3e36b34b4ed3acd272f49666e739b9392
732d2f1ac671b3968d99b2dc1a6d84eda4963256b496e294db0a5
4a15aa54b54ab552ab5556aaad55556aaaaaaaa

- 6.41811107180

1009 B39,21,15,15,10,10,8,8,4
1009 1fffffffffc00001fffc0007fe007f80780ff02f80fa7183edc38

7c0e6c38f1d8b1cf291e7331bc36724c9f25e1e64e3637364dccc
385e4e19f61d87867c6d67c6d66969da759a4e5e92ccdce737272
4e65a5e358ce3672d1b3365b834db09db492c64ad692dc529b614
a942b54a96a956aa556aaad555aaaaad55555555

- 6.41690827959

1010 B1009 `η2 3fffffffff800003fff8000ffc00ff00f01fe05f01f4e307db870
f81cd871e3b1639e523ce663786ce4993e4bc3cc9c6c6e6c9b998
70bc9c33ec3b0f0cf8dacf8dacd2d3b4eb349cbd2599b9ce6e4e4
9ccb4bc6b19c6ce5a3666cb7069b613b69258c95ad25b8a536c29
52856a952d52ad54aad555aaab55555aaaaaaaaa

- 6.36726796080
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