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Abstract: It has been obtained that the n-th derivative of the 2-parametric Mittag–Leffler function is a
3-parametric Mittag–Leffler function, with exactness to a constant. Following the analogy, the author
later obtained the n-th derivative of the 2m-parametric multi-index Mittag–Leffler function. It turns
out that this is expressed via the 3m-parametric Mittag–Leffler function. In this paper, upper estimates
of the remainder terms of these derivatives are found, depending on n. Some asymptotics are also
found for “large” values of the parameters. Further, the Taylor series of the 2 and 2m-parametric
Mittag–Leffler functions around a given point are obtained. Their coefficients are expressed through
the values of the corresponding n-th order derivatives at this point. The convergence of the series to
the represented Mittag–Leffler functions is justified. Finally, the Bessel-type functions are discussed
as special cases of the multi-index (2m-parametric) Mittag–Leffler functions. Their Taylor series are
derived from the general case as corollaries, as well.
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1. Introduction

The Mittag–Leffler function is given by the following series:

Eα, β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, z ∈ C; α, β ∈ C, Re(α) > 0. (1)

Arising in the beginning of the 20th century (initially for β = 1), the function remained
unremarked upon and unused for a long time (for almost 50 years). Recently, interest in this
function and its generalizations has risen due to their important role in fractional calculus
and related fractional order integral and differential equations (as their solutions) and
applications [1]; for example, to model some evolution processes [2], fractional diffusion
processes [3–8], nonlinear waves, etc. It is worth pointing out that the Mittag–Leffler
function and its various generalizations are widely used in the field of anomalous diffusion,
non-exponential relaxation, etc. For some other properties and applications, see, e.g., the
recent papers [9–11].

Among the well-known generalizations of Eα, β is the Mittag–Leffler function Eγ
α, β

with three parameters, namely

Eγ
α, β(z) =

∞

∑
k=0

(γ)k
Γ(αk + β)

zk

k!
, z ∈ C; α, β, γ ∈ C, Re(α) > 0, (2)

where (γ)k is the Pochhammer symbol ([12] [Section 2.1.1])
(γ)k = γ(γ + 1) . . . (γ + k− 1), k ∈ N; (γ)0 = 1.
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This function was introduced by Prabhakar [13] and is also known as the Prabhakar
function.

Other generalizations are the multi-index Mittag–Leffler functions with 2m and 3m
parameters. First of them is this one with 2m parameters:

E(αi), (βi)
(z) = E m

(αi), (βi)
(z) =

∞

∑
k=0

zk

Γ(α1k + β1) . . . Γ(αmk + βm)
. (3)

The function E(αi), (βi)
was introduced by Luchko and Yakubovich [14] and Kiryakova [15]

and studied in detail by Kiryakova [15–17]. Initially defined for αi > 0 and βi arbitrary real
(complex) numbers (see e.g., [15]), its definition was later extended to complex parameters
with Re(αi) > 0 [18,19]. For the applications in the solutions of fractional order equations
and models, see Kiryakova and Luchko [20]. In their survey [21], Kilbas, Koroleva, and
Rogosin describe the historical development of the theory of these multi-index functions
as a subclass of the Wright-generalized hypergeometric functions pΨq(z). The method of
Mellin–Barnes-type integral representations allowed them to extend the function (3) and to
study it in the general case of parameters. The other multi-index Mittag–Leffler function
(with 3m parameters),

E(γi)
(αi), (βi)

(z) = E(γi), m
(αi), (βi)

(z) =
∞

∑
k=0

(γ1)k . . . (γm)k
Γ(α1k + β1) . . . Γ(αmk + βm)

zk

(k!)m , (4)

z ∈ C; αi, βi, γi ∈ C, Re(αi) > 0,

was introduced by the author in [22,23], generalizing both the Prabhakar functions (2) and (3)
and has been studied in a series of works (see, e.g., the recent papers by Paneva-Konovska [24],
Paneva-Konovska, and Kiryakova [25], Ali et al. [26] and Kiryakova [27]).

In connection with the following considerations, we recall the well-known denotation
for the operator for n-tuple differentiation

Dn =
dn

dzn =

(
d
dz

)n
, n ∈ N0;

it is understood conventionally that Dn f (z) = f (z) when n = 0, i.e., D0 f (z) = f (z).
It has been obtained that the n-th derivative of the 2-parametric Mittag–Leffler function

is a 3-parametric Mittag–Leffler function (with exactness to a constant), namely [28]

Dn[Eα,β(z)
]
= E(n)

α,β (z) = n!En+1
α,β+nα(z). (5)

Exactly the same form, for the n-th derivative of the two-parameter Mittag–Leffler function,
can be found in the book [29] [Equation 1.8.22]; see also the paper [30]. The analogical-type
relation is obtained between the functions (4) and the n-th derivative of (3) in Paneva-
Konovska [31], namely

Dn
[

E(αi), (βi)
(z)
]
=

dn

dzn

[
E(αi), (βi)

(z)
]
= Γ(n + 1) E(γi),m

(αi), (βi+nαi)
(z), (6)

with γ1 = n + 1, γ2 = · · · = γm = 1.
In this paper, we find upper estimations for the modules of remainder terms of the

functions En+1
α,β+nα and E(γi),m

(αi), (βi+nαi)
with the relevant conditions imposed on the parameters.

