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Zusammenfassung

Der Trend, die Anzahl der Kernen anstelle der Schaltzyklen zu erhöhen, hat in den
vergangenen Jahren die Bedeutung der Entwicklung paralleler Algorithmen in allen
Bereichen der Informatik gesteigert. Dieser Trend ist auch an dem Gebiet des Data-
Mining nicht vorbei gegangen. Das Wachstum der Datengröÿen kombiniert mit den
immer weiter wachsenden parallelen Rechenressourcen hat den Fokus der Forschung im
parallelen Data-Mining auf das Design e�zienterer Algorithmen gelenkt. Diese Disser-
tation hat einen anderen Blickwinkel auf paralleles Data-Mining: anstatt die parallele
Version eines Algorithmus zu nutzen, um eine Lösung der selben Qualität zu erhalten,
nur auf schneller Art und Weise, soll untersucht werden, wie parallele Rechenressourcen
die Qualität der Lösung verbessern können. Oft wenden Data-Mining-Algorithmen eine
Greedy-Heuristik an, welche auf lokaler Optimalität basiert, um die Suche durch einen
riesigen Raum potentieller Lösungen zu ermöglichen. Aufgrund dieser eingeschränkten
Erforschung des Lösungsraumes ist das Au�nden der optimalen Lösung nicht garantiert.
Der Fokus dieser Arbeit ist die Entwicklung von Strategien zum Investieren paralleler
Rechenressourcen für die Verbesserung der Ergebnisse, die die standardmäÿige Greedy-
Data-Mining-Heuristik liefert, indem die parallelen Ressourcen zur besseren Erforschung
des Suchraums (der Modelle) eingesetzt werden. Dieser Ansatz wird als Widening
einer Suchheuristik bezeichnet. Zusätzlich soll die Laufzeit des Algorithmus so nah
wie möglich an der Laufzeit des ursprünglichen Algorithmus bleiben. Die meisten auf
der Greedy-Suche basierenden Data-Mining-Algorithmen können als eine Iteration eines
Verfeinerungs- und eines Auswahloperators, welche auf intermediäre Modelle angewen-
det werden bis ein Modell gefunden wurde, welches gewisse Kriterien erfüllt, dargestellt
werden. Ein einzelner Schritt dieser Heuristik hat die Form:

m′ = s (r(m))

Die beiden Funktionen s(·) und r(·) beschreiben einen Auswahl- beziehungsweise
einen Verfeinerungsoperator. Widening ist dann de�niert als

M ′ = {m′1, . . . ,m′k} = sW

( ⋃
m∈M

r(m)

)
.
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In jedem Schritt betrachtet der Auswahloperator sW die Verfeinerung einer MengeM mit
Kardinalität k ursprünglicher Modelle und gibt eine neue Menge M ′ von k verfeinerten
Modellen für weitere Untersuchungen aus. Hier wird k als die Breite des Widening
bezeichnet. Die trivialste Implementierung von Widening ist die einfache Beam-Search,
Top−k Widening. Dieser Ansatz verlangt jedoch die ständige Synchronisation zwischen
den parallelen Prozessen. Um den Mehraufwand dieser Kommunikation zu vermeiden,
richtet sich der Fokus dieser Dissertation auf Widening-Strategien, welche den Suchraum
auf strukturierte Weise ohne die Notwendigkeit von Kommunikation erforschen.

Ideales Widening wird de�niert als theoretischer Rahmen zum Widening. Dabei er-
folgt eine explizite Partitionierung des Suchraums mit angestrebten Eigenschaften. Jede
Partition wird von einem parallelen Prozess erforscht. Ideales Widening ist jedoch in
der Praxis für eine allgemeinen Art von Suchräumen schwer zu erreichen. Daher werden
hier verschiedene praxistaugliche Ansätze für kommunikationsfreies Widening betrachtet.
Diese Ansätze basieren auf impliziter Partitionierung des Suchraums durch die für jeden
parallelen Prozess individualisierte Modi�zierung des Auswahloperators. Ein anderes zu
berücksichtigendes Problem der Widening-Ansätzen ist die Gefahr der Konvergenz zu
einem lokalem Optimum. Dies ist ein bekanntes Problem für die Ansätze, die auf Beam-
Search basieren, und wird durch das Erzwingen von Diversität gelöst. Diversität bei der
Erforschung des Suchraums ohne Kommunikation und ohne vorherige Kenntnis dieses
Suchraums zu erreichen, ist nicht trivial. Ein einfacher Ansatz ordnet jedem parallelem
Prozess individuelle Präferenzen bei der Modellauswahl zu. Dieser Ansatz ist parameter-
abhängig und erlaubt keine strukturierte Erforschung des Suchraums, was aber das Ziel
von Widening ist. In dieser Dissertation wird ein auf Umgebungen basierender Ansatz
de�niert, Widening durch Umgebungen, welcher das Ziel der strukturierten Erforschung
des Suchraums verfolgt. Widening durch Umgebungen de�niert Umgebungen des lokal
optimalen Modells mit verschiedenen Eigenschaften und partitioniert sie unter den par-
allelen Prozessen, wobei Labels verwendet werden, die vor Beginn der Suche zugeordnet
werden. Drei Arten von Umgebungen werden untersucht: Optimalitätsumgebungen,
für die die Metrik auf dem Qualitätsmaÿ der Modelle basiert; Ähnlichkeitsumgebun-
gen, für die die Metrik eine Art von Modell- oder Daten-basiertem Abstandsmaÿ ist;
und Diversitätsumgebungen, welche k Modelle, die sowohl vielfältig als auch von hoher
Qualität sind, enthält. Verschiedene Ansätze zu den Diversitätsumgebungen werden in
dieser Arbeit diskutiert�basierend auf einfachen Mindestabständen und solche, die durch
das Suchen nach Nischen in evolutionären Algorithmen inspiriert sind. Unter festen
Annahmen über den Suchraum lassen sich theoretische Eigenschaften der auf Umgebun-
gen basierten Widening-Ansätze zeigen. Widening durch Optimalitätsumgebungen kann
Top−k Widening ohne die Notwendigkeit von Kommunikation emulieren, sofern die An-
zahl der parallelen Prozesse, k, groÿ ist. Widening durch Ähnlichkeitsumgebungen kann
genutzt werden um vielversprechende Gebiete des Suchraums zu untersuchen und für
eine hinreichend groÿe Anzahl paralleler Ressourcen, k, kann garantiert werden, dass die
gefundene Lösung höchstens einen Abstand δ von der besten Lösung im untersuchten
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Intervall entfernt ist. Widening durch Diversitätsumgebungen hilft der möglichen Kon-
vergenz zu lokalen Optima zu entgehen, indem die parallelen Prozesse gezwungen wer-
den Lösungen zu erforschen, die sowohl vielfältig als auch vielversprechend sind. Es
erfolgt eine Untersuchung des Suchraums für die einfachste Art des Verfeinerungsoper-
ators inklusive des Beweises, dass es sich bei diesem Raum um einen Verband handelt.
Aus dieser Verbandseigenschaft, insbesondere der Isomorphie zum Verband der Teiler,
folgt eine Möglichkeit den Suchraum unter den parallelen Prozessen zu partitionieren.
In der vorliegenden Arbeit �nden diese Widening-Ansätze Anwendung auf zwei Algo-
rithmen, den Greedy-Algorithmus für das Mengenüberdeckungsproblem und den CN2-
Algorithmus für Regelinduktion. Die zentralen Ergebnisse bestätigen die theoretischen
Vorhersagen.

Alle Widening-Ansätze zeigen eine Verbesserung in der Qualität der Lösung im Ver-
gleich zur Greedy-Lösung. Eine Erhöhung der Anzahl der parallelen Prozesse verbessert
die Qualität der Lösung. Auch die angemessene Verwendung von Diversität verbessert
das Ergebnis. Darüber hinaus, kann das Hinzufügen weiterer paralleler Prozesse den
Mangel an Kommunikation kompensieren. Gröÿere Umgebungen führen nicht zu verbesserten
Ergebnissen. Diversität in Kombination mit Anforderungen an die Qualität der Modelle,
wodurch die Untersuchung vielversprechender

Lösungen erreicht wird, ermöglicht jedoch eine Verbesserung der

Qualität der gefundenen Lösung am Ende des Algorithmus. Was das

Widening durch Ähnlichkeitsumgebungen betri�t,

ist es meist vorteilhaft kleine Umgebungen zu verwenden, dann das

Ziel ist die Erschlieÿung, das heiÿt die Suche nach ähnlichen

Lösungen. Selbst für Widening durch Diversitätsumgebungen ist

eine groÿe Umgebung nicht immer gegenüber einer kleineren im

Vorteil. Der Grund ist die Tatsache, dass diese Methode den Suchraum

sehr dünn besetzt. Eine groÿe Anzahl paralleler Prozesse und Widening mit einer
kleineren Umgebung kann genügen um die wichtigen Peaks im Suchraum zu entdecken.
Diversität hat, falls sie auf geeignete Weise bestimmt wird, das Potential die Qualität
der Lösung zu verbessern.

Widening durch Optimalitätsumgebungen hat Laufzeiten, die denen des Greedy-
Algorithmus sehr nahe kommen. Widening durch Diversitätsumgebungen ist am rechen-
intensivsten, wobei der wichtigste Faktor die Gröÿe der Umgebung ist. Sowohl Widen-
ing durch Ähnlichkeitsumgebungen als auch Widening durch Diversitätsumgebungen
benötigen eine Vorverarbeitung um ähnliche Laufzeiten wie der Greedy-Algorithmus zu
erzielen. Voraussetzung ist das Vorhandensein von genügend parallele Ressourcen.
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Summary

We live in the age of ever-increasing parallel computing resources, and as a consequence,
for a decade there has been intense research into parallel data mining algorithms. Most
of this research is focused on improving the running time of existing algorithms. In
this dissertation we want to look at parallel data mining from a di�erent perspective:
instead of using the parallel versions of algorithms to obtain the solution with the same
quality, only faster, we want to know how to invest parallel compute resources in a way
which improves the quality of the solution. Because the space of potential solutions if
typically enormous, and it cannot be explored through exhaustive search to �nd the
optimal solution, often the data mining algorithms use a heuristic (for example a greedy
search) in order to �nd a su�ciently good solution in a reasonable time. Due to this
limited exploration, �nding the optimal solution is not guaranteed. The focus of this
work is to develop strategies for investing parallel compute resources to improve the
result obtained by standard greedy data mining heuristics by investing parallel resources
into better exploration of the (model) search space. We call this approach Widening of
search heuristics. Additionally, we want to keep the running time of the algorithm as
close to the running time of the original algorithm, as possible. Most greedy search based
data mining algorithms can be represented as an iteration of a re�nement and selection
operator, which are applied to intermediate models until either a model is found that
�ts some criteria. A single step of the heuristics is expressed as follows:

m′ = s (r(m))

The two functions s(·) and r(·) describe a selection and a re�nement operator, re-
spectively. Widening is then de�ned as

M ′ = {m′1, . . . ,m′k} = sW

( ⋃
m∈M

r(m)

)
.

At each step, the selection operator sW considers the re�nements of a set M with car-
dinality k of original models and returns a new set M ′ of k re�ned models for further
investigation. We will refer to k as the width of the Widening. The most trivial imple-
mentation of Widening is the simple beam search, Top − k Widening. This approach,
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however, requires continuous synchronization between the parallel workers. In order to
avoid the consequent communication overhead, we are focused on Widening strategies,
which explore the search space in a structured fashion, without the need for communi-
cation.

We describe Ideal Widening, a theoretical framework for Widening, de�ned as an ex-
plicit partition of the search space with desired properties. Each partition is assigned for
exploration to a given parallel worker. However, Ideal Widening is di�cult to achieve
in practice for a general type of the search space. This is why we look at di�erent
communication-less Widening approaches, achievable in practice. These are typically
based on the implicit partitioning of the search space via individualized modi�cation
of the selection operator for each parallel worker. Another problem of the Widening
approaches to consider is the danger of converging to a local optimum. This is a well
known problem for the beam-search-based approaches and is solved by enforcing di-
versity. Achieving diversity of exploration without communication and without prior
knowledge of the search space is not trivial. We introduce a simple approach, which
assigns individual model preferences to each parallel worker, prior to the beginning of
the search. This approach is parameter dependent and does not allow for structured ex-
ploration of the search space, which is the goal of Widening. We de�ne a neighborhood-
based approach, Widening via neighborhoods, which aims at a structured exploration
of the search space. Widening via neighborhoods de�nes neighborhoods of the locally
optimal model with di�erent properties and partitions them among the parallel workers,
using labels assigned prior to the search. Three types of neighborhoods are investigated:
optimality neighborhoods, for which the metric is based on the model quality measure;
similarity neighborhoods, for which the metric is some type of model-based or data-
based distance measure, and diversity neighborhoods, which contain diverse-and-good k
models. Di�erent approaches to diverse neighborhoods are described � some are based
on simple diversity thresholds, others use more sophisticated strategies such as nicheing.
We demonstrate theoretical properties of the neighborhood-based Widening approach,
under �xed assumptions about the search space. Widening via optimality neighbor-
hoods can emulate Top − k Widening, without the necessity of communication, for a
large enough number k of parallel workers. Widening via similarity neighborhoods can
be used for exploitation of promising areas of the search space, and for a large enough
number of parallel resources k, it can guarantee that the solutions discovered will be at
most distance δ from the best solution in the investigated interval. Widening via diverse
neighborhoods helps overcome a potential convergence to local optima, by forcing the
parallel workers to explore diverse and promising solutions. We investigate the search
space structure for the simplest type of algorithms and prove that it is a lattice. We use
the properties of the search space to partition it among parallel workers. We demon-
strate the bene�ts of and compare all these Widening strategies using two algorithms,
the greedy algorithm for the set cover problem and the CN2 algorithm for rule induction.
The main experimental results con�rm the theoretical results.
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All Widening approaches show improvement of the solution quality, when compared
with the greedy solution. Increasing the number of parallel workers improves the solution
quality. The appropriate use of diversity improves the solution quality. Additionally,
adding more parallel workers can compensate for the lack of communication. A larger size
of the neighborhood does not lead to improved results. However, diversity in combination
with model quality, which leads to the investigation of promising solutions, provides an
improvement of model quality. When it comes to Widening via similarity neighborhoods,
it is most often more advantageous to use a small size of the neighborhood, since the
goal is exploitation or similarity search. Even for Widening via diverse neighborhoods,
a larger neighborhood size is not always more advantageous than a smaller one, due to
the fact that this method is very sparse. Large number of parallel workers and Widening
with a smaller neighborhood size can be su�cient for discovering the important peaks.
Diversity has the potential to improve the quality of the solution, if it is appropriately
selected. Widening via optimality neighborhoods has a running time close to that of the
greedy algorithm. Widening via diversity neighborhoods is the most computationally
intensive, with the biggest factor being the size of the neighborhood. Both, Widening via
similarity neighborhoods and Widening via diversity neighborhoods need preprocessing
in order to have a running time similar to that of the greedy algorithm, given su�cient
parallel resources.
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Chapter 1

Introduction

This chapter is adapted from [86], [16].

1.1 Background.

In the past decades the advances in parallel computer architecture brought about tremen-
dous abundance of compute resources. These trends shifted the focus in most computa-
tional �elds towards the development of parallel algorithms. Consecutively, developing
parallel alternatives of sequential algorithms has become a dominant theme in data min-
ing research as well. Parallel and more e�cient versions of sequential algorithms already
exist for most types of data mining algorithms. Additionally, more and more data from
every aspect of human activity is being acquired, generated and stored ever more cheaply.
This newly available possibility to generate, collect and store enormous amounts of data
has led to an intense research focus on processing and analyzing these growing data
repositories using distributed methods. These factors have brought about the Big Data
paradigm. Following the new reality, most research in parallel data mining focuses ei-
ther on the processing of larger data sets or on the speed-up of existing algorithms and
much-needed advances have been made in this �eld. However, irrespective of how large
the collected data, or how e�cient the algorithm, the most critical goal of data mining
is the high quality of the obtained solution. Namely, appropriate smart algorithms are
needed to learn from the collected data in a correct way. Many problems exist for which
a speedily obtained solution is not what is needed, but which instead require a solution
of as high quality as possible. Since, in essence, there is no restriction on the availability
of parallel resources, they can be used to discover better solutions to complex problems,
than is possible with the existing heuristics. This is why, in contrast to most current
directions in the �eld, our research focuses on investing parallel resources to obtain a
solution of higher quality. Due to the enormous search space, the typical data mining
algorithms cede search completeness by employing a heuristic to look for a solution in a
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feasible time. Often, data mining algorithms employ a greedy heuristic, which relies on
the local optimality property to �nd a good solution. Due to this limited exploration,
for most problems, �nding the optimal solution is not guaranteed.

In this dissertation, we present strategies for investing parallel compute resources to
improve the result obtained by standard greedy data mining heuristics. Our goal is to
improve solution quality without increasing the overall time spent, by investing parallel
resources into a better exploration of the (model) search space. Our aim is to reduce
the in�uence of the heuristic and produce the same type of model but at a substantially
higher level of quality. We achieve this by widening the search. Instead of pursuing
only one solution at each step, we consider several solution candidates. The most trivial
implementation of Widening is the simple beam search. This approach, however, requires
continuous synchronization and brings about communication overhead, which in turn will
penalize the running time of a given heuristic, and will violate our ambition of keeping
it constant. That is why we investigate approaches that do not require communication
between the parallel workers.

The goal of Widening is to invest the available parallel resources in a way that
maximizes the search space exploration and, by that, the solution quality. It is critical
to prevent the exploration of the same too similar solutions in parallel, so that the
widened search is forced to investigate the search space more broadly, and increase the
chances of discovering the global optimum. That is why we explore methods of diversity.

Moreover, the objective to avoid undesired overhead and the need for synchroniza-
tion, which arises from the communication between parallel workers, leads us to look
for communication-less Widening approaches, where the parallel workers do not com-
municate when selecting diverse paths through the solution space. Achieving a diverse
traversal of the solution space is not di�cult when the parallel workers are allowed to
communicate, however achieving diversity in a communication-less setting, in which the
parallel workers do not share information, is a more di�cult problem.

This chapter is structured as follows. First, we will discuss the basic notions of
parallelism and then will proceed with parallel data mining. We will then formally
de�ne what is Widening and will introduce the most basic properties of Widening. We
will �nish by introducing the structure of this dissertation, its main goals, and results.

1.2 Basics of Parallel Computer Architectures

and Moore's Law

The book [123] was used for this section. The growing abundance of computing resources,
coupled with the lack of improvement in single CPU performance has lead to the rapid
rise of development of parallel algorithms. Parallel hardware and software are utilized
nowadays to maintain the increase in processing power stipulated by the Moore's law
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Figure 1.1: Flynn's taxonomy, presented in [54]. Image taken from [71].

and a variety of parallel chip architectures with di�ering design and performance features
exist.

Moore's Law

Moore's law declares that the number of transistors of a conventional processor chip
doubles every 18�24 months. This consideration, �rst inferred by Gordon Moore in
1965, was accurate until the early 2000s. It was used as a benchmark for the research
and development in the �eld and numerous innovations, such as the integrated circuit
or DRAM, were establish in order for the technology to keep up. The most decisive
factor for the boost of performance was the rise of clock speed. Di�erent novelties like
multiple functional units per processor were also used to improve the computational
speed. However, these innovations to speed up single chips were exhausted by the early
2000s, and the industry started depending on multicore parallelism in order to improve
processing power. The employment of many execution cores on a chip has lead to the
decrease of execution time and the enhancement of computational accuracy.

1.2.1 Flynn's Taxonomy of Parallel Architectures

Flynn's taxonomy, shown in Figure 1.1, categorizes parallel computers in four classes
dependent on the parallelism of data and instruction streams. The �rst is the classic
sequential computer, Single-Instruction, Single-Data (SISD), in which a process executes
one instruction using one data storage. Next, there is the Multiple-Instruction, Single-
Data (MISD) paradigm, where multiple processing units execute di�erent instructions
at a time on common data obtained from a shared memory. This execution model
is very restrictive and is not suitable for commercial use. Another model is the Single-
Instruction, Multiple-Data (SIMD), in which the same instruction is performed at a given
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Figure 1.2: "Current Trends in Computer Architecture. Original data up to the year 2010
collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Ham-
mond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp" Caption
and image taken from https://www.karlrupp.net/2015/06/40-years-of-microprocessor-
trend-data/. Under Creative Commons Attribution 4.0 International Public License.

step by each processing unit on di�erent data, stored in private data memory. It is suit-
able for tasks which demand high rate of data parallelism. In the Multiple-Instruction,
Multiple-Data (MIMD) model each processing unit is working asynchronously execut-
ing independently its own instruction and using separate data. This model is the most
prevalent and common-spread for everyday use.

Many architecture alternatives for multi-core processors exist, which are dissimilar in
the number of cores, access to and size of caches, the use of heterogeneous components
and many other possible variant features. We will not describe them in detail, because
Widening is an architecture-independent approach, and the speci�c characteristics and
design choices are not in the scope of this dissertation. What is important for Widen-
ing is the aforementioned trend in computation development towards an ever increasing
number of compuational resources available. The existing and the potential future abun-
dance of computing resources can be harnessed to improve the search space exploration
and the model quality.
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1.3 Parallel Data Mining

The following is based on [150, 149]. The growing size of data jointly with the trends
for ever increasing parallel compute resources, has directed the �eld of data mining into
designing parallel, more e�cient algorithms. There are many challenges and impor-
tant aspects for the parallelization of data mining algorithms. These low-level details
of parallelization are not in the scope of this dissertation, which abstracts away such
details and instead focuses on the behavior of the parallel workers and search space ex-
ploration. Still these implementation aspects are also important. For more detail, refer
to [149, 150]. When trying to design e�cient parallel data mining algorithms di�erent
potential problems are considered, for example, the synchronization between threads and
minimizing of interprocessor communication, the strategy to split the work into small
easily parallelizable tasks, also referred to as data decomposition. Another important
challenge is the distribution of work across compute resources, known as load balancing.
Depending on the architecture, di�erent facets such as the type of parallelism of a load
balancing strategy, can be critical. For example, data decomposition is relevant only for
distributed memory approaches, and not for shared memory ones. Another possible con-
sideration is the type of load balancing. In static load balancing, the work is apportioned
to the processors prior to the onset of the task. Dynamic load balancing reassigns work
from processing units with a heavy work load to ones with a smaller burden in order to
amend disproportional work load. This approach is more costly and is suitable for work
volumes, which alter over time.

1.3.1 Complete Search and Heuristic Search

The following is based on [149]. A complete search, which generates and checks all
data-compatible candidates and �nds the optimal solution, is possible only for a search
space of a small size. However, in real-life problems, the search space is usually very
large and a complete search is not possible and a heuristic search is adopted instead.
By examining only a restricted number from all possible choices at a given step, the
heuristic generation forgoes completeness as a result of trying to improve the speed.
Generally, the more complex the model, the more a heuristic or greedy search is needed.
The multitude of heuristics, developed in past decades make complex and immense
search spaces possible to explore. The improvement in the e�ciency is due to a limited
exploration of the search space and has consequences for the quality of the discovered
solutions. Often these heuristics resemble greedy algorithms and are guided by local
information, or choose a locally optimal model at each step, which does not guarantee
discovering of a globally optimal solution. The restricted investigation of the search
space, which happens when a heuristic is used is the motivation behind Widening � the
aim is to reduce the in�uence of the heuristic used, resulting in an expanded search space
exploration and produce the same type of model but at a substantially improved level
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of accuracy. Widening achieves this by loosening the restriction on a given heuristic to
pursue only one solution at each step. A widened heuristic considers several solution
candidates in parallel. The most straightforward variant would be in a simple beam
search as described in [7]. Widening di�ers from other approaches of investing parallel
resources into improving model accuracy, such as ensemble methods. Our goal is to
�nd single, interpretable models with better accuracy. For a detailed description of how
Widening di�ers from existing approaches of parallel data mining, refer to Chapter 2.

Below we will describe the main idea behind Widening and we will de�ne and for-
malize the most important aspects.

1.4 General Widening of a Greedy Heuristic.

This section is adapted from [86]

We can view many of the data mining algorithms as a greedy search through a space
of potential solutions, the model search space. This search space consists of model
candidates, from which the greedy algorithm chooses a locally optimal solution at each
step, until a su�ciently good solution is found, based on some stopping criteria. The
greedy search can, therefore, be schematically presented as an iterative application of
two operators: re�nement r and selection s.

During the re�nement operation, a temporary model m is made more speci�c to
generate new, potentially better, models (which we refer to as re�nements). The selection
operator chooses the locally best model from all possible re�nements. For the purpose
of this work we will assume the existence of a family of modelsM, that constitutes the
domain of the two operators. The re�nement operator is model and algorithm speci�c
and the selection operator is usually driven by the training data. We will investigate
the selection operator in more detail, as it will be the tool we use to widen a greedy
heuristic. It is usually based on a given quality measure ψ, which evaluates the quality
of a model m from a family of modelsM (and therefore also its re�nements):

ψ :M→ R.

Employing this notation, we can present one iterative step of the greedy search as follows:

m′ = sbest(r(m)),

where
sbest(M) = arg max

m′′∈M
{ψ(m′′)} ,

that is, the model from the subset M ⊆ M which is ranked highest by the quality
measure is chosen at each step. Figure 1.3 depicts this view of a greedy model searching
algorithm.
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(a) (b) (c)

(1)

Figure 1.3: The classic heuristic (often greedy) search algorithm. On the left (a), the
current model m is depicted in green, the re�nement options r(m) are shown gray. The
selection operator s picks the yellow re�nement (b) and the next level then continues the
search based on this choice.

We can now also specify how we got to a certain model and de�ne the concept of
selection path, which de�nes how a speci�c model is reached:

ps (m) = {m(1),m(2), . . . ,m(n)},

where the order is speci�ed via the re�nement/selection steps, that is

∀i = 1, . . . , n− 1 : m(i+1) = s(r(m(i))).

and m(n) = m and m(1) is a base model for which no other model exists that it is a
re�nement of. Note that the selection path depends heavily on the chosen selection
operator s.

1.4.1 Widening of a Greedy Heuristic

In order to improve the accuracy of the greedy algorithm one has to deal with its inherent
�aw � the fact that a locally optimal choice may in fact not lead us towards the globally
optimal solution. To address this issue, we can explore several options in parallel �
which is precisely what Widening is all about. How those parallel solution candidates
are picked is the interesting question, which we will address later, but let us �rst look into
widening itself in a bit more detail. Using the notation introduced above, one iteration
of Widening can be represented as follows:

M ′ = {m′1, . . . ,m′k} = swidened

( ⋃
m∈M

r(m)

)
.

That is, at each step, the widened selection operator swidened considers the re�nements
of a set M of original models and returns a new set M ′ of k re�ned models for further
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Widening

1 c()
()

(a) (b) (c)

(2)

Figure 1.4: Widening. From a set of models M (green circles), the re�nement operator
creates several sets of models (gray), shown on the left (a). The selection now picks a
subset of the re�ned models (yellow circles in (b)) and the search continues from these
on the right (c).

investigation. We will refer to parameter k as the width of the widened search. Intuitively,
it is clear that the larger the width, i.e. the more models (and hence selection paths) are
explored in the solution space, the higher our chances are of �nding a better model in
comparison to the normal greedy search. Figure 1.4 illustrates this process.

An easy implementation of the above (what we will later refer to as Top−kWidening)
is a beam search. Instead of following one greedy path, the path of k best solution
candidates is explored. However, this does not guarantee that we are indeed exploring
alternative models � on the contrary, it is highly likely that we are exploring only closely
related variations of the locally best model. In the area of genetic algorithms this e�ect
is known as exploitation, that is, we are essentially �ne tuning a model in the vicinity of
an (often local) optimum.

In [7] we already described this approach to Widening. I In each iteration of Top− k
Widening each parallel worker selects the top k choices for the re�nements of its model
and from the resulting k2 choices, the top k are chosen:

{m′1, . . . ,m′k} = sTop−k

( ⋃
i=1,...,k

sTop−k (r(mi))

)

where sTop−k selects the top k models from a set of models according to the given quality
measure ψ. Obviously, sTop−1 = sbest.

In [7] we demonstrate that Top − k Widening leads to an improved quality, with
larger width k leading to better accuracy. However, two main �aws exist. The �rst
problem, as mentioned above already, is that possibly only a small neighborhood of
the best solutions is explored. Secondly, continuous communication is required between
threads which contradicts our goal of wanting to keep the time constant.

Figure 1.5 illustrates the potential bene�ts of diversity in the search for the optimal
model.
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Figure 1.5: Normal Widening may lead to local exploitation only (a). Adding diversity
constraints encourages broader exploration of the model space (b).

1.4.2 Diverse Top− k Widening.

As discussed above we can tackle the �rst �aw of Top−kWidening by enforcing diversity.
One simple way to add diversity can be achieved by using a �xed diversity threshold θ,
a distance function δ, and by modifying the selection operator sTop−k,δ to iteratively
pick the best k re�nements, that satisfy the given diversity threshold. This can be
summarized as follows:

1: Mall = ∪i=1,...,kr(mi) create set of all possible re�nements
2: m1 = arg maxm∈Mall

{ψ(m)} pick the locally optimal model as �rst model
3: M1 = {m1} add as initial model to solution
4: for i = 2, . . . , k: iteratively pick next, su�ciently diverse model:
5: mi = arg maxm∈Mall

{ψ(m) | ¬∃m′ ∈Mi−1 : δ(m,m′) < θ}
6: Mi = Mi−1 ∪ {mi}
7: endfor
8: return Mk

This is a known approach for diverse subset picking, however, our second problem per-
sists: we still require frequent communication among our parallel workers to make sure
we pick a diverse solution subset among all intermediate solutions at each iteration.
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1.4.3 Communication Between Parallel Workers
and Diverse Widening

The simple beam-search approach Top−k as presented requires communication between
the parallel workers. The additional requirement of diversity between the selected mod-
els at each step will escalate this demand. This will contradict the second objective
of our Widening approach � i.e., keeping the running time constant with respect to
that of the original heuristic. To accomplish this we need to perform Widening in a
communication-less fashion � where each parallel worker performs a part of the search,
without communication or sharing of information with other parallel workers to be nec-
essary. Enforcing diversity without continuously comparing intermediate models is more
di�cult. We can de�ne individual quality measures ψi, by enforcing di�erent preferences
for di�erent subsets. Due to the fact that we have no prior knowledge of the search space
of models, de�ning which candidate solutions will be explored by which parallel worker
in such a way that parallel workers explore the search space of models without repetition
and in a structured, intelligent way is not a trivial task, as we will explain in Chapter 3.
Especially, it is non-trivial to introduce diversity in the searches of the parallel workers,
in a way, which does not require communication. This requires a mechanism to a priori
assign candidates to a given worker. Such communication-less strategies for Widening is
the focus of this dissertation.

1.5 Contributions

In this section, we will outline the main contributions of this dissertation, the di�erent
communication-less strategies for intelligent search space exploration, communication-
less Widening. These strategies lead to the improvement of the quality of solution
obtained by a data mining heuristic while avoiding the running time increase caused
by communication between parallel workers. Widening was �rst introduced in [7] as
a paradigm for an intelligent investment of parallel compute resources with the goal
of improving the quality of solution obtained by data mining heuristics. My personal
contribution was applying the paradigm of Widening for the greedy algorithm for the set
cover problem. We motivate the need for communication-less Widening and describe the
need for diversity for improved exploration of the search space as done in [86]. In this
work, my contribution is to develop and apply simple diversity strategies for Widening of
the greedy algorithm for SCP, which do not require communication and contrast them
with diversity strategies, which require communication between the parallel workers.
These communication-less methods perform very well in practice both with respect to
model quality as well as e�ciency.

The central focus of this dissertation is the communication-less strategies for struc-
tured search space exploration. We de�ne neighborhood-based methods with di�erent
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properties, introducing Widening via optimality, similarity and diverse neighborhoods.
We discuss di�erent methods for building diverse neighborhoods. We proceed to prove
and discuss the theoretical properties of these neighborhood-based approaches in order
to be able to compare them to the approaches which use communication. We de�ne
the concept of a re�nement graph to represent the structured exploration of the search
space. Di�erent types of re�nement operators lead to di�erent types of re�nement graph
structures. For the simplest type of a re�nement operator, (we call it re�nement oper-
ator of type 1), the re�nement graph is a lattice. Theoretical properties of Widening
via optimality neighborhoods were analysed. This is accepted for publication in [89].
We analyse the theoretical properties for Widening via similarity neighborhoods and its
use for exploitation. We introduce approaches for search space partitioning, which take
advantage of the lattice structure of the space of models. We describe global diversity
approaches, based on the lattice structure of the search space. We then apply all of
these Widening approaches to the greedy algorithm for the set covering problem and
the CN2 algorithm for the rule induction and evaluate how successful each approach
is. Some of these results are already published in [87](accepted for publication), where
communication-less strategies, including neighborhood-based approaches, for the Widen-
ing of the CN2 algorithm, were presented,[88](accepted for publication), where the greedy
algorithm for the set cover problem was widened using di�erent neighborhood-based ap-
proaches, and [89](accepted for publication), where theoretical properties of Widening
via neighborhoods were investigated.

