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Abstract: We construct a reduced basis approximation for the solution to a system of nonlinear
partial differential equations describing the temporal evolution of two populations following the
Lotka-Volterra law. The first population’s carrying capacity contains a free parameter varying in a
compact set. The reduced basis is constructed by two approaches: a proper orthogonal decomposition
of a collection of solution snapshots and a greedy algorithm using an a posteriori error estimator.
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1. Introduction

The reduced basis method finds applications in the construction of approximate solu-
tions to parametrised partial differential equations using carefully chosen low-dimensional
projection of the solution manifold associated with the compact set where the parameter
varies. Whenever the problem needs to be solved in a multi-query context (for instance,
for the needs of an optimisation problem), or for multiple parameter values, a direct ap-
proach based on repeated solutions could incur a very high computational cost. The goal of
the method is to approximate the solution by computing its coefficients in an orthonormal
basis, which is low-dimensional compared to the high-dimensional Galerkin finite element
basis used in a standard discretisation scheme. Thus, the solutions for different parameter
values as well as the approximation error can be approximated from a problem of much
lower dimension.

Recent applications of the method include problems from physics and engineering
such as fluid dynamics [1,2], viscous Burgers equation [3], the Navier–Stokes equations [4,5],
and linear parabolic problems [6–8]. Achieving such a reduced basis approximation with
reasonable accuracy and reduced computational effort depends on the solution manifold
being of low dimension as well as the problem’s regularity and affine dependence on the
free parameter.

This method has not yet been applied to evolution problems stemming from biological
applications, which often contain nonlinear terms, coupling of multiple variables as well
as require appropriate stable numerical schemes for time integration. Partial differential
equations of reaction-diffusion type are employed, for example, in modelling the immune
response to infections [9,10] and tumour growth and onco-immune interactions [11,12].

We study the performance of the reduced-basis method for a problem motivated by
a biomedical application (tumour growth under chemotherapy). In particular, we take
as example the parametrised Lotka-Volterra reaction-diffusion model over a bounded
convex domain Ω ⊂ R2 with Lipschitz boundary, where the reaction part contains a
free parameter. This model describes the evolution of the unknown u = (u1, u2) where
ui(x, y, t) ≥ 0, i = 1, 2 represent the densities of two competing populations at (x, y) ∈ Ω at
time t ∈ [0, Tend]. The model reads
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∂tui = di4ui + fi(u; µ), i = 1, 2 (1)

where the diffusion rate for i-th population is di > 0, and the growth rate of the populations
is given by a nonlinear vector function f :

f (u; µ) = (u1(a1 − µ− u1 − c1u2), u2(a2 − u2 − c2u1))
T . (2)

Here, ai, ci > 0 denote the carrying capacity and strength of competition, and the
free parameter is µ ∈ M ⊂ R+, with M being a compact set. A growth rate like (2)
(without diffusion in space) has been used in [13] to model changes in the tumour composi-
tion. In particular, (1) shall model the interactions between populations of chemotherapy-
sensitive cancer cells u1 and chemotherapy-resistant cancer cells u2. The death (or loss) of
sensitive cellls u1 due to chemotherapy with dose µ is encoded in the term −µu1. The sys-
tem (1) is complemented by initial conditions u(·, 0) 6= 0 and Dirichlet boundary condition,
u(·, t) = 0 on ∂Ω.

2. Problem Statement

In this work, we construct a reduced basis approximation of the solutions to (1) based
on a Galerkin (finite element) approximation. This reduced basis is low-dimensional com-
pared to the dimension of the finite element approximation space, and is used to compute
efficiently approximate solutions to (1) for different values of µ. For the construction of the
reduced basis, we use two approaches: a proper orthogonal decomposition (POD) and a
POD-greedy algorithm based on an a posteriori error estimator for the approximation error,
and compare their performance.