We also give their asymptotics for “large” values of n (that means simultaneously for two
“large” parameters). Finally, we represent the functions (1) and (3) in Taylor series around a
given point in the complex plane, providing their convergences reduce.

In general, inequalities and asymptotic formulae, as well Taylor series, can be used
when studying different problems, both theoretical and applied in nature, such as numerical
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methods, approximations, convergence, monotonicity, the modelling of physical processes,
etc. That is why these types of results are very useful and widely investigated.

For example, other interesting inequalities connected to the discussed functions can
be seen, e.g., in [23,26]. For inequalities referring to other classes of functions, see [32,33].
Co-ordinated convex functions are considered in Tunç, Sarıkaya, and Yaldız [32], and some
Hermite–Hadamard type inequalities, expressed via Riemann–Liouville fractional integrals,
are obtained. They are further used in proving integral inequalities for the left-hand side
of the fractional Hermite–Hadamard type inequality on the coordinates. Some concepts
of the relative strongly preinvex functions and relative strongly monotone operators with
respect to the auxiliary non-negative function and bi-function are considered in Noor and
Noor [33].

Currently, the Taylor series are actively studied and widely used not only from a
purely theoretical point of view. Various problems connected to them are considered in
different aspects. For example, describing Monte Carlo simulations with mathematical
convolutions of frequency and severity distributions in the operational risk capital model
in the Basel accords, Mun [34] uses the Taylor expansion series. Luchko [35] discusses the
generalized Taylor series in the form of convolution series and deduces the formulae for
its coefficients, involving the n-th order general sequential fractional derivatives. For the
applications in the fields of the approximations and numerical methods, see, e.g., [36,37].
Sunday, Shokri, and Marian use Taylor series in their variable step hybrid block method for
the approximation of the Kepler problem [36]. The connection between closed Newton–
Cotes formulae, trigonometrically-fitted methods, symplectic integrators, and the efficient
integration of the Schrödinger equation is studied in Shokri, Saadat, and Khodadadi [37].
For matrix functions and their applications to condition number estimation, see Deadman
and Relton [38].

2. Inequalities and Asymptotics

In this section, we consider the 3-parametric function En+1
α,β+nα and multi-index function

E(γi),m
(αi), (βi+nαi)

, involved in the formulae (5) and (6), with positive parameters and n ∈ N0.
We find some estimates, connected to their remainder terms, beginning with the represen-
tation below.

Lemma 1. Let α, β, z ∈ C and let Re(α) > 0. Then, the following equality holds true for all the
values of n ∈ N0:

En+1
α,β+nα(z) =

1
Γ(αn + β)

(1 + ϑn(z)), (7)

where

ϑn(z) = Γ0,n

[
∞

∑
k=1

Γk,n
zk

k!

]
, (8)

is an entire function with

Γ0,n =
(n + 1)Γ(αn + β)

Γ(αn + β + α)
, Γ1,n = 1, (9)

and

Γk,n =
(n + 2) . . . (n + k)Γ(αn + β + α)

Γ(αn + β + αk)
, for k = 2, 3, . . . . (10)

Proof. The relation (7) immediately follows due to (2), applied with γ = n + 1 and αn + β
instead of β, along with (8)–(10).

The next assertion refers to the coefficients Γk,n involved in the above formulae.
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Lemma 2. Let α ≥ 1, β > 0, and Γk,n be defined by (9) and (10). Then, the following inequalities
hold true for all the values of n ∈ N0:

Γk,n ≤ k, for k = 1, 2, 3, . . . , (11)

and
Γ0,n ≤

n + 1
n + β

, for α = 1. (12)

Moreover, if α ≥ 1 and n is “large enough”, then

Γ0,n ∼
(n + 1)

(αn + β)α
. (13)

Proof. Letting α ≥ 1 and k ≥ 2, we write down

Γk,n =
(n + 2) . . . (n + k)Γ(αn + β + α)

Γ(αn + β + αk)
≤ (n + 2) . . . (n + k)Γ(αn + β + α)

Γ(αn + β + α + k− 1)
.