1.6 Structure of the Dissertation

This dissertation is structured as follows. First, it describes the existent research in
parallel data mining and positions the Widening approach in that context with its goals
and merits, explaining the novel contribution and importance of Widening, see Chapter
2. Second, in Chapter 3 we describe a formal framework, which de�nes Ideal Widening,
we formulate the goal of the method and the theoretical properties needed in order for
the Widening to achieve its goals. We de�ne several formal Widening approaches in a
communication-less scenario. These ideal approaches require explicit partitioning of the
search space among the parallel workers. The main goal of Widening is the structured
and full exploration of the search space. For some re�nement operators and algorithms
the graph representing the search space, de�ned by the re�nement operator is known in
advance (for some algorithms it is a lattice). However, the explicit structure of the search
space is not always easily predicted, which is why any of the ideal methods are di�cult to
implement in the general case. Therefore, we come up with strategies, how to implicitly
approximate the partitioning, by encoding a priori the desired behavior into the selection
or re�nement operators of the parallel workers. We describe a naive approach based on
the simple assignment of di�erent preferences. This approach is unstructured, with no
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guarantees, and requires a data-dependent parameter to be tuned, yet seems to work
very well in practice. We proceed with a communication-less implicit approach, called
Widening via neighborhoods, which explores the search space by using neighborhoods
of models in Chapter 4. We investigate the theoretical properties of this approach in
Chapter 5, which show under certain assumptions, how similarity and optimality neigh-
borhoods can be used for better exploration and exploitation of the search space. In
Chapter 6 we describe Widening approaches, which use global approaches to diversity
and the knowledge of the lattice structure of the search space. Then we proceed with
practical applications and demonstrations of Widening, namely Widening for the greedy
algorithm for the set cover problem in Chapter 7, and Widening of the CN2 algorithm
for rule induction in Chapter 8. A conclusion, which summarizes the main contributions,
as well as some open questions, is presented in Chapter 9. There we provide an outlook
and outline potential future focus for research.
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Chapter 2

Related Work

Parts of this chapter is adapted from [86].

2.1 Parallel Data Mining

A wealth of related work exists around the parallelization of data mining algorithms,
most of it dealing with speeding up sequential algorithms. Widening di�ers from other
approaches of investing parallel resources into improving model accuracy, such as ensem-
ble methods. Our goal is to �nd single, interpretable models with better accuracy. In [8],
the author already introduced the idea of improving quality by using more parallel re-
sources, but he investigates an extensive area of applications, ranging from cryptography
to game playing, while we are focused on data mining.

2.1.1 Criteria for Evaluation and Classi�cation of Parallel Data
Mining Algorithms and Platforms

In order to demonstrate the contribution of our work in the �eld of parallel Data Mining,
we will assess how Widening strategies di�er based on their goals and qualities from the
existing research in the �eld using the following criteria:

• Size: What size of data is the algorithm designed to handle. Is the algorithm
focused on handling big data or algorithms handling normal-sized data?

• Speed: Is the parallelization focused on improving speed?

• Accuracy: Is the parallelization focused on enhancing the accuracy of a sequential
data mining algorithm?

• Interpretability: Is the model obtained by the algorithm interpretable or not?
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• Flexibility: How �exible is a given parallel approach with respect to applying it to
di�erent types of sequential algorithms and existing technologies?

• Search space coverage: Does the parallelization approach improve search space
exploration?

• Distributed (heterogeneous) versus non-distributed (and homogeneous) data: Is
the approach suited for heterogeneous data or is its focus homogeneous data?

The following are the merits and characteristics of the Widening approach:

• It focuses on improving accuracy, instead of e�ciency.

• Our approach results in the same single simple model as does the original greedy
algorithm, only more accurate.

• It is not focused on big data problems, instead improves the accuracy for normal-
sized problems.

• The time necessary to obtain the enhanced model is known. It is the same (or
close to that) of the initial heuristic.

• Enhanced search exploration. Widening is focused on a structured intelligent ex-
ploration of the search space. Widening strategies are focused on investing parallel
resources in improving the quality of the solution via the enforced use of diversity.

Our approach is focused on dealing with normal-sized data problems, in a scenario where
accuracy is more important than speed. We will demonstrate that based on the above
criteria our contribution is novel and is not redundant with any other research done in
the �eld of parallel data mining.

2.2 Speed-Up Through Parallelization: Algorithms Fo-

cused on Improving E�ciency

Most of the principal data mining algorithms for classi�cation, association rule mining,
and clustering have been parallelized with the goal of speed-up through the adoption
of various approaches. Bellow, we will present only the most important parallelization
strategies used for improving e�ciency, because they are not related to Widening. For
a detailed review in detail refer to the following surveys: [153, 148, 95].

The parallelization of decision tree induction has been broadly explored. SLIQ [114]
is one of the oldest decision tree algorithms, which scales well. The vertical data format
facilitates a pre-sorting of the attributes, which renders the repeated sorting at each
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node unnecessary. Nevertheless, it uses a structure, stored in memory, which limits the
algorithm's scalability. A decision tree algorithm called SPRINT [129] eliminates these
constraints by avoiding the necessity for all or a part of the data to be stored perma-
nently in memory and scales better over large datasets. It showed a very good speed-up
on the IBM SP2 distributed-memory machine. As a consequence, many parallelization
strategies of decision tree algorithms adopted SPRINT-like strategies, and apply data
parallelism. One of the more prominent examples is Zaki et al. [151], where the SPRINT
was parallelized for symmetric multiprocessing machines. Other decision tree paralleliza-
tion strategies employ data task parallelism [38] or hybrid parallelism [132, 102].
Association rule mining is another notable and extremely well-studied data mining al-
gorithm. A survey [147] outlines a multitude of parallel and distributed algorithms for
association rule mining. A lot of the methods detailed in the survey are parallel vari-
ants of already existing sequential algorithms. The Apriori algorithm is accepted as the
most fundamental sequential algorithm for association rules mining. It is a merge type
of algorithm, which limits the full exploration by the adoption of constraint inclusion,
referred to as "support". The Apriori method [3] is used by the large bulk of parallel
association algorithms [131, 2, 152, 79].

Direct hashing and pruning (DHP) [119], is a sequential algorithm, which enhances
the Apriori approach by introducing a hash table technique, which pre-computes ap-
proximate support of small itemsets in the beginning, and eliminates future infrequent
candidates. A parallel algorithm based on DHP was developed by the same authors [120].
Approaches based on the sequential version of the Eclat algorithm were adopted in Max-
Eclat, Clique, and MaxClique [154]. These algorithms exploit the structural properties
of frequent itemsets to speed up the search but do not seek solution quality improvement.
Parallelism in the clustering algorithms has been used for speedy clustering strategy as
well as for the computing the distance in a fast manner. Partition clustering [92, 44, 93]
algorithms most commonly rely on message passing interface to exchange information
and occasionally characteristics of the network topology is additionally employed to im-
prove the e�ectiveness of data sharing. In others, a master-slave con�guration with a
message-passing model is used to e�ciently compute the similarity between data. Hi-
erarchical clustering [57, 118] is more computationally demanding compared to other
clustering approaches because it involves computing the level of clustering as well. Some
single-linkage algorithms are parallelized using a hypercube network to reduce the com-
putation of the minimum spanning trees.

While Widening is not focused on improving e�ciency and instead invests parallel
resources into improving quality of the solution, its goal is predictable running time, that
of the sequential heuristic.
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2.3 Flexibility

When we discuss "�exibility" we refer to two aspects. Firstly, how much a given par-
allelization is dependent on the technology it is developed for. For example, algorithms
parallelized to speed-up using the map/reduce paradigm are very speci�c, paradigm and
platform dependent and thus lack �exibility. Additionally, we refer to whether or not
a given approach is applicable to many data mining algorithms. For example, not all
algorithms can be parallelized well via the map/reduce paradigm. Favorable algorithms
for map/reduce parallelization are those with few iterations and long inner-loop cycle �
Naive Bayes, k nearest neighbor, k-means, and expectation-maximization. Algorithms
with multiple iterations and short inner-loop cycles, such as AdaBoost, support vector
machines, and logistic regression are not well suited for the map/reduce approach.

In contrast, our goal is to provide an approach that ignores low-level details and has
the �exibility of the parallelization and is applicable for multiple (most) data mining
heuristics. Still, Widening carries algorithm speci�city with it. Certain heuristics will
be more easily widened than others.

2.4 Model Quality Improvement

A number of papers also concentrate on improving the accuracy of the models. Some
attempt to improve the greedy algorithm by making less greedy choices, others learn
more models and aggregate them in di�erent ways as ensembles or, as some parallel
metaheuristics do, explore the search space in parallel in a randomized fashion.

2.4.1 Look Ahead Strategies

Similar to the aspect of deepening as discussed in [7], a number of other approaches
exists, which try to reduce the e�ect of greedy, local optimum picking by taking into
account how future decisions a�ect the overall performance. In [124, 115, 45, 48] a few
such approaches for decision tree induction are described, which improve the split point
choice by investigating how the split criterion behaves for the given choices considering
a certain number of additional splits. This type of look-ahead strategy is very hard to
parallelize in such a way as to ensure that overall computation time remains constant
compared to the normal greedy method.

2.4.2 Interpretability and Ensemble Learning

Ensembles combine together models to achieve a better prediction accuracy than from
any of the models when used separately. Among the most important examples are
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bootstrap aggregating or bagging [18], boosting [125], and random forests [19]. These
techniques are suitable applicants for parallelization [146, 104, 37]. A survey of ensemble
clustering methods, where the employment of metaheuristics induced enhanced clustering
accuracy, is described in [140]. However, a high degree of accuracy comes at the price of
interpretability as these methods do not result in a single interpretable model, which is
contrary to the goal of widened data mining.

The interpretability of other parallel data mining algorithms is generally not a�ected.
As we already stated, the Widening of a given algorithm results in an interpretable single
model, as does the original sequential heuristic that it was applied to.

2.5 Greedy Search Algorithm Improvement

There is a wealth of literature focusing on the improvement of greedy search algorithms
in general, for example, beam search-like algorithms. These improvements, however,
do not promote the complete exploration of the model search space. The look-ahead
strategy, mentioned above, has been utilized as an enhancement for the greedy heuristics
in general as well [124]. In [130], an approach is presented for incorporating diversity
within the cost function used to select intermediate solutions. In [80], the authors use
the observation that, in most cases, failing to �nd the optimal solution can be explained
by a small number of erroneous decisions along the current path. Consequently, the
enhanced search for a �xed depth-�rst explores the left-most child as suggested by the
original heuristic and, if no solution is located, it continues with the nodes, which are
dissimilar by just one point from the greedy choice and so forth. The Widening proposed
here performs a similar search for alternatives but in parallel. In [50], adding diversity
to a simple k-best the �rst search was shown empirically to be superior to the greedy
search heuristic.

2.6 Size of Data: Algorithms for Big Data versus Al-

gorithms for Normal-Sized Data

2.6.1 Speci�c Frameworks (MapReduce)

MapReduce [41] is the most well-known programming model for executing tasks on
big data sets in a parallel and distributed fashion on a cluster or a grid. It is based
on a decomposition of the algorithm into a map and a reduce step. Because of its
ingrained properties, MapReduce can only be applied to specially designed variants of
the data mining algorithms. For example, [155] presents parallel k-means clustering and
[142] proposes the scaling of genetic algorithms using MapReduce. Many other papers
focus on single MapReduce implementations of other data mining algorithms. Chu et
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al. [26] present a more general approach to parallelize algorithms by using a summation
representation of the algorithms; it is applied to locally weighted linear regression, k-
means, Naive Bayes, support vector machines, expectation-maximization, and others.

Despite its potential for scalability, MapReduce has inherent �aws � it is not designed
to deal well with moderate-size data with complex dependencies; it is not appropriate for
algorithms that are iteration-based and, especially, communication between the parallel
workers (see [109] for a more detailed discussion of these issues). So while MapReduce
allows enormous amounts of data to be processed, it is not a general framework for
the parallelization of complex algorithms. Having said that, MapReduce may well be a
suitable framework for the widened data mining algorithms described here � however,
published work has so far focused on larger data and the potential for creating better
models based on this increased ability to process data. The focus of widened data mining
is to create better models from the same amount of data via a smarter exploration of the
search space. GPUs are successfully applied for the speed-up of Big Data algorithms.
For example, a map-reduce model for GPUs is presented in[81, 49, 135, 85, 46].

2.7 Distributed Data Mining

Nowadays, centralized storage of data is typically costly and unrealistic, more vulnerable
to security risks, and limits scalability. In today's world, very often, the data is stored
in a distributed form.

Distributed data mining (DDM) is concentrated on developing methods and algo-
rithms for performing data analysis in a situation in which the data and the computa-
tional resources may be scattered and stored in di�erent locations. In order to improve
the e�ciency and scalability of the algorithms in such a setting, DDM turns to paral-
lelism. The algorithm is employed to each data site independently and concurrently,
resulting in one local model for each site, built only on local information. Upon comple-
tion, all local models are combined into a global model. To increase the global knowledge
of the local models, some data transfer is required.

Di�erent types of DDM environments can be divided into, i.e. homogeneous sites
with shared characteristic and sites, which adopt di�erent characteristics.

2.7.1 DDM from Homogeneous Sites

The algorithms used for mining homogeneous sites are usually parallel by design; dif-
ferent classi�ers are learned using local data and then aggregated using meta-learning
approaches. A multitude of meta-learning strategies can be utilized such as bagging [18],
stacking [145] and others.
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2.7.2 DDM from Heterogeneous Sites

Learning in parallel from heterogeneous data sites logically results in models, which are
di�erent. It is di�cult to learn globally representative models and to correctly aggregate
the local models, achieved by learning from heterogeneous sites in parallel. Of course,
minimal communication is desirable in highly distributed settings. Meta-learners, which
use order statistics to combine the models resulting from multiple learning agents, which
are trained on di�erent distributed data sites, are especially well suited for aggregation
of heterogeneous models [139].

In [94], the authors propose an approach, called collective data mining, which aims
to improve the accuracy of locally learned models and their aggregations, with mini-
mal communication, by using orthonormal representations of functions. Collective data
mining algorithm approaches include collective PCA [97], clustering [96], Bayesian learn-
ing [25], collective multivariate regression [83], and others.

Papyrus [12], another platform for distributed data mining in a heterogeneous set-
ting, learns intermediate models locally for each cluster and moves these locally learned
predictive models to a central location, where a multitude of aggregation methods are
used to determine the �nal model.

JAM [133] is originally a fraud detection framework. Each learner employes a di�er-
ent algorithm to build a model on di�erent data sites then the resulting set of models
are aggregated using standard approaches like ensemble learning, or �eld-speci�c ones
like knowledge probing, to form a meta-classi�er with an enhanced predictive accuracy.
Knowledge probing can result into a descriptive and interpretable aggregate model.

2.7.3 Widening and Distributed Data Mining

These DDM approaches have intrinsic parallelism by nature, but they are focused on
data partitioning and model aggregation, which rarely results in an interpretable model.
While some of these are also applicable for Widening, the approaches above are special-
ized to solve challenges of data mining in a distributed context. Widening is not spe-
cialized in distributed or heterogeneous data in particular. A common theme between
Widening and DDM is minimizing the communication between the parallel workers in
the case of Widening, and between the decentralized units in the case of DDM.

For visual representation of how Widening �ts into the context of existing parallel
data mining research, refer to Figure 2.1.

2.8 Population-based Metaheuristics

Even though due to their approximate and non-deterministic nature, metaheuristic
searches o�er no guarantees for �nding globally optimal solutions, they have been proven
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Figure 2.1: A comparison between the most important characteristics of Widening and
other data mining approaches.

extremely useful for solving large problems of high complexity. Metaheuristic strate-
gies have been categorized as either population-based or neighborhood-based approaches.
We will �rst discuss parallel and sequential population-based metaheuristics. The next
section is dedicated to the neighborhood-based metaheuristics because they have some
similarity to Widening.

2.8.1 Parallel Population-based Metaheuristics

Strategies based on stochastic learning algorithms, such as genetic algorithms, are natu-
rally parallelizable. Their parallelization can be achieved by a straightforward execution
in parallel of independent copies of the same algorithm (only parametrized di�erently).
In the end, the best solution is chosen from the ones obtained by these independent
searches. This simple approach to parallelism achieves an improvement in model ac-
curacy [137]. Examples of using (parallel) genetic algorithms for data mining include
GA-MINER [53], REGAL [63], and G-NET [62].

The main di�erence between Widening and these metaheuristic methods is that the
former is focused on exploring the search space in a structured way as opposed to the
randomized nature of these other methods.

2.9 Neighborhood-based Metaheuristics

This section is based on [13], [60], [60, 70]. In Widening, we use neighborhood-based
approaches not in order to �nd a local optimum in a particular neighborhood, but with
the idea of achieving global search space exploration and to, given enough resources,
explore fully the search space, as described in Chapter 3.
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Many known approaches for solving optimization problems apply the idea of neigh-
borhoods to perform a search. These methods move repeatedly from one solution to a
neighboring one, which is evaluated as the best possible neighbor, according to some
criteria. Below we brie�y present the most important neighborhood approaches.

2.9.1 Local Search

This section is based on [13]. The local search begins with some initial solution and
reiterates minor modi�cations in order to improve it. The approach necessitates the
concept of a neighborhood to be de�ned in the search space. A modi�ed solution neighbor
is selected as the new temporary solution only if it performs better than the already
chosen temporary solution according to a preselected evaluation function and, if not, a
di�erent small alteration is checked and evaluated. An already selected model x with a
neighborhood N(x) is substituted by a neighbor x′ ∈ N(x) if x′ is evaluated as better
than x . This step is performed until a solution is discovered, which is not worse than
all the models in its neighborhood.

2.9.2 Simulated Annealing

This section is based on [13]. Simulated Annealing [100] is a metaheuristic approach
for the approximation of the global optimum for complex, most commonly discrete,
optimization problems. Simulated annealing fares better when global or a close ap-
proximation of the global optimum is needed, compared to other methods, which easily
converge to local optima. The method has borrowed ideas from a process in metallurgy
with the same name, which alters the physical properties of a solid by employing heating
followed by controlled cooling down. This algorithm is akin to the simple local search,
but it prevents potential converging of the search to local optima by allowing so-called
"jumps", which consist of choosing models of worse quality based on some preselected
probability.

2.9.3 Tabu Search

The tabu search [64, 67] enhances the local search, by encoding a propensity towards
unvisited or promising sectors of the search space, which have shown to have high-
quality models. The search uses tabu lists and di�erent types of memory (long and
short) to avoid revisiting regions unless they contain promising solutions. As a result, the
search achieves a diverse exploration by picking previously unexplored regions, while also
using exploitation for regions of the search space, which are known to contain promising
solutions. The essential features of tabu search are detailed in [64, 65, 66, 103, 67].
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2.9.4 Large Neighborhood Search (LNS)

E�ciency is the rationale behind the use of small neighborhoods by most local search
strategies. Even though large neighborhoods facilitate the discovery of higher quality
solutions, they are more costly to explore at each iteration, because of their size. Due to
the higher cost, fewer search executions can be performed to induce an inferior �nal result.
Large-neighborhood search methods [4] tackle this issue by adopting suitable heuristics
which facilitate the e�cient investigation of neighborhood structures of high complexity.
The very large scale neighborhood (VLSN) search approaches employ strategies, which do
not necessitate a complete enumeration of the neighborhood but instead use approximate
evaluation approaches. An important illustration of the VLNS presented in [108], where
it is applied to enhance a well-known algorithm for the traveling salesman problem (TSP).
An example of VLNS based network �ow is presented in [138]. An example of applying
VLNS for the solution of special cases of a hard optimization problem is described in
[69].

The existing parallelization approaches for LNS and VLSN are only focused on im-
proving the speed of processing of the large neighborhoods.

2.9.5 Greedy Adaptive Search Procedure (GRASP)

GRASP integrates together a greedy search and a neighborhood search. Each iterative
step involves the use of randomized greedy construction of multiple starting solutions
and local neighborhood search processes, which exploit each of the starting solutions,
[51].

2.9.6 Variable Neighborhood Search (VNS)

The VNS search starts at a local optimum and then constantly assesses expanding neigh-
borhoods of that solution until a solution of higher quality is discovered. This process
is repeated with the newly discovered solution as a center for the exploration of neigh-
borhoods or broader and broader size. This strategy utilizes the consideration that for
a multitude of problem types, local optima are adjacent to the global optimum and that
the global optimum is an optimum within each neighborhood of a search space.

Among the bene�ts of this search is that few if any parameters need to be set, which
leads to the uncomplicated and straightforward discovery of high-quality solutions. It is
also �exible, and to make the search more e�cient di�erent heuristics can be utilized for
the local search. VNS-based algorithms have been employed to solve various optimization
problems, both combinatorial and continuous, as well as clustering and others.
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2.9.7 Parallel Variants of Neighborhood-based Metaheuristics

This section is based on [141] and the state-of-the-art surveys [34, 55], as well as the
book [9], which present the major results in the �eld of parallel metaheuristics. In
order to discuss the parallelization of neighborhood-based metaheuristics, or parallel
local search, the authors of the surveys and book cited above, develop taxonomies of the
di�erent parallelization types. These taxonomies, while not identical, are very similar,
especially with respect to the parallelization approach that concerns us � it is referred
to as either parallel multiple walk without communication or as multiple independent
runs in the di�erent literature reviewed below. It refers to a parallel approach, based
on multiple search space explorations in parallel, in which the parallel workers do not
exchange information.

In [141], a survey of parallel local searches is presented. It considers di�erent types
of local search algorithms and presents existing approaches to parallelizing them. The
survey classi�es the algorithms in two main classes � parallel single walk and parallel
multiple walk. In the single walk algorithms, one or many steps of the single walk are
performed in parallel. At each step, the neighborhood is distributed among parallel
workers, with the goal of improving the e�ciency of the algorithm, which is not related
to the goals of Widening . We aim to split the entire workspace via Widening, while
avoiding communication between parallel workers. Our goal is escaping local optima and
thus alleviating the problem with data mining heuristics. In contrast, the distributed
neighborhood that is investigated by parallel single walk algorithms is the same as a
traditional neighborhood, and the solution discovered is the same as that obtained by
the original heuristic, only faster.

The concept of multiple walks as a way to parallelize local search is closer to the
notion of Widening. In this approach, there are multiple simultaneous walks through
the search space. The multiple walks that are discussed in this work are with and without
communication. For the multiple independent walks, the parallelization is achieved by
simply starting the algorithms multiple times. The di�erent paths of the walks are a
result of diverse parameter values or starting points. While this does produce a higher
probability of �nding a good solution, this approach is very simplistic and does not take
into account the goal of exploring the entire search space. The interactive approaches are
similar to the ones with diversity measures that require communication and this results
in greater overhead and computational costs with the increase in parallelism.

In contemporary state-of-the-art surveys, the �eld has shifted in the direction of the
so-called multiple walk parallelizations of metaheuristics. In [34], the goal of improving
the solution quality as a result of parallel multi-start heuristics is explicitly stated and
reported in several parallelization cases.

Parallel metaheuristics allow for both, an improvement in e�ciency as well as in
solution quality. In [9], parallel metaheuristics are viewed as a separate class of heuristics
altogether. The authors provide a similar taxonomy and present a more detailed study of
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the �eld. Often the parallel variant returns a better solution than the sequential heuristic,
which makes the analysis of the parallel metaheuristic methods more complicated. This
is why the authors suggest that the evaluation criteria of parallel metaheuristics should
incorporate the solution quality as well as the speed up measure. Three main types of
parallelizations are recognized, similar but not identical to the types di�erentiated above.
Below we will present these di�erent types of parallel approaches and will focus mostly
on type 3 or multiple runs, especially multiple independent runs, because this type of
parallelization is the most is relevant to Widening.

The type 1 parallelism of a local search is a low-level parallelism, parallel evaluation
of the neighborhood at each step, equivalent to the single walk type, presented above.
It results in the same solution as the original heuristic and is focused on speed-up.

The type 2 parallelization approach divides the variables across the parallel workers
and as a consequence, each worker explores a restricted part of the search space. While
this approach does explore solution paths di�erent from those of the sequential heuristic,
it still is di�erent to Widening in terms of goals.

The type 3 parallel approaches are implemented as many parallel searches of the
space of solutions. We will discuss in more detail the main features and the key research
done with type 3 parallelism, as it has elements, similar to Widening, and we want to
show the similarities and stress the di�erences between the Widening approach and these
methods. Furthermore, some elements can be applied to the Widening approach as well.
Just like Widening, one of the goals of the multi-run parallelization is to achieve a better
quality of the solution.

Parallel multi-start heuristics can be categorized into multiple independent runs,
where the parallel workers do not share information, and cooperative approaches, which
take advantage of information exchanged between the parallel workers. The cooperative
metaheuristics can exchange information in a synchronized fashion or have asynchronous
communication.

Cooperative Multistart Runs

The approaches based on multiple cooperative walks represent the greatest advance in
this �eld. These approaches bear similarity with some of the aspects of Widening. The
goal of obtaining a better solution quality through a more thorough search space ex-
ploration is explicitly stated by the authors. Typically, the quality of the solutions
discovered by these methods surpasses that of the serial methods. However, the neces-
sity for constant and continuous exchange of information in the synchronous cooperative
approaches results in worse running time and increased overhead. The asynchronous co-
operating strategies were designed especially to overcome the overhead problems. Each
individual parallel worker has a di�erent starting point and an individualized search
strategy and it communicates with the other parallel workers through a central memory
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without synchronization. For some approaches, called adaptive memory strategies, the
central memory records partial solutions This central memory can store partial or com-
plete solutions, while for the ones known as central memory approaches, the complete
solutions are kept.

The strategies, based on adaptive memory have proven to be very useful in type 3
parallelizations of tabu search for vehicle dispatching problems and real-time routing
[59]. It was also advantageous for the vehicle-routing problem with time windows, de-
scribed in [11]. Another example of an adaptive approach, where the broadcasting of
the �ttest partial solutions, was used for the transfer of information between workers
can be found in [128]. In [32], a tabu search, with information sharing was applied to
the �xed cost capacitated multicommodity design problem. An example of a parallel
cooperative multi-start of GRASP with adaptive load balancing is presented in [113].
A VNS-based cooperative asynchronous multi-start search for the p-median problem is
published in [33].

Some examples of parallel synchronous cooperative search include [56], where multiple
VNS are performed, and [121], where a synchronous tabu search is presented. For simu-
lated annealing, synchronous and asynchronous cooperative approaches are described in
[78]. Ref. [106] describes synchronous and asynchronous cooperative approaches based
on Markov chains.

Hybridized Approaches of Multistart Runs

As the name suggests, hybridization metaheuristics incorporate multiple properties from
several types of metaheuristic approaches in order to enhance the search and improve
the model quality. This category of strategies has demonstrated the biggest improve-
ment in terms of e�ciency and solution quality compared to the other parallelization
strategies. The hybridized approach integrates di�erent heuristics and pro�ts from their
respective strengths. Below we will only brie�y describe some examples of hybridization,
for additional details and information, refer to the following state-of-the-art overviews
and surveys [55, 35, 9].

Hybrid metaheuristics can be multiple independent runs (MIRs), which are relatively
rare, or cooperative multi-start searches, regarded as state-of-the-art in the �eld, improv-
ing both e�ciency and solution quality. Examples of hybrid MIRs include the GRASP
MIR, where an intensi�cation method called path relinking was used for the job schedul-
ing problem [5], as well as a GRASP and path-relinking hybridization for the tree index
assignment problem [6]. Path relinking and scatter search [68] are hybridization strate-
gies, which take advantage of a long-term memory to direct towards sectors of the search
space, which could contain the optimal solution. An example of path relinking, which
relies on cooperation for its strategy, is shown in [31]. A parallel simulated annealing
asynchronous hybridization is described in [112]. The authors of [30] present a hybrid ap-
proach, in which an asynchronous tabu search is utilized in order to build a set of "good"
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solutions and these then are used as a starting point for a genetic algorithm-based search.
This approach was tried for the problem of multicommodity location-allocation. Two
main advantages are shown of such a hybrid approach. Namely, the initial population of
high quality, discovered by the tabu search contributes to the discovery of even better
solutions, and the high-variety populations lead to diverse exploration. In [76] a record-
to-record algorithmic approach [24, 107] was combined with the set-covering algorithm
to determine new solutions and select the best ones, which enhanced both speed-up and
quality of the solution.

Multiple Independent Runs (MIR)

MIR methods are not as popular as the multiple cooperative runs. These approaches are
the ones that resemble the goals of Widening the most. We will discuss the di�erence
between them and Widening in the subsection below.

Some signi�cant examples of MIR are shown in [52], [56], where an independent
multistart, which uses VNS is presented, tabu search [17, 10], and an independent parallel
multistart [136].

GRASP is most commonly parallelized as MIR strategies, where each autonomous
search uses the same sequential algorithm and identical data, but its own distinct seed
to generate an individualized starting point of the search. In these approaches, the
only prevention taken to avoid the workers investigating the same search paths is the
adoption of dissimilar starting positions in the search space. These search techniques
often use a master-slave con�guration, where the master collects and stores globally the
best temporary solutions, distributes data and generates seeds to be used by the slave
parallel workers. The runs of the searches are autonomous with limited or no exchange
of information between the parallel workers. Redistribution of workload over parallel
workers may be used to tackle possible load balancing issues. This approach to multiple
runs is oversimpli�ed, and the diversity of exploration is due entirely to the distinct
starting points. In later search strategies, multiple runs utilize previously discovered good
solutions for seeds. In contrast, Widening aims to achieve a more detailed exploration
of the solution space by using sophisticated strategies of search space partitioning, or at
least diverse exploration without communication, instead of just using separate starting
points as a source of diversity. We will outline the di�erences between Widening and the
MIR approaches below.

2.9.8 Widening versus Parallel Neighborhood-based Metaheuris-
tics

Local approaches typically search for a good enough solution within some neighborhood,
namely, a local optimum. In contrast, even when using neighborhoods, the goal of the
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Widening is, on the contrary, an all-encompassing exploration of the solution space,
and discovering as good as possible, or ultimately, the globally optimal solution. In
contrast to the Widening approaches discussed in this dissertation, the parallel local
search algorithms presented have as the main goal to discover a su�ciently good solution
in an e�cient manner, while not necessarily looking at the parallelism as a way to �nd
a better solution, or even trying to escape a local optimum.

We are interested in advanced strategies, which target a search space exploration
in parallel, which is systematic and structured and passes through all the important
regions of the search space, and which leads to the discovery of the global solution,
without the need for communication between workers. The goal is to develop smart
parallelization techniques, where each worker has an individualized behavior, that takes
into consideration information of the search space, instead of performing the same linear
algorithms in parallel with dissimilar starting points. We are interested in discovering
exploration approaches, which, by modi�cations in the individual search strategies of
each parallel worker, discover the optimal solutions in diverse parts of the search space,
and ultimately, the global optimum.

While a lot of progress has been made in search space exploration, especially when
it comes to the cooperative multiple walks, they boost the exploration via exchanging
information or via adding randomization/genetic search hybridization approaches.

Even more sophisticated strategies, such as path relinking and scatter searching, while
producing higher solution quality, do not use the parallelism for better exploration of
the search space. They do consider diversi�ed sets of solution candidates, but there is no
explicit individualized strategy for each parallel worker, which would aim at search space
partitioning. Instead, yet again, the same approach for searching is used by each parallel
worker, however di�erent starting solutions and randomization are used to achieve some
individuality of the search path.

2.10 Parallel Deep Learning

2.10.1 Deep Learning

Deep learning captures and models complex hierarchies and dependencies hidden in data.
Often it relies on di�erent types of multi-layer arti�cial neural networks (for example,
recurrent, convolutional or deep belief neural network ), with many processing layers
used for data transformation. Prominent examples of the diverse application of deep
learning algorithms include [73, 105, 14, 127, 84].
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2.10.2 Parallel Deep Learning

Almost every aspect of deep learning is intrinsically parallelizable. The main di�culty
for deep network parallelization is the way the algorithm backpropagation functions. In
backpropagation, it is a requirement that the calculation and update of a very large
number of parameter values from one iteration must be �nished before the start of the
next one [43]. Due to the extreme computational costs related to training highly complex
models, the relevance of the deep learning approaches is dependent on the computational
processing innovations. Big work has been put into improving e�ciency and speed-up of
the most commonly used algorithms for deep learning. With the utilization of GPUs in
place of the traditional CPUs, the methods gained signi�cant speedup, which brought
about important advances in various �elds, for example, computer vision. Famous ex-
amples include [126, 36, 101]. Nevertheless, further research into the speed-up of deep
learning algorithms is required, since, regardless of all the advances, the state-of-the-art
methods are not fast enough for many real-world problems. Despite its unquestion-
able applicability, its high accuracy prediction, �exibility and great successes in di�erent
�elds, deep learning does not o�er a single interpretable model, and so far the existing
parallel versions of deep learning systems are focused on speeding up the algorithms in
order to handle the problems of the method's enormous computational costs. In con-
trast, Widening is focused on achieving an interpretable model of better model quality
through a proper investment of parallel resources.

