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ON THE SENSE PRESERVING MAPPINGS

IN THE HELM TOPOLOGY IN THE PLANE

Pavel Pyrih∗

Communicated by S. L. Troyanski

Abstract. We introduce the helm topology in the plane. We show that (as-
suming the helm local injectivity and the Euclidean continuity) each map-
ping which is oriented at all points of a helm domain U is oriented at U .

1. Introduction. We can easily observe that any continuous complex

function f : C → C has the following property (see [3], Proposition 3.1). If a point

z ∈ C is the point of holomorphy (i.e. there exists nonzero complex derivative,

i.e. ∂f(z) = 0 and ∂f(z) 6= 0), then there exists a neighborhood U of z such

that for each positively oriented circle T ⊂ U centered at z the curve f(T ) is

homotopic in C \ {f(z)} to a positively oriented circle L centered at f(z).

Similarly in some neighborhood of a point of antiholomorphy (i.e. ∂f(z) 6=

0 and ∂f(z) = 0) all positively oriented circles are mapped onto curves homotopic

to the negatively oriented circles.
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The question now arises whether each continuous function f which has

only points of either holomorphy or antiholomorphy is itself either holomorphic

(∂f = 0) or antiholomorphic (∂f = 0).

This relates to the following problem (still unsolved).

Problem 1.1. Is it true for every finely harmonic morphism f , defined

in a fine domain U in C (this already implies that ∂f · ∂f = 0 Lebesgue almost

everywhere in U), that either f or f is a finely holomorphic function?

(See [1], [2], [3]).

The formulation of the Problem 1.1 uses the fine topology from potential

theory. We study a similar question for the helm topology in the plane. First we

introduce the sun topology and the circle topology in the plane.

Definition 1.2. The sun topology in the complex plane C is defined by

declaring a set A to be open at x if for (Lebesgue) almost every α ∈ [0, 2π] there

exists tα > 0 such that {z ∈ C : z = x + t(cos α + isin α), |t| < tα} ⊂ A.

In other words the set A contains with any point x a segment on almost

every line through x.

Definition 1.3. The circle topology in the complex plane C is defined

by declaring a set A to be open if for each x ∈ A there exists a set Dx ⊂ R+ such

that {z ∈ C : |x − z| ∈ Dx} ⊂ A and the 0 ∈ R is the point of (one dimensional)

right-sided density for the set Dx.

In other words the set A contains with any point x circles (not discs) with

radii r ∈ Dx and the origin is the point of density for the set Dx ∪ (−Dx).

For any topology (e.g. blue) we use the terms blue open, blue closure ...

with respect to this topology. Now we can define the helm topology in the plane.

Definition 1.4. We say that A ⊂ C is helm open if and only if A is

circle open and simultaneously A is sun open.

We see that if a set A is helm open then it contains with any point a ‘helm

wheel’ (the ship’s steering wheel) with infinitely many circles and infinitely many

radii (not of equal length).
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2. Oriented mappings. Now we use the idea of holomorphy and anti-

holomorphy mentioned in Introduction.

We say that a helm continuous function f : U → C is oriented at a point

z ∈ U if there is a helm neighborhood V ⊂ U of z such that for each positively

oriented circle T ⊂ V centered at z the curve f(T ) is homotopic in C \ {f(z)} to

an oriented circle L centered at f(z). If the circle L is a positively oriented circle

we say that f is positively oriented at z. If the circle L is a negatively oriented

circle we say that f is negatively oriented at z.

We say that a helm continuous function f : U → C is oriented at U if

either it is positively oriented at all points of U or it is negatively oriented at all

points of U .

We see that each point of holomorphy is the point of the positive orien-

tation and each point of antiholomorphy is the point of the negative orientation

for any continuous complex function.

Now we show that (assuming the helm local injectivity and the Euclidean

continuity) a helm continuous function which is oriented at all points of a helm

domain U is oriented at U .

Proposition 2.1. Let U be a helm domain in C and let f : U → C be

a helm continuous function oriented at all points of U . If f is helm locally both

injective and Euclidean continuous in U , then f is oriented in U .

P r o o f. Fix an a ∈ U . Let f be positively oriented at a. There exists a

helm neighborhood V of a such that V ⊂ U and f is both Euclidean continuous

and injective on V .

Let b be a point in V such that the linear or circle segment K = ab is

contained at V and f is negatively oriented at b. We will deduce from this a

contradiction.