This inequality leads to

Γk,n ≤
(n + 1) . . . (n + k− 1)

(αn + β + α) . . . (αn + β + α + k− 2)
n + k
n + 1

≤ 1.k,

which, along with Γ1,n = 1, proves (11).
Now, let α = 1. Then,

Γ0,n =
(n + 1)Γ(n + β)

Γ(n + β + 1)
=

n + 1
n + β

,

that is, (12).
In order to prove (13), we take α ≥ 1 and k = 0, and using (9) and the Γ-functions’

quotient property [23] [Remark 6.5]

Γ(z)
Γ(z + α)

=

(
1
zα

)
, | arg z| < π, | arg(z + α)| < π, (14)

with z = αn + β, we affirm the validity of the relation (13).

We set α > 1 in (13) and let n→ ∞ lead to a corollary, as follows.

Corollary 1. Let α > 1, β > 0 and Γ0,n be defined by (9). Then, the following relation holds true:

lim
n→∞

Γ0,n = lim
n→∞

(n + 1)Γ(αn + β)

Γ(αn + β + α)
= 0. (15)

Proof. The equality (15) immediately follows, due to formula (13). Indeed, it can be
written that

lim
n→∞

Γ0,n = lim
n→∞

n + 1
(αn + β)α

= 0,

which is the desired equality.

The results obtained referring to the coefficients Γk,n allow estimates to be found for
|ϑn| and an asymptotic for ϑn when n→ ∞.
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Theorem 1. Let α ≥ 1, β > 0, ϑn be defined by (8) and z ∈ C. Let K be a nonempty compact
subset of C. Then, the following inequality holds true:

|ϑn(z)| ≤
(n + 1)Γ(αn + β)

Γ(αn + β + α)
|z| exp |z|, for z ∈ C, (16)

and there exists a constant C = C(K) such that

|ϑn(z)| ≤ C
(n + 1)Γ(αn + β)

Γ(αn + β + α)
, for z ∈ K. (17)

Moreover, if α > 1, then
lim

n→∞
ϑn(z) = 0, (18)

for z ∈ C, and the convergence is uniform on the compact subsets of C.

Proof. Due to (9) and (11), the module of ϑn(z) is estimated in the following way in the
complex plane:

|ϑn(z)| ≤ Γ0,n

[
∞

∑
k=1

Γk,n
|z|k
k!

]
≤ Γ0,n

[
∞

∑
k=1

k
|z|k
k!

]
= Γ0,n |z| exp |z|,

which shows that the inequality (16) holds true. The inequality (17) automatically follows
in the set K. The equality (18) is also fulfilled, due to (15)–(17).

Restricting the parameter α to 1 yields the following corollary.

Corollary 2. Let α = 1, β > 0, ϑn be defined by (8) and z ∈ C. Let K be a nonempty compact
subset of C. Then, the inequalities (16) and (17) are reduced to

|ϑn(z)| ≤
n + 1
n + β

|z| exp |z|, for z ∈ C, (19)

respectively

|ϑn(z)| ≤ C
n + 1
n + β

, for z ∈ K, (20)

with a constant C = C(K).

Analogical statements can be formulated and proved for the multi-index Mittag–Leffler
function E(γi),m

(αi), (βi+nαi)
with positive parameters αi, βi, and n ∈ N0.

Lemma 3. Let αi, βi, z ∈ C and let Re(αi) > 0. Then, the following equality holds true for all the
values of n ∈ N0:

E(γi),m
(αi), (βi+nαi)

(z) =
1

Γ(α1n + β1) . . . Γ(αmn + βm)
(1 + ϑn(z)), (21)

with γ1 = n + 1 and γ2 = · · · = γm = 1.
The function ϑn is an entire function, defined as follows:

ϑn(z) = Γ0,n

[
∞

∑
k=1

Γk,n
zk

k!

]
, (22)

with

Γ0,n =
(n + 1)Γ(α1n + β1) . . . Γ(αmn + βm)

Γ(α1n + β1 + α1) . . . Γ(αmn + βm + αm)
, Γ1,n = 1, (23)
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and

Γk,n =
(n + 2) . . . (n + k)Γ(α1n + β1 + α1) . . . Γ(αmn + βm + αm)

Γ(α1n + β1 + kα1) . . . Γ(αmn + βm + kαm)
, for k = 2, 3, . . . . (24)

Proof. The relation (21) immediately follows due to (4), applied with γ1 = n + 1, γ2 =
· · · = γm = 1 and αin + βi instead of βi (i = 1,= . . . , m), along with (22)–(24).

The next assertion refers to the coefficients Γk,n involved in the above formulae.