2.11 Topological Data Mining

This section is based on [20, 47, 21].

Topological data analysis (TDA) is employed to derive knowledge from complex data
by examining its geometric characteristics and evaluating their statistical signi�cance.
The data is �rst presented in the form of points in a metric space and then converted to a
topological structure to in order to study its shape and properties. The main underlying
assumption is that shapes that persist, for various parameter values, are descriptive for
the data. The most commonly mentioned topological visualization methodologies are the
barcode [23] and the persistence diagram [28]. These methodologies have been shown to
be useful for feature detection in data of high dimensionality. A main challenge in the
�eld is that the integration between topological and machine learning methods is not
straightforward. For detailed knowledge about the �eld, refer to the following surveys
[61, 21, 47].

According to [20], evident advances of TDA approaches include its application to
breast cancer [117], gene detection in microarray data [42], natural image analysis [22],
sensor networks [40], orthodontics [82].

While not related to parallel data mining, topological data analysis uses formal gen-
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eralized approaches to infer properties of the data. Widening also aims to formalize and
generalize data mining approaches. Data with di�erent topological properties may need
di�erent Widening strategies and the knowledge of topological structures may prove to
be useful for Widening.

2.12 Conclusions

In this chapter, we discussed that Widening, as a type of strategies for investing parallel
resources in a way that leads to better search space exploration and as a result, to
discovering a better solution than with the original heuristic. The running time is also
of importance. We would like the running time not to worsen, compared to that of the
original heuristic. Widening results in an interpretable model.

Most of the parallelizations of existing heuristics are done with the idea of improving
e�ciency or are big data algorithms. Genetic algorithms, ensembles, and random forests
are naturally parallelizable. They do induce a better model quality, however, they do
not result in an interpretable model.

Optimization-related metaheuristics and approximation algorithms are more closely
related to Widening. Di�erent search strategies and their parallelizations were discussed.
However, very few of the parallelization strategies aim for an improvement in the qual-
ity of the obtained model, the focus of most is on e�ciency. The approaches, where
the solution quality bettered, are simplistic, based on starting several identical paral-
lel searches simultaneously in parallel, just with di�erent starting points. They do not
employ any sophisticated strategies for better (or ideally full) exploration of the search
space of models. Nevertheless, the research done in the �eld of optimization has devel-
oped a vast number of sequential and parallel search strategies that can be applied to
machine learning in general, and Widening in particular. The opposite is also true, ma-
chine learning approaches are heavily being used in the �eld of optimization, especially
when evaluating the properties of the search space.
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Chapter 3

Ideal Widening

The main portion of this chapter is directly quoted from [16], it does not represent
the author's own work and is used in this dissertation, which describes the main goals
for Widening and sets the context for the author's own research, and is important for
completion and referencing. The �nal section 3.4 is based on [86] and is the author's
own work.

3.1 Ideal Communication-Less Widening

The goal of communication-less Widening is to split the search space so that each worker
investigates a di�erent set of models without the necessity of communication. Below
we discuss the required properties of such a partitioning, so that communication-less
Widening is achieved.

The �rst property is the closure property of such partitions:

De�nition Let M ⊆ M be a set of models. Given a re�nement operator r the set of
models M is closed under �r i� ∀m ∈M : r(m) ⊆M .

In many cases, even if the re�nement sets generated by the re�nement operators have
intersections, we are interested that the models chosen by the selection operator at each
step are not the same. This may cause duplicate work for the parallel workers, because
of potential overlap of the generated re�nement sets, but still results in di�erent �nal
solutions for di�erent parallel workers.

De�nition Let M ⊆ M be a set of models. Given a re�nement operator r and a
selection operator s, the set of models M is weakly closed under �r and a given data
set D i� ∀m ∈M : s (r(m)) ∈M .

We include the standard de�nition of a partition:
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De�nition Given a family of modelsM, a division into k subsets M1, . . . ,Mk is called
a partition

i� M1 ∪ · · · ∪Mk =M and ∀i, j = 1, . . . , k : i 6= j ⇒Mi ∩Mj = ∅.

Using these de�nitions, we de�ne Ideal Widening as an partition of the search space in
such a way that each parallel worker explores only its assigned partition. Be.

De�nition Given a family of modelsM and a re�nement operator r, the partitioning
M1, . . . ,Mk is called a closed partition i� ∀k′ = 1, . . . , k : Mk′ is closed under �r.

However, such a partitioning is not realistic for many algorithms, where the search
starts from a trivial solution, an empty model, so this model needs to be a part of each
assigned subset, which means that there will be an intersection between the assigned
subsets.

3.1.1 Approximate Partition-Based Widening

What we are interested in is creating such subsets for each parallel worker, so that
each model is reachable by at least one parallel worker, using the re�nement/selection
iteration. Namely, each model needs to be reachable by at least one search path in the
search space.

De�nition Given a family of modelsM and a re�nement operator r, a subset M ⊆M
is called a path-closed set i� ∀m′ ∈M∧m′ is not a base model : ∃m ∈M : m′ ∈ r(m).

Using this, we can de�ne the split of the search space into path-closed subsets which,
together, cover the entire search space and each model is reachable in at least one subset:

De�nition Given a family of modelsM, a division into k subsetsM1, . . . ,Mk is called a
path-closed approximate partition i�M1∪· · ·∪Mk =M and ∀i : Mi is a path-closed
set.

The ideal scenario would be a division into disjoint, closed sets. In practice, a more real-
istic setup, where the subsets partially overlap but at least each model is still reachable
in at least one set can be su�cient. The amount of overlap obviously directly a�ects
potential redundancy when we use this kind of approximate partitioning to widen our
search. Figure 3.1 illustrates this approach.

Creating such an explicit, even approximate partitioning will still be di�cult for
many types of models and algorithms, because it requires prior knowledge and special
properties of the search space structure.
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(a) (b) (c)

Figure 3.1: Approximate Partition-Based Widening. The search space is divided into a
set of overlapping subsets, however, we guarantee that each model is reachable within
at least one subset. Instead of selecting from a set of intermediate candidates, each
(parallel) worker now only selects the one best candidate in its own subset of the search
space.

3.1.2 Path-Based Widening

Instead of relying on explicitly de�ned partitioning, we can also modify the selection
operator of the heuristic to be di�erent for each parallel worker, so that each works with
an individualized selection operator. They ensure that a particular parallel worker takes
only those models into consideration for which it is responsible. Each parallel worker
can be assigned individualized preferences for di�erent models in the search space, in an
implicit fashion.

De�nition Given a family of modelsM, a re�nement operator r, and a selection oper-
ator s, a linearly ordered set of models Ps = {m1, . . . ,mn} is called a selection path i�
∀1 ≤ i ≤ n− 1 : s(r(mi)) = mi+1 and m1 is a base model.

The idea of path-based Widening is now that either the re�nement operator or the
selection operator or both are individualized in such a way that they prefer a speci�c
subset of models, creating selection-path partitions of the search space.

De�nition Given a family of modelsM, a path-based subset based on selection op-
erator s is the subset Ms ⊆ M of models that are selection-path-reachable via s, that
is, Ms = {m : ∃Ps = {m1, . . . ,m} ∧m1 is a base model}.

De�nition Given a family of modelsM, a set of selection operators s1, . . . , sk is called
a perfect selection operator set i� Ms1 ∪ · · · ∪Msk = M and ∀i, j = 1, . . . , k : i 6=
j ⇒Msi ∩Msj = ∅.

Finding a set of selection operators that are overlap-free is di�cult in the general
case.
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In Chapter 6 we describe how to de�ne redundant-free re�nement operators for certain
types of problems. Additionally, in the same chapter knowledge of the global structure
of the search space is used to de�ne a set of "good" selection operators.

Furthermore, in Chapters 7 and 8, we demonstrate experimentally, that modifying
the selection operators locally leads to exploring diverse paths and improves upon the
greedy heuristics on average.

3.2 Diversity-Driven Widening

In the previous section, we discussed approaches to ensure our Widening methods explore
di�erent portions of the search space with or without required communication among
workers.

Of greater importance is a bigger drawback of all beam search style searches, namely
their focus on a narrow portion of the search space. Similar to issues known in ge-
netic algorithms (and in this context, often addressed explicitly, e.g. [72]), these search
methods tend to exploit areas around local optima rather than globally exploring the
search space and potentially also �nding the global optimum. Our partitioning-based
approaches described above do not encourage a global exploration either, because the
partitioning incorporates no further constraints, such as enforcing diversity of the mod-
els in separate partitions. The result could be that di�erent partitions actually contain
fairly similar models resulting in all of our workers �nding similar solutions.

Hence partitioning would bene�t from an additional diversity constraint, making sure
we are not only following the path (or beam) of (locally) best models but truly explore
the overall model space to get closer to discovering the globally best model. Note that
this turns model selection into a multi-objective problem as we will now be required to
balance the performance of the solutions vs. the additional desired diversity.

We will �rst describe a randomized approach which aims to give each worker an equal
chance of �nding the best model. Afterward, we strengthen this by enforcing diversity
constraints. Similar to before, we will �rst sketch how an ideal diversity-driven Widening
would operate before discussing communication-less alternatives, which are feasible to
implement and are able to ensure diverse solutions by either considering the models
themselves or by weighing data elements di�erently.

3.3 Ideal Diversity-Driven Widening

We �rst discuss an ideal setup which would lead to a diverse set of �nal models adhering
to a certain diversity criterion. This method resembles Top− k Widening but instead of
picking the best k models it picks the subset of k models that are diverse and have high
performance. Instead of choosing models only according to their quality, additionally we
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need take diversity into consideration, if we want to avoid the parallel workers converging
to one segment of the search space.

A variety of measures can be applied to evaluate both the overall quality of the
selected models and their diversity. Given a model evaluation function we can aim to
maximize the maximum, the mean, the sum, or other properties of the set of models. For
diversity, one can consider di�erent measures to evaluate how diverse the set of models is,
such as average pair-wise similarity, the sum over all pair-wise similarities, the minimum
or the maximum, depending on our goals. In general:

De�nition Let M ⊂ M be a subset of models, Ψ and ∆ a performance resp. diver-
sity function, and k the width-parameter, then the function stopdiv−k is called best-
diverse-k selection operator if ∀M ′ ⊆ M ∧ |M ′| = k : Ψ(stopdiv−k(M)) ≥ Ψ(M ′) ∨
∆(stopdiv−k(M)) ≥ ∆(M ′),

that is, there exists no other subset of size k that performs better, and, at the same time,
is more diverse. For most multi-objective optimization problems, the entire Pareto front
contains non-dominated alternatives.

A simple and e�cient approach is a threshold-based picking scheme [50], where one
iteratively picks the next best model that is at least a threshold away from all previ-
ously chosen models. But this approach requires very heavy communication between
the parallel workers, to share information and determine the sets of best diverse and
high quality solutions, the Pareto front members. The two functions can be combined,
turning this into a single optimization problem:

Ψ(s(M)) + α∆(s(M))→ max . (3.1)

Depending on the de�nitions of the functions Ψ,∆ and parameterα the function can
describe Widening with di�erent properties. For example, for α = 0, one has the Top−k
Widening approach without any diversity implemented. If by ∆ is trying to maximize
the average pairwise diversity, the behavior of the search would be di�erent than if one
is trying to maximize the maximal pairwise diversity (perhaps not so suitable for our
goals), and so on.

We will demonstrate in the next chapters types of diversity-driven Widening using
di�erently de�ned Ψ,∆ and di�erent value of parameter α in the Expression (3.1).

3.3.1 Communication-Less Diversity.

If we do not want to rely on global communication when selecting a high-performance
and diverse set of models, we need to ensure that each worker has its own individual
strategy for selecting the next model, and that consequently explored selection paths are
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diverse. We can do this with individual selection operators, which are pre-programmed
before the search to have di�erent and diverse search behavior.

This essentially splits the ideal best-diverse-k selection operator into individual op-
erators for each worker. Ideally, the individual selection operators pick a set of models
that is at least as good and at least as diverse as if the best-diverse-k selection operator
was used. In reality, of course, we can only hope to approximate this idealistic scenario.

For models such as the set covering examples described in [7], we can encourage
diversity by making sure that each worker uses a di�erent preference ordering of model
fragments. Alternatively, one can also assign di�erent preferences for di�erent data
points, to achieve data-based diversity.

3.4 Di�culties of Explicit Partitioning

This is based on [86], and represents the author's own work. Ideal and approximately
ideal partitioning are impossible to implement without knowing apriori the structure of
the search space. In order to achieve approximate ideal partitioning, each Mi has to be
closed under re�nement.

3.4.1 Simple Example: Communication-less Diversity via Glob-
ally Assigned Preferences (Hashing).

We want to achieve implicitly Widening of width k of the search in a communication-free
manner by individualizing the k selection operators si, i ∈ {1, . . . , k}. This means that
each si has individualized preference for a di�erent subset of models. The search space
of models is unknown in the beginning of the search, so these individual preferences
need to be de�ned implicitly and encoded prior to the search. Due to these restrictions,
one cannot use preferences for whole models, but needs to use preferences for model
components or data points, since they are what is known apriori and thus de�ne model-
based or data-based diversity-driven Widening.

The simplest, most intuitive way to do that, is to assign individualized preferences
to di�erent model components or data points directly in a static way. As already stated,
the preferences can be based on characteristics of the models, (model-based diversity)
or on data points, (data-based diversity). Figure 3.2 illustrates two di�erent selection
paths generated by two di�erent selection operators s1 and s2.

More formally we can de�ne this simple communication-less Widening as follows.

Given an intermediate model m, ψi evaluates the re�nement m′ based on the original
quality measure and an individual preference πi for m′:

ψi(m
′) = ψ(m′) + t ∗ πi(m′).
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Figure 3.2: Communication-free Widening: two di�erent selection paths generated by
two di�erent selection operators s1 and s2.

Our goal is to have k di�erent (and diverse) preference orders π1, . . . , πk, so that the
selection operators are steered to explore di�erent and diverse paths in the search space.
This approach is implemented and explained in detail in Section 7.3.3.

De�nition Given a set of parallel workers {w1, . . . , wk}, communication-less Widen-
ing with diversity based on global preferences is the set of selectors shash =
{shash1 , . . . , shashk } whose individualized quality measure functions {ψ1, . . . , ψk} assign to
models in M di�erent preferences given by the functions pi : M → R to implement a
set of diverse partial orders on M {(≤i,M)}. These preferences for particular models
are based either on model properties, or on the data.

The balance between diversity and quality of the explored models can be optimized if
the individualized model evaluation functions {ψ1, . . . , ψk} combine the original model
evaluation function ψ and the individual preferences for the models. Consider the
∆(shash(r(m)) of this Widening approach at a given step. Unlike in diverse Top −
k, where a threshold guarantees a lower bound for ∆(M), here one cannot estimate
∆(shash(r(M))). The hope is that by assigning di�erent preferences to parallel workers,
they will traverse di�erent selection paths, but the e�ect is obviously hard to predict
and this approach cannot not even guarantee that

∀i 6= j : shashi (r(m)) 6= shashj (r(m)),

that is, di�erent workers do not consider the same model. Despite the lack of guarantees,
this simple approach leads to surprisingly great improvement in the solution quality. This
can be seen Chapters 7 and 8.
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Weaknesses of the Simple Communication-less Widening Approach.

This type of Widening leads to an unstructured way to explore the search space. One of
the goals of Widening is, that the more parallel resources you have (the bigger the value
of parameter k), the larger part of the search space you explore. This method does not
guarantee this property. First, the parameter t is data dependent, it determines how
much importance is given to Ψ and how much weight is given to ∆. The deviation from
the greedy option is unpredictable.

In addition, the static nature of the assignment has a �aw in itself. It lacks �exibility
and universal applicability. The workers might not be able to choose their statically pre-
ferred models, if they are not up for selection. For example, if wi strongly prefers model
m′i and wj strongly prefers model m

′
j, yet these two models may not be in consideration,

so they have to chose not between these two models, but between m′k and m′p and for
those they might have the same preference, the di�erence in their exploratory behavior
will not be noticeable at all.

3.5 Conclusions.

In this chapter, we discussed di�erent ways of achieving communication-less Widening,
by partitioning the search space among the di�erent parallel workers. We discuss explicit
methods, such as Ideal Widening, which are impossible to achieve in reality in the general
case, due to lack of information with regard to the models at the beginning of the search.
We also discussed implicit partitioning, which is achieved through individualizing the
behavior of each individual selection or re�nement operator.

We showed a simple example of individualizing the behavior of the selection operator
of each worker, based on giving individualized preferences based either on data, data-
based diversity, or on the models directly, model-based diversity. This simple method
performs very well experimentally, as we will show in Chapter 7, and Chapter8. However,
we want a structured way of exploring the search space and introducing diversity with a
more predictable properties, in which we have a better control over the behavior of the
parallel workers.
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Chapter 4

Widening Using Neighborhoods in the

Search Space of Models.

4.1 Motivation

As discussed in Chapter 3, a perfect explicit partitioning of the search space requires
a prior knowledge of the hierarchy of models. That is, which model is a descendant
of which on the re�nement/selection path. Assigning preferences to temporary models
(based on model fragments or data) as presented in Section 3.4.1 is a simple intuitive
way to approach this task. However, as it was explained, two problems exist. Via a
parameter, one cannot control in a meaningful/structured way the diversion from the
greedy path. Following this approach, it is not even possible to assign preferences in such
a way that they guarantee that two parallel workers i, j would choose di�erent models
from the same re�nement set r(m) = M r.

Let us consider a di�erent approach to assigning preferences to workers, one that can
quantify how much a parallel worker is deviating from a locally optimal choice, based
on the number of models. In Widening via neighborhoods, the parallel workers use local
information, just as in the greedy approach, but consider a larger part of the search
space at each step.

Let us consider the following characteristics of a search, represented as the iteration
between re�nement and selection operations. First, once having reached a modelm, each
parallel worker has access to its full re�nement set r(m). Second, the models of a given
re�nement set di�er from each other by one model fragment. Third, given that the total
number of model fragments is n, the subspace of the search space,Ml ⊂ M consisting
only of models of size l is the union of all the re�nement sets for all models of size
l−1. Given these observations, we will focus the local behavior of the individual parallel
workers in each re�nement set, and consequently the model fragments from which step
by step the models are built via the re�nement operation.
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In order to assess the similarity between model fragments and between models, we
will consider the topological notion of neighborhoods of models, and in particular of the
locally optimal model.

4.2 The Metric Space of Model Components

Before we talk about neighborhoods of models, let us discuss the similarity and the
dissimilarity of model fragments, the building blocks of a model. During the iterative
application of the re�nement operator, a solution is built by adding more model fragments
to it. Depending on the type of re�nement operator r(·) this can be simple model
fragments or compound ones.

In the case, when the re�nement operator uses only simple model fragments at each
step, they are known at the beginning of the search and can be used to encode desired
behavior to the individual selection operators prior to the search. That is why, depending
on the re�nement operator r(·), the Widening problem has di�erent complexity. For
di�erent model types, this representation is di�erent. Some, like unordered rules, are
simply a combination of its model components, without hierarchy or order playing any
role. Others, like decision trees, depend on hierarchy.

Due to the fact that in a given re�nement set the models di�er by a single component,
models from each re�nement set can be assigned to di�erent parallel workers prior to the
search, without these models being explicitly known, just using the model components.
This assignment happens locally, for each re�nement set of a given model, without
requiring communication between the parallel workers.

We will denote the set of model fragments as X. Given a chosen metric d over the
set of model fragments X, we can de�ne a metric space (X, d). Based on the metric d,
we can assess the similarity and dissimilarity between two model fragments.

Typically, the metric d will use the data D in order to assess similarity, which con-
stitutes a data-based approach to similarity. However, it can also rely on purely model-
dependent properties, which constitutes a model-based approach. Using the notion of
locality and its related concept of neighborhoods, we can divide the space of model
fragments into neighborhoods of model fragments, su�ciently similar to each other.

4.2.1 Neighborhoods in the Space of Model Fragments

We can de�ne a neighborhood of model fragments in various ways to serve our di�erent
purposes and the properties of the resulting partitioning will be di�erent. Below we
present several de�nitions of this concept, which serve di�erent purposes. Let us start
with the most common de�nition, that is based on a radius from a point.
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Figure 4.1: Neighborhoods in the metric space of model fragments; r-neighborhood and
k-neighborhood k = 6.

De�nition Let X be a set of model fragments, and let d be a metric. Given the metric
space (X, d), and given a radius r > 0 the r-neighborhood Nr of a model fragment x is
the set of all model fragments in X that are at distance less than r from x.

Model fragments, which are within a neighborhood are neighbors, based on the metric
d.

For the goals of Widening (and partitioning), when we consider neighborhoods, we
are not always interested in neighborhoods of a �xed radius r but may be more interested
to use neighborhoods, based on a particular number of model fragments. We will refer
to a neighborhood of a model component x of size k as the k-neighborhood of x.

De�nition Given the metric space (X, d) and an integer k > 0, we de�ne a k-neighborhood
Nk of a model fragment x, as the ordered set of k model fragments Nk = (x, x1, . . . , xk−1),
for which d(x, xi) ≤ d(x, xi+1), i ∈ {1, . . . , k − 1} ∧ d(x, xj) ≥ d(x, xi)∀xi ∈ Nk, xj ∈
X \Nk. Ties are broken randomly.

In other words, the k-neighborhood of a model fragment x is the set consisting of the
element x itself and the k − 1 model fragments, closest to x according to metric d.

Using the information provided by the neighborhoods, about which model fragments
are similar, we can partition the space of model fragments between the parallel workers.
For example, partitioning each neighborhood between the parallel workers enforces that
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within a given neighborhood of model fragments only one model fragment is selected
by each parallel worker. Such partitions are clustering and local sensitivity hashing.
Using the de�nition of k-neighborhood above we can de�ne the set of individualized
selection operators for the parallel workers 1, . . . , k, {sN1 , . . . , sNk }, with which we can
de�ne Widening via k-neighborhoods. For each model m ∈ M, each parallel worker
prefers one neighbor in Nk(s(r(m))), and its choice is unique for this neighborhood.
Note, that the same model fragment will be a neighbor in di�erent neighborhoods, the
neighborhoods are relative to a particular model fragment.

4.3 Neighborhoods of Models in the Subspaces of Re-

�nement Sets.

The concept of locality using neighborhoods over the space of model components trans-
lates into the space of models. Notice that de�ning neighborhoods over the space of
model components is equivalent to de�ning neighborhoods over the set of those models,
that are direct re�nements of a given model because they di�er from each other by one
model component.

In a similar fashion, we can use a metric to de�ne neighborhoods in the re�nement
sets of each model. Given that the re�nement operator creates a model only by using
simple model fragments at each step, the neighborhoods in the space of model fragments
translate to neighborhoods in the subspace of re�nements of a given model, M r. We
want to assign to the parallel workers di�erent models, using neighborhoods of models
within the metric subspace of model re�nements (M r, d).

Given m and a re�nement operator r, we can de�ne a k-neighborhood Nk of the
greedy choice m′ = s(r(m)) as follows:

De�nition Given a model m, a selection operator s, a re�nement operator r, and a
distance measure d, the k-neighborhood of m′ = s(r(m)) is the ordered set Nk(m

′) =
(m′,m′1, . . . ,m

′
k−1) ⊆ r(m) where ∀i ∈ {1, . . . , k − 2} : d(m′i,m

′) ≤ d(m′i+1,m
′) and

@m′′ ∈ r(m) \Nk(m
′) : d(m′,m′′) ≤ d(m′,m′k−1). Ties are broken randomly.

Or, in simple words, the k-neighborhood of a model m consists of k − 1 re�nement
neighbors that are nearest according to the distance measure d.

Using the de�nition of k-neighborhood above we can de�ne the set of individualized
selection operators for the parallel workers w1, . . . , wk, {sN1 , . . . , sNk }, with which we can
realize a Widening via k-neighborhoods. For each model m ∈ M, each parallel worker
prefers exactly one neighbor in Nk(s(r(m))), and its choice is unique for this neighbor-
hood. For visual representation see Figure 4.2.

Since we are interested in Widening of a greedy heuristic, which is focused on se-
lecting always a locally optimal choice, we de�ne the neighborhoods with respect to the

47



Figure 4.2: Schematic representation for Widening via local partitioning of M r = r(m)
using k-neighborhoods. Di�erent neighbors are assigned to di�erent parallel workers,
represented by their color. Here k = 4. Each parallel worker chooses the model assigned
to it apriori.

greedy choice. This, however, is not necessary � we can partition of a re�nement set M r

irrespective of the locally optimal choice.

De�nition Given a family of modelsM with a re�nement operator r, we de�ne random-
ized k-neighborhood Widening, Nrok, as optimality k-neighborhood Widening, where each
member of a given k-neighborhood is selected by a parallel worker with equal probability
1
k
.

Randomized Widening using Neighborhoods

The most trivial way to apply neighborhood-based Widening in this scenario is to ran-
domly assign the models from eachM r to parallel workers, without taking into consider-
ation any properties of the models from M r and at each step the parallel worker chooses
a random model from its partition from the givenM r. This will result in the randomized
exploration of the search space.

4.3.1 Neighborhood Size

The size of the neighborhood controls the amount of straying from the locally optimal,
greedy solution. Depending on the goal, di�erent sizes are advantageous. Heavy inter-
sections between neighborhoods are more likely for Widening with k-neighborhoods with
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small neighborhood size. Then the intersections between the neighborhoods are most
likely representative of getting stuck at a local optimum. When using small neighbor-
hoods there is a higher risk to converge to a local optimum, and this risk is increased
due to the lack of communication, and thus the inability to remove at least the repeated
models, thus increasing the risk of overlapping exploration between the parallel workers.

The larger the neighborhoods, the more the potential intersections approximate the
structure of the search space and are not a consequence of a local optimum. For many
problems, a model can be reached via di�erent selection paths. This is related to the
structure of the model space for a given problem. For example, with the greedy heuristic
for the SCP, one can start the search with various initial re�nements and still reach the
same solution.

On the other hand, increasing the size of the k-neighborhoods over a certain value can
lead to a sparse exploration of the search space and strong deviation from the greedy
search path. Furthermore, in the general case, this method does not guarantee the
reachability of every model. It leads to a sparse exploration of the search space, where
many models are not reachable. In the extreme case, in which k is very large, this will give
strong preference for ∆ compared to Ψ and will start to approximate a randomized search
leading to investing parallel resources in the exploration of degenerate solutions. The
size of the neighborhood also depends on whether the goal is exploration or exploitation.
Assuming ample available parallel resources, in certain situations, it may be bene�cial to
favor reachability of models within the neighborhoods we are exploring, over investing
parallel resources into larger and larger neighborhoods. The k-neighborhoods can be
generalized into θ, k-neighborhoods, where θ is the size of the neighborhood, with which
we are Widening, and k is the number of parallel resources.

4.4 θ, k-Neighborhoods

Many di�erent models are reachable via selection paths that share common initial sub-
paths, but then diverge, as shown in Figure 4.3. We want to de�ne another type of
Widening via neighborhoods, that guarantees reachability for every model at a �xed
level l. In order to achieve that, multiple workers' paths may have to intersect.

De�nition Let θ be the size of the neighborhood, and let k be the Widening parameter.
Given a modelm, a selection operator s, a re�nement operator r, and d, a chosen distance
measure, a θ, k-neighborhood of m′ = s(r(m)), Nθ,k(m

′), is an element of the Cartesian
product Nθ(m

′)k = Nθ(m
′)× . . .×Nθ(m

′)(k times).

Namely, k models are selected from Nθ(s(r(m))). If k � θ this implies repetitions
between models m′0,m

′
2, . . . ,m

′
k−1.

Widening via θ, k-neighborhoods is presented in Figure 4.3.
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Figure 4.3: θ, k-neighborhood Widening.

4.5 Optimality Neighborhoods

Widening via optimality neighborhoods is an attempt to emulate the Top− k Widening
in a communication-less manner. Its goal is to decrease the "greediness" of a heuristic
by considering the �rst, second and so on choices, instead of only the greedy choice. In
this type of neighborhoods, the metric is de�ned as a distance from the quality score ψ of
the locally optimal model. We will discuss the properties of the Widening via optimality
neighborhoods in Chapter 5. The size of the neighborhood serves as a constraint how
much drift away from the locally optimal solution is allowed. Widening via optimality
neighborhoods is similar to a randomized beam search, limited to picking k models at
random from the top kl candidates (branches). For very large k, Nk may stray too much
away from the locally optimal solutions in a randomized fashion, to be useful. For very
small k, just like the Top− k search, it can converge to a local optimum.

4.6 Similarity Neighborhoods

Similarity neighborhoods are k-neighborhoods where the metric d is based on a similarity
evaluation of particular properties of the models. Widening via similarity neighborhoods
explores solutions with properties similar to those of the greedy choice. Similarity neigh-
borhoods can be used in many di�erent scenarios. For problems where it is known that
the greedy algorithm leads to a good solution, exploring the area around the solution
of the greedy algorithm can help to discover the optimal one or solutions of even higher
quality. At the beginning of the search, a good strategy is to use diversity and explore

50



more of the search space. However, once good areas of the search space are discovered,
it is useful to explore these good areas in more detail in order to discover solutions of
higher quality (or even the optimal solution). This intensifying of the search in promis-
ing areas is referred to exploitation. An additional application is the so-called similarity
search. Many similarity searching strategies already rely on neighborhood-based greedy-
like approaches. In certain situations, one may need to discover many similar models
with certain properties, which perform well. Incorporating Widening via the similarity
neighborhoods to these strategies can further improve the results of these searches. For
more details about the properties of Widening via similarity neighborhoods, refer to
Chapter 5.

4.7 Diversity for Neighborhoods

In this section, we will discuss only the application of diversity to Widening via optimality
neighborhoods. Widening via similarity neighborhoods has a di�erent goal: the search
of a set of models that share similar properties, based on a given similarity measure.
Widening via optimality neighborhoods, in contrast, aims at exploring di�erent parts
of the search space and avoiding local extrema. Widening using (optimality) neighbor-
hoods alone does not guarantee diversity of exploration, due to the fact that similarity
neighbors can be also optimality neighbors in a given neighborhood. By building diverse
neighborhoods, consisting of optimal, yet diverse solutions, the parallel workers will be
forced to explore a larger part of the search space. We will show in Chapter 5 that
applying diversity locally leads to a globally more diverse exploration, without the need
for communication. This is experimentally demonstrated in Chapters 7 and 8.

Increasing the size of the neighborhoods and thus increasing the randomization of the
search, will not add diversity in the best possible way. The background distribution of
the search space may be such, that randomized search does not lead to exploring diverse
solutions. This, for example, can happen if the background distribution is strongly non-
uniform. This is why using diversity explicitly is preferred. Furthermore, taking into
consideration the performance of the models is also important. Using only diversity can
lead to exploring di�erent, but not necessarily promising areas of the search space.

4.7.1 Diversity Methods Inspired by Niche Genetic Algorithms:
Fitness Sharing and Crowding

In the �eld of genetic algorithms (GAs) converging too early to a local optimum, typically
because of insu�cient genetic variation, is very well investigated problem. A class of
approaches, called niching, are developed with the goal of maintaining diversity within
a population. This problem is very close to the problem one potentially encounters
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when widening a heuristic, without ensuring diversity. Without diversity, the widened
algorithm may explore similar, or equivalent search paths, which is similar to losing
diversity in the population in the scenario of genetic algorithms, and as a consequence,
converge to a suboptimal solution. The methods used for niching in the case of GAs can
be naturally implemented in our case. This section is based on [111] and describes how
di�erent niche approaches can be applied in the context of Widening.

Fitness Sharing

Fitness sharing[111] is one of the most prevalent niching approaches. It aims to promote
variety within a population with high �tness throughout the search, by forcing similar
individuals to share their �tness. The individual's �tness is negatively proportional to the
number of individuals in its niche, so the more common is an individual in a population,
the more its original �tness is degraded. The more common an element is (the more
similar to others), the more its original �tness is penalized.

In our context, we can look at temporary models generated at a given step as new
individuals in a population. We try to increase or preserve the variety in the population.
Fitness sharing can be applied to model fragments as well as to models (re�nements).
Given a set of model re�nements M = {m1, . . . ,mn}, a model quality measure ψ and
a metric d, a modi�ed model quality measure, based on ψ, which incorporates �tness
sharing, ψfsh is de�ned as

ψfsh(mi) =
ψ∑n

j=1 sh(d(mi,mj))
,

sh(d) =

{
1− ( d

σ
)α if d < σ

0 otherwise.