Put Wa := D(f(a), |f(b) − f(a)|/10), Wb := D(f(b), |f(b) − f(a)|/10)

(here D(z, r) denotes the open disc with center z and radius r). The set V is

helm open, f is both helm and Euclidean continuous in V . There exists a helm

neighborhood Va ⊂ V of a such that f(Va) ⊂ Wa. We find in Va a circle with

center a and radius ra, less than |a − b|/10, such that Φ(t) := f(a + rae
it) is a

positively oriented Jordan curve defined on [0, 2π] enclosing f(a). Similarly, there

exists a helm neighborhood Vb ⊂ V of b such that f(Vb) ⊂ Wb. We find in Vb a
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circle with center b and radius rb, less than |a−b|/10, such that Ψ(t) := f(b+rbe
it)

is a negatively oriented Jordan curve defined on [0, 2π] enclosing f(b).

The curves Φ and Ψ are disjoint and mutually outside, since Φ∗ ⊂ Wa,

Ψ∗ ⊂ Wb and Wa∩Wb = Ø. (For a Jordan curve ρ, ρ∗ denotes the range of ρ, i.e.

the geometrical image ρ([0, 2π]), Int ρ denotes the bounded component of C \ ρ∗

and Ext ρ denotes the unbounded component of C \ ρ∗. We say that two Jordan

curves ρ and τ are mutually outside if Int ρ is disjoint with Int τ . Similarly, ρ is

inside τ means that Int ρ ⊂ Int τ , ρ and τ are disjoint means that ρ∗ ∩ τ∗ = Ø.)

Put K ′ := K \D(a, ra)\D(b, rb). For each z ∈ K ′, we construct similarly

a circle, with center z and radius rz < min(ra, rb)/10, contained in V . Obviously

K ⊂
⋃

z∈K ′∪{a,b}

D(z, rz).

Since K is a compact set, we can find a finite set M = {a, z1, . . . , zn, b} such that

K ⊂
⋃

z∈M

D(z, rz).

We denote by L the boundary of
⋃

z∈M

D(z, rz).

The construction shows that L∩K = Ø and L ⊂ V . L is a circle-polygon

composed of finitely many arcs of circles (L contains arcs from the circles T (a, ra)

and T (b, rb) with a central angle greater than π). Denote by λ a parametrical

representation of L, defined on [0, 2π], such that λ is a positively oriented Jordan

curve. Put Λ := f ◦ λ. Λ is a Jordan curve, since f is injective on V . The curves

Λ and Φ form together a Θ-curve (see [4], Proposition V.2.4), the same is true for

Λ and Ψ. Recall that Φ is a positively oriented Jordan curve, Ψ is a negatively

oriented Jordan curve and they are disjoint and mutually outside.

There are 4 possible situations:

(1) : Λ is mutually outside to both Ψ and Φ. Then the orientation of Λ cannot

agree with the orientations of both Φ and Ψ. So we obtain a contradiction.

(2) : both Φ and Ψ are inside Λ. Then the orientation of Λ cannot agree with

the orientations of both Φ and Ψ. So we obtain a contradiction.
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(3) : Φ is inside Λ, Ψ and Λ are mutually outside. We shall show that this case is

impossible. Indeed, put A := T (a, ra)∩K. Then A /∈ L and f(A) ∈ Φ∗\Λ∗.

So we have f(A) ∈ Int Λ. Similarly, we denote B := T (b, rb) ∩ K, then

B /∈ L and f(B) ∈ Ψ∗ \ Λ∗, so we have f(B) ∈ Ext Λ.

By the construction, f(K) in connected and f(K) ∩ Λ∗ = Ø. But f(A) ∈

f(K), f(B) ∈ f(K), f(A) ∈ Int Λ, f(B) ∈ Ext Λ – a contradiction.

(4) : Ψ is inside Λ, Φ and Λ are mutually outside. In a similar way as in (3), we

show that this case is impossible.

Therefore f cannot be positively oriented at a and negatively oriented

at b. Hence f is positively oriented at all points z with linear or circle segment

az ⊂ V . The same argument gives the positive orientation in any point that

can be joined with a by a (both circle and linear) polygonal path in V . Due to

the construction of the helm topology we see that the set of points where f is

positively oriented is helm open.

So we conclude that, f is oriented in the helm domain U . �

The proof is a simple modification of the proof of Theorem 3.3 in [3].

We have a simple corollary.

Corollary 2.2. Let f be a continuous (helm) locally injective complex

function in a complex domain U . Let each point of U be either the point of holo-

morphy for f or the point of antiholomorphy for f . Then f is either holomorphic

(∂f = 0) or antiholomorphic (∂f = 0) in U .

Finally we can formulate a problem.

Problem 2.3. We do not know whether the condition of helm local

injectivity in Proposition 2.1 can be avoided, i.e. whether the same holds without

this assumption.
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