Lemma 4. Let αi > 0, βi > 0 (i = 1, . . . , m), αi0 ≥ 1,

αi0 = max
i=1÷m

(αi), (25)

and Γk,n be defined by (23) and (24). Then, the following inequalities hold true for all the values of
n ∈ N0 with αi(n + 1) + βi ≥ 2:

Γk,n ≤ k, for k = 1, 2, 3, . . . , (26)

and

Γ0,n ≤
n + 1

n + βi0
, for αi0 = 1; Γ0,n ≤

(n + 1)Γ(αi0 + βi0)

Γ(αi0 n + βi0 + αi0)
, for αi0 > 1. (27)

Moreover, if αi0 ≥ 1 and n is “large enough”, then

Γ0,n ∼
(n + 1)

(αi0 n + βi0)
αi0

. (28)

Proof. Letting αi0 ≥ 1 and k ≥ 2, we write

Γ(αi0 n + βi0 + kαi0) = Γ(αi0 n + βi0 + αi0 + (k− 1)αi0) ≥ Γ(αi0 n + βi0 + αi0 + k− 1)

= (αi0 n + βi0 + αi0) . . . (αi0 n + βi0 + k− 2)Γ(αi0 n + βi0 + αi0).

If i0 6= i and αi(n + 1) + βi ≥ 2, then

Γ(αin + βi + αi)

Γ(αin + βi + kαi)
≤ 1.

The last two inequalities lead to

Γk,n ≤
(n + 1) . . . (n + k− 1)

(αi0 n + βi0 + αi0) . . . (αi0 n + βi0 + αi0 + k− 2)
n + k
n + 1

≤ 1.k,

which, along with Γ1,n = 1, proves (26).
The proof of (27) proceeds in a similar way, using the fact that the inequality

Γ(αin + βi)

Γ(αin + βi + αi)
≤ 1,

holds true for i0 6= i. The details are omitted.
In order to prove (28), we take αi0 ≥ 1 and k = 0, and using (27) and the Γ-functions’

quotient property (14) with z = αi0 n + βi0 , we affirm the validity of the relation (28).

We set αi0 > 1 in (28) and let n→ ∞ lead to a corollary, as follows.
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Corollary 3. Let αi > 0, βi > 0, αi0 be defined by (25), αi0 > 1, and Γ0,n be defined by (23). Then,
the following relation holds true:

lim
n→∞

Γ0,n = lim
n→∞

(n + 1)Γ(α1n + β1) . . . Γ(αmn + βm)

Γ(α1n + β1 + α1) . . . Γ(αmn + βm + αm)
= 0. (29)

The results obtained referred to the coefficients Γk,n allowing estimates to be found for
|ϑn| and an asymptotic for ϑn when n→ ∞.

Theorem 2. Let αi > 0, βi > 0 (i = 1, . . . , m), αi0 be defined by (25), αi0 ≥ 1, ϑn be defined
by (22) and z ∈ C. Let K be a nonempty compact subset of C. Then, the following inequality holds
true, if additionally αi(n + 1) + βi ≥ 2:

|ϑn(z)| ≤
(n + 1)Γ(αi0 n + βi0)

Γ(αi0 n + βi0 + αi0)
|z| exp |z|, for z ∈ C, (30)

and there exists a constant C = C(K) such that

|ϑn(z)| ≤ C
(n + 1)Γ(αi0 n + βi0)

Γ(αi0 n + βi0 + αi0)
for z ∈ K. (31)

Moreover, if αi0 > 1, then
lim

n→∞
ϑn(z) = 0, (32)

for z ∈ C, and the convergence is uniform on the compact subsets of C.

Proof. Due to (23) and (26), the module of ϑn(z) is estimated in the following way in the
complex plane:

|ϑn(z)| ≤ Γ0,n

[
∞

∑
k=1

Γk,n
|z|k
k!

]
≤ Γ0,n

[
∞

∑
k=1

k
|z|k
k!

]
= Γ0,n |z| exp |z|,

which shows that the inequality (30) holds true. The inequality (31) automatically follows
in the set K. The equality (32) is also fulfilled, due to (29)–(31).

In particular, taking αi0 = 1, the following corollary can be produced.

Corollary 4. Let αi > 0, βi > 0 (i = 1, . . . , m), αi0 be defined by (25), αi0 = 1, ϑn be de-
fined by (22) and αi(n + 1) + βi ≥ 2. Let K be a nonempty compact subset of C. Then, the
inequalities (30) and (31) are reduced to

|ϑn(z)| ≤
n + 1

n + βi0
|z| exp |z|, for z ∈ C, (33)

respectively,

|ϑn(z)| ≤ C
n + 1

n + βi0
, for z ∈ K, (34)

with a constant C = C(K).