In this scenario, the parameter σ is a distance threshold, below which the models are
considered to be in the same niche. The parameter α controls how much is the original
model quality in�uenced by the niche count of a given model. This method indirectly
forces a neighborhood of an optimal re�nement m′ to consist of more diverse neighbors,
compared to the simple optimality neighborhood approach, because the quality of a
given model is evaluated based also on the "rarity" of the model, and not just its quality.
However, this approach allows no direct control over the diversity of selection, compared
to direct "individualized" preference modi�cation of each selection operator. Another
negative aspect of this method is that it is parameter-dependent, and good values for
parameters σ and α can be determined only experimentally. Additionally, this approach
has high computational costs. The bene�ts of this approach are that it is data-intelligent
and provides a full exploration of the re�nement sets and peak selections by building the
niches.
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Crowding Methods

Crowding methods maintain diversity by replacing similar elements with a new one. Var-
ious crowding-based approaches exist. We will consider the following crowding methods
and their application for diversifying optimality neighborhoods. In standard crowding
[39] only a percentage, called generation gap (G), of the total population, has o�spring
and dies in each generation. The new o�spring is produced by the operations of mutation
and mating. A subpopulation of size CF(crowding factor) is picked at random from the
total population and the individual most similar to the o�spring is replaced by the o�-
spring. O�spring are generated by mutation and mating. The individual, most similar
to the o�spring within a randomly drawn subpopulation is replaced by the o�spring.
In deterministic crowding [110], further improvement is introduced by a �tness-based
competition between the parents and o�spring and the parent is substituted only if its'
quality is lower.

How can we use the crowding approaches in generating diverse neighborhoods of
models? The parent-o�spring tournament is not applicable in the re�nement/selection
setting, because a re�nement is at least as good as the original model. The tournaments
that make sense in this context are competitions between the models, which are similar,
that is, from the same subpopulation (niche).

4.7.2 Diversity Using Simple Threshold. Diversity via Similarity
Neighborhoods.

In multi-objective optimization [144], there is rarely a solution, which minimizes all
functions at the same time. Therefore, one searches for Pareto optimal solutions, namely,
such solutions that cannot be improved in any objective without at the same time getting
a worse value for at least one other objective.

De�nition For a multi-objective optimization problem max(f1(M), f2(M)), solution
M
′
is said to dominate a solution M

′′
if fi(M

′
) > fi(M

′′
) and fj(M

′
) ≥ fj(M

′′
), where

(i, j) = (1, 2) or (i, j) = (2, 1). Adapted from [144].

In our settings, the multi-objective optimization deals with the diversity and optimality
of the solution set, max(∆,Ψ).

De�nition A solution M∗ ∈ M is called Pareto optimal, there does not exist any
solution, which dominates it. A Pareto front for a given a multi-objective optimization
problem comprises the full set of Pareto optimal solutions. Adapted from [144].

In order to build a diverse optimality neighborhood of the optimal model in a given
re�nement set M r, one can use a simple diversity threshold δ, based on a similarity
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measure. The corresponding set of solutions will be the set with the higher Ψ from
all possible sets of models, which ful�ll the diversity threshold δ. This set of solutions
will be a non-dominated solution from the Pareto front for Problem 3.3 in Chapter 3.
However, this set is non-dominated only locally, within the given re�nement set. In
contrast, the methods, which use communication, such as diverse Top − k, have access
to all k re�nement sets of the models, chosen on the previous step.

Instead of using a �xed threshold, which is data dependent, we can take another
approach for building such a locally non-dominated set. For a structured, data inde-
pendent strategy we can use the already de�ned similarity neighborhoods. We simply
want to use the combined information from similarity and optimality neighborhoods in
order to achieve our goal. One way to do this is to choose the best performing models
which do not belong to the same similarity k-neighborhood. In such a way, a diverse
neighborhood of models, which are both, of high performance, yet dissimilar in terms of
properties, is formed.

4.7.3 Diverse k-Neighborhoods versus Large k-Neighborhoods

Increasing the size of the neighborhood, relative to the number of parallel workers, is the
most trivial way to add diversity to the exploration. We will discuss this in more detail
in the next chapter. We will see that simply increasing the size of the neighborhood,
while runtime e�cient, does not lead to exploring diverse-and-promising solutions, but
leads to randomized exploration with results, worse than the one obtained by the greedy
algorithm. Diverse exploration aims at investigating all di�erent peaks in the search
space, which are promising solutions. This is achieved by building diverse neighborhoods
while taking model performance into consideration.

4.8 Widening using Neighborhoods versus Ideal

Widening

4.8.1 Neighborhoods and Reachability.

By de�nition, Widening via k-neighborhoods does not guarantee reachability since each
neighbor is assigned to only one parallel worker, but it can have multiple re�nements.
Of these re�nements, only the one assigned to the parallel worker in question will be ex-
plored. As Figure 4.1 shows, along the yellow re�nement path only the yellow re�nement
is explored, the others are not. In contrast, θ, k-neighborhoods guarantee reachability,
given su�ciently large k.
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4.8.2 Widening via Neighborhoods and Partitioning of the Search
Space

In the general case, partitioning of the search space is not achieved via Widening via
neighborhoods. However, choosing a behavior for the parallel workers locally (such as
to select good and diverse solutions), leads to obtaining results globally (reach many
promising peaks in the search space landscape). Using diversity neighborhoods we can
obtain diverse exploration without communication. More will be discussed in Chapter
5, which focuses on the properties of Widening via neighborhoods. The local methods
perform in practice, but in order to have guarantees for the properties of the solutions,
we need global approaches to diversity, as discussed in Chapter 6.

We will show in Chapter 5 that path-based partitioning can be achieved through
Widening via θ, k-neighborhoods and that it allows for reachability for each model. This
approach, however, leads to redundancy in the obtained solutions as well as exploring
multiple nonpromising solutions (which is the majority of the search space).

4.8.3 Widening via Neighborhoods and Diversity-driven Widen-
ing

Ideal diversity Widening was described in Chapter 3 as one where the parallel workers
pick a solution, which is a set that is non-dominated according to optimality and diversity.
Namely, a solution, which is part of the Pareto front for the multi-objective optimization
problem 3.3. Consider, diverse Top− k Widening with communication between parallel
workers. At each step from all the explored re�nement sets M = ∪r(mi) the method
is allowed to choose a set of models from the superset M . In contrast, Widening via
diverse neighborhoods approach is based only on selecting a non-dominated solution set
from the Pareto front for Problem 3.3 in each re�nement set. We will show in the next
chapter that introducing diversity locally in neighborhoods leads to increasing diversity
globally in the exploration, without the need for communication and how locally Pareto
non-dominated solution sets perform globally.

4.9 Mixed Strategies

As discussed, di�erent neighborhood approaches have di�erent applications due to their
di�erent properties. Widening via optimality neighborhoods, especially diverse neigh-
borhoods, is focused on exploration, looking for good solutions in di�erent parts of the
enormous search space. Widening via similarity neighborhoods aims at intensi�ed ex-
ploitation of a promising subspace of the search space. Both exploration and exploitation
can be combined. Namely, one can use an exploratory approach at the beginning of the
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search, and upon discovering good solutions, one can use exploitation by employing
Widening via similarity neighborhoods.

4.10 Complexity Considerations

A big issue of communication-less Widening via neighborhoods is the running time of
the methods and how it compares to the running time of the greedy heuristic. While not
having the communication overhead problems, in many approaches additional necessary
computations and/or preprocessing can a�ect the running time of the algorithm (in
some cases, greatly). The running time of the greedy heuristic depends on three main
operations: creating the re�nements, evaluating the created re�nements, and selecting
the best re�nement. The runtime complexity depends on the complexity of these three
operations, performed at each step, and on the number of steps l necessary to �nd
the solution. Widening via neighborhoods requires that each parallel worker builds its
neighborhood (of size θ). Depending on the type of the neighborhood, the complexity of
building such a neighborhood can be di�erent, but for certain greater than that of the
greedy algorithm.

4.10.1 Widening via Optimality Neighborhoods

For optimality neighborhoods, we need to do a sorting operation at each step, and we
need to �nd not just the best, but the θ best solutions. Data structures such as a priority
queue can help make the sorting more e�cient. Moreover, Widening via optimality θ-
neighborhoods requires preprocessing, which assigns θ labels to each model fragment,
which takes O(n) time. In the case of optimality θ-neighborhoods, the selection step
includes looking up the label for a given neighbor, which can be done in constant time.

Thus, Widening via optimality neighborhoods has a running time very close to that
of the greedy algorithm.

4.10.2 Widening via Similarity Neighborhoods

For Widening via similarity neighborhoods, the running time depends on the implemen-
tation chosen. Without special preprocessing, each parallel worker needs to "build" the
neighborhood of the locally optimal model at a given step on the go. Building a simi-
larity neighborhood requires n − l − 1 comparisons � at each step l the optimal model
re�nement needs to be compared with all other possible n − l re�nements and then θ
most similar model re�nements are chosen. The running time depends greatly on the
cost of calculating of the similarity measure used, and on the dimensions of the data,
as well as on the number of re�nements of a model at step l. In this approach, the size
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of the neighborhood does not in�uence the running time, because at each step all the
re�nements are compared to the optimal neighbor, and the θ most similar are chosen,
but the same number of comparisons are performed.

4.10.3 Widening via Diversity Neighborhoods

Adding diversity to optimality k-neighborhoods can potentially have a great impact on
the runtime, depending on the type of method used. Diversity neighborhoods built using
a simple threshold require that each new re�nement is compared to all the previously se-
lected re�nements. Thus, the threshold-based methods require the algorithm to perform
at least θ(θ−1)

2
comparisons at each step.

Moreover, the running time depends on the number of comparisons needed to be
performed, as well as the cost of evaluating each comparison. The cost of each evaluation
depends on the type of distance measure used, how expensive it is to calculate it, as well
as on the dimensions of the data. The number of comparisons depends on the size of
the neighborhood θ, and on the size of the diversity threshold δ, as well as on the total
number of possible re�nements at level re�nement l. A higher threshold will lead to
more comparisons (due to more models failing to satisfy the threshold requirement). A
larger size of the neighborhood will a�ect as well the number of comparisons needed. In
the worst case, for a very di�cult threshold δ, θ(n− l) comparisons need to be made at
each step, k times in parallel. As the neighborhood size increases, (n−l)(n−l−1)

2
(O(n2))

comparisons may need to be made at each step.

4.10.4 Number of Iteration Steps (l)

The runtime also depends on the number of necessary steps for each parallel worker to
�nd a good-enough solution. During Widening, some parallel workers may �nd su�-
ciently good solutions faster than the greedy algorithm, but some may do so slowlier.
The slowest parallel workers in Widening will do worse than greedy. This includes es-
pecially the diverse neighborhoods, where due to diversity many of the explored paths
will not be su�ciently good and may take a long time until they discover a satisfactory
model.

4.10.5 Preprocessing and Running Time

The preprocessing for similarity neighborhoods requires building for each model re�ne-
ment (|X| = n) a table with its θ most similar model re�nements. This will take O(n2)
comparisons to build. A O(nd + kn), where d is the dimension of the space of models.
After the preprocessing, the running time of Widening via similarity neighborhoods is

57



equivalent to Widening via optimality neighborhoods, the lookup for the k similarity
neighbors can be done in constant time.

Preprocessing using k−d trees or local sensitivity hashing and other methods, which
assign for each model fragment its neighbors at the beginning of the search, can be helpful
in improving the running time for both similarity and diversity-based neighborhoods.
Depending on the properties of the given problem, a di�erent approach may be bene�cial.

4.11 Conclusions

Widening via neighborhoods is a local communication-less approach to diversity-driven
Widening. It refers to assigning di�ered and/or diverse models from each re�nement set
M r = r(m) of a model m. The goal is to use this local behavior over each re�nement
set in the search space in order to achieve the desired global behavior of the parallel
workers. Depending on the type of metric used, as well as on the relative magnitude of the
number of parallel workers and size of the neighborhood, these Widening approaches have
di�erent properties. In Chapter 5 we investigate whether by locally enforcing a behavior
on the re�nement sets, a globally diverse Widening of the search can be achieved, without
the need for the parallel workers to communicate with each other. Di�erent types of
neighborhoods of the locally optimal model can be used. Furthermore, for each model,
the re�nement set of that model can be partitioned without the consideration of the
locally optimal model.
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Chapter 5

Local Approaches: Properties of

Widening via Neighborhoods for

Re�nement Operators of type 1

Parts of this chapter are accepted for publication as [89].

5.1 Search Space Graph GM

In this chapter we will refer to a direct re�nement simply as a re�nement. LetM be a
family of models, X be the set of model fragments inM, r be a re�nement operator over
M. We can useM and the re�nement operation r(·) to de�ne a graph GM(V,E), where
V is the set of vertices, and E is the set of edges, de�ned as follows: v ∈ V ⇔ v ∈ M
and ∀m,m′ ∈M,m′ ∈ r(m)∃e(m,m′) ∈ E.

A general re�nement graph is shown in Figure 5.1. Figure 5.2 demonstrates a Widen-
ing via neighborhoods in the graph GM. The properties of the Widening methods will
depend on the structure of the search space.

Clearly, GM is a DAG.

Each re�nement operator, which at each re�nement step for each temporary model
generates all possible re�nements by adding only simple model fragments, will be asso-
ciated with a re�nement graph G(V,E), in which each node at re�nement level l can
be reached by an equal number of paths. This will hold in the simplest case for mod-
els such as decision rules, item sets, where there models are unordered sets of model
fragments, as well as for decision tree algorithms, where there is hierarchy between the
model components, which build a given model.

Lemma 5.1.1 A re�nement operator, which at each step for each temporary model gen-
erates all possible re�nements by adding only simple model fragments, will be associated
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Figure 5.1: A general re�nement graph GM forM.

with a re�nement graph G(V,E), in which each node at re�nement level l can be reached
by an equal number of paths. Holds for algorithms like decision trees, decision rules,
association rules, the set cover algorithm, and others.

Proof Each model at level l can be reached by an equal number of paths, because each
model at level l can be built in the same number of ways. This follows from the fact
that the re�nement operation uses only simple model fragments.

5.2 The Search Space Graph as a Lattice for Family of

Models M with a Re�nement Operator r of Type

1

Di�erent types of re�nement operators exist, depending on their complexity. The type
of re�nement operator de�nes a particular structure of the search space.

De�nition LetM be a family of models, X be the set of model fragments inM, r be a
re�nement operator overM with the following two properties: only one model fragment
is added at a single re�nement operation, and the order, in which the model fragments
are added, does not matter. Namely, the set of model fragments {x1, . . . , xl} uniquely
de�nes a model m and ∀m′ ∈ r(m) : m′ \ m = x′, x′ ∈ X. We will refer to such a
re�nement operator r as re�nement operator of type 1.
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Figure 5.2: A representation of N o
k for k = 2 in the search space graph ofM.

We will discuss the search space properties for this most basic type of re�nement oper-
ators.

First, let us give a general de�nition of the mathematical structure lattice.

De�nition Let S be a set. We will call S a lattice, if there is a partial order on S,
in which each two elements have a unique supremum element and a unique in�mum
element.

A simple lattice, a graph for a family of models for re�nement operator of type 1 and
3 model re�nements, is presented in Figure 5.3.

Lemma 5.2.1 LetM be a family of models, with re�nement operator r of type 1. Then,
M,≤ de�nes a lattice, where ≤ is the partial order de�ned by r onM.

Proof Let X be the set of model fragments onM. ThenM, given that r is of type 1,
is the powerset 2X . It is a known fact that the power set of a set forms a lattice, and we
will show it below. First, we will show that each two nodes have a unique supremum.
Consider two models mi = {x′1, . . . , x′k} and mj = {x′′1, . . . , x′′l }. Then their supremum
is sup(mi,mj) = mi ∩mj. Their unique in�mum is inf(mi,mj) = mi ∪mj.

Lemma 5.2.2 Each node (model) at re�nement level l will be of size l and will have l
in-degrees.

Proof This follows from the de�nition of the re�nement operator of type 1.
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Figure 5.3: A search space graph, lattice, for M, where the re�nement operator is of
type 1 and the number of model fragments is 3.

Lemma 5.2.3 The lattice of the family of modelsM, LM is a distributive lattice.

Proof A lattice of sets, where the lattice operations can be given by set union and
intersection, is always distributive due to the properties of these operations.

In fact, for re�nement of type 1, the lattice is known as the power set lattice. It is
known that power set lattices are Boolean lattices, [143]. The opposite does not always
hold.

5.2.1 Example: Search Space Graph for the Set Cover Problem
(SCP)

Formal De�nition of the SCP

A detailed description of the set cover problem and the greedy algorithm and its Widening
is presented in Chapter 7. Here we will discuss it only brie�y in the context of the
re�nement graph GM of the search space. We consider the standard (unweighted) set
cover problem. Given a universe X of n items and a collection S of q subsets of X : S =
{S1, S2, . . . , Sq}. We assume that the union of all of the sets in S is X, with |X| = n:⋃
Si∈S Si = X. The aim is to �nd a sub-collection of sets in S, of minimum size, that

covers all elements of X. A model m in this setting is a collection of subsets, or a cover
C. The re�nement operator r(·) adds a single subset, not yet part of C, to C.
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The Lattice GM for SCP

At level l = 0 we have only the empty model G0 = {m0}, m0 = {}. At level l = 1 the
graph consists of each possible subset, provided by the problem. G1 = {s1, . . . , sj}, j = q.
The re�nement operator r(m) generates all possible re�nements, which consist of adding
a single subset to m, which does not yet belong to m. At level l the graph Gl will
consists of the models of complexity l (i.e. models containing l subsets). The paths
between nodes show the re�nement relationship.

This search space and its graph structure is useful for our approaches due to its
straightforward simplicity and good properties. First, each model at level l can be
reached via P (l, l) = l! paths. Second, we know exactly how many models there will be
at each level and how many models will contain a single item. The search space is the
power set lattice for n = |X|.

5.2.2 Example: Lattice of Single Rules

The graph for these search spaces is similar to the one described above. The model frag-
ments X in this case are the attribute tests (possible values for the particular attributes,
based on the data). The re�nement operation in this example consists of adding a single
attribute test at a given step. The graph of the hypothesis space, at each level l will
consist of hypotheses with l attribute tests, at level l = 0, G0 = {m0}. The number of
paths to each model in this graph will be P (l, l) = l!. The search space is a power set
lattice n = |X|.

5.2.3 Example: Lattice of Itemsets

In frequent item set mining, a dataset D containing a set of transactions is given. Each
transaction has a number of items, the set of all items is I. Frequent itemset mining
algorithm �nds all common sets of items, based on their support. The support of an
itemet i is the number of transactions, which contain i.

Lattice of Itemsets

In this setting, a temporary model is a collection of items. The goal of the algorithm is to
�nd all frequent itemsets, which have su�cient support (above a particular, user-selected
threshold). At each step, the re�nement operator generates all possible re�nements,
where a single re�nement is generated by adding a single transaction to a collection of
itemsets. The full search space graph for this problem is also a lattice. At level l = 0,
in the lattice is the empty itemset. The level l = 1 consists of all the itemsets of size
1, namely, all the possible elements of I. The next level, l = 2, of the re�nement graph
consists of all itemsets of size 2, and so on. In computer science, it is a well known fact,
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that the structure of the search space for this problem is a lattice, which is actually the
power set lattice for n = |I|.

5.3 Disadvantage of Widening via Neighborhoods

The drawback of Widening via neighborhoods originate from the method being without
communication and local. The lack of communication between the parallel workers
deprives them from the collaboration and synchronization which comes from sharing
information. The local methods de�ne the behavior of the parallel workers in each set
of model re�nements M r = r(m) individually (be it diversity, optimality or similarity).
One does not know how di�erent neighborhoods in di�erent re�nement sets relate to
each other. The parallel workers may reach the same solution via di�erent paths. As
discussed in Chapter 4, the goal is to use local behavior, which is based on the re�nement
set M r

i of each model mi, to achieve the desired global behavior of the parallel workers.

5.4 Performance of N o
k

N o
k Widening is a communication-less Widening strategy, which aims to explore the

search space by considering not just the locally optimal choice but to use also the k opti-
mality neighbors of the locally optimal choice in each re�nement setM r = r(m). It aims
to emulate in a communication-less way the Top − k Widening approach. In contrast,
Top−k Widening is a communication-heavy approach, which at a given re�nement step
selects the best k models from

⋃
M r

i =
⋃
r(mi), i = 1, . . . , k, where {m1, . . . ,mk} are

the models chosen at the previous step. Each parallel worker in Top − k has access to
each of the k re�nement sets at a given step, while each parallel worker in N o

k has access
only to one re�nement set at a given step.

It is important to see how these two methods compare to each other and whether
the communication-less Widening strategy can compete with the communication-heavy
Top− k.

Using optimality neighborhoods to achieve Widening follows the general approach
of the Top − k algorithm, to loosen the greedy property and to look not only for the
locally best, but also to consider the best k solutions without the necessity of using
communication between parallel workers. For k = 1, both methods explore the greedy
path, and will obtain the same results. We will study how the two approaches di�er for
a larger k.

First, let us compare Top− k and N o
k in terms of their search space exploration.

Lemma 5.4.1 Let mi,mj ∈ M be two distinct models, then the optimality neighbor-
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hoods of these two models can have at most one model in common:

|N o
k (mi) ∩N o

k (mj)| ≤ 1.

In fact, they intersect i� the two models belong to the same re�nement set mi,mj ∈ r(m).

Proof The statement follows from the lattice property. Every two nodes have exactly
one supremum and one in�mum. The in�mum can be a direct re�nement of both models
or a re�nement, reached by several applications for the re�nement operator.

Let us consider the arti�cially constructed Widening approach FullTop− k.

De�nition Given a model evaluation function ψ :M→ R, and models m1, . . . ,mk the
function sFullTop−k is de�ned as follows:

sFullTop−k(r(m1, . . . ,mk)) :=
k⋃
i=1

sTop−k(r(mi))

.

FullTop − k search is essentially a breadth �rst search with pruning to the �rst k
children of each already explored node (model). We will use FullTop− k to bound the
subspaces of the search space explored by both Top− k and N o

k and compare them.

Lemma 5.4.2 The following two conditions hold.

1. Top− k(M) ∈ FullTop− k(M).

2. N o
k (M) ∈ FullTop− k(M).

Proof Part one follows by design. More precisely, Top−k selects the best k models from
∪r(mi), i ∈ {1, . . . , k}. In the extreme, these are k models from the same re�nement set
M i = r(mi).

Part two also follows from the design: N o
k explores exactly a subset of the paths,

traversed by FullTop− k.

The relationship between Top− k, N o
k , and FullTop− k is visualized in Figure 5.5.

De�nition Given a family of models M with a re�nement operator r of type 1, we
de�ne randomized k-neighborhood Widening, Nrok, as optimality k-neighborhood Widen-
ing, where each member of a given k-neighborhood is selected by a parallel worker with
equal probability 1

k
.
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Instead of assigning a unique neighbor from a neighborhood to each parallel worker, each
model can be chosen with the same probability. For simplicity of calculations, we will
consider below that N o

k is implemented as Nrok.

De�nition Given a set of models M , and a model quality evaluation function ψ : M →
R we de�ne a performance-based distance dψ : M ×M → N as follows. For every two
models mi,mj ∈ M,ψ(mi) ≤ ψ(mj), let Mij be the set of all models m ∈ M such that
ψ(mi) ≤ ψ(m) < ψ(mj). Then dψ(mi,mj) = |Mi,j|. We de�ne that dψ(mi,mj) = 0 i�
i = j.

Lemma 5.4.3 Given FullTop − kl(M) with a graph GFT−k, for which the probabil-
ity distribution of reaching each model at level l, P l is uniform, and an model quality
function ψ, distance d. We impose a descending order, based on ψ, on {FullTop −
kl(M)}, ({FullTop−kl(M)})ord, so that ψ(mj) ≥ ψ(mj+1),∀j = 1, . . . ,max−1,max =
|{FullTop − kl(M)}|. Furthermore, this induces a descending order on the subset of
({FullTop − kl(M)})ord, ({(Nrok)l(M)}). Then for every three consecutive models in
the ordered set ({(Nrok)l(M)}), mi,mi+1,mi+2 ∈ ({(Nrok)l(M)}), i = 1, . . . , k − 2, on
average, d(mi,mi+1) = d(mi+1,mi+2).

Proof Letmax = min(kl,
(
n
l

)
. The number of all nodes at level l in the re�nement graph

GFT−k is at most max. Let X(1), . . . , X(k) be the random variables of the positions of
the chosen models by (Nrok(Ml)) from all models in the ordered set (FullTop−kl(M)) in
a decreasing order. For simplicity, among all the models in {FullTop−kl(M)}, letm0 be
the optimal model, and mmax be the model with the worst performance. Then all three
"gaps" d(mX(j+1),mX(j)) as well as d(mX(k),mmax) and d(m0,mX(1)) have expected value
of max

k+1
. Let E(X(1)|X(2)) be the expectation of the event of selecting X(1) which have

already selected X(2). Then E(X(1)|X(2)) = X(2)/2, because given X(2) = mi, X(1)
is equally likely to be any of the models from m0, . . . ,mi−1. Let X(2) − X(1) denote
the gap between the positions X(1) and X(2). Then E(X(1)) = E(X(2) − X(1)).
Similarly, given X(j) = i and X(j + 2) = p, mX(j+1) has equal probability to be any
of the models mi+1, . . . ,mp−1. Thus, E(X(j + 2) − X(j + 1)) = E(X(j + 1) − X(j)),
E(max − X(k)) = E(X(k) − X(k − 1)). It follows that all k + 1 gaps have the same
expected value. The total number of models at level l is max, so the expected value of
the gap size is max

k+1
.

5.4.1 The Graph, GFT−k, Generated by FullTop− k.

Let us consider the graph that consists of the model subspace explored by FullTop− k
until re�nement step l.

De�nition Let GFT−k be the graph generated by FullTop − k exploring the space of
models. Then the set of vertices V consists of the set of models explored by FullTop−k
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until re�nement level l. The set of edges E represents the relationship of direct re�nement
between the vertices. More precisely, e = e(mi,mj) ∈ E ⇐⇒ mj ∈ r(mi).

The graph GFT−k is a subgraph of the search space graph GM.

Lemma 5.4.4 The graph GFT−k is a directed acyclic graph (DAG). Moreover, each node
of GFT−k has k out-degrees.

Proof This is true by design.

Lemma 5.4.5 The Nrok Widening is equivalent to k independent random walks (per-
formed by the parallel workers) on GFT−k.

Proof Follows by design of Nrok. GFT−k contains every potential choice of Nrok and each
parallel worker chooses exactly one node (model) at each step.

Lemma 5.4.6 Let X, where |X| = n be the set of model fragments, re�nement operator
of type 1 r and letM be the family of models, de�ned by r,X. The graph GFT−k has at
most min(kl,

(
n
l

)
) nodes at level l.

Proof The number of models inM at re�nement level l is at most
(
n
l

)
, while the number

of di�erent models in the re�nement graph GFT−k is at most kl.

Probability Distribution Associated with GFT−k

The solutions of Nrok(M) at level l depend on the structure of GFT−k. Namely, it
depends on the intersections between the re�nement sets of selected models at each step
in FullTop − k, or, equivalently, on how many in-degrees each model-vertex has. We
know that at a given re�nement level, each pair of re�nement sets intersects at most
once. This follows from the lattice structure.

Let P l be the probability distribution for each node at level l to be discovered by a
random walk. At each level l, the probability pli for reaching a node ml

i depends on the
number of in-degrees to ml

i as well as the probability distribution P l−1. Let T be the
transition matrix associated with GFT−k.

Then,

P l = P l−1T.

This is demonstrated in Figure 5.4: the probability of reaching the purple, blue or
yellow node is two times greater than the probability of reaching the red node. Let us
consider several examples of Widening graphs and discuss the probability distribution
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Figure 5.4: A �gure representing the Widening via randomized neighborhoods as random
walks on the graph of models.

of reaching their nodes. Figure 5.6 presents two extreme examples GA and GB, as well
as a two more realistic examples GC , GD. In the �rst three examples, the probability
distribution at level 3 is uniform. In graph GD the probability distribution is strongly
nonuniform. In these di�erent cases of FullTop − k, Nrok performs di�erently relative
to Top− k. A uniform distribution P l makes the solutions {Nrok} uniformly distributed
across {GFT−k}.

Uniformly structured graphs lead to uniform P l, probability distribution of reaching
the nodes at level l. Very degenerate re�nement graphs, where P l is strongly nonuniform,
will make some nodes much easier to reach than others. The set of solutions will consists
of repetitions of some solutions and others may not be at all reached, some regions from
{GFT−k} will be overrepresented.

5.4.2 Ideal Widening Graph

Ideally, the Widening graph, GW will have the following properties:

• Each node in the graph is reachable with equal probability.

• Each path of the graph passes through promising good solutions of the search
space.

• At level l, the maximal pairwise diversity of the graph is equal to the maximal
pairwise diversity of the search space at level l. Namely, ∆max({Gl

W}) = ∆max(Ml).

• The minimal pairwise diversity is su�cient for the parallel resources not to be
wasted on similar solutions, ∆min({Gl

W}) > δ, for some appropriate δ.

• For a �xed ∆, the set of models, represented by nodes in {Gl
W} is the set of models

with the best Ψ among all sets of models, which satisfy the diversity requirements.
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This is in fact a non-dominated set of solutions (part of the Pareto front) for the
multi-objective optimization problem 3.3.

A graph with such properties will guarantee that random walks of su�cient number of
parallel workers through such a graph will explore the important solutions of the search
space. We will use diversity and diverse neighborhoods in order to achieve a Widening
graph with good properties.

5.4.3 Uniform Distribution in GFT−k.

The distribution of edges in GFT−k determines the probability distribution of reaching
each node of the graph. In Figure 5.6, GB and GC represent graphs with uniform
probability distribution for reaching nodes at each level and Graph GA has close to
uniformly distributed intersections. In Section 5.4.6, we discuss the relationship between
size of the neighborhood, k, and the probability distribution associated with the graph
GFT−k. Brie�y, for smaller k it is more likely that the graph is degenerate, due to the
higher chances of converging to local optima.

Lemma 5.4.7 Given, P l is uniform, the solutions discovered by Widening via Nrok,
{Nrok(M)} ∈ {FullTop − k(M)} are on average uniformly distributed among the so-

lutions {FullTop − k(M)}. Thus maxψ({(Nrok)l(M)}) will be on average at most kl−1

2

models away with respect to the model quality function ψ from maxψ({FullTop−kl(M)}).

Proof To begin with, let us consider each model discovered by {FullTop − kl(M)}
as distinct. There are kl models discovered by FullTop − k at level l, |{FullTop −
kl(M)}| = kl. Each of these models is reachable with equal probability by Nrok, since
each path traversed by FullTop− k is equally likely to be traversed by Nrok by design.
So assuming kl distinct models at level l in {FullTop− kl(M)}, each of the models has
equal probability of being chosen. From this follows that the k models discovered by Nrko
will be uniformly distributed among those kl models of {FullTop−kl(M)}. This implies
that the maxψ({(Nrok)l(M)}) will be at most kl−1 models away from maxψ({FullTop−
kl(M)}).

We expect that degenerate Widening graph structure, such as in GD from Figure 5.6,
typically happens for a small k, when FullTop− k is converging to some local optimum
in the search space. However, the larger the number of parallel workers k the more the
structure of GFT−k is closer to the structure of the actual search space. We know that
the search space forms a lattice and that each node for a given level l is reachable via l
paths.
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5.4.4 Widening Graph with Strongly Non-Uniform Distribution

This case can be related to the size of the neighborhood or a very unbalanced structure
of the data. If k is small, then many of the neighborhoods can have among their optimal
members the same models, which would represent converging to a local optimum. A
greater neighborhood would improve that. An alternative way to improve the structure
of the graph is through the use of diversity, as will be discussed in the later sections
of this chapter. However, this can also be related simply to the graph structure of the
particular search space and depends on the family of models.

Upper Bound for k

In the worst case,maxψ{Top−θ} = maxψ{FullTop−θ}. We want to have a quantitative
estimation how large does k need to be, so that we can guarantee Ψ({Top− θ(M)l}) =
Ψ({Nroθ,k(M)l}) in the worst case scenario, where Ψ({Top− θ(M)l}) = Ψ({FullTop−
θ(M)l}). In order to be able to guarantee that Ψ({Nroθ,k(M)l}) discovery of the best
solution discovered by Top− θ, k needs to be large enough to discover every solution at
level l. This is related to the number of paths in GFullTop−θ at level l. In Gl

FullTop−θ the
models at level l are at most θl.

Lemma 5.4.8 We assume an uniform distribution P of the edges in GFullTop−θ. For
k = min(θl,

(
n
l

)
), Nroθ,k explores fully the models explored by FullTop − θ at step l and

guarantees Ψ(Nroθ,k(M))l ≥ Ψ({Top− θ(M)l}).

Proof The graph GFT−θ is a DAG, where each node has θ out-degrees. At level l − 1
there is at most θl−1 nodes, so the total number of edges will be at most θl. So for
k = min(θl,

(
n
l

)
) we can guarantee that Ψmax{N o

k,θ
l} = Ψmax({FullTop− θl}).

In this worst case scenario, Top − θ discovers the best model from {FullTop − θl}.
Thus, a signi�cantly larger number of parallel resources are needed for the communication-
less Widening approach to be able to guarantee the same performance as that of Top−k
Widening. In order to avoid this degenerate situation there are several things to keep
in mind. First, this worst case is based on the assumption that Top − θ does discover
the optimal solution of the FullTop− θ, which is an extreme scenario. Second, a small
neighborhood size favors convergence to local optima, which is a big disadvantage es-
pecially for the communication-less method (although it is also a disadvantage of the
Top − k, as it will explore di�erent, but still similar solutions). Third, the utilization
of diversity can help avoid degenerate graphs. We will discuss the properties of diverse
neighborhoods later in this chapter.
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Figure 5.5: The arti�cial FullTop−k structure, that bounds and contains both, N o
k and

Top− k

5.4.5 Upper bound for Performance of Nroθ,k with Strongly Non-

uniform Distribution P l

Strongly non-uniform distribution is very disadvantageous for the N o
k Widening methods

in comparison to the Top − k approach. In the case, where the distribution is strongly
non-uniform, every model at level l needs to be reached, in order to be able to guarantee
performance close to that of the Top− k approach.

Lemma 5.4.9 Assume that P l(x) represents the probability for each model at level l to
be reached by a random walk on GFullTop−θ. Then, for k = 1

minP l(x)
parallel random walks

each model at level l will be reached on average.

Proof For k = 1
minP l(x)

on average the node reached by minimum number of paths will
be reached.

5.4.6 Size of Neighborhood and Probability Distribution, P l

Extremely degenerate graphs with strong intersections will more likely occur for small k.
For large k intersections will be close to uniformly distributed, as they will be representing
the structure of the search space. For small k these intersections represent getting stuck
at a local peak. Of course all of this depends also on the general structure of the search
space. We know that in our case the search space is a lattice with a known number of
edges to each node at each re�nement level. To deal with these degenerate graphs and
prevent the parallel workers from converging to a local optimum, we need to use diverse
neighborhoods, as they lead to a graph with properties closer to the ideal graph.

In the general case, the distribution of the solutions {Nrokl(M)} will depend on the
distribution of the intersections of the neighborhoods, or the structure of the graph. If
GFT−k is degenerate as in Figure 5.6 D, the solutions discovered by the random walks
will not be uniformly distributed. However, if the intersections are close to uniform, the
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Figure 5.6: Examples of Widening graph structures with di�erent probability distribu-
tions P l.

solutions' distribution will also be close to uniform among the solutions of {FullTop −
k(M)}.

By injecting diversity we can emulate a much larger neighborhood size and attempt
to build a Widening graph with desired properties that spans promising and diverse
regions in the search space in the search of the optimal solution.

We know that the re�nement graph in the case of a simple re�nement operator is a
lattice, in which each node at level l can be reached via l paths.

Lemma 5.4.10 Let {FullTop − kl(M)} = {ml
1, . . . ,m

l
p}, where ml

i, i ∈ {1, . . . , k} are
unique models, each repeated respectively n1, n2, . . . , np. As k increases, n1, n2, . . . , np →
n.

Proof Follows from the lattice structure of the search space.

The k models discovered by Nrko , will be uniformly distributed among those kl models
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of FullTop − k. This implies that the max({(Nrok)l(M)}) will be at most kl−1 models
away from max({FullTop− kl(M)}).

If we want to improve this result and improve the distance from max({FullTop −
kl(M)}), we need to use θ, k-neighborhoods.

5.4.7 Properties of θ, k-Neighborhoods.

We can �nd actually how many parallel workers are needed for maxscore{(N o
θ,k)

l(M)} to
be some distance from maxscore{Top − θl(M)}. Given the design of Nrok, to improve
its performance compared to Top − k, we need more parallel workers for a �xed size
neighborhood.

Lemma 5.4.11 Given a uniform distribution P l, for k = θl/p, the best solution discov-
ered by N o

θ,k is on average p models away from the best solution discovered by FullTop−θ.

Proof The solutions discovered by the parallel workers at step l, usingN o
θ,k, ({N o

θ,k)
l(M)}

are uniformly distributed among the solutions discovered by FullTop− θ. This follows
from claim 5.4.7. GFT−θ is the bound for Top − θ, and thus max{N o

θ,k} is at most p
models away in the graph GFT−θ from maxψ{FullTop− θ}.

5.4.8 Conclusion

The �aws of this method are similar to the �aws of Top − k, they are related to lack
of diversity among the solutions. However, due to lack of communication, the chances
of obtaining similar solutions are greater. Strongly nonuniform intersections between
the neighborhoods early on lead the search to focus on one area of the Widening graph.
This is also a potential �aw of Top − k. Both approaches bene�t from diversity, which
helps to broaden the search and prevent the exploration of very similar solutions. In
Section 5.6, we will demonstrate how diversity improves the property of the Widening
graph by making the intersections rarer and more uniformly distributed, which would
make the Widening graph one with desired properties. We will discuss both model-based
diversity, which deals with the lattice structure, and data-based diversity, which deals
with similarity/distance based on how models act on the data.
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5.5 Properties of Widening via Similarity Neighbor-

hoods

5.5.1 General Settings

De�nition Let d : M×M → R be a metric de�ned on M, let (d,M)n be a metric
space of dimension n.

Based on this metric we will de�ne a similarity k-neighborhood for each model m ∈M.
In this section, we want to investigate the properties of Widening via similarity neigh-
borhoods N s

k . However, due to the di�erent goals of this approach, we are interested
in di�erent aspects of the performance, compared to the optimality neighborhoods ap-
proach. N s

k will assign to each parallel worker a di�erent similarity neighbor. The goal
of N s

k is to explore some vicinity of the greedy solution with respect to a given simi-
larity measure. Widening via this type of neighborhoods can be used in exploitation
of the search, after a promising region is identi�ed. A question arises, whether we can
guarantee discovering the optimal solution within the area of exploration, or how far
away will the solutions be from the optimal solution within the area of exploration? Let
MNs

k = {m1, . . . ,mk} be the �nal set of solutions of models of N s
k . We are interested

in how much these models diverge at level l. In order to answer this question, we need
to know how the parallel workers implementing Widening via similarity neighborhoods
behave in relation to one another. Namely, we are interested in what the size of the
explored interval is, and in the distribution of the models, discovered by the parallel
workers within this interval in relation to each other. We need to know two aspects: (i)
the interval that Widening via similarity neighborhoods covers at level l, and (ii) the
distribution of the models, reachable by N s

k , within the interval. It is important to note
that in a metric space, without a de�ned norm, there is no absolute position of a model,
but only a pairwise distance between two models.

First, we will remind the following concepts of the metric spaces.

De�nition A subset S of a metric space (M, d) is bounded if it is contained in a ball
of �nite radius, i.e. if there exists m ∈ M and r > 0 such that for all m′ ∈ S, we have
d(m,m′) < r.

Taking advantage of the notion of similarity, we can assume that very similar mod-
els have very similar properties. Namely, for each small neighborhood of size δ, the
models are of similar performance and their optimal re�nements are similar. First, we
will investigate the behavior of the models in the small neighborhood δ, in which we
assume similarity of the properties leads to similarity of performance. Initially we will
be interested in θ = δ.
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Condition 5.5.1 We shall assume that models within a small similarity neighborhood
with radius δ

2
have similar quality. Namely,

d(mi,mj) ≤ δ ⇒ |ψ(mi)− ψ(mj)| < λ,

for a small λ.

Remark This assumption is not unrealistic, commonly for small enough δ the perfor-
mance of the models is similar.

The next assumption limits the size of the neighborhood distance-wise for a very
small number of neighbors.

Condition 5.5.2 We shall assume that for every re�nement setM r, a neighborhood with
diameter δ contains p models for some small number p, and assume that the distances of
these models to the center of the neighborhood have some probability distribution f(x).

5.5.2 Re�nement Graph GNs
full

De�nition Let us consider the construct Nrsk, which assigns a parallel worker a model
from the neighborhood of the locally optimal model uniformly at random.

For simplicity of calculations, we will discuss Nrsk below instead of N s
k,k.

De�nition We shall introduce the arti�cial construct N s
full, which selects at each step

all k similarity neighbors of a locally optimal model.

De�nition We shall consider the graph GNs
full

, for which the set of vertices V represent
all models chosen by N s

full, and the set of edges E represent the re�nement relationship
between the vertices.

Lemma 5.5.3 GNs
full

is a DAG, where each vertex v ∈ V has k out-degrees.

Lemma 5.5.4 Nrsk can be represented as k independent random walks on GNs
full

.

In order to evaluate k, the number of parallel workers needed so that we can guarantee
that the best solution discovered by {Nrsk} is at most a certain distance from the optimal
model in an interval, we need to know the structure of the graph GNs

full
. Namely, we need

to know (i) how much GNs
full

diverges at a level l and (ii) the distribution of in-degrees

for each subinterval δ of the interval I l at level l. These two factors will determine
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the number of parallel resources needed in order to guarantee that the best solution
discovered is at most δ from the best model in I l.

For the Widening via similarity neighborhoods, the distance between the nodes mat-
ters. We are interested in the number of parallel workers we need to cover each subinterval
of size δ from I l. We are not only looking at in-degrees for each node from the graph,
but also at total in-degrees towards nodes for each subinterval of size δ of I l.

In order to evaluate how Nrsk behaves, we need to put (reasonable) restrictions on
how much can the optimal re�nements of two similar models di�er. Namely, given two
similar models neighborsmi,mj : d(mi,mj) < δ, we assume that there is an upper bound
on the distance between their optimal re�nements, d(m′i,m

′
j) < ε.

In particular we want to answer the question how many parallel workers are needed
in order to guarantee that the best solution m = maxψ(MNs

k ) will have performance
close to the performance of optimal solution maxψ(I l).

De�nition Given a family of modelsM, GNs
full

(M) is the Widening graph for Widening

via similarity neighborhoods N s
k . We de�ne I l as the interval, determined by the models

in Gl
Ns
full

(M). Namely, I l is the largest pairwise distance of the models in Gl
Ns
full

(M).

5.5.3 Divergence of I l

Condition 5.5.5 We shall impose the following condition. For models within a small
similarity neighborhood that 0 ≤ d = d(mi,mj) ≤ δ ⇒ d− ε ≤ d(m′i,m

′
j) ≤ d+ ε.

Lemma 5.5.6 Given a size of similarity neighborhood δ, at step l, the distance between
each two most dissimilar nodes of GNs

full
is at most l(δ + ε).

Proof We are interested in the size of I l at a given level l, or, equivalently, how much
each level of GFullNs

k
diverges. We will use the triangle inequality to investigate this.

De�nition Given three points x, y, z in a metric space, the triangle inequality is de�ned
as d(x, y) ≤ d(x, z) + d(y, z).

At level l = 1, consider a neighborhood Nδ/2(m0) of the optimal model m0S, i.e. all
models which are at most δ

2
from m0. For each pair of models mi,mj ∈ N δ

2
(m0), we �nd

with the triangle inequality for the metric that the maximum distance between mi and
mj is δ, d(m0,mi) ≤ δ

2
, d(m0,mj) ≤ δ

2
⇒ d(mi,mj) ≤ δ.

At level l = 2, again following from the triangle inequality, and from Condition 5.5.5
the maximal distance between a pair of models m2

i ,m
2
j is d(m2

i ,m
2
j) ≤ ε+ 2δ.

It follows that at step l the interval I l will be bound by l(δ + ε)− ε.
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While the metric space is su�cient to �nd an upper bound for the divergence of the
interval I l at a step l, in order to calculate the distribution of the paths towards di�erent
subintervals in the search space, we need to specify additional properties of the space,
because probability distributions look di�erently in di�erent types of spaces.

In order to evaluate more concretely the number of parallel workers needed, we will
add more speci�c requirements on the space (M, d). In the literature neighborhoods of
similar points are often modeled either by uniform or Gaussian distribution.

We will discuss one particular examples of normed spaces of models, which are ap-
plicable in our case� Euclidean space.

5.5.4 General Space

Given that in each neighborhood of size δ the probability distribution of the distance
of models from the center of the neighborhood is f(x), then at level l the probability
distribution of the distance of models from the center of the explored interval I will be
characterized by the convolution:

P l(x) = (P l−1 ~ f)(x).

In the general case, for any space, it is not clear how this convolution looks like, it will
depend on the properties of the solution space.

Most of the algorithms generate a space, which is discrete. In such a situation, the
distribution of models within the dispersion interval I l is calculated in the same fashion
as above.

The resulting probability distribution from the convolution is going to depend on the
properties of the hypothesis space. We will discuss an example using Euclidean space for
demonstration purposes, due to the convenience of calculations. This space is not a good
representation of the typical model space, which we are discussing. There are many types
of machine learning problems for which the models in the search space can be presented
as points in a discrete subspace of the Euclidean space or in the Euclidean space. The
hypothesis space of the algorithm backpropagation is the continuous Euclidean space.
Another example, similarity mining of association rules can use Euclidean distance as
a metric on the vector bit encoding of the rules, con�dence or other properties[134] .
In this situation, Euclidean distance is not optimal, because it does not capture a lot
information, but is commonly used.

5.5.5 Illustrative Example: Euclidean Space

For simplicity of calculations in this illustration, we will investigate how many parallel
workers are needed to cover I l in the context of Euclidean spaces, not just metric spaces.
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We will put additional restrictions for (M, d). Namely, we will assume that the models
from M can be presented as points in Euclidean space, and that distance d is the
Euclidean distance. Recall the de�nitions of Euclidean norm and Euclidean distance.
Euclidean norm is de�ned as

‖x‖ =
√
x · x =

(
n∑
i=1

x2
i

)1/2

. (5.1)

And the Euclidean distance between two vectors x = (x1, x2, ..., xn),y = (y1, y2, ..., yn) ∈
Rn is de�ned as

‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2 + ...+ (xn − yn)2. (5.2)

For illustration we will take a simple example. Consider that the family of models
M consists of simple rules of the type

x1 = v1 ∧ x2 = v2 . . . ∧ xi = vi → d.

The set of all possible attributes is A, |A| = n, and each attribute is numerical with
domain R. Then each rule can be presented as a vector in an Euclidean space Rn, based
on the values for each attribute, where the number of dimensions n is the total number
possible attributes for the rules. Then, the similarity between two rules is evaluated
based on the values of each attribute.

Each model is a n-dimensional vector, where for position i the value is either 0, if
this attribute is not added by the re�nement operator, or is the value of the attribute,
which is added by the re�nement operator. To generate a new re�nement of a model m,
the re�nement operator adds a model fragment, which is the couple (attribute, value).

First, let us look at the general case, where we impose no restrictions on the proba-
bility distribution of models in a neighborhood of diameter δ. We will see how we can
obtain the distribution of the models at level l.

Lemma 5.5.7 We shall assume a (continuous) distribution K(x, x′) for a �xed x′ is
the distribution of models in the neighborhood of diameter δ of the optimal choice of the
model at x′ and P l be the probability distribution of models (nodes of the graph GNsfull)
at level l.

Then

P l+1(x) =

∫
K(x, x′)P l(x′)dnx′.

Second, let us consider a more speci�c example. Let us assume that the models in each
neighborhood of diameter δ follow a di�erent Gaussian distribution.
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Condition 5.5.8 We shall assume that each small neighborhood of similar models δ(x)
follows a di�erent Gaussian distribution G(Σ(x′),M(x′))(x), where M is the center of δ
and Σ is the standard deviation of the Gaussian.

Then in the continuous case, we will calculate the distribution of models at level l as
follows.

Lemma 5.5.9 We impose Condition 5.5.8, then

P l+1(x) =

∫
P l(x′)G(Σ(x′),M(x′))(x)dnx′.

Note, if we want to model the neighborhood distribution in a discrete fashion, the same
principle applies. Instead of using integration, in this case a summation of the products
of the two functions is used.

Lemma 5.5.10 We assume Condition 5.5.8

P l+1(xn) =
∑
n′

Gnn′P
l(xn′)

xn is the discrete coordinate of the model, Gnn′ is a Gaussian for the coordinate xn −
M(xn′) with standard deviation Σn′, Gnn′ = GΣn′

(xn −M(xn′)).

For simplicity we assume that each neighborhood follows the same Gaussian distri-
bution Gδ(Σ,M).

Condition 5.5.11 We shall assume that models within a neighborhood of size δ follow
a Gaussian distribution Gδ(Σ,M), where M = (0, . . . , 0), Σ =

(
δ
6
; . . . ; δ

6

)
.

In this scenario we can apply convolution of two density functions multiple times in
order to calculate the probability density function P l for the distribution of models in
I l.

De�nition Given two functions f and g, a convolution of the two functions over Rn

(f ~ g)(x) =

∫
f(x− x′)g(x′)dnx′

Recall the de�nition of a Gaussian function.

De�nition A Gaussian function is de�ned as

G(Σ,M)(x) =
1√

2πΣ2
e−

(x−M)2

2Σ2 .
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The Gaussian function has very convenient convolution properties. We remind the fol-
lowing known fact.

Fact 5.5.12 A convolution of two Gaussian functions, G1(Σ1,M1) and G2(Σ2,M2) is a
Gaussian GG1~G2(Σ =

√
Σ2

1 + Σ2
2,M = M1 +M2).

Lemma 5.5.13 We impose Condition 5.5.11. The distribution of the models at level l
is

P l = P l−1 ~G(Σ, 0).

P l is a Gaussian with a standard deviation
√
lΣ, P l = G(

√
lΣ, 0).

Proof The probability distribution at level l depends on the probability density of the
previous re�nement level and the distribution of models in each similarity neighborhood
at level l. This is calculated as the convolution of the two functions.

P l =

∫
P l−1(x)G(Σ,M)(x)dx.

At step l Σl =
√
lΣ, this means

P l = G(Σl,Ml) = G(
√
lΣ, 0).

For simplicity, we model the distribution of the models in the small neighborhoods of
diameter δ in a continuous way. However, it can also be modeled using a discrete distri-
bution, such as the uniform distribution, which can be more appropriate. The resulting
distribution P l, however, will not be drastically di�erent. If the small δ neighborhood
is modeled by discrete uniform distribution, then via the central limit theorem, for a
large l the convolution of (P l ~ f)(n) will approximate a Gaussian distribution. In the
general case this is true for any distribution with �nite moments. How many parallel
workers do we need to cover the whole interval I l? Clearly, due to the fact that P l is a
Gaussian, the central part of the interval I l will be very easy to cover and will require a
small number of parallel workers and in order to cover the periphery of the interval I l a
much larger number of parallel workers.

The number of parallel workers needed to cover the interval I l given distribution
P l = G(M l,Σl) will depend on Σl =

√
lΣ. We know that δ

2
= 3Σ and that I = lδ = 6lΣ.

With this in mind, how many parallel workers do we need to cover I in such a way that
there is no interval of size δ without at least one model? Within two standard deviations
the number of δ neighborhoods is b

√
l

3
cn. Each neighborhood δ will be reached with a

di�erent probability, based on the Gaussian. The closest models to the mean m0 will be
the easiest to reach. Let

P (x1) = 1/pδ1 , P (x2) = 1/pδ2 , . . . , P (xq) = 1/pδq ,

where P (xi) = 1/pδi is the probability to reach the i-th neighborhood of diameter δ from
the mean m0.
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Theorem 5.5.14 Notation as above, let P l = G(M l,Σl) be the Gaussian distribution
of paths to nodes, and let the interval I l =

√
lδ = 6

√
lΣ. Then the number k of parallel

workers needed to cover each δ-sized subinterval of the interval I l is

k = pq,

where q = b
√
l

3
c.

Proof Let X be the event of having a parallel worker in each interval with diameter δ,
starting from the mean of the Gaussian (the center of I l), and then going towards the
edges of I l and let δ1, δ2, . . . , δl be the subintervals starting from m0. Each subinterval,
depending on its Z score has a di�erent probability to be visited by a random walk with
δ1 having the highest, and the farther the subintervals from the center, the more parallel
workers are needed in order to have at least one model visited in that interval. In order
to guarantee that each δ neighborhood is visited, we need k = pδl−1

= pδl , where δl−1, δl
are the neighborhoods, which are farthest removed from m0.

Based on our goals, we can estimate how many parallel workers are needed to cover
di�erent parts of the interval I l. Di�erent δ-neighborhoods will require a di�erent number
of parallel workers based on their Z score,

Z =
X −M l

Σl
.

We know that Σl =
√
lΣ.

For example, consider the subinterval of I l, that is 1 standard deviation away from
the mean. The size of that subinterval is 2

√
lΣ. If we want to guarantee that at least

one model will be distance no greater than δ similarity-wise from the best model in the
region, we need k = p√l

3

random walks, where

1

p√l
3

is the probability to reach the most distant δ-neighborhoods within the subinterval
of size 2Σl, the edges of which are Σl away from the mean.

5.5.6 Shift ε

Condition 5.5.15 We shall impose that ε follows a Gaussian distribution Gε(M,Σ),

where M =

 0
. . .
0

, Σ =

 ε
. . .
ε

.
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Lemma 5.5.16 We impose Conditions 5.5.5,5.5.11, 5.5.15. Then the probability distri-
bution P l at level l is the convolution:

P l = P l−1 ~Gδ ~Gε.

Compared to the simple modeling without such shift, in this case the convolution
will result in a wider Gaussian for P l, which means that the Σl will be greater. Then
more workers will be required to cover the center of the interval I l, since the density will
decrease, compared to the previous scenario, but it will be easier to cover the subintervals
of I, which are away from the center. On an intuitive level: if the paths from the center
shift towards the border of the interval, then the distribution of the paths would be
wider and a larger part of the interval I l would be covered with fewer parallel workers.
However, with large shifts ε there is a danger that there is no coverage of I l by N s

k ,
because in reality there are a �xed number of models at each level, and this aspect
cannot be captured by using continuous functions. We will discuss this below.

Coverage of I l

In the previous section, we modeled the distribution of the models using a Gaussian
including the shift ε in order to see how the probability distribution P l changes as the
search progresses.

In reality, for some model families the search space is discrete. For others, such as
neural networks, it is continuous. If the search space is continuous, then regardless of
the shift ε, there will always be a large number of parallel workers, which will cover the
interval I l.

For discrete spaces, however, if there is a very large shift ε, which happens only in
one model and its re�nements, it can happen that {N s

k} does not cover I. The modeling
via a Gaussian does not capture such a situation. If there is an uncovered area in
I, regardless of how large is k, Widening via similarity neighborhoods is not able to
guarantee performance close to that of the best model from the interval I l.

Lemma 5.5.17 Given that there is coverage of I l, regardless of P l, there exists a large
enough k for which the Widening approach performs as well as the best model in I l.

Proof Follows from the de�nition of coverage.

Lemma 5.5.18 Assume Condition 5.5.2 holds. Then, for ε < δ
2
− δ

p
, I l will be covered

by {N s
full

l} for any l.

Proof By assumptions 5.5.5 if ε < δ
2
− δ

p
, two neighbors at level l = 2 cannot diverge

more than ε and thus will have at least one model m as a common model. At level

82



l these models/this model will have a neighborhood that is covering and the out-most
members of this neighborhood will be at most ε < δ

2
− δ

p
from the descendants of their

nearest members.

These numbers are based on our particular �xed assumptions and settings, but if ε
is relatively small compared to the size of the neighborhood there will be coverage of I l,
otherwise it cannot be guaranteed.

Note: This holds only if ε is small enough to guarantee coverage at level l by the
nodes of the graph GNs

full
, {Gl

Ns
full
}.

An Argument for Small ε

For two similar models a small value for the shift ε is to be expected, especially later in
the search. In a single re�nement step only a small part of the model is changed, so this
means that all re�nements of two similarity neighbors are not too di�erent. Intuitively,
the optimal re�nements of the two very similar models will be similar as well. This
depends on the particular data and search space and will not hold universally.

5.5.7 Conclusion

Widening via similarity neighborhoods is a parallel search that is focused on a particular
area of the space of models M. Following the assumptions, that similar models have
similar properties, this method investigates models similar to the greedy choice. We use
the assumption that similar models behave similarly, that their performance is similar,
as well as, that optimal re�nements of similar models are not dissimilar. This leads to
a predicable behavior in which the center of the interval I l has much higher density of
selection paths compared to the edges of the interval I l, which is due to many more
intersecting neighborhoods in the center compared to the number of neighborhoods to-
wards the boundaries. In order to cover the more central parts of I l much less parallel
workers are needed, compared to the resources needed to investigate the edges of I l.

5.6 Properties of Widening via Diverse Neighborhoods

The weakness of Widening via optimality neighborhoods is similar to that of Top − k
Widening, albeit potentially more exaggerated due to the lack of communication, which
prevents the removal of duplicated models. As already discussed, Top − k Widening
has the potential weakness of converging by exploring only similar solutions and needs
diversity to be enforced.

As we discussed the Widening via optimality neighborhoods can be represented as k
random walks on the graph of FullTop−k. Thus its behavior depends on the structure of
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this graph. If the distribution of the number of paths reaching a given model is strongly
non-uniform, the behavior of the random walks will also be non-uniform.

The goal of Widening via diverse neighborhoods is to force the parallel workers to
explore diverse and promising parts of the search space in a way that does not require
communication between the parallel workers. Both, model quality and model diversity
have to be taken into account when generating diverse neighborhoods. We show that
by using diversity we build a graph closer to the ideal Widening graph, compared to
the Widening graph GFT−k. By applying diversity approaches, we intend to build a
Widening graph that spans all important high-quality regions of the search space graph
and discover the optimal solutions in those regions.

5.7 Types of Approaches to Diversity

In this section, we will systematize the di�erent approaches to diversity that one could
take and discuss their disadvantages and advantages.

5.7.1 Model-based versus Data-based Diversity

Model-based diversity is evaluated based on the model fragments used by each model,
data is not taken into consideration when evaluating this type of diversity. Model-based
diversity deals with the distance between two models within the re�nement graph G.

On the other hand, in the approaches that use data-based metrics, the distance
between the models is evaluated based on how the model acts on the data. Given the
re�nement operator is of type 1, for the models in a �xed re�nement set, each pair of
models has the same model-based distance, since they di�er in one model fragment.
However, they may have di�erent data-based distances.

5.7.2 Global versus Local Diversity

A local approach to implementing diversity deals with enforcing diversity only within
each neighborhood. In contrast, the global diversity approaches use such an approach
to diversity that enforces it globally for the parallel workers.

An example of local diversity is to enforce a diverse selection in each re�nement
set. Regardless what the models are, from a given re�nement set the parallel workers
are assigned a diverse subset of models. However, if one parallel worker is choosing
from one re�nement set and another parallel worker, via its re�nement path is choosing
from a di�erent re�nement set, they can choose the same model, or very similar models.
Widening using diverse neighborhoods is a local approach. The strength of the local
diversity approach is that it is easy to implement in a communication-less fashion, while
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following the greedy logic of the algorithm and taking into consideration the performance
of the models selected at each step. The main issue with regards to local diversity
approaches is: Does the locally diverse behavior lead to the parallel workers
exploring di�erent parts of the model search space globally?

A global approach to diversity de�nes such a behavior that guarantees that globally
each parallel worker will choose a di�erent model no matter what. In this approach the
problem is rigidity and the fact that due to this rigidity it is di�cult to incorporate the
performance of the models together with the diversity. Examples of a global approach
include assigning preferences directly to certain model fragments, i.e. each parallel
worker prefers certain model fragments, ban lists on certain model fragments, i.e. that
some workers are not allowed to choose certain model fragments, preferences to particular
data points, and others. The di�culty of this approach is assigning such preferences or
bans in a good way.

5.7.3 Local Approach using Data-based Diversity. Widening via
Diverse Neighborhoods

Note 5.7.1 Widening via diverse neighborhoods is possible only using data-
based diversity, because the diverse neighborhoods are built only from models
from the same re�nement set, which di�er by just one re�nement.

Note 5.7.2 For models, built by the re�nement operator of type 1, the data-
based diversity between the model re�nements (or the respective model frag-
ments) needs to be recalculated at every step.

There are two important aspects we need to investigate when it comes to the prop-
erties of Widening via diverse neighborhoods. The �rst is: Does the local use of
diversity lead to globally diverse behavior? Namely, does the diversity in neighbor-
hoods improves the search space exploration in comparison with Widening via optimality
neighborhoods. The second is: How does Widening via diverse neighborhoods, a
communication-less method, compare with diverse Top− k?

Let d be a data-based metric, and (M, d) be the metric space, de�ned by the metric
d and the family of modelsM. As discussed in Chapter 3, the models selected are part
of the Pareto front, consisting of the best solutions of the multi-objective optimization
problem described in 3.3. The diverse k-neighborhood Nd

k of a model m is formed by
selecting the k best diverse models, a Pareto non-dominated set from a re�nement set
M r = r(m). At both extremes of dominant solutions are the k models with highest opti-
mality, which maximizes Ψ(m1, . . . ,mk) and the k most diverse models, which maximize
∆(m′1, . . . ,m

′
k). Typically, it is bene�cial to use sets of solutions that do not fall in both

extremes of the front. Depending on the structure of the search space, di�erent strate-
gies can be the most bene�cial: ones that give more importance to the optimality, and
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those which give more importance to the diversity. The relative importance of diversity
versus optimality is di�cult to determine apriori, the optimal strategy will depend on
the landscape of the model space. But this is the issue that the Widening methods, with
communication also face.

We de�ne Top − d, k, the diverse version of Top − k as an approach, which, given
models m1, . . . ,mk selected at step l − 1, at level l selects a non-dominated set with
respect to diversity and optimality, of k models from ∪{r(m1), . . . , r(mk)}.

De�nition Given that a set of k models {m1, . . . ,mk} is selected at level l−1, then Top−
d, k selects at level l the non-dominated set of k models {m′1, . . . ,m′k} from ∪ki=1r(mi),
from the Pareto front of multi-objective problem, described in 3.3.

In contrast, Nd
k builds a non-dominated set of k models for each re�nement set

r(mi), 1 ≤ i ≤ k, because it is a communication-less approach. Below we give a formal
de�nition.

De�nition LetM be a family of models, let r be a re�nement operator of type 1 over
M, let d be a data-based metric. We introduce the diverse k-neighborhood Nk

d of a model
m ∈ M as follows: Nd

k = {m′1, . . . ,m′k}, where m′i ∈ r(m), 1 ≤ i ≤ k, where the set
{m′1, . . . ,m′k} is a non-dominated solution set with respect to diversity and optimality,
for the problem described in 3.3.

5.7.4 Pareto Front, Types of Diverse Neighborhoods

The diverse neighborhoods Nd
k can be built using di�erent approaches. The non-domina-

ted set of solutions can be chosen in various ways, e.g. via simple threshold, or by using
methods from genetic algorithms, as described in the previous chapter. Depending on
the goals of the search and the structure of (M, d), di�erent approaches will be bene�cial.

We describe two examples of Widening via diverse neighborhoods which di�er in the
way the non-dominated set is selected from a given re�nement set M r.

The Widening approach N δ
k chooses from a given re�nement set the k optimal models

that are at least a distance δ from each other.

The Widening approach N lp
k is focused on detecting the k best local peaks. A model

m belongs to the k dominant solutions, if it is a local peak, i.e. it has among the k-th
largest distances to the model that is of the same or better quality.

We also discussed that approaches, inspired by genetic algorithms, such as crowding
and �tness sharing, are also used for peak detection, and choosing models from di�erent
sub-populations, taking into account both, diversity and optimality.
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5.7.5 Widening Graph of Diverse Neighborhoods.

De�nition Let M be a family of models, r a re�nement operator over M, and Nd
k

a Widening approach via diverse neighborhoods. We introduce the arti�cial construct
FullNd

k , which at each step selects all the models which could potentially be selected by
Nd
k . We will de�ne Nd

k inductively. For the base model m0, Nd
k (r(m0)) ⊂ FullNd

k (M).
For mi ∈ {FullNd

k (M)}, Nd
k (r(mi)) ⊂ FullNd

k (M).

De�nition Let m be a model in the family of models M, with a re�nement operator
r. Nrdk is an operator that de�nes randomized diverse neighborhood Widening, which
assigns a model from{Nd

k (r(m))} to each worker at random, with equal probability.

Lemma 5.7.3 Nrdk(M) ⊂ FullNd
k (M), Top− d, k(M) 6⊂ FullNd

k (M).

Proof The fact that {Nrdk} ⊂ {FullNd
k} follows by de�nition. We will show that there

can exist a model m, m ∈ {Top−d, k}l, m /∈ {FullNd
k}l. If the model m ∈ {Top−d, k},

this implies that m is a member of the non-dominated set of solutions from ∪M r
i , i ∈

{1, . . . , k}. Let the model m be a member of the re�nement setM r
j for a �xed 1 ≤ j ≤ k.