3. Taylor Series

It is well known that a given function f , holomorphic in an open disk D, can be
represented with a Taylor series, i.e., a series of the form

f (z) =
∞

∑
n=0

f (n)(z0)

n!
(z− z0)

n (z, z0 ∈ D). (35)
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In this section, we consider the Mittag–Leffler type functions (1) and (3) with complex
indices, which are entire functions when Re(α) > 0, respectively, Re(αi) > 0 for i = 1, . . . , m,
and give their Taylor series. However, before that, we state the following lemma.

Lemma 5. Let z, z0, ζ ∈ C, ρ > 0, and n be a nonnegative integer. Let Cρ and D(z0, ρ) be the
curve and open disk, centred at the point z0, as follows:

Cρ : |ζ − z0| = ρ, D(z0, ρ) : |z− z0| < ρ. (36)

Then, the function

Rm,n(z) =
1

2πi

∫
Cρ

E(αi), (βi)
(ζ)

(ζ − z)
(z− z0)

n+1

(ζ − z0)n+1 dζ, (37)

with E(αi), (βi)
defined in (3), satisfies the following relation:

lim
n→∞

Rm,n(z) = 0, z ∈ D(z0, ρ). (38)

Proof. Denoting
M(ρ) = max

|ζ−z0|=ρ
|E(αi), (βi)

(ζ)|, (39)

and bearing in mind that E(αi), (βi)
is an entire function, Rm,n(z) is estimated modulo in the

following way:

|Rm,n(z)| <
ρ

2π

M(ρ)

(ρ− |z− z0|)

(
|z− z0|

ρ

)n
.

Now, taking into account that |z− z0|/ρ < 1, the equality (38) automatically follows.

Remark 1. In particular, if m = 1, the function (3) is reduced to (1). Thus, in this case, Lemma 5
is referred to the function (1).

The Taylor series of the function (1) is given with the theorem below.

Theorem 3. Let α, β ∈ C, Re(α) > 0, and let z, z0 ∈ C. Then, the Mittag–Leffler function (1)
has the following Taylor series:

Eα, β (z) =
∞

∑
n=0

En+1
α, β+nα (z0) (z− z0)

n. (40)

Proof. Since the function (1) is a holomorphic function in the whole complex plane, it can
be represented there in a series of the kind (35). Taking f (z) = Eα, β (z) and bearing in
mind (5), we can write that its n-th derivative at the point z0 is equal to

f (n)(z0) = n!En+1
α, β+nα (z0).

That means that the function (1) is represented in a Taylor series of the kind (35) with

coefficients f (n)(z0)
n! = En+1

α, β+nα (z0). The convergence of the series in (40) to the function
Eα, β (z) is provided with Lemma 5. Indeed, it is well known that the remainder of (35)

Rk(z) = f (z)−
k

∑
n=0

f (n)(z0)

n!
(z− z0)

n,

can be expressed in terms of a contour integral as follows:

Rk(z) =
1

2πi

∫
Cρ

f (ζ)
(ζ − z)

(z− z0)
k+1

(ζ − z0)k+1 dζ, |z− z0| < ρ,
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where the circle Cρ is such as in (35) (centred at z0 and with an arbitrary radius ρ > 0). For
details and proof of the above representation, see, e.g., [39] (Volume 1, Chapter 4, (4.4:3)).
Now, taking f (ζ) = Eα,β(ζ), and in view of Lemma 5 (applied with m = 1) and Remark 1,
the remainder Rk(z) tends to zero, when k→ ∞ in the whole open disk D(z0, ρ) : |z− z0| < ρ.
Since ρ is an arbitrary radius, the convergence of the remainder is in the whole complex
plane. Therefore, the series in (40) converges to the Mittag–Leffler function Eα,β(z) in the
whole complex plane, which completely proves the theorem.

Further, we deal with the multi-index function (3). For convenience, we introduce the
denotation

Ẽγ,m
(αi), (βi)

(z) =
∞

∑
k=0

(γ)k
Γ(α1k + β1) . . . Γ(αmk + βm)

zk

k!
, (41)

which is the particular case of the function (4) with γ1 = γ, γ2 = · · · = γm = 1 (mentioning
that Ẽγ,1

(αi), (βi)
= Eγ

α1, β1
). Then, the relation (6) takes the form

Dn
[

E(αi), (βi)
(z)
]
=

dn

dzn

[
E(αi), (βi)

(z)
]
= Γ(n + 1) Ẽn+1,m

(αi), (βi+nαi)
(z). (42)

Theorem 4. Let αi, βi ∈ C, Re(αi) > 0 for i = 1, . . . , m, and let z, z0 ∈ C. Then, the multi-index
Mittag–Leffler function (3) is represented by the following Taylor series:

E(αi), (βi)
(z) =

∞

∑
n=0

Ẽn+1,m
(αi), (βi+nαi)

(z0) (z− z0)
n, (43)

with Ẽn+1,m
(αi), (βi+nαi)

defined by (41).