However, the model m ∈M r
j may not be a member of the local non-dominated solution

onM r
j , m /∈ Nd

k (M r
j ). If a model m ∈ Top−d, k(∪M r

i ) is not selected by Nd
k , this means

that there is another modelm′ in the same re�nement set(s) asm, so that ψ(m′) > ψ(m).
This model m′ is dominant locally, but is not dominant globally. This can be only due
to diversity. For a set of models M r

i , for a �xed 1 ≤ i ≤ k, m,m′ ∈M r
i there is another

model m′′ : ψ(m′′) ≥ ψ(m′), d(m′′,m′) < δ.

Issues with Widening via Diverse Neighborhoods

The problem of Widening with diversity neighborhoods stems from the use of diversity
locally, only within a given re�nement set, without communication between the parallel
workers. There is no information about the full landscape at a re�nement level, and
because of the use only of local re�nement set information, each can potentially select
the same or similar diverse models for their neighborhoods. Consider a local peak mlo /∈
∪Nd

k (M r
i ), but mlo ∈ Top − d, k(∪M r

i ). This can happen only if models for given
re�nement sets are better than mlo, however to be selected globally this peak must be
one of the optimal peaks in the respective re�nement set as well, thus there are peaks
in other re�nement subsets that dominate (are better in performance and close to) over
the preferred peaks. The only way local approaches can handle such models that are
too similar, but are from di�erent re�nement sets/neighborhoods, is to remove their
predecessors at a previous re�nement step.

De�nition We de�ne the graph GFullNd
k
, for which the set of vertices V represent the

models visited by FullNd
k and the edges E represent the re�nement paths between these

models.
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Lemma 5.7.4 Nrdk is equivalent to k random walks on GFullNd
k
.

Proof Follows from the de�nitions of both Nrdk and GFullNd
k
.

Diversity and Size of Neighborhoods

We can see in the experimental chapters, Chapter 7 and Chapter 8, that just by increasing
the size of the neighborhood, we do not get improved solutions. There are two aspects to
the size of neighborhoods in Widening via neighborhoods. First, simple randomization
does not necessarily imply improvement of diversity, due to not knowing the background
distribution of the models. It is necessary to enforce diversity directly, when selecting
models. Second, just relying on diversity does not lead to exploration of the interesting
areas in the search space and to a good set of �nal solutions. This is because if there is
no requirement for optimality, but just for diversity, this does not lead to solutions with
good quality.

5.7.6 The Goal of Diverse Neighborhood Widening

Even though the full search space exploration will guarantee the discovery of the optimal
model, it is enormous and typically the vast majority of models in such a search space
consists of "bad" and "unimportant" models. Thus it is usually not practical to do such
full exploration.

Utilizing diversity, with or without communication, is a way to explore the (poten-
tially) meaningful parts of the search space and approximate the results of a full explo-
ration, by carefully selecting which parts of the search space to explore. Diversity-driven
exploration is, in essence, preserving paths in the search space that contain important
information and pruning the re�nement paths that contain no important information.
This includes poorly performing models, as well as, models that are highly similar to each
other. At level l, Widening methods with and without communication aim to preserve
the important information ofMl � the models, which are diverse and perform well. Both
methods, Top− d, k, the one with communication, and Nd

k , the one without, aim to �nd
the k most "important" models of ∪(M r

i )l, 1 ≤ i ≤ k. However, Nd
k has only access to

each re�nement set separately, and has to choose the dominant models locally from each
set, which adds an additional restriction. Both methods work under the assumption that
models that perform well at level l− 1 will have re�nements that perform well at level l
and that models that are similar at level l − 1 will have re�nements that are similar at
level l.

Neither of these methods can guarantee the selection of the non-dominated set of
models at each re�nement level of Ml for arbitrary k. However, Top − d, k performs
better due to building a non-dominated set of temporary solutions over ∪r(mi), i =

88



Figure 5.7: A �gure representing an intersection of two diverse neighborhoods in a single
model. At the next step the two parallel workers, which are considering this model will
produce two identical diverse neighborhoods. Because these neighborhoods are diverse,
their respective members are di�erent from the other members of the neighborhood.
Thus the repeated models (which are members of two identical diverse neighborhoods)
will be dispersed and not clustered in a single small part of the search space, which is
what can potentially happen in Widening via optimality non-diverse neighborhoods.

1, . . . , k, while Nd
k is building non-dominated solution sets locally, in each re�nement set.

The latter approach can lead to selecting a set of solutions which are locally, in every
neighborhood, non-dominated, but are not a part of the Pareto front in the union of the
re�nement sets.

Diversity-driven Widening with or without communication can only work under the
assumption that very similar models will have similar re�nement sets, while very diverse
models will have diverse re�nement sets. By removing very similar models at levels
1, . . . , l − 1 in diversity-driven Widening, the potentially very similar re�nements of
these models are removed at level l.

Condition 5.7.5 If d(mi,mj)� ξ for some large ξ, then ∆(r(mi), r(mj))� ξ. Models,
which are very di�erent, will have very di�erent direct re�nements. Models which are
very similar will have very similar direct re�nements. If d(mi,mj) ≤ ε for some small
ε, then the pairwise diversity of the set ∆(r(mi), r(mj)) ≤ σ for a small σ.
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Figure 5.8: A �gure representing an idealized graph GNd . The graph consists of diverse,
nonintersecting neighborhoods of non-dominated sets of solutions.

5.7.7 The E�ect of Using Local Diversity within Neighborhoods
on the Global Diversity of the Search

The ideal scenario, when diverse neighborhoods are used is shown in Figure 5.8, which
shows the ideal graph for Widening via diverse neighborhoods. There diverse neighbor-
hoods which do not intersect with each other are built in each step. However, this is not
realistic, because there is no communication between the workers, and the diversity used
is local diversity.

The realistic scenario for Widening via diverse neighborhoods, is to assume there
will be intersections, but that these intersections will be fewer than for Widening via
optimality neighborhoods, and will be more uniformly distributed, in comparison to
Widening via optimality neighborhoods. This graph is shown in Figure 5.9.

In order for the local diversity, used by a single parallel worker within a re�nement
set, to a�ect the diversity of the search, we need to impose some conditions (it is not
true in the general case). Namely, we need assumptions with regards to the set diversity,
∆, of the re�nement sets of two models, and the corresponding diverse neighborhoods,
de�ned on those sets.

Condition 5.7.6 Let mi,mj ∈M. Then ∆(r(mi), r(mj)) ∝ d(mi,mj).

Condition 5.7.7 Let mi,mj ∈M. Then ∆(Nk
d (r(mi)), N

k
d (r(mj))) ∝ d(mi,mj).

Only under such conditions, which entail that for very di�erent models their respec-
tive re�nement sets and consecutively their diverse neighborhoods will be di�erent, we
can claim that local diversity is translated into diversity of the solution, ∆max({FullN δ

k (Ml)})
at each level and it will be better than not implementing diversity.
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Figure 5.9: A �gure representing a realistic intersecting graph DNd . The intersections
are not representing an optimal peak, but rather happen in an uniform fashion.

5.7.8 Local Diversity of Models and Distribution of Paths in
GFullNd

k

We already argued that under some assumptions, locally implemented diversity within
each re�nement set, improves the diversity of the explored solutions in comparison to
not using diversity, but simply choosing optimal solutions.

In order to show that the graph GFullNd
k
is closer to the ideal graph compared to

GFT−k, just the dispersion of the nodes globally at level l is not su�cient. The second
important aspect is the distribution of number of paths, which reach each node in the
graph, we need that to be closer to uniform inGFullNd

k
with the help of diversity, compared

to GFT−k. The distribution of number of paths reaching each node at level l depends on
the intersections of the neighborhoods of di�erent re�nement sets.

Generally speaking, we claim that using diversity will lead to fewer intersections
between neighborhoods and the distribution of paths inGFullNd

k
will be closer to a uniform

distribution compared to simply using optimality neighborhoods without diversity in
graph GFT−k. We will impose certain conditions with respect to the neighborhood
intersections, which lead to rarer and more uniform intersections of paths and explain
why these conditions are reasonable.

First, the intersections of the re�nement sets of two models is proportional to how
similar they are.

Condition 5.7.8 Let mi,mj ∈M. Then |r(mi) ∩ r(mj)| ∝ d(mi,mj).

This can be transferred also to the diverse neighborhoods, de�ned over those re�nement
sets.
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Condition 5.7.9 Let mi,mj ∈M. Then |Nk
d (r(mi)) ∩Nk

d (r(mj))| ∝ d(mi,mj).

Imposing Conditions 5.7.8 leads to less neighborhood intersections overall. This is
due to the fact that maximal diversity as well as average pairwise diversity increases at
each step in the Widening Nrdk.

As we stated, we assume that if two models are distant, their re�nement sets and
the diverse neighborhoods built from these re�nement sets will be dissimilar. Then,
we can conclude that, if we have three dissimilar models m1,m2 and m3, they have
dissimilar re�nement sets dissimilar diverse neighborhoods, built from their re�nement
sets, Nk

d (m1), Nk
d (m2) and Nk

d (m3) are very dissimilar and have very few models in
common, if any, which follows from Conditions 5.7.8,7.6.4. We also assume that if S1,2,
S2,3, S1,2 are their respective intersections S1,2 = Nk

d (m1) ∩ Nk
d (m2),S2,3 = Nk

d (m2) ∩
Nk
d (m3), S1,3 = Nk

d (m1) ∩ Nk
d (m3), then S1,2, S2,3, S1,2 are also dissimilar from each

other.

Furthermore, as demonstrated in Figure 5.7, due to the imposed diversity within
the neighborhoods, the intersection of diverse neighborhoods are spread out instead of
clustered together, as it would be if diversity within the neighborhoods is not used.

Based on these assumptions, we claim that the overall distribution of paths in the
Widening graph GFullNd

k
will in the general case be closer to uniform compared to the

distribution of paths reaching each node in GFullTop−k, where diversity is not used. This
is because the intersections of the diverse neighborhoods are less than the intersections
of optimality neighborhoods and these intersections will be more uniformly distributed,
compared to the intersections of paths in GFullTop−k.

5.8 Search Space Partitioning andWidening via Neigh-

borhoods

As it was already stated, Widening via neighborhoods can be presented as random walks
on a particular neighborhood graph. Using diversity, we aim at building a graph GNd

k

which is as close to the ideal graph, described in 5.4.2, as possible. If the graph is built
properly, each node of the Widening graph at level l will be on a di�erent peak of the
search space landscape. If, the graph is built properly, the random walks on such a graph
can approximate search space partitioning, because each random walk will be exploring
a peak in the search space. Additionally, exploitation via Widening via similarity neigh-
borhoods can be added to the diverse Widening graph, in order to �ne-tune the search in
promising areas. Namely, using Widening via similarity neighborhoods, we can addition-
ally explore the vicinity of the already discovered set of models with high diversity and
high model quality and obtain further improved solutions. This again can approximate
a search space partitioning, if di�erent groups of parallel workers are assigned promising
peaks in the landscape.
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5.9 Conclusions.

In this chapter, we demonstrated the weaknesses and valuable properties of Widening
using neighborhoods. Widening via optimality neighborhoods can emulate Top − k
Widening, without the necessity of communication, for a large enough number k of
parallel workers. Widening via similarity neighborhoods can be used for exploitation of
promising areas of the search space, and for a large enough number of parallel resources
k, it can guarantee that the solutions discovered will be at most distance δ from the best
solution in this interval.

With Widening via neighborhoods, we aim to build a graph, which explores all the
important areas of the search space. By "important" we refer to di�erent peaks in the
landscape of the space of potential solutions, as described in 5.4.2. Although, Widening
via diverse neighborhoods cannot guarantee that an ideal graph will be built in the
general case, the graph generated by this method is closer to the desired one than that
generated by simple Widening via optimality neighborhoods. Using local diversity by
Widening via diverse neighborhoods leads to greater maximal and average diversity of
the explored solution set ∆max and ∆avg, respectively. It is important to note, that each
of the discussed graph structures of the neighborhood-based methods, contain the greedy
path.

The �aws of Widening via optimality neighborhoods, just like those of Top−k, are re-
lated to converging to a local optimum. Widening via diverse neighborhoods tackles this
problem and by introducing diversity locally via neighborhoods, leads to globally diverse
exploration. Furthermore, due to the properties of diverse neighborhoods the intersec-
tions between di�erent neighborhoods will happen more uniformly, the distribution of
paths P l will be more uniform in comparison to Widening via optimality neighborhoods.
In order to be able to make stronger claims for the properties of the diverse Widening
graph, we need to use global diversity approaches which do not only focus on each re-
�nement set separately. A global approach to diversity will guarantee diverse behavior
of the parallel workers in the search space without the necessity of communication.

We will discuss global diversity approaches in Chapter 6.
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Chapter 6

Global Approaches: Partitioning of the

Search Space Lattice for Re�nement

Operators of Type 1 and Widening via

Global Diversity

6.1 Global Model-based Diversity and the Lattice

Structure LM

In this chapter we will refer to a direct re�nement of a model as a re�nement. Global
diversity approaches are based on de�ning individualized preferences for the parallel
workers towards speci�c model fragments. These approaches can be model-based or
data-based. Unlike the local approaches to diversity, where models are assigned diverse
preferences. However, these assignments are valid only in a given re�nement set. The
global approaches assign diverse preferences, which apply to the whole search space,
regardless of the step or the particular re�nement set. For example, if parallel worker
wi will never select a set of model re�nements Mwj that will for sure be selected by wj,
the models discovered by these two workers are at least a distance d = |Mwj |, where d is
the Hamming distance with respect to model fragments d(mi,mj) = |mi \mj ∪mj \mi|.
Global diversity does not su�er from the �aws of local approaches, where the parallel
workers are assigned diverse models but only valid within a given re�nement set. Within
two di�erent re�nement sets, two di�erent parallel workers can be assigned very similar,
or the same model. The drawback of the global approach is rigidity. It is in�exible since
the preferences of each parallel worker are assigned prior to the search irrespective of
model performance. This can lead to the search not discovering good or optimal models.
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6.2 Global Diversity

In contrast to the local approaches of Widening via neighborhoods, approaches based on
global diversity are based on assigning preferences to parallel workers, which are valid for
the whole search space, and not valid only within a given neighborhood. An example of
global diverse approaches was already discussed in Chapter 3, where di�erent preferences
(model and data-based) were assigned to di�erent parallel workers.

Proposition 6.2.1 Let models mi,mj be two models in the lattice structure LM and let
d = d(mi,mj) be the model-based distance between the two. Then the in�mum of the
models mi and mj, inf(mi,mj) is at d re�nement steps from the more general of the
two models.

This proposition helps us evaluate the potential intersection of the re�nement sets of two
models.

Corollary 6.2.2 Let mi,mj be two models in the family of models M. Then their
re�nement sets intersect nontrivially |r(mi) ∩ r(mj)| > 0 i� mi,mj ∈ r(m) for some
model m ∈M.

Proof Follows from Proposition 6.2.1 and the properties of the lattice.

It follows from Proposition 6.2.1 and Corollary 6.2.2 that if we know the distance
d between two models mi,mj we can guarantee that within a known number of steps
n(d) the re�nements r(mi), r(mj) do not intersect. We will look only at the Hamming
distance.

Proposition 6.2.3 Let X be a set of model fragments, and let Si ⊂ X, 1 ≤ i ≤ k, be
pairwise disjoint subsets of order |Si| = d. Suppose that for 1 ≤ i ≤ k each parallel worker
wi must look for the solutions, which contain the model fragments from Si and do not
contain model fragments from

⋃
j 6=i Sj. Then at level l ≥ d, the set of the corresponding

solutions {m1, . . . ,mi} satis�es d(mi,mj) ≥ 2d, 1 ≤ i < j ≤ k.

In order to use both diversity and performance, the above results should be combined
with the model performance. That is, for this type of diverse Widening to be successful,
it is important to look for the best models, which satisfy the diversity requirements. The
smaller the imposed minimal distance d, the closer the search of each parallel worker to
the greedy search.
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6.3 Drawbacks and Bene�ts of the Global Diversity

Approaches.

The biggest drawback of the global diversity approaches is their lack of �exibility when
assigning the di�erent forbidden/allowed model fragments because this assignment is
done without consideration of the model performance. Well-performing models can be
ignored due to rigid assigning of these preferences. However, given enough k and small d
the density of exploration of the search space at level l is su�cient to discover the good
models.

6.4 Tradeo� Between Diversity and Model Quality

Diversity requirements can be and should be, combined with selecting models of the
best possible performance. However, the stronger the diversity requirements, the more
rigid this approach, and the more di�cult it is to choose models with good performance.
Widening via global diversity can be combined with requirements for model quality by
using di�erent weight parameters for diversity and optimality:

α ∗ fc(m) + β ∗ ψ(m),

where fc(m) is a function, which evaluates how well the model satis�es the imposed
diversity requirements.

6.5 Symmetric Chain Decomposition and Widening

Widening, where the full search space is explored, is related to the problem of full
enumeration. For lattices, many approaches of full enumeration exist. We will describe
one approach, the properties of which make it very useful for Widening. First, we will
introduce important de�nitions.

De�nition Given a family of modelsM, and a re�nement operator r, which introduces
a partial order onM. We will refer to as antichain of size n the set of modelsm1, . . . ,mn,
where any two distinct elements are not comparable with each other. Namely, no model
is a re�nement of another model from the set (mi 6∈ r(mj)),∀i 6= j, i, j ∈ {1, . . . , n}.
Adapted from [58].

The following de�nition is common in order theory, but we adapt it to suit the context
of Widening.
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De�nition Given a re�nement operator r and a family of models M, we will call the
ordered set of models m1, . . . ,mn, where mi+1 ∈ r(mi), 1 ≥ i ≤ n− 1 a chain of models.
Adapted from [58].

De�nition Given a re�nement operator r and a family of models M, we will call the
ordered set of models m1, . . . ,mk, where mi+1 ∈ r(mi), 1 ≥ i ≤ k− 1 a symmetric chain
of models if |m1|+ |mk| = n and Adapted from [74].

De�nition Given a model familyM, and a re�nement operator r, we call an antichain
of models m1, . . . ,mn a maximal antichain, if it is an antichain and it is at least as large
as every other antichain. The width of a partially ordered set is the cardinality of a
maximum antichain. Adapted from [58].

Observation 6.5.1 In Ideal Widening, the �nal solution set of models should be an
antichain of models.

A very important result in lattice theory is Dilworth's theorem for decomposition of a
poset. We will use it for a lattice.

The theorem is quoted directly from [58].

Theorem 6.5.2 Dilworth's theorem:
Any �nite poset P = (X,≤) of width w can be decomposed into w chains. Furthermore,
w chains are necessary for any such decomposition. The width of a poset is equivalent
to the minimal number of the chains, necessary to decompose the poset.

The result of this theorem and multiple algorithms, associated with it, can be used
in Widening. The theorem is quoted directly from [74].

Theorem 6.5.3 Sperner's theorem:
The width of a Boolean lattice Bn is w =

(
n
dn

2
e

)
From this and the Dilworth's theorem, it follows that the maximal number of parallel

workers needed for full lattice exploration is
(
n
dn

2
e

)
, where n is the number of model

fragments because this is the width of the lattice, the re�nement level with the greatest
number of re�nements.

The de�nition is adapted from [58].

De�nition Chain decomposition is an approach, in which the lattice is decomposed into
non-intersecting chains of models.
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It is a known fact, that Boolean lattices have a special type of chain decomposition,
symmetric chain decomposition (SCD),[75]. This fact can also be used for Widening,
where di�erent chains can be assigned to di�erent parallel workers. Symmetric chain
decomposition is, in fact, a partitioning of the lattice into non-intersecting chains.

Below, we present the Greene-Kleitman rule [75] to grow a chain, adapted from [90].
It is based on the bit-vector encoding of the lattice, where each model is presented as
a binary vector of length n. The set of model fragments is ordered and each bit in the
bit vector encoding of the model corresponds to a model fragment, based on that order.
For each model, the value for a bit is 1 if the corresponding model fragment belongs
to the model and 0 if the model fragment does not belong to the model. View 1 bits
as right brackets and 0 bits as left brackets and in each vector, match the brackets left
with right following the usual rules for matching brackets. For example, in 010212110304

the �rst and second bit are left brackets and are matched with the fourth and third bit,
respectively, which are right brackets, or (()))) . A chain is grown by starting with a
vector with no unmatched 1. The �rst unmatched 0 is changed to 1 in order to get its
successor. Continue until a vector with no unmatched 0 is reached. For example,

0001→ 1001→ 1101.

An example of a symmetric chain decomposition of a powerset lattice is shown in
Figure 6.1. Greene and Kleitman showed in [75] that this rule gives a symmetric chain
decomposition of the Boolean lattice. The number of chains from such a decomposition
is always

(
n
dn

2
e

)
.

We know that each chain is uniquely determined by its �rst element, ( we will call it
head of the chain). The remaining problem is assigning the �rst element of each chain
to a unique parallel worker. This can be computationally intensive, which limits the
applicability of the approach.

Once each parallel worker reaches the head of the chain, it can use the chain generat-
ing a rule to grow its chain, without the risk of intersection with another worker's path.
Each model is reachable along these chains, so this is, in fact, the ideal partitioning of
the search space, that was de�ned as path-closed partition Widening in Chapter3. The
only issue is the load balancing because di�erent chains are of di�erent size. However, if
the number of chains is much larger than the number of parallel workers, and the chains
are assigned randomly to the parallel workers, then the workloads will be more balanced.

Observation 6.5.4 If each chain, obtained via SCD of the search space lattice is as-
signed to a unique parallel worker, this partitioning ful�lls the criteria of path closed
Widening, as described in Chapter 3, De�nition 3.1.1. Each chain is path-closed, and,
moreover, there is no intersection between the chains.

In fact, we can use the symmetric chain decomposition, to de�ne a set of perfect selection
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operators, but only if the search could start at the head of each chain. This however,
would require to generate each head and is very computationally intensive.

Note 6.5.5 We know how to recognize if a given model is a head of a chain � a head of
the chain is such an element, which has no unmatched 1's,[90].

We need to assign to each parallel worker a chain Ci (or more chains) and a path
from the empty model m0 to the head of the chain. Instead of generating the heads
of the chains, we want for each chain to be reachable by a parallel worker from the
empty model. We want that each chain is explored by a unique parallel worker, but
that to each chain we add a subpath from the empty model to the head of the chain.
Namely, at the beginning of the search, the search paths will have intersections until
each parallel worker reaches the head element of its chain. This will implement, what
was de�ned as approximate partition-Based Widening in Chapter 3, where there
is an intersection at the beginning of the search paths, but then as the search progresses,
there is no intersection. If the parallel workers are less than the number of chains, we can
assign several chains per parallel worker. To generate the necessary subpaths leading to
the chains' heads, we will use the following observation.

Lemma 6.5.6 Each �rst element of a chain (a head) can be reached only from another
�rst element of a chain. Namely, each �rst element of a chain is a direct re�nement
only to other heads of chains.

Proof Follows from the fact that a model can be a head only if it has no unmatched
1's. The direct re�nement operation �ips 0 to a 1 in some position in the bit vector So if
an element already has an unmatched 1, by having another 1 instead of an unmatched
0, the model cannot become a head of a chain, it will still have unmatched 1s.

We already know from Chapter5, that partitioning a direct re�nement set among
parallel workers is easy since each worker can be assigned apriori a di�erent model from
a given re�nement set. What is problematic is assigning di�erent models, when there
are several re�nement sets on a given level l, with common elements, as is the case in a
lattice. Each model on level l is reachable as a direct re�nement from many models at
level l− 1. We need to forbid the access to the heads at level l from more than one head
at level l − 1. We can accomplish that using a traversal order on the heads from level l
to be reached from the heads of level l− 1 as follows: The heads that can be reached by
head 1 from level l− 1 will not be allowed to be reached from any other head, the heads
at level l that can be reached from head 2 of level l− 1, but not from head 1 will not be
allowed to be reached from any other head, but head 2, and so on.

Lemma 6.5.7 Each head at level l must have at least l 0 bits before the position of its
last 1 bit. Its last 1 bit can have a position at least 2l or greater.
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Figure 6.1: A symmetric chain decomposition of a Boolean lattice of n = 4 by the Greene
and Kleitman method. The �gure is taken from [99].

Proof At level l, each model has l 1's in its bit vector. If it has less than l 0's before its
last 1 bit, then it has an unmatched 1 and cannot be a head of a chain.

De�nition Given a bit vector representation of a model m of length n, and let the
positions of the bits be numbered 0, . . . , n we will call the last 1 bit in the bit vector,
the bit with the greatest position number.

Lemma 6.5.8 If a head model at level l − 1 has its last 1 bit on position p ≤ 2l − 1
then its reachable heads are generated by 0-to-1 bit �ips at one from the bit positions
2l, 2l + 1, . . . , n. Each bit �ip generates a new head at level l. If p > 2l − 1, then the
0-to-1 bit �ips, which are used to reach the heads at level l are at positions p, p+ 1, . . . , l.

Proof We will show that in this way all elements with no unmatched 1s at level l are
generated from heads at level l−1. A head at level l−1 has l−1 1s, all matched. Then,
it has at least l− 1 0s. To have no unmatched 1s at level l there must be at least l 0s in
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the �rst p+ 2 positions, where p is the position of the last 1 bit. If p > 2l− 1 there is at
least one unmatched 0 before p and �ipping any bit after p will have a 0 bit to match. If
p < 2l− 1, then there will be an unmatched 0between p and 2l, which can be its match.
If p = 2l − 1 > 2l − 2 there is an unmatched 0 before p, which can be the match if the
2l bit is �ipped to 1.

Lemma 6.5.9 Flipping a �rst non-matching 0 to 1 in a head model, cannot create a
head.

Proof The �rst non-matching 0 bit is either the �rst bit of the head, or directly behind
a 1 bit. If we shift such a non-matched 0 bit, which is a �rst bit, to 1, there is no 0 bit
in front of it to match it. If we �ip a �rst non-matching 0, directly behind a 1 bit, it will
need to be matched by a 0 bit before the matching 0 of the 1 bit in front it. But since
it is a �rst matching bit, there is no such unmatched 0 in the front of it.

Theorem 6.5.10 Let models m1, . . . ,mm be all the heads at level l−1, and let p1, . . . , pm
be the positions of their last 1 bit. Let maxi = max(2l, pi + 1), i = 1, . . . ,m. Then if we
generate the n−maxi direct re�nements by �ipping each 0 bit in positions maxi,maxi+
1, . . . , n for each head mi, i = 1, . . . ,m we will generate each possible head at level l and
generate it exactly once.

Proof First, let us assume that a head at level l, mh, is not generated by the described
procedure. We know that mh is a direct re�nement of some model m

l−1
h in l−1, and that

ml−1
h is also a head (follows from lemma 6.5.6). Then, if the model ml

h is not reached
by the procedure above, it means that it was reached by �ipping a 0 bit with a position
p < max,max = max(2l, ph + 1), where ph is the position of the last 1 bit in ml−1

h . If
max = 2l, then ml

h has less than l 0 bits before its last positioned 1 bit, as it has l 1 bits
and the position of its last 1 bit is less than 2l. From lemma 6.5.7, ml

h cannot be a head.
Let max = ph + 1, then the head ml

h is reachable by a �ip of a non-matching 0, with
position p < ph. But then let us consider the model ml−1

r , which has a 0 bit at position
ph and 1 bit at position p. The model ml−1

r is a head, because the 1 bit at position p
is matched, and there is no other changes in the other 1 bits, they are still matched, so
it has l − 1 matched 1 bits, which means it is a head at level l − 1. But we know that
the last 1 bit in ml−1

r , positioned at the pr position, pr < ph. Then model mh can be
reached by ml−1

r , which follows the described procedure and thus is a contradiction with
the assumption.

Now we will show that via the described procedure, each head at level l is reached
no more than once from the heads at level l − 1.

Let us assume that mh was reached by two heads from level l − 1, following the
described procedure, ml−1

h and ml−1
r . Let us assume mh was reached from ml−1

h by a �ip
of the bit in position p1 and from ml−1

r by a �ip in position p2, w.l.g let p1 < p2. Let the
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positions of last 1 bits in ml−1
h and ml−1

r be ph and pr respectively. However, since both
of them reach mh by a di�erent bit �ip, p1 must be 1 for ml−1

r and p2 must be 1 in m
l−1
h .

Since p2 > p1, then in to reach mh, m
l−1
h a bit was �ipped, which was before the last 1

bit. So the procedure was not followed, which is a contradiction.

We will illustrate the procedure described above by a simple example.

Example Consider the Boolean lattice, for n = 5. In 01000, the last 1 is at position
2, so we can �ip the non-�rst unmatched 0s, after the last 1 bit, so positions 4 and 5.
Reaching all the heads at level l = 3 from the models from l = 2 can be done as follows:
01000→ 01010, 01000→ 01001, 00100→ 00110, 00100→ 00101, 00010→ 00011.

We will outline the following simple observations, which follow directly from the Theorem
6.5.10.

Observation 6.5.11 If a head model at level l−1 has its last 1 bit on position p ≤ 2l−1
then all its reachable heads are generated by 0-to-1 bit �ips at one from the bit positions
2l, 2l + 1, . . . , n. Each bit �ip generates a new head at level l. If p > 2l − 1, then the
0-to-1 bit �ips, which are used to reach the heads at level l are at positions p, p+ 1, . . . , l.

Let the subpaths to the head elements be represented as a sequence of bits to be �ipped.

Observation 6.5.12 If (x1, . . . , xq) is a path to a head, built, following the procedure
described in Theorem 6.5.10, then (x1, . . . , xq−1), (x1, . . . , xq−2), . . . , (x1) are also paths
to heads.

Observation 6.5.13 If (x1, . . . , xq) is a path to a head at levelq, built, following the pro-
cedure described in 6.5.10 and if xq > 2q then (x1, . . . , xq, xq+1 = xq+1), (x1, . . . , xq, xq+1 =
xq + 2), . . . , (x1, . . . , xq, xq+1 = xq + n− q) are also paths to heads. Else, if xq = 2q then
(x1, . . . , xq, xq+1 = xq+2), (x1, . . . , xq, xq+1 = xq+3), . . . , (x1, . . . , xq, xq+1 = xq+n−q−2)
are also paths to heads.

These observations help us generate the paths to the heads of the chains from the
empty model.

Example Let n = 6 At level 1 the head 000000 has no 1s, so each non-�rst non-
matching 0, when �ipped generates a head: 010000, 001000, 000100, 000010, 000001. The
subpaths are (2), (3), (4), (5), (6). At level 2, from (2) the bits that can be �ipped are at
the positions 4, . . . , 6, for {3} also 4, . . . , 6, for (4), 5, 6, and for (5) only the bit at posi-
tion 6 can be �ipped. So we have the following paths: (2, 4),(2, 5),(2, 6),(3, 4),(3, 5),(3, 6),
(4, 5),(4, 6),(5, 6). For l = 3, recursively, for the already existing paths (2, 4), (2, 5), (3, 4)(3, 5), (4, 5)
only the 0 in the position 6 can be �ipped, so the paths are (2, 4, 6),(2, 5, 6),(3, 4, 6),(3, 5, 6),(4, 5, 6).

We can use these observations to build the subpaths from the empty model to each
head, but for a large n it is very computationally expensive, due to the large number of
chains. We need an e�cient way to generate these subpaths.
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6.6 Conclusions

We know that for a particular type of families of models, the search space has a lattice
structure. We use this property to partition the whole search space among a �xed
number of parallel workers, as well as apply Widening approaches that guarantee model-
based diversity of the explored models. Global diversity approaches can provide global
diversity guarantees, unlike local approaches, discussed in the previous chapter. However,
the drawbacks are the rigidity of this approach, which follows the �xed assignment of
forbidden/allowed sets of model fragments. These assignments are done apriori and
do not take into account the performance of the models. This may lead to exploring
models that are not of good quality, especially when larger diversity is enforced. Global
approaches can also be data-based, but in that case, the lattice structure cannot be
applied.
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Chapter 7

Widening of the Greedy Algorithm for

the Set Cover Problem

This chapter is adapted from [86, 7, 88].

7.1 The Set Cover Problem

In this chapter, we will use the set cover problem (SCP) to illustrate the bene�ts of
di�erent Widening approaches. The set cover problem underlies quite a few data mining
algorithms, for instance when trying to �nd the smallest number of itemsets or rules,
which explain the data, �nding minimal explanations for patterns, in classi�cation, data
quality assessment, and in information retrieval, [29]. We apply the Widening approaches
to the greedy algorithm for SCP. We have already this algorithm in [7], [86], [88],[89]. to
illustrate the bene�ts of Widening.

7.2 Formalization of the Set Cover Problem

Because �nding an optimal solution for the SCP is NP-hard [98], a heuristic approach
is preferred: a greedy algorithm, which at each step selects the subset with the largest
number of uncovered elements, is widely used. This e�cient and simple greedy algo-
rithm was shown to perform perform surprisingly well in [91]. Namely, it guarantees
an approximation ratio of H(n), where H(n) is the n-th harmonic number and n is the
number of elements, which need to be covered.