Proof. Since the function (3) is a holomorphic function in the whole complex plane, it can
be represented there in a series of the kind (35). Taking f (z) = E(αi), (βi)

(z) and bearing in
mind (6), (41), and (42), we can write that its n-th derivative at the point z0 is equal to

f (n)(z0) = Γ(n + 1) Ẽn+1,m
(αi), (βi+nαi)

(z0).

That means that the function (3) is represented in a Taylor series of the kind (35) with

coefficients f (n)(z0)
n! = Ẽn+1,m

(αi), (βi+nαi)
(z0). The convergence of the series in (43) to the multi-

index function E(αi), (βi)
(z) is provided by Lemma 5. It goes analogously to the proof of

Theorem 3. The details are omitted.

Remark 2. Naturally, one might expect that if z0 = 0, then the Taylor series (40) and (43) coincide
respectively with the series (1) and (3). Indeed, the value of En+1

α, β+nα at the point 0 is

En+1
α, β+nα (0) =

1
Γ(αn + β)

,

due to Definition (2). Then, the Taylor series (40) of the two-parametric Mittag–Leffler function
Eα, β is reduced to the series (1), defining this function. Analogously, in view of (41),

Ẽn+1,m
(αi), (βi+nαi)

(0) =
1

Γ(α1n + β1) . . . Γ(αmn + βm)
,

which means that, in this case, the series (43) produces the series (3), defining the 2m-parametric
multi-index Mittag–Lefler function E(αi), (βi)

.

Let us note that the multi-index Mittag–Leffler functions have many interesting and
useful special cases. Among them are for example both the classical Bessel functions of the
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first kind (up to a power function) and the closely related Bessel–Clifford functions. The
first ones are defined by the series

Jν(z) =
∞

∑
k=0

(−1)k(z/2)2k+ν

k! Γ(k + ν + 1)
, z ∈ C \ (−∞, 0]; ν ∈ C. (44)

The second ones are defined by the power series

Cν(z) =
∞

∑
k=0

(−z)k

k! Γ(k + ν + 1)
, z ∈ C; ν ∈ C. (45)

Arising from specific problems in mechanics and astronomy, these functions have various
applications. That is why they both have numerous generalizations with more indices
(parameters), or Bessel type functions. They are also connected with the multi-index Mittag–
Leffler functions. Naturally, all of them have a Taylor series of the kind (43). Below, in this
section, several Bessel type functions are considered, and their Taylor series are given in
the relevant forms.

Case 1. A special case of (3) (for m ≥ 2) is the generalized Lommel–Wright function Jµ,q
ν,λ

with four parameters, introduced by de Oteiza, Kalla, and Conde (for more details, see,
e.g., [23]):

Jµ,q
ν,λ(z) = (z/2)ν+2λ

∞

∑
k=0

(−1)k(z/2)2k

(Γ(k + λ + 1))q Γ(µk + λ + ν + 1)
,

z ∈ C \ (−∞, 0]; ν, λ ∈ C, µ > 0, q ∈ N.

(46)

The sum in (46) is an example of the multi-index Mittag–Leffler function with an
arbitrary m = q + 1 (q ∈ N). Further on, if the parameters are as follows,

α1 = µ, α2 = 1, . . . , αq+1 = 1, β1 = λ + ν + 1, β2 = λ + 1, . . . , βq+1 = λ + 1,

the generalized Lommel–Wright function (46) can be expressed by the multi-index Mittag–
Leffler functions (3). Setting 2

√
z instead of z, the relation (46) produces the following:

Jµ,q
ν,λ(2
√

z) = zν/2+λ J̃µ,q
ν,λ(z), z ∈ C \ (−∞, 0]; ν, λ ∈ C, µ > 0 q ∈ N, (47)

with J̃µ,q
ν,λ being the entire function

J̃µ,q
ν,λ(z) = E q+1

(µ,1,...,1), (λ+ν+1,λ+1,...,λ+1)(−z) =
∞

∑
k=0

(−z)k

(Γ(k + λ + 1))q Γ(µk + λ + ν + 1)
; (48)

defined for ν, λ ∈ C, µ > 0, q ∈ N and z ∈ C.
Since the function (48) satisfies the conditions of Theorem 4 and