We consider the standard (unweighted) set cover problem. Given a set X of n ele-
ments and a collection S of m subsets of X : S = {S1, S2, . . . , Sm}. We assume that the
union of all of the sets in S is X, with |X| = n:

⋃
Si∈S Si = X. The aim is to �nd a

sub-collection of sets in S, of minimum size, that covers all elements of X.
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7.2.1 Greedy Set Covering

The greedy algorithm [91] attempts to construct the minimal set cover in the following
way. It starts with the empty set being the temporary cover and at each step selects
and adds a single subset to it. The subset selected is the one which contains the most
elements that are not yet covered by the temporary cover. To be consistent with the
terminology previously de�ned: if C is the temporary cover, a re�nement generated by
r(C) represents the addition of a single subset, not yet part of C, to C. From all the
possible re�nements, generated by r(·), the one with the largest number of elements is
chosen as the new temporary cover (s(·) function). Algorithm 1 illustrates this procedure.

Algorithm 1: Greedy Algorithm for Set Cover Problem,
Data: collection S of sets over universe X
Result: set cover C:

⋃
S∈C S = X

C ← ∅;
repeat

Scurrent =
⋃
S∈C S

Sbest = arg maxS∈S {|S\S ∩ Scurrent}
C ← C ∪ Sbest

until
⋃
S∈C S = X;

return C.

7.3 Widened Set Covering.

7.3.1 Top-k Set Cover.

In contrast to the greedy algorithm, the Widening of the greedy algorithm builds k
temporary covers in parallel. The focus in this algorithm is to use resources to explore a
large number of re�nements in parallel. The number of parallel workers k is referred to
as the Widening parameter, or width. The choice of a value for the parameter k depends
on the available compute resources.

A single iteration of the widened algorithm then operates as follows. Let C1, · · · , Ck
represent the k temporary covers. A re�nement of Ci is created by adding a new subset
to Ci. For each Ci, the k re�nements which contain the largest number of elements,
are selected. This results in k2 re�nements in total. From those, the top k re�nements
are selected, resulting in k new temporary covers C

′
1, · · · , C

′

k. As we will see later, the
quality of the solutions will increase with larger k, due to more options being explored
in parallel.

Algorithm 2 shows the pseudo-code of the widened set covering. The standard it-
erative algorithm [91] follows a greedy strategy, which, at each step, selects the subset
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Algorithm 2: Top-k Widening of the greedy algorithm for SCP.
Data: collection S of sets over universe X, number of parallel resources k
Result: set cover C:

⋃
S∈C S = X

C1 ← ∅, C2 ← ∅, . . . , Ck ← ∅;
repeat

foreach Ci, i ∈ {1, . . . , k} in parallel do
/* r(·) */

Scurrenti
=
⋃
S∈Ci S

foreach j ∈ {1, . . . , k} do
Sbesti,j

= arg maxS∈S {|S\S ∩ Scurrenti
| : S ∈ S \ {Si,1, . . . , Si,j−1}}

Ci,j ← Ci ∪ Sbesti,j

/* s(·) */

C1 ← max{Ci,j} : i ∈ {1, . . . , k}, j ∈ {1, . . . , k};
. . .
Ck ← max{Ci,j \{C1, . . . , Ck−1}};

until ∃i, i ∈ {1, . . . , k} :
⋃
S∈Ci S = X;

return min{Ci}, i ∈ {1, . . . , k}.

with the largest number of remaining uncovered elements. Using the formalizations in-
troduced above, a single iterative step of the algorithm operates as follows: if C is the
temporary cover, a re�nement generated by rgreedySCP(m) represents the addition of a
single subset, not yet part of m, to m. From all of the possible re�nements, generated
by rgreedySCP(m), sgreedySCP picks the one with the largest number of covered elements
as the new intermediate cover. The quality measure ψ, used by the selection operator,
sgreedySCP , therefore simply ranks the models based on the number of elements they
cover.

7.3.2 Diverse Top− k Widening

Instead of selecting one locally best intermediate cover, the Top − k Widening of the
greedy SCP algorithm selects k best covers at each given step. To implement diversity, we
can use a simple threshold based on the Jaccard distance and enforce that the chosen k
intermediate covers chosen by the selection operator sTop−k,δ at each step have a minimum
distance:

d(mi,mj) = 1− |mi ∩mj|
|mi ∪mj|

.

(Each model m covers a set of elements, so we are interested in picking intermediate
models that are su�ciently di�erent.)
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7.3.3 Communication-less Widening.

Global Approach: Model-based Diversity.

Enforcing diversity without continuously comparing intermediate models is more di�-
cult. We can de�ne individual quality measures ψi, by enforcing di�erent preferences for
di�erent subsets. Given an intermediate coverm, ψi evaluates the re�nementm′ = m∪Sj
for an additional subset Sj based on the original quality measure and an individual pref-
erence weight wi ∈ (0, 1) for the subset Sj:

ψi(m ∪ Sj) = ψ(m ∪ Sj) + t ∗ wi(Sj).

The set of weights wi(·) for a given ψi de�nes an order πi on the set of subsets S for a
particular parallel worker i:

wi(Sπi(1)) > · · · > wi(Sπi(|S|)).

Our goal is to have k diverse orders π1, . . . , πk of the subsets by ensuring that the inver-
sion distances between di�erent orders are large. The inversion distance between two
ordered sets calculates how many pairs of elements are present in a di�erent order in the
two orders πp and πq:

dinv(πp, πq) =
∑
k 6=l

{
1 if (πp(k)− πp(l)) · (πq(k)− πq(l)) < 0

0 else
.

Assigning preferences in this fashion will steer the selection operators based on charac-
teristics of the models (or model fragments).

Global Approach: Data-driven Diversity.

In contrast to the model-driven diversity described above, we can also ensure diversity
by weighting data elements. To accomplish this we enforce diverse preferences for the
elements from X for the di�erent selection operators si:

ψi(m ∪ Sj) = ψ(m ∪ Sj) + t · 1

|{e ∈ Sj ∧ e 6∈ m}|
∑

e∈Sj∧e6∈m

wi(e),

the preference for di�erent elements is again de�ned via weights wi(e) and the weights de-
�ne an ordering on the elements where we again aim for k di�erent orderings via su�cient
inversion distance. Note that this approach bears some similarities to boosting because
we weight the impact of data elements on the model quality measure di�erently. It must
be noted that, while using diverse quality measures can help steer the parallel workers
into diverse selection paths, it by no means guarantees it. Choosing di�erent models at
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each step can still lead to having the same �nal solution, just generated along a di�erent
path. In order to have guarantees, instead of di�erent preferences in di�erent orders
for given model fragments or data points, partitioning of model fragments is needed, as
described in Chapter 6. In the following sections, however, we will demonstrate that
regardless of the lack of theoretical guarantees, this simple approach to diversity-driven
Widening is bene�cial.

7.4 Local Communication-less Approach, Widening via

Neighborhoods.

In this section, we will discuss Widening approaches via neighborhoods, as described in
Chapters 4, 5. Each neighborhood is built on the re�nement set r(m) of a given model
m. Let m = {Si}, i = 1, . . . , l − 1. A re�nement set r(m) consists of a set of models
{{Si} ∪ Sj1 , {Si} ∪ Sj2 , . . . , {Si} ∪ Sjn−l+1

}, i = 1, . . . , l − 1, Sj1 , . . . , Sjn−l+1
/∈ {Si},

which di�er in only one subset from each other, i.e. each of them contains m = {Si}, i =
1, . . . , l − 1 and exactly one additional subset.

Then a k-neighborhood within the re�nement set will contain k sets of subsets, chosen
from the re�nement set of model m, which are chosen di�erently depending on the type
of neighborhood. Each parallel worker is assigned one model from the k-neighborhood,
with or without repetition. Below we will describe the di�erent types of neighborhoods
in the context of the SCP.

7.4.1 Widening via Optimality Neighborhoods

Given a model m = {Si}, |{Si}| = l−1, i = 1, . . . , l−1 the optimality k-neighborhood of
r(m) = {{Si} ∪ Sj1 , {Si} ∪ Sj2 , . . . , {Si} ∪ Sjn−l+1

}, i = 1, . . . , l, Sj1 , . . . , Sjn−l+1
/∈ {Si}

consists of the best k models with respect to performance in r(m).

7.4.2 Widening via Similarity Neighborhoods

Let m = {Si}, |{Si}| = l − 1, i = 1, . . . , l − 1, be a temporary solution. Let M r = r(m)
be the re�nement set of m, with m′ being the optimal model in the set. Let metric d be
an appropriate distance measure. Then the similarity k-neighborhood will consist of m′

and the k − 1 most similar models to m′ within M r. The only di�erence between each
model in this re�nement set is one subset. Therefore, this is equivalent to choosing the
subset that contains the greatest number of uncovered elements and k− 1 subsets which
are most similar to it according to a metric d.
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Issues with Preprocessing in the Context of SCP

Appropriate preprocessing can be based on methods which make use of model (model
fragments) similarity k − d trees and local sensitivity hashing. Using these approaches,
we can assign to each model fragment its k − 1 neighbors before the search starts. This
is bene�cial for the running time of the algorithm (especially if many runs are performed
on the same data set). Each of the k parallel workers selects the neighbor assigned to
it apriori, from a given neighborhood of the locally optimal model fragment. Note, that
this similarity will be based on initial elements, and not based on the elements, which
are still not covered at a step l. Preprocessing is especially important in Widening via
diverse neighborhoods, where building the neighborhood dominates the calculation, and
the running time is highly dependent on the size of the neighborhood, O(n2). A diverse
neighborhood is a subset of the re�nement set for model m that puts restrictions on ∆
with the goal to improve search space exploration. As we discussed in Chapter 5, the
goal is building a graph structure with desired properties, so that each parallel worker
explores diverse and promising paths. There are di�erent ways to introduce diversity
within the neighborhood structures. We will give examples using �tness sharing and a
simple threshold.

7.4.3 Widening via Diverse Neighborhoods

Diversity via Fitness Sharing

The main idea behind �tness sharing was discussed in Chapter 4. Here we will discuss
how �tness sharing is used speci�cally for building diverse neighborhoods for Widen-
ing of the greedy heuristic for the SCP. In this case, each neighborhood consists of set
covers that will di�er from each other by a single subset. These k subsets are chosen
not using the number of uncovered elements in them, as it is in the typical optimality
neighborhoods, but also in their respective "rarity". The idea is to select representa-
tives of di�erent "subpopulations". In this case, �tness sharing enforces the selection of
subsets from di�erent groups of similar subsets. The �tness sharing does not use any
preprocessing, as the other approaches inspired by the genetic algorithms. In the case of
SCP, models who share �tness, are temporary covers, which are similar. These covers are
members of the same re�nement set, the di�erence between them is one subset. Niching
is based on the similarity of single subsets.

Diversity via Threshold

In this approach, the diverse neighborhood is built using a threshold δ. At each step,
given a model m, the diverse neighborhood N δ

k (m) consists of the k most optimal subsets
that are distance δ from each other, based on some distance measure. In this context the
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distance measures Jaccard or Hamming are appropriate. The runtime of this approach
without preprocessing is in O(n2).

7.5 Methods.

All the approaches were implemented using KNIME [15]. All the experiments are
performed on three data sets with di�erent properties from the OR Library database.
Each experiment was run 50 times with shu�ed order of the data.

7.5.1 Top− k Widening.

We compare the e�ect of the size of Widening on the quality of the obtained results. We
use this Widening method with communication as a benchmark for comparison with our
communication-less methods.

7.5.2 Widening via Local Neighborhoods.

Widening via Optimality Neighborhoods

We use Widening via optimality neighborhoods to investigate the e�ects of the pa-
rameters k and θ. We compared the quality of results using Widening via optimality
neighborhoods for di�erent parameters k with �xed θ as well as the quality of results as
θ increases. Additionally, we compare the quality of results of Widening via optimality
neighborhoods and Widening with communication, Top− k, in order to see whether the
approaches with communication can compete to those without.

Widening via Similarity Neighborhoods

In order to demonstrate experimentally how Widening via similarity neighborhoods can
be used for exploitation and similarity search, we use a very small neighborhood size θ
with a large number of parallel resources. For exploitation, we are interested in the best
performance of Widening via similarity neighborhoods, how it compares to the greedy
algorithm and how it varies with the di�erent neighborhood sizes and for di�erent k. In
order to demonstrate the potential suitability of Widening via similarity neighborhoods
as similarity search, we evaluate both, the similarity of the obtained set of k models and
the average performance of this set of models. The goal is to obtain similar models, which
perform well. We compare the average similarity of the set of k resulting models to the
average similarity of the k obtained models by Widening via optimality neighborhoods.
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Widening via Diverse Neighborhoods.

We have chosen two approaches to building diverse neighborhoods, one is based on a
simple threshold and the other uses the �tness sharing approach in order to build diverse
neighborhoods. We are interested in whether the use of diversity improves the quality
of the obtained result in comparison to Widening via simple optimality neighborhoods,
without diversity. In addition, we investigate how diversity without communication
compares to diverse Top− k, which uses communication. The main drawback of �tness
sharing is that the computation of the shared �tness for the entire population in each
generation can be very time-consuming. In [116], the niches for only a small subset of
the population that is randomly sampled from the whole population are calculated. This
dramatically improves the running time. We implemented this approach to �tness shar-
ing. Instead of randomly sampling, another approach would be to remove the extremely
poor performers.

7.6 Experimental Results

In this section, we will present and compare the experimental results of the di�erent
Widening methods applied to the greedy algorithm of the SCP.

Remark All the plots are made using R, [122]. The box plots visualize the performance
of the Widening approaches. The black horizontal line is the median value. The bottom
and top of the box are the �rst and third quartiles. For the ends of the whiskers the
default positions, as de�ned in boxplot.stats grDevices from the R documentation, and
are located at roughly 5% and 95% of the con�dence interval. Any data not included
between the whiskers is plotted as an outlier with a small circle.

7.6.1 Top− k and Diverse Top− k.

By increasing the parameter k, the quality of discovered solution improves. The optimal,
or bene�cial values of diversity parameters are data dependent, and, if the value is
selected properly, this leads to improvement of the quality of the obtained solution.
Strongly diverse exploration for a small number of parallel workers leads to worse results
due to randomization. Diversity combined with a su�ciently large number of parallel
resources leads to improvement of the quality of solution found.
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Figure 7.1: Results from the evaluation of Top−k Widening with and without diversity.

7.6.2 Communication-less Widening via Hashing (Global Pref-
erences).

By varying parameter t, we can control how much the selection paths of the parallel
workers deviate from the selection path explored by the greedy SCP algorithm. The
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Figure 7.2: Results from Widening via global preferences, with data-driven and model-
driven diversity for t = 1.
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Figure 7.3: Results from Widening via global preferences for di�erent diversity ap-
proaches contrasted with diverse Top− k.
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parameter t controls the relative importance of the factors quality and diversity. For
parameter t ≤ 1, the parallel workers explore di�erent selection paths of the greedy
algorithm, only considering di�erent paths that have equally good, local quality. Here the
di�erent orders πi only serve for tie breaking. For parameter values t > 1, the selection
paths of the parallel workers also include locally sub-optimal solutions. Large values
of t (� 1) will lead to randomized exploration of the search space. Figure 7.2 shows
the results for communication-free Widening with data- resp. model-driven diversity
enforcement, while Figure 7.3 compares the communication-less approach with diverse
Top− k Widening. From the above results two main trends become clear. As expected,
a larger width of the search improves the quality of the solution. Enforcing diversity
improves the results even further. For communication-free Widening, the �rst set of tests
simply enhances the greedy algorithm by exploring di�erent options when breaking ties
in-between equally good intermediate solutions. By increasing parameter t the widened
algorithm is allowed to also explore paths of non-locally optimal choices, which further
improves the results. The optimal value for parameter t depends heavily on the data
set, and if �ne-tuning is applied, more improvement can be expected. Obviously, if t is
too large, this will turn the algorithm into an almost data-independent, random search
process, deteriorating solution quality again. The Widening via hashing approach is
comparable and in some cases performs better than the diverse Top − k Widening (for
the two �xed parameters). Note, that if one �ne-tunes the diverse Top − k with an
appropriately selected parameter, it will outperform the hashing approach.

7.6.3 Widening via Optimality θ, k-neighborhoods.

Due to the Widening via neighborhoods being a sparse method, we can see that increasing
θ can lead to worsening of the performance in certain. A very large neighborhood
size θ leads to a randomization of the search. It is clear that the larger the number
of parallel workers for a �xed neighborhood, the better the performance. For a �xed
number of parallel workers, increasing the size of the neighborhood eventually will lead
to a randomized search. A small size of the neighborhood leads to exploring solutions,
which are similar. The optimal size of the neighborhood is dependent on the properties
of the data. It is better to enforce diversity explicitly, instead of depending on the size
of the neighborhood to introduce diversity.

7.6.4 Widening via Diverse Neighborhoods

The goal of Widening is not randomized diverse exploration, but exploration of the
peaks (diverse and promising solutions) of the search space landscape. This is why
diversity needs to be explicitly enforced, instead of relying on a very large neighborhood
size. The results presented in Figure 7.6 show the performance of Widening via diverse
neighborhoods for di�erent values of the diversity threshold δ. The optimal value of the
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Figure 7.4: Widening via optimality neighborhoods, for di�erent values of Widening
parameters θ, k.

threshold will depend on the structure of the data/search space. The goal is to discover
di�erent, but optimal peaks, and thus the "peak distribution" will determine the optimal
threshold. Furthermore, this optimal value may not be constant during the search, and
it is hard to guess it apriori. This in�exibility is the main drawback of this method. The
results for Widening via diversity neighborhoods, where diversity is obtained via �tness
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sharing, for varying values of the �tness sharing parameters are presented in Figure 7.7.
Clearly, there are improvements by using Widening via diverse neighborhoods built by
�tness sharing in two data sets rail507 and especially rail582, however, no bene�ts are
noticed for rail516. It is di�cult to tune well the �tness sharing parameters α, σ for a
given data set.

7.6.5 Widening via Similarity Neighborhoods

Exploitation via Widening via Similarity Neighborhoods

Widening via similarity neighborhoods can be used for exploitation � an intensi�ed de-
tailed search within a region of the search space, which is already known for having good
solutions. Pairwise Jaccard distance is used to assess similarity between two models in
each experiment. Since we are widening the greedy algorithm, which is already known to
produce a good solution, Widening via similarity neighborhoods aim at investigating the
vicinity of the greedy algorithm in detail. The results of this exploitation are shown in
Figure 7.8. As it is logical, the best performance for this Widening approach is achieved
for a small neighborhood size and a large number of parallel workers. This leads to a
more thorough investigation of a �xed region of the search space, and is in accordance
with the theoretical results obtained in Chapter 5. For a �xed number of parallel work-
ers, the smaller size of the neighborhood leads to improved performance. Inversely, a
larger number of parallel workers, for a �xed neighborhood size improves the perfor-
mance. Widening via similarity neighborhoods does not consider model performance,
when selecting models at each step, only the similarity between a given model and a
locally optimal model, that is why for a large neighborhood this leads to randomization
of the search, instead of improvement.

Similarity Search using Widening via Similarity Neighborhoods

The second application of this type of Widening is a similarity search. We are looking for
a set of models which are of high similarity among each other and of good performance.

Remark For this type of goal, we are interested in the properties of the full set of k
�nal solutions and not only in the properties of the best solution from the �nal set of
k solutions. This is why, we investigate the average similarity for the full set of �nal
solutions, as well as the average performance of the set of �nal solutions.

In Figures 7.9, 7.10, 7.11 we can see that the larger is the size of the neighborhood
θ, the smaller is the average pairwise similarity of the set of models. For a �xed neigh-
borhood size, the greater number of parallel workers leads to a greater average pairwise
similarity. We can see that for a very small neighborhood size θ = 2 and high number of
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parallel workers k = 100 the method has the highest average similarity and the highest
average performance.

In addition, we also compare the set of �nal k solutions obtained by Widening via
similarity neighborhoods to the set of k solutions obtained by Widening via optimality
neighborhoods, without the use of diversity. In Figure 7.12 the similarity of the models
obtained by Widening via similarity neighborhoods is compared to the similarity of the
set of models obtained by Widening via optimality neighborhoods. The set of models dis-
covered by Widening via similarity neighborhoods has higher average pairwise similarity
than the models discovered by the other type of neighborhoods, optimality neighbor-
hoods. The di�erence is more pronounced the larger the neighborhood θ in comparison
to the number of parallel workers. This is explained by the fact that for a small neigh-
borhood based on either similarity or optimality, a small part of the search space is
explored and as a consequence, the discovered models are similar. For large number of
parallel workers, a larger portion of the search space is explored in the case of optimality
neighborhoods, and a smaller part of the search space is explored but in greater detail
(exploitation) by the parallel workers in Widening via similarity neighborhoods. The
results also show that Widening via optimality neighborhoods will bene�t from the use
of diversity, especially for a small size of the neighborhood.

The best use of Widening via similarity neighborhoods, is to use more parallel workers
in a smaller sized neighborhood. For further improvements, "good" solutions can be used
as starting points, and from there look for better/optimal solutions in the vicinity of those
good solutions, also referred to as exploitation. A similarity search can be performed
by selecting apriori known desired properties, and models similar to those prerequisites,
instead of choosing models similar to the greedy choice.

7.7 Runtime Analisys of Widening Approaches with

and without Communication.

In this section, we will discuss the runtime of di�erent Widening approaches and compare
and contrast the Widening approaches with and without communication.

7.7.1 Hashing vs Top− k Widening Approaches.

The experiments above were primarily concerned with evaluating and comparing proper-
ties of the solutions, such as model quality and similarity. However, we are also interested
in preserving the running time of the widened algorithm equal to (or at least close to)
that of the original greedy algorithm. Requiring frequent communication to �nd the top
k solutions will become a bottleneck as k increases. What is of interest is, how big the
di�erences in the running time are as more resources are available, which is why we are so
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interested in communication-less diverse subset selection. We used the Top− k Widen-
ing method and contrasted it to data-based hashing (). The experiment were performed
using the rail507 data set on a 64-core machine and repeated 10 times. Figure 7.13
displays the runtime for the di�erent methods against an increasing number of parallel
workers.

7.7.2 Widening via Neighborhoods vs Top− k Approaches.

We used the Top− k Widening method and contrasted it to the di�erent neighborhood-
based approaches. The experiment were performed using the rail507 data set on a
64-core machine and repeated 10 times. Predictably, the running time of the Widening
approaches di�er depending on the type of neighborhoods used. Widening via pure opti-
mality neighborhoods is close to constant. The running time of Widening via similarity
neighborhoods is not a�ected strongly by the size of the neighborhood used, but depends
more on the size of the data and the total number of re�nements and does not depend
strongly on the number of parallel workers. This is because in order to select the θ most
similar neighbors all re�nements must be compared to the optimal re�nement at each
step. This can be seen in Figure 7.15, where for di�erent sizes of neighborhoods the
running times are not drastically di�erent. This depends on the data set � for example,
the data set rail507 contains many subsets (or 63,009 model fragments) and at each step
the locally optimal model is compared to all 63, 009− l model fragments, where l is the
re�nement level.

There are two factors with similar e�ect in Widening via diverse neighborhoods,
which determine the running time. One is the size of the neighborhood, the other is
the diversity threshold. From Figure 7.14 it is clear that the size of the neighborhood is
the most in�uential factor for the runtime of Widening via diverse neighborhoods. The
greater the size of the neighborhood the more computationally intensive is the building
of the neighborhood. However, the number of parallel workers does not in�uence the
running time much, given a su�ciently high number of parallel resources. The size of
the threshold does in�uence the running time, because a greater threshold implies more
comparisons (due to the fact that some potential members of the neighborhoods will fail
to meet the threshold and thus a greater number of comparisons will be required).

Additionally, Widening via similarity neighborhoods, for this particular data set and
setting, as well as sizes of neighborhoods, has a worse running time than Widening via
diverse neighborhoods because of the very large number of model fragments, and the
requirement that at each step the similarity between the most optimal model and all
other possible re�nements is evaluated, while depending on the value of the threshold
parameters, the comparisons required to build a diverse neighborhood at each step, may
be signi�cantly less for a �xed neighborhood size θ. Clearly, however, the communication
between parallel workers remains the greatest bottleneck for the running time, as Figure
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7.16 shows. The experiments show that methods which use communication have worse
running time in comparison to methods which do not require communication between
the parallel workers.

However, in Section 7.6.4, Figure 7.5 we saw that even for smaller sized neighbor-
hoods the results from Widening via diverse neighborhoods are of comparable quality
to Widening using communication. The diversity can be controlled through a larger
threshold instead of a larger neighborhood size in order to have a less negative impact
on the running time.

Because building the neighborhoods is the most computationally intensive aspect of
the search, preprocessing can bene�t both similarity and diversity searches, based on
neighborhoods built in the re�nement sets.
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Figure 7.5: Widening via diverse neighborhoods for di�erent values of Widening param-
eter k, for di�erent values of the diversity threshold δ, and a �xed neighborhood size
θ = 5. Jaccard distance was used. 121
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Figure 7.6: Widening via diverse neighborhoods for di�erent �xed values of the diversity
threshold δ, for di�erent values of the Widening parameter k, and neighborhood size θ.
Jaccard distance was used. 122
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Figure 7.7: Widening via diverse neighborhoods, diversity achieved via �tness sharing.
The e�ect of di�erent values of the Widening parameters θ, k and di�erent values of
�tness sharing parameters α, σ for the di�erent data sets are displayed.
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Figure 7.8: Widening via similarity neighborhoods for di�erent values of θ. The similarity
is evaluated by pairwise Jaccard distance.
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Figure 7.9: Average similarity and average performance of the discovered sets of models
by Widening via similarity neighborhoods for the data set rail507. The similarity is
evaluated by pairwise Jaccard distance.
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Figure 7.10: Average similarity and average performance of the discovered sets of models
by Widening via similarity neighborhoods for the data set rail516. The similarity is
evaluated by pairwise Jaccard distance.

126



●

100,2 20,5 20,10 20,50 50,5 50,10 50,50

0.
12

0.
14

0.
16

0.
18

0.
20

0.
22

0.
24

Average similarity of the result set, rail582

Widening parameter k, size of neighborhood

A
ve

ra
ge

 s
im

ila
rit

y 
of

 th
e 

se
t o

f d
is

co
ve

re
d 

m
od

el
s

●

●

●

●

greedy 100,2 20,5 20,10 20,50 50,5 50,10 50,50

15
0

15
5

16
0

16
5

17
0

17
5

18
0

Comparison of the Similarity of Models, rail582

Widening parameter k, size of neighborhood

A
ve

ra
ge

 p
er

fo
rm

an
ce

 o
f t

he
 s

et
 o

f d
is

co
ve

re
d 

m
od

el
s

Figure 7.11: Average similarity and average performance of the discovered sets of models
by Widening via similarity neighborhoods for the data set rail582. The similarity is
evaluated by pairwise Jaccard distance.
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Figure 7.13: Results from the evaluation of the run-time for Widening of the greedy
algorithm for SCP with and without communication (via global assignment of preferences
and neighborhoods).
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Figure 7.14: Comparison of the runtime of Widening via diversity neighborhoods for
di�erent values of parameter θ, neighborhood size, using rail507 data set. The size of
the neighborhood is the most in�uential factor on the running time.
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Figure 7.15: Comparison of the running time of Widening via similarity neighborhoods,
for di�erent values of parameter θ, neighborhood size, using rail507 data set. The size
of the neighborhood does not have such a strong in�uence on the running time as with
the Widening via diversity neighborhoods.
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out communication using rail507 data set.
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Chapter 8

Widening of Rule Induction

This chapter is adapted from already published results from [87].

8.1 Decision Rules

Rule induction is an important machine learning technique, based on deriving formal
rules from data. Rule induction, based on deriving rules from examples, is one of the
fundamental methods in data mining. Decision rules are intuitive, compact, and inter-
pretable. They can be easily used to express important characteristics from the data,
and one can encode background knowledge in them[77].

Decision rules can be expressed as follows:

if(attribute1, value1)and · · · and(attributen, valuen)then(decision, value)[77].

More complex rules are also possible. A large variety of approaches to decision rule
induction exist. These include LEM1, LEM2, AQ, TDIDT and others, for a detailed
description, refer to [77]. In this chapter, we will focus on the CN2 algorithm, which in-
tegrates strategies from both AQ and TDIDT. The original AQ algorithm has di�culties
with noise handling, which is why the CN2 enhances it by either uses extra evaluation
criteria or pruning. A description of the algorithm and its bene�ts follows below.

8.1.1 CN2 Algorithm

The original CN2 algorithm results in an ordered list of rules. However we will use a
version of CN2, which results in unordered set of rules, due to the fact that it is easier
to widen and also o�ers better interpretability. We use the version of the CN2 algorithm
as described in [27], which results in an unordered set of rules.
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Algorithm 3: Unordered CN2 Algorithm
Data: A set E of classi�ed examples, classes
Result: A list of rules finalRuleset to classify data in one of classes
let rulelist← ∅ ;
foreach class ∈ classes do

generate rules by CN2ForOneClass(examples, class) ;
add rules to rulelist ;

return rulelist;

The CN2 algorithm utilizes a beam search, with size MAXSIZE, which can be
viewed as several parallel searches. During the beam search, at each step the best
MAXSIZE candidates are selected for further investigation.

Procedure FindBestCondition(examples,class)

bestcondition← ∅;
let STAR = {bestcondition};
while STAR is not empty do

Specialize all complexes in STAR:
NEWSTAR← {xANDy : x ∈ STAR, y ∈ SELECTORS};
Remove all conditions in NEWSTAR that are either in STAR or null;
foreach C ∈ NEWSTAR do

If ψ(C) > ψ(bestcondition) then bestcondition← C

repeat
Remove the worst condition from NEWSTAR

until size of NEWSTAR < MAXSIZE;
STAR← NEWSTAR

return bestcondition;

The s(r(m)) iteration step here is presented as generating specializations of the tem-
porary best condition (conditions in the case of beam search), and then selecting the best
one(s), based on a quality measure. The algorithm is described in the pseudocode in
Algorithm 3. Procedure FindBestCondition presents the part of the algorithm, which is
relevant to Widening of the CN2 algorithm. For a detailed description of the algorithm,
refer to [27].

8.1.2 Widening of the CN2 Algorithm

The original design of the CN2 algorithm already has the option of exploring several
solutions in parallel by allowing for the use of beam search, when looking for the best con-
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dition. We will investigate how much changing the size of the beam (STAR) a�ects the
accuracy and will compare our methods to this very simple "Widening", which is native
to the unordered CN2 algorithm. Note that the original Procedure FindBestCondition
returns only one best condition each time. Below we discuss how the di�erent Widen-
ing approaches can be applied to the CN2 algorithm. The implementation of Top − k

Procedure FindTop-KBestConditions(examples,class)

k − bestconditions← ∅;
let STAR = {k − bestconditions} ;
while STAR is not empty do

Specialize all complexes in STAR:
NEWSTAR← {xANDy : x ∈ STAR, y ∈ ATTRIBUTETESTS};
Remove all conditions in NEWSTAR that are either in STAR or null ;
forall C ∈ NEWSTAR do

min← minψ(k − bestconditions);
If ψ(C) > ψ(min) then k − bestconditions.delete(min);
k − bestconditions.add(C);
sort(k − bestconditions);

repeat
Remove the worst condition from NEWSTAR;

until size of NEWSTAR < MAXSIZE;
STAR← NEWSTAR;

return k − bestconditions

Widening involves a modi�cation of the selection operator sTop-k-CN2 to build k rule sets
in parallel. Procedure FindBestCondition still employs the beam search, used in the
original CN2, but is modi�ed to return the top k best conditions discovered by the beam
search at each step and add them to the k solutions (rule sets) that are being built. This
can be viewed in FindTop-KBestConditions. In the case of the diverse Top−kWidening,
Jaccard distances are evaluated based on the examples covered and a threshold is used
to maintain diversity in the set of the top k temporary solution candidates.