Dn J̃µ,q
ν,λ(z) = (−1)nΓ(n + 1) Ẽn+1,q+1

(αi), (βi+nαi)
(−z),

with parameters

α1 = µ, α2 = · · · = αq+1 = 1, β1 = λ + ν + 1, β2 = · · · = βq+1 = λ + 1, (49)

in view of (41) and (42), the series (43) is reduced to

J̃µ,q
ν,λ (z) =

∞

∑
n=0

(−1)n Ẽn+1,q+1
(αi), (βi+nαi)

(−z0) (z− z0)
n, z, z0 ∈ C, (50)

with parameters as in (49).
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Case 2. Further, for q = 1, α1 = µ, α2 = 1, β1 = λ + ν + 1, β2 = λ + 1, the equalities (47)
and (48) give the generalized Bessel–Maitland (or Bessel–Wright) function Jµ

ν,λ with three
indices, introduced by R.S. Pathak:

Jµ
ν,λ(2
√

z) = zν/2+λ J̃µ
ν,λ(z), z ∈ C \ (−∞, 0]; ν, λ ∈ C, µ > 0, (51)

with J̃µ
ν,λ as follows:

J̃µ
ν,λ(z) = E(µ,1), (λ+ν+1,λ+1)(−z) =

∞

∑
k=0

(−z)k

Γ(k + λ + 1)Γ(µk + λ + ν + 1)
, (52)

for z ∈ C \ (−∞, 0]; ν, λ ∈ C, µ > 0.
Then, the series (50) is reduced to

J̃µ
ν,λ (z) =

∞

∑
n=0

(−1)n Ẽn+1,2
(αi), (βi+nαi)

(−z0) (z− z0)
n, z, z0 ∈ C, (53)

with α1 = µ, α2 = 1, β1 = λ + ν + 1, β2 = λ + 1.

Case 3. Additionally, if λ = 0, i.e., for parameters q = 1, α1 = µ, α2 = 1, β1 = ν + 1, β2 = 1,
the relations (48) and (52) produce the Bessel–Maitland (or Bessel–Wright) function Jµ

ν with
two parameters:

Jµ
ν (z) = E(µ,1), (ν+1,1)(−z) =

∞

∑
k=0

(−z)k

k!Γ(µk + ν + 1)
, z ∈ C; ν ∈ C and µ > 0. (54)

This function was introduced by the great British mathematician E. M. Wright and is known
as the Bessel–Maitland function (after his second name).

Applying (42), we obtain consecutively

Dn Jµ
ν (z) = (−1)n n! En+1

(µ,1), (µn+ν+1,n+1)(−z)

= (−1)n
∞

∑
k=0

n! (n + 1)k
Γ(k + n + 1)Γ(µk + µn + ν + 1)

(−z)k

k!

= (−1)n
∞

∑
k=0

(−z)k

k!Γ(µk + µn + ν + 1)
= (−1)n Jµ

ν+µn(z).

Thus, in this case, the formula (43) is reduced to the following:

Jµ
ν (z) =

∞

∑
n=0

(−1)n Jµ
ν+µn(z0)

n!
(z− z0)

n, z, z0 ∈ C. (55)

Case 4. Finally, if µ = 1, the formula (54) is reduced to the Bessel–Clifford function Cν, and
Bessel function Jν (up to a power function), given respectively by (45) and (44), as follows:

Cν(z) = J̃ν(z) = E(1,1), (ν+1,1)(−z), z ∈ C; ν ∈ C, (56)

where J̃ν is the entire function defined by

Jν(2
√

z) = zν/2 J̃ν(z), z ∈ C; ν ∈ C. (57)

The Taylor series (43) is now reduced to both series

J̃ν(z) =
∞

∑
n=0

(−1)n J̃ν+n(z0)

n!
(z− z0)

n, z, z0 ∈ C, (58)



Mathematics 2022, 10, 4305 12 of 15

and

Cν(z) =
∞

∑
n=0

(−1)n Cν+n(z0)

n!
(z− z0)

n, z, z0 ∈ C. (59)

Case 5. There is one more interesting function of the Bessel type. It is the so called
hyper-Bessel function, defined as follows:

J (m)
ν1,...,νm(z) =

(
z

m + 1

) m
∑

i=1
νi ∞

∑
k=0

(−1)k( z
m+1

)k(m+1)

Γ(k + ν1 + 1) . . . Γ(k + νm + 1)
1
k!

, (60)

for z ∈ C \ (−∞, 0] and Re(νi + 1) > 0 (i = 1, . . . , m).
The hyper-Bessel function was introduced in 1953 by Delerue [40] as a generalization

of the Bessel function Jν of the first type with vector index ν = (ν1, ν2, . . . , νm). Later on,
this function was also studied by other authors; for example, by Marichev, Kljuchantcev,
Dimovski, Kiryakova, etc.