8.2 Communication-less Widening of CN2

8.2.1 Global Diversity Approaches Using Preferences.

In this Widening approach, k CN2-style searches are performed in parallel, each with
beamMAXSIZE = 1 and individualized selection operator shash-CN2i with individualized
model quality function ψi returning only one best condition. This approach is shown
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Procedure WideningKPreferences(examples,class)

preferences← generatepreferences() ;
Start in parallel k times;
FindBestPref(preferences,examples,class,i);
i = 1 . . . k

Procedure FindBestPref(preferences,examples,class,i)

bestcondition← ∅;
let STAR = {bestcondition} ;
while STAR is not empty do

Specialize all complexes in STAR:
NEWSTAR← {xANDy : x ∈ STAR, y ∈ ATTRIBUTETESTS};
Remove all conditions in NEWSTAR that are either in STAR or null ;
forall C ∈ NEWSTAR do

ψ′(C)← ψ(C) + tpreferences[i](C) ;
If ψ′(C) > ψ′(bestcondition) then bestcondition← C;

repeat
Remove the worst condition from NEWSTAR;

until size of NEWSTAR < MAXSIZE;
STAR← NEWSTAR;

return bestcondition;
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in Algorithm WideningKPreferences. In the approach, which uses data-based diversity,
di�erent orders of preferences are assigned to the examples and the score of a given
condition is decided based on the preferences of the examples it covers. In the model-
based diversity approach, di�erent orders of preferences are assigned to di�erent attribute
tests. The preference for a condition depends on the attribute tests it consists of. These
individualized preferences should be di�erent for each parallel worker, in order to assure
that each explores a di�erent search path. In order to balance between model quality and
model diversity, the model evaluation function of the individualized selection operator
shash-CN2i is:

ψi(condition) = ψ(condition) + tpi(condition),

where t is a parameter which controls how much importance should be given to the
quality and to the diversity. For a very small value of t, the diversity can be used only
for tie-breaking between equally good options; for very high values, the quality of the
model loses importance in the selection process, and the exploration of the search space
becomes randomized. To maximize diversity ideally a set of orders on preferences that
have maximal inversion distances, should be generated. However, this is computationally
highly intensive, and that is why a "su�ciently diverse" set of preferences is generated.

8.2.2 Communication-less Widening via Neighborhoods

Procedure FindBestConditionN o
k (examples,class,labels,i)

bestcondition← ∅;
let STAR← {bestcondition} ;
while STAR is not empty do

Specialize all complexes in STAR:
NEWSTAR← {xANDy : x ∈ STAR, y ∈ ATTRIBUTETESTS};
Remove all conditions in NEWSTAR that are either in STAR or null ;
forall C ∈ NEWSTAR do

If ψ(C) > ψ(bestcondition) then bestcondition← C;

repeat
Remove the worst condition from NEWSTAR;

until size of NEWSTAR < MAXSIZE;
STAR← NEWSTAR;

neighborhood← generateOptimalityNeighborhood(STAR, θ);
neighbestcondN o

k ← optimalityNeighbor(neighborhood, bestcondition, labels[i]);
return neighbestcondN o

k ;

In the Widening via neighborhoods k parallel searches are started independently,
without communication. Each parallel worker performs the re�nement operation, which
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Procedure FindBestConditionN s
k(examples,class,labels,i)

bestcondition← ∅;
let STAR = {bestcondition} ;
while STAR is not empty do

Specialize all complexes in STAR:
NEWSTAR← {xANDy : x ∈ STAR, y ∈ ATTRIBUTETESTS};
Remove all conditions in NEWSTAR that are either in STAR or null ;
forall C ∈ NEWSTAR do

If ψ(C) > nψ(bestcondition) then bestcondition← C;

repeat
Remove the worst condition from NEWSTAR

until size of NEWSTAR < MAXSIZE;
;
STAR← NEWSTAR;

neighborhood← generateSimilarityNeighborhood(STAR, bestcondition, θ);
neighbestcondN s

k ← neighbor(neighborhood, labels[i]);
return neighbestcondN s

k ;

Procedure FindBestConditionNd
k (examples,class,labels,i)

bestcondition← ∅;
let STAR← {bestcondition} ;
while STAR is not empty do

Specialize all complexes in STAR:
NEWSTAR← {xANDy : x ∈ STAR, y ∈ ATTRIBUTETESTS};
Remove all conditions in NEWSTAR that are either in STAR or null ;
forall C ∈ NEWSTAR do

If ψ(C) > ψ(bestcondition) then bestcondition← C;

repeat
Remove the worst condition from NEWSTAR;

until size of NEWSTAR < MAXSIZE;
STAR← NEWSTAR;

neighborhood←
generateDiverseNeighborhood(STAR, bestcondition, θ, threshold)
neighbestcondNd

k ← neighbor(neighborhood, labels[i]);
return neighbestcondNd

k ;
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Procedure generateDiverseNeighborhood(STAR,bestcondition,θ,threshold)

sort(STAR);
i← 1;
neighborhood← ∅;
neighborhood.add(bestcondition);
while (neighborhood.size() < k) do

if JaccardDistance(STAR[i], bestcondition) ≥ threshold ;
then neighborhood.add(STAR[i]);
i+ +;

return neighborhood;

Procedure generateOptimalityNeighborhood(STAR,θ)

sort(STAR);
forall (i = 1, . . . , θ) do

neighborhood.add(STAR[i]);

return neighborhood;

Procedure generateSimilarityNeighborhood(STAR,bestcondition,θ)

neighborhood[k]← ∅;
PriorityQueue similarity =
newPriorityQueue(STAR.size()− 1, DistanceComparator);
min← jaccardDistance(bestcondition, STAR[1]) ;
forall (i ∈ 1 : STAR.size()) do

STAR[i].distance← Jaccarddistance(STAR[i], bestcondition);
similarity.add(STAR[i]);

neighborhood.add(similarity[1 : θ − 1]);
return neighborhood;
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builds all possible re�nements. In the case of the CN2 algorithm, the re�nement oper-
ation consists of adding a single attribute test to a model. Then each parallel worker
identi�es the locally optimal re�nement (the greedy choice) from the set of all possible
re�nements. Each parallel worker then builds a neighborhood of size θ of the locally
optimal model, where the neighbors are also re�nements from the same re�nement set.
The selection operator of each parallel worker is modi�ed to choose an apriori assigned
neighbor as its best next attribute. The di�erence between the di�erent approaches to
Widening via neighborhoods is only in the type of neighborhood built, namely, opti-
mality, similarity, or diversity. This di�erence is demonstrated in the di�erent modi-
�cations of Procedure FindBestCondition, namely, Procedures FindBestConditionN s

k ,
FindBestConditionN o

k , FindBestConditionN
d
k . Similarity neighborhoods are built us-

ing the Jaccard distance, evaluated using the examples covered by each condition. The
optimality neighborhoods are de�ned using the original evaluation performance ψ of the
CN2, the Laplacian error estimate:

LaplaceAccuracy :=
nc + 1

ntot + q
,

where nc is the number of examples in the predicted class c covered by the rule, ntot is
the total number of examples covered by the rule, and q is the number of classes in the
domain.

8.3 Methods and Implementation.

The di�erent approaches to Widening were implemented using KNIME [15]. Seven data
sets with di�erent properties were used in the evaluation, described in Table 8.1. Each
experiment was repeated 50 times and di�erent samples were chosen at random for
training and testing each time. In each repetition, 90% of a given data set was sampled
for training the models, and the remaining 10% was used for testing the accuracy of the
obtained model.

8.3.1 Widening Approaches with Communication betweenWork-
ers

The simplest way to "widen" the CN2 algorithm is to increase the beam size of the search,
which the algorithm naturally uses. Both, Top − k and simple beam are implemented.
Diversity is added to the Top− k Widening approach.
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8.3.2 Widening via Optimality Neighborhoods.

The performance of the best solution discovered at each run is collected and all of them
are plotted in a box plot. Di�erent values for k and θ are used and their performance is
compared in order to evaluate the e�ect that the di�erent values of these parameters have
on the performance of the approach. Widening via optimality neighborhoods is the same
as that of the original algorithm, if we disregard the pre-processing, which consists of
assigning to each model fragment a list of labels {v0, . . . , vk−1}, where vi speci�es which
neighbor of model m′ will si choose. The values for vi are chosen randomly without
repetition from {0, . . . , k − 1}.

8.3.3 Widening via Similarity Neighborhoods

The goal of Widening via similarity neighborhoods is to exploit an area of the search
space. The performance of the best solution discovered at each run is collected and all of
them are plotted in a box plot. Di�erent values for k and θ are used and their performance
is compared in order to evaluate the e�ect that the di�erent values of these parameters
have on the performance of the approach. Additionally, we evaluate the similarity of
the models that each run of Widening via similarity neighborhoods produces. Each run
produces k solutions and the similarity between them is evaluated using the data-based
Jaccard distance. Furthermore, the average performance of all the k models discovered
in each run is also calculated. For this approach, we evaluate not only the best model
of the N s approach, but the whole set of obtained k models at each run.

8.3.4 Widening via Diverse Neighborhoods

This approach builds neighborhoods consisting of peaks, diverse and promising tempo-
rary solutions with high performance. The type of peak selection depends on the size of
the neighborhood as well as the threshold used. Given a threshold δ and a neighborhood
θ, θ highest peaks are chosen, at distance at least δ from each other. The data-based
Jaccard distance measure is used to evaluate the distance between each model, when
building the diverse neighborhoods. By limiting the size of the neighborhoods, θ, while
still using diversity, the method focuses on strong peak selection.

The performance of the best solution obtained at each run is collected and all of them
are plotted in a box plot. Di�erent values for k, θ, and a threshold δ are used and their
performance is compared in order to evaluate the e�ect that the di�erent values of these
parameters have on the performance of the approach.
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data set #attributes #data items #classes distribution between classes
glass 10 214 6 imbalanced
pima 9 768 2 imbalanced
german 21 1000 2 imbalanced
bupa 7 345 2 balanced
haberman 4 306 6 imbalanced
ecoli 8 336 8 balanced
wine 13 178 3 balanced

Table 8.1: Table with properties of the data sets used for evaluation of the Widening
approaches.

8.3.5 Runtime Evaluation

A 64 core machine was used for the runtime evaluations, from Amazon EC2 M4. Each
method was run 10 times for each value of the parameter k and the average running
time is plotted. With similarity and diverse neighborhoods di�erent values of θ are used
(θ = 5, θ = 10, θ = 20). The threshold used for diversity is δ = 0.5.

8.3.6 Data

To evaluate the di�erent Widening approaches applied to the CN2 algorithm, we used 8
data sets, with di�erent properties, described in table 8.1 from the UCI Machine Learning
Repository [1].

8.4 Experimental Results and Discussion

In this section, we present and compare the experimental results of the di�erent Widening
methods applied to the CN2 algorithm.

Remark All the plots are made using R, [122]. The box plots visualize the performance
of the Widening approaches. The black horizontal line is the median value. The bottom
and top of the box are the �rst and third quartiles. For the ends of the whiskers the
default positions, as de�ned in boxplot.stats grDevices from the R documentation, and
are located at roughly a 5% and 95% of the con�dence interval. Any data not included
between the whiskers is plotted as an outlier with a small circle.

140



8.4.1 Top− k Widening

In Figure 8.2 we compare Top − k Widening to a simple increase in the beam size
of the CN2 algorithm. The results show that simple increasing of the beam in CN2
search leads to a more modest improvement in comparison to Top− k. For larger k the
results improve for both approaches. In contrast, actual Top−k Widening leads to more
signi�cant improvement of the accuracy, due to the fact that k rule sets were built at the
same time. Namely, the Top− k Widening approach is better than simple beam search
due to the additional exploration of partial solutions in parallel.
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Figure 8.1: Experimental evaluation of di�erent methods of communication-less Widen-
ing of the CN2 algorithm: Widening via optimality neighborhoods and Widening via
assignment of global preferences compared with diverse Top− k Widening on 6 di�erent
data sets.

Diverse Top−k additionally improves the resulting accuracy, demonstrating that the
use of diversity, when selected appropriately for the given data, improves the exploration
of the search space. Communication-less approaches are contrasted with the one, which
use communication in Figure 8.1. The results show that while using communication does
produce better results, communication-less approaches are comparable with di�erent
Top− k approaches.
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Figure 8.2: Evaluation of the unordered CN2 algorithm with di�erent sizes of the beam,
Top-k and diverse Top-k Widening of the CN2 algorithm on 6 di�erent data sets.

Widening via global preferences achieves results comparable with approaches using
communication, as shown in Figures 8.1, 8.3.

8.4.2 Widening via Optimality Neighborhoods

The performance of Widening via optimality neighborhoods is shown in Figures 8.4, 8.5.
We can see that for larger k the results improve. Additionally, depending on the data
set, di�erent values for parameter θ are bene�cial. The larger the neighborhood, the
broader is the exploration of the search space. A smaller neighborhood size leads to an
exploration of the search space closer to the greedy path. A larger number of parallel
workers for a �xed neighborhood size leads to a better accuracy of the obtained model.
The optimal size of the neighborhood is dependent on the data and the number of parallel
workers available. A neighborhood size which is too large compared to the number of
parallel workers, leads to randomized exploration. Inversely, a neighborhood size which is
too small in comparison to the number of parallel workers will lead to exploring solutions
which are too similar. In general, Widening via optimality neighborhoods needs to be
paired up with diversity, in order to explore the search space in a good way. Simply
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Figure 8.3: Widening of the CN2 algorithm for rule induction using global preferences.

increasing the neighborhood size, without explicitly enforcing diversity does not achieve
the goal of Widening of exploring good and diverse solutions in parallel.

8.4.3 Widening via Similarity neighborhoods

8.4.4 Exploitation using Widening via Similarity Neighborhoods

One of the potential applications of the Widening via similarity neighborhoods is ex-
ploitation. For this we compare the quality of the solution obtained by this type of
Widening to the one obtained by the greedy algorithm, as well as evaluate the similarity
of the set of all θ models obtained at a given run. We can see in Figures 8.10, 8.11 that
for a small neighborhood and a large number of parallel workers, the quality of the solu-
tion improves in comparison to the greedy one. Additionally, the higher the number of
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Figure 8.4: Performance of Widening via optimality neighborhoods on several data sets
for di�erent values of parallel parameter k and neighborhood size θ.

parallel workers and the smaller the size of the neighborhood, the higher is the average
pairwise similarity of the set of models discovered. What can be concluded is that a
higher number of parallel workers leads to a better performance of the method. Further-
more, di�erent values of the parameter θ, the size of the neighborhood, is bene�cial for
di�erent data sets. A small neighborhood size and a large number of parallel workers
will lead to discovering a set of similar models of good performance.

A higher number of parallel workers for a �xed size of the neighborhood leads to a
greater similarity. In order to improve the similarity of the set of models obtained by
the method, the size of the neighborhood θ has to be small and the size of the number
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Figure 8.5: Performance of Widening via optimality neighborhoods on several data sets
for di�erent values of parallel parameter k and neighborhood size θ.

of parallel workers has to be large in comparison. A small neighborhood size leads to
exploitation of a small region of the search space in the vicinity of the greedy solution.
The average performance of the set of the models discovered by Widening approach {N s

k}
is shown in Figures 8.9, 8.8.
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Figure 8.6: Average Jaccard distance of the models in the solution set obtained by
Widening via similarity neighborhoods compared to the average Jaccard distance of the
models in the solution set discovered by Widening via optimality neighborhoods for the
glass and haberman data sets.

8.4.5 Similarity Search using Widening via Similarity Neighbor-
hoods.

The second potential application of the Widening via similarity neighborhoods is the
similarity search. For that we need to look at the average quality of the obtained set
of k models at each run, as well as the average pairwise similarity of the obtained
set of models at each run of the widened search. As can be seen in Figures 8.9, 8.8,
8.6, 8.7, the sets of models obtained by N s

k perform well on average and have higher
similarity than the models obtained byWidening via optimality neighborhoods (although
for this neighborhood size, the di�erence is not big). It can be seen that the average
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Figure 8.7: Average Jaccard distance of the models in the solution set obtained by
Widening via similarity neighborhoods compared to the average Jaccard distance of the
models in the solution set discovered by Widening via optimality neighborhoods for the
bupa and wine data sets.

quality of the set of k discovered models is mostly equal to (or better than) greedy. The
similarity of the models, discovered by Widening via similarity neighborhoods can be
seen in Figures 8.6, 8.7, where they are contrasted with the similarity between the set of
models discovered by Widening via optimality neighborhoods. Widening via similarity
neighborhoods produces models that are more similar in comparison to the Widening via
optimality neighborhoods. The similarity between the models is not drastically higher
compared to that of the set discovered by Widening via optimality neighborhoods, but
will be better with a greater number parallel workers. Furthermore, these results show
that the Widening via neighborhoods is a sparse method, and in order to improve the
similarity between the models in the resulting set of models, a smaller neighborhood
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Figure 8.8: Average performance of the models in the solution set obtained by by Widen-
ing via similarity neighborhoods for the glass and haberman data sets.

size θ needs to be used. As can be seen in Figures 8.9, 8.8, 8.6, 8.7, the sets of models
obtained by N s

k perform well on average and have higher similarity than the models
obtained by Widening via optimality neighborhoods (although for this neighborhood
size, the di�erence is not big). It can be seen that the average quality of the set of
k discovered models is mostly equal to (or better than) the greedy approach. The
similarity of the models, discovered by Widening via similarity neighborhoods can be
seen in Figures 8.6, 8.7, where they are contrasted with the similarity between the set of
models discovered by Widening via optimality neighborhoods. Widening via similarity
neighborhoods produces models that are more similar in comparison to the Widening via
optimality neighborhoods, this is especially valid for a larger θ. The similarity between
the models is not drastically higher compared to that of the set discovered by Widening
via optimality neighborhoods, but will be better with a greater number parallel workers.
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Figure 8.9: Average performance of the models in the solution set obtained by by Widen-
ing via similarity neighborhoods for the bupa and wine data sets.

Furthermore, these results show that the Widening via neighborhoods is a sparse method,
and in order to improve the similarity between the models in the resulting set of models,
a smaller neighborhood size θ needs to be used.

8.4.6 Widening via Diverse Neighborhoods

The results presented in Figures 8.14, 8.15 show the performance of Widening via di-
verse neighborhoods for di�erent values of the diversity threshold δ. Limiting the size
of the diverse neighborhood, θ, focuses the search on a few diverse and best performers
at each step. The optimal value of the threshold will depend on the structure of the
search space. Once again, the results demonstrate that diversity improves the search of
the space by discovering diverse and good solutions, and the best solution discovered is
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Figure 8.10: Performance of Widening via similarity neighborhoods for di�erent values
of parallel parameter k and neighborhood size θ for the haberman and glass data sets.

on average better. Di�erent parameter tunings are required to achieve optimal results.
The results obtained are comparable with diverse Top − k approach. As can be seen
in Figures 8.12, 8.13, where we contrast Widening via optimality neighborhoods with
Widening via diverse neighborhoods, diversity can improve the results in comparison to
the neighborhoods-based approach which does not use diversity. The results obtained
by Widening via diverse neighborhoods are comparable to those obtained using Top−k,
given the appropriate threshold. The size of the diverse neighborhood in these exper-
iments is relatively small, θ = 5. From the runtime experiments in Section 8.4.7, it is
clear that the size of the neighborhood, and building the diverse neighborhoods domi-
nate the runtime of the search. With a small enough neighborhood, the running time is
not signi�cantly di�erent from constant, and is signi�cantly better compared to Top− k
Widening. Depending on the data set and the threshold used, small neighborhoods can
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Figure 8.11: Performance of Widening via similarity neighborhoods for di�erent values
of parallel parameter k and neighborhood size θ for the bupa and haberman data sets.

already produce high quality results. The results show that adding diversity in a con-
trolled manner can improve the quality of the �nal result. The relative merits of the
di�erent communication-less methods seem to be data-dependent. Using Widening via
N o
k,θ allows for more intensi�ed versus more dispersed search, with giving higher priority

to diversity or to optimality. Increasing the number of parallel workers for a �xed θ will
allow for giving higher priority to optimality compared to diversity, by guiding the search
to investigate the peaks with highest optimality. Increasing θ and keeping parameter k
constant leads to more dispersed searches throughout the search space. We compare the
performance of Widening via neighborhoods for di�erent values of parameters k and θ.
In all approaches of diversity-driven Widening, the main issue is the trade-o� between
model quality and diversity and the optimal balance between the two will depend on
the landscape of the particular search space. Experimentally, the communication-less
methods for diversity-driven Widening can compare with the ones using communication.
Using larger number of parallel workers in a smart way can compensate for the lack of
communication.

151



●●●● ●● ●●

greedy 5 10 20 50 5 10 20 50 5 10 20 50

0.
75

0.
85

0.
95

Diverse Top−k Widening vs Widening via diverse neighborhoods, wine

Parallel Parameter k

A
cc

ur
ac

y

greedy
Nd, div=0.5, theta=5
Top−k, div=0.01
Top−k, div=0.5

●

●●

greedy 5 10 20 50 5 10 20 50 5 10 20 50

0.
4

0.
6

0.
8

1.
0

Diverse Top−k Widening vs Widening via diverse neighborhoods, glass

Parallel Parameter k

A
cc

ur
ac

y

greedy
Nd, div=0.5, theta=5
Top−k, div=0.01
Top−k, div=0.5

Figure 8.12: Widening via diverse neighborhoods, diversity obtained through a �xed
threshold compared to diverse Top− k Widening, the data sets are wine and glass.

8.4.7 Running Time Experimental Results

Analysis of the Experimental Results

For a small enough size of the neighborhood, communication-less methods have better
running times than Top−k, it is clear that communication-less methods are signi�cantly
better than the approach which requires communication. The size of the neighborhoods
is the biggest in�uence on the running time in Widening via neighborhoods approaches.
The number of parallel workers does not in�uence the running time as much, given
enough parallel resources.

Another factor which can in�uence the running time signi�cantly, is the time spent
on evaluating the similarity or distance between two models. This depends both on
implementation and on the dimension of the search space. The higher the dimensions,
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Figure 8.13: Widening via diverse neighborhoods, diversity obtained through a �xed
threshold compared to diverse Top−k Widening, the data sets are bupa and haberman.

the more coordinates need to be compared. A similarity measure which is costly has a
big e�ect on the running time. The implementation can also greatly a�ect the results,
using a strategy with a fast lookup is important. For the data-based diversity this is of
special importance, because a look up needs to be performed for every data point. The
Jaccard distance is used, which looks up every data point covered by a given rule. If
this look up is implemented in a costly way calculation of the Jaccard distance is very
expensive time-wise. The running time depends also on the complexity of the diversity
measure. A diversity measure that is simple to calculate is not going to a�ect the running
time as much. Another factor, which in�uences the running time of Widening via diverse
neighborhoods, is the threshold used. The higher the threshold, the more comparisons
need to be make, and the longer it takes to build the neighborhood. However, for the
data sets used, the size of the neighborhood a�ects the running time more than the

153



●

●●

●

●

●

●

●

●

●

●

greedy 10 20 50 10 20 50 10 20 50

0.
4

0.
6

0.
8

1.
0

Widening via neighborhoods for different values of the diversity parameter, glass

Parallel Parameter k

A
cc

ur
ac

y

greedy
No
Nd, div=0.5
Nd, div=0.01

●

●

●

greedy 10 20 50 10 20 50 10 20 50

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Widening via neighborhoods for different values of the diversity parameter, haberman

Parallel Parameter k

A
cc

ur
ac

y

greedy
No
Nd, div=0.5
Nd, div=0.01

Figure 8.14: Widening via diverse neighborhoods, for di�erent values of Widening pa-
rameter k and di�erent values of the diversity threshold compared to diverse Top − k
Widening, the data sets are haberman and glass. The size of the neighborhood is θ = 5.

diversity threshold used.

This is also compatible with the theoretical analysis of the running time, due to the
fact that each worker in parallel has to build the neighborhood by itself. For small
neighborhoods, Widening via diversity neighborhoods is better than Widening via sim-
ilarity neighborhoods. Widening via similarity neighborhoods is less in�uenced by the
size of neighborhood compared to the Widening via diversity neighborhoods, which is
compatible with the theoretical analysis in Section 4.10.5. In similarity neighborhoods,
the similarity of all re�nements is evaluated and then the θ most similar are chosen,
while in Widening via diversity neighborhoods using a threshold the re�nement sets are
searched only until θ diverse models, which satisfy the threshold δ, are found. Widening
via similarity neighborhoods can bene�t from preprocessing. The running time is also
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Figure 8.15: Widening via Diverse Neighborhoods, for di�erent values of Widening pa-
rameter k and di�erent values of the diversity threshold, the data sets are bupa and
wine. The size of the neighborhood is θ = 5.

a�ected by the type of similarity measure used and the implementation of calculation
of similarity measure. Due to the high number of comparisons needed to select the top
k− 1 most similar neighbors the similarity evaluation needs to be implemented in a way
which is time e�cient. E�cient ways to perform nearest neighbor searches will improve
the running time of the neighborhood-based methods. Preprocessing before the search
can be used, because the model fragments are known before the search.
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Figure 8.16: Comparison of the runtime for di�erent Widening methods using the
haberman data set. All the neighborhood-based approaches use a small neighborhood
size θ = 5.
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Figure 8.17: Comparison of the running times for Widening via similarity neighborhoods
for di�erent parameters using the haberman data set.

8.5 Conclusions

All Widening approaches show improvement of the solution quality, when compared with
the greedy solution. Increasing the number of parallel workers improves the solution qual-
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Figure 8.18: Comparison of the runtime of Widening via diverse neighborhoods with
di�erent neighborhood size versus Widening via optimality neighborhoods and Widening
via hashing using the haberman data set.
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ity. The appropriate use of diversity improves the solution quality. Communication-less
Widening has the potential to compare with the Top − k Widening, when done right.
Additionally, adding more parallel workers can compensate for the lack of communica-
tion. A larger size of the neighborhood does not lead to improved results. However,
diversity in combination with model quality, which leads to the investigation of promis-
ing solutions, provides an improvement of the quality of the �nal solution. Di�erent
approaches to diversity achieve di�erent levels of diversity in the end result. Dependent
on the type of the data and search space landscape, some diversity approaches are more
bene�cial than others. Widening via similarity neighborhoods is successful in discovering
solutions with similar properties, and good quality. Using similarity neighborhoods in
combination with diverse neighborhoods will help investigate small similarity neighbor-
hoods of various promising solutions and have the chance to perform better than larger
similarity neighborhoods. It is clear that the size of the neighborhood is decisive for
the running time and dominates the widened search. This especially holds for Widening
via diverse neighborhoods, where the size of the neighborhood dictates the amount of
calculations needed to build the neighborhood. For Widening via similarity neighbor-
hoods, the neighborhood size is not that in�uential, since the work is the same � the
similarity is calculated for all the members of a re�nement set, regardless of the size of
neighborhood. The similarity neighborhoods are built using a comparison only to the
locally optimal model, however, all members of the re�nement set are compared to that
re�nement. If a similarity neighborhood is built using a �xed threshold, instead of the
k most similar, then the running time can be improved. When it comes to Widening
via similarity neighborhoods, it is most often more advantageous to use a small size of
the neighborhood, since the goal is to �nd a set of very similar and good models. Even
with regards to Widening via diverse neighborhoods, a larger neighborhood size is not
always more advantageous than a smaller one, due to the fact that this method is very
sparse. A large number of parallel workers and Widening with a smaller neighborhood
size can be su�cient for discovering many promising solutions. The threshold δ does not
in�uence the running time this much, so it is better to use the threshold in order to con-
trol the amount of diversity when building diverse neighborhoods, instead of aiming at
large diverse neighborhoods. The lack of communication can be (partially) compensated
by more work done in parallel. For very large size of neighborhoods, the running time
can be equal or worse than that of Top − k Widening, due to the need for a very large
part of the landscape to be built by each individual worker, even though synchronization
between the parallel workers is not necessary. We demonstrated (in Figures 8.12, 8.13)
that even with a small size neighborhood θ, the obtained model quality can be compa-
rable to the Top−k Widening approach. While this result is data-dependent, in general
increasing the diversity threshold can compensate for the size of the neighborhood.
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Chapter 9

Outlook and Future Work

In this work, we investigate di�erent Widening approaches with and without commu-
nication, both theoretically and experimentally. We implement said approaches to two
widely used algorithms in data mining. The greatest challenge is to implement diverse
structured search of the search space without using communication between the parallel
workers. In order to compensate for the lack of communication, each parallel worker has
to do more work to investigate a larger portion of the local landscape, or some knowledge
of the search space must be encoded via pre-processing.

9.1 Future Work focused on Improving the

Running Time of Neighborhood-based Widening

The bottleneck of Widening via neighborhoods is the calculating and building of the
neighborhoods, and depends on the neighborhood size. This is especially true for the
diverse neighborhoods approaches. First, di�erent pre-processing techniques can be used
in order to speed up the building of the neighborhoods. Many di�erent methods for fast
k nearest neighbors or approximate nearest neighbor searches exist. Such approaches
include local sensitivity hashing, k−d trees, and many others. These can be implemented
on the space of model components, before the search starts and be used as pre-processing
techniques with the goal of improving the running time. Then, instead of building a
neighborhood at each step, the parallel worker can look up the needed neighbors, based
on data-based similarity. For di�erent types of situations, di�erent techniques may be
appropriate, for example, k − d trees do not perform well on high-dimensional data.

Second, instead of pre-processing, di�erent heuristics can be used to process large
neighborhoods in a speedier manner. The most trivial technique to improve the running
time is that instead of building the full neighborhood of size θ, each parallel worker
builds the neighborhood of size at most that of its label (the size of neighborhood, which
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it needs). Because these labels are assigned at random, each parallel worker will build
on average a neighborhood of size θ

2
at each step. For more sophisticated approaches,

techniques and heuristics developed for very large neighborhood searches can be used in
order to gather more information about the larger portion of the landscape, while at the
same time allowing fast processing. Additionally, smarter partitioning of each re�nement
set can be useful when improving the running time.

9.2 FutureWork focused on Improving the Exploration

of Neighborhood-based Widening

Similarity and diversity neighborhoods can be combined to improve the search. Diverse
neighborhoods are used with the idea of exploration, while similarity neighborhoods are
applied to achieve exploitation. Thus, in the beginning of the search diverse neighbor-
hoods can be used to discover high quality solutions and later on similarity neighborhoods
can help re�ne the search and discover better solutions.

9.3 Future Work Focused on the Algebraic and Topo-

logical Properties

of the Re�nement Graph used for Widening

In addition, for many problems the structure of the re�nement graph of the search
space can be known prior to the search. For di�erent re�nement operators the search
space graph can have di�erent properties. These properties can be used for thorough
and full exploration of the search space, given enough parallel workers. For example,
in this dissertation we used the fact that the Boolean lattice can be partitioned using
chain decomposition, this is true for other types of posets. The knowledge of the various
structures of the re�nement graph of the search space can be used to partition the search
space. Once global partitioning is achieved, di�erent probabilistic approaches in di�erent
partitions can be used.

The re�nement operator r for di�erent algorithm types de�nes di�erent types of poset
topology. For example, the re�nement operator of type 1, discussed in this dissertation,
de�nes a lattice onM. The topology of the poset, de�ned by the particular re�nement
operator, has di�erent properties, which will help us de�ne partitioning/traversals in
parallel without the need of communication between the parallel workers. This topology
and its properties can be calculated before the search.

For lattices many traversal algorithms already exist, some are also focused on e�-
ciency. What is interesting as a future work is to use the existing traversal algorithms
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and apply them in parallel with the goal of Widening in mind � obtaining high quality
solutions and, given enough parallel resources, ultimately discovering the optimal so-
lution. Similarly, for other types of posets, algorithms may already exist that can be
applied to the goal of Widening.

Another enhancement of the Widening approaches, which are based on global knowl-
edge, is related to re-de�ning a redundant-free re�nement operator. An additional im-
provement would be to de�ne redundant free operators, which not only count identical
model fragments as redundancies, but also very similar model fragments. Such synonyms
can be de�ned using data-based similarity, and redundancy can be avoided by forbidding
more than one synonym to be considered.

9.4 Future Investigations on the Basis of This Disser-

tation

Further improvements that I would like to achieve are as follows. The approaches will
be tested on more data sets in the future. More data sets with di�erent properties can
provide an insight of how di�erent topologies of the data can in�uence the relationship
between the nodes in the re�nement graph and perhaps help with enhancing Widening.

Moreover, the theoretical properties of the neighborhood-based Widening were inves-
tigated under very strict assumptions about the search spaces. These assumptions can
be expanded. The theoretical properties of the Widening via diversity neighborhoods
are a much more di�cult problem, due to the fact that the whole search space landscape
needs to be considered. Ideally, a speci�c performance-related measure needs to be eval-
uated: how many parallel workers are needed in order for the results from Widening via
diverse neighborhoods to be similar to those of Widening via diverse Top− k.

If there is more knowledge about the relationship between the topology of the space
of model components or the data topology and the search space of models, this prior
knowledge will help to choose appropriate parameters and approaches for Widening.

9.5 ImprovingWidening via Neighborhoods by "Learn-

ing to Learn". Reinforcement Learning and Reac-

tive Search

In this dissertation, we had a static approach to the neighborhoods themselves, we did
not use any information from the structure of the data, the structure of the space of
model components, nor from the subspaces of the re�nement sets. A way to improve
Widening is to use a reactive search approach, where the structure of a subspace of the
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search space "teaches" the parallel workers how to search. For example, parameters,
determining search properties, can be optimized during the search, depending on the
landscape. This can be done individually, as well as using a memory agent. Using a
memory agent will require communication between reach individual parallel worker, but
directly with it and if it is asynchronous it will not penalize the runtime too much.

Using information of the distribution of the model fragments with respect to similarity
can also help choose appropriate thresholds for the diversity/similarity searches, proper
neighborhood sizes and others.
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