The hyper-Bessel function of Delerue is closely related to the hyper-Bessel differential
operator of arbitrary order m > 1, which was introduced by Dimovski in [41]. This is a singular
linear differential operator, appearing very often in problems of mathematical physics as a
generalization of the second-order Bessel operator. It can be represented in the following
alternative forms:

B = zα0
d
dz

zα1 . . .
d
dz

zαm = z−β
m

∏
k=1

(
z

d
dz

+ βγk

)
(61)

= z−β

(
zm dm

dzm + a1zm−1 dm−1

dzm−1 + ... + am−1z
d
dz

+ am

)
,

with 0 < z < ∞, and sets of (m + 1) parameters

{α0, α1, ..., αm}, or {β > 0, γk real, k = 1, ...m}, or {β > 0, a1, ..., am}.

The details can also be seen in Dimovski and Kiryakova [42,43], and Kiryakova [44] (Chapter 3).
In her book [44] (Theorem 3.4.3 and Correction 3.4.4), Kiryakova showed that the funda-
mental system of solutions of the m-th order hyper-Bessel differential equation

By(z) = λ y(z), λ 6= 0,

consists of the set of hyper-Bessel functions

J(m−1)
1+γ1−γk ,...,∗,...,1+γm−γk

[
(−λ)1/m(m/β) zβ/m

]
, k = 1, ..., m.

This assertion was proved under the condition of the formal arrangement of the parameters
as γ1 < γ2 < ... < γm < γ1 + 1, where ∗ means to omit the index γk. Under this
assumption, the solutions of hyper-Bessel ODEs By(z) = λ y(z) + f (z) can be written
explicitly in terms of hyper-Bessel functions, series in hyper-Bessel functions, or series in
integrals of them ([44]).

Replacing z with (m + 1)z1/(m+1), the relation (60) yields

J(m)
ν1,...,νm

(
(m + 1)z1/(m+1)

)
= z

1
m+1

m
∑

i=1
νi

J̃(m)
ν1,...,νm(z),

(62)

with J̃(m)
ν1,...,νm being the entire function

J̃(m)
ν1,...,νm(z) =

∞

∑
k=0

(−z)k

Γ(k + ν1 + 1) . . . Γ(k + νm + 1)
1
k!

, z ∈ C.
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Further, considering the last function with parameters νi (i = 1, . . . , m− 1) and denoting
for convenience νm = 0, we express this via the multi-index Mittag–Leffler function of the
kind (3). Namely, the following relation holds true (with νm = 0):

J̃ (m−1)
ν1,...,νm−1(z) = Em

(1)(νi+1)(−z) =
∞

∑
k=0

(−z)k

Γ(k + ν1 + 1) . . . Γ(k + νm−1 + 1) Γ(k + 1)
· (63)

Applying (42), the following relations chain is obtained:

Dn J̃ (m−1)
ν1,...,νm−1(z) = Dn Em

(1)(νi+1)(−z) = (−1)n n! Ẽn+1
(1), (n+νi+1)(−z)

= (−1)n
∞

∑
k=0

n! (n + 1)k
Γ(k + n + ν1 + 1) . . . Γ(k + n + νm−1 + 1)Γ(k + n + 1)

(−z)k

k!

= (−1)n
∞

∑
k=0

(−z)k

k! Γ(k + n + ν1 + 1) . . . Γ(k + n + νm−1 + 1)

= (−1)n J̃ (m−1)
n+ν1,...,n+νm−1

(z).

Thus, in this case the formula (43) is reduced to the following:

J̃ (m−1)
ν1,...,νm−1(z) =

∞

∑
n=0

(−1)n J̃ (m−1)
n+ν1,...,n+νm−1

(z0)

n!
(z− z0)

n, z, z0 ∈ C, (64)

i.e., (64) gives the Taylor series for the function J̃ (m−1)
ν1,...,νm−1(z).

4. Conclusions

In conclusion, we emphasize that if z0 = 0, then the Taylor series (40) and (43) of Eα, β

and E(αi), (βi)
coincide respectively with the series (1) and (3), defining these functions. It is

also worth summarizing that all the considered functions of the Bessel type, discussed in
this section, are expressed by the multi-index Mittag–Leffler functions (3). For that reason,
using the formula (42) for the n-th derivative of (3) and Theorem 4, they can be represented
by Taylor series. The coefficients in the series obtained are not always expressed only by the
values of the corresponding more complicated multi-index Mittag–Leffler functions at the
given point z0. In some of the considered cases, the coefficients in the Taylor series include
the values at z0 of the represented Bessel type functions with “translated” parameters.
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