We denote by L1(Ω), L2(Ω), L∞(Ω) the spaces of measurable functions on Ω that are
respectively Lebesgue-integrable, square-integrable or have a bounded essential supre-
mum, and H1

0(Ω) the Sobolev space of functions w ∈ L2(Ω) vanishing on ∂Ω with∫
Ω∇w · ∇w < ∞. Here, ∇w denotes the gradient (∂xw, ∂yw). Tensor spaces such as

Lp × Lp inherit the respective norms from Lp, etc.
Given an initial value u(·, 0) ∈ H1

0 × H1
0 , (1) has unique solutions in time and under

certain conditions on the diffusion rates di and the parameters (e.g., ci < 1) admit nontriv-
ial, nonnegative stationary in time solutions [14]. We assume such parameter values in
this work.

A Galerkin finite element method applied to the Laplace operator in (1) makes the
resulting semi-discrete system stiff. Since the problem is a pure reaction-diffusion problem,
an implicit Euler scheme is a reasonable choice for time integration. The approximation of
the time derivative ∂tu is based on the solutions at consecutive time layers uk = u(·, kτ)
for appropriately chosen time step τ > 0 to guarantee stability of the scheme. We consider
henceforth the scheme:

1
τ
〈uk, φ〉2 + α(uk, φ)− 〈 f (uk; µ), φ〉2 =

1
τ
〈uk−1, φ〉2 (3)

In (3), we denote the inner product

〈u, v〉2
def
=
∫

Ω
(u1v1 + u2v2) dx, u, v ∈ L2 × L2,

and the bilinear form

α(u, v) def
=
∫

Ω
d1∇u1 · ∇v1 + d2∇u2 · ∇v2 dx, u, v ∈ H1

0 × H1
0 . (4)

Equation (4) defines the energy norm ‖ · ‖α via ‖w‖2
α

def
= α(w, w) for w ∈ H1

0 × H1
0 .

Friedrich’s inequality [15] implies that the energy norm ‖ · ‖α and the H1
0 -induced norm

are equivalent on H1
0 × H1

0 .
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3. Reduced Basis

Let Th be a triangulation of Ω. We use a Galerkin approximation with a finite element
space Vh

def
= Wh ×Wh, where Wh ⊂ H1

0(Ω) is spanned by finite element functions whose
restriction on each element of Th is piecewise polynomial of a fixed degree. In other
words, the pair (Th,Wh) is assumed to satisfy classical assumptions on regularity, affine
equivalence and compact support of the finite element functions ([15], p. 132). At this stage,
we assume that Th and Wh approximate the solution to (3) with sufficient accuracy and
further details on Wh shall be provided later.

The space Vh shall be referred to as truth space or high fidelity approximation
space [16,17]. For a given µ ∈ M, let the solution snapshot of (3) in the truth space
be given by the sequence of functions Uh(µ) = {uk

h(µ) ∈ Vh : k = 0, 1, . . . kmax} that
contains the values of uk

h(µ) on time layers t = kτ, k = 0, 1, . . . kmax with kmaxτ = Tend.
A reduced basis serving to approximate the solutions of (3) in the truth space for all

µ ∈ M is given by functions {ξi}N
i=1 ∈ Vh defining an orthonormal basis for a subspace of

dimension N � dimVh. As long as a reduced basis approximation is possible, the basis
elements are constructed so that the approximation error (in some norm to be defined later)
between Uh(µ) and the reduced basis solution Urb(µ) ∈ VN

rb
def
= span{ξi}N

i=1 stays within
a prescribed tolerance ε. Furthermore, the computational cost of the solution Urb(µ) for
every different parameter value µ shall remain independent of dimVh.

3.1. Numerical Scheme for Integration in Time

Problem (3) is a nonlinear equation for uk
h(µ), which can be solved using Newton’s

method at each time layer k. Denote the linear functional

G(ψ, φ; uk−1
h (µ))

def
=

1
τ
〈ψ, φ〉2 + α(ψ, φ)− 〈 f (ψ; µ), φ〉2 −

1
τ
〈uk−1

h (µ), φ〉2, ψ, φ ∈ Vh

and the bilinear form

DG(ψ, φ; µ, ψs)
def
=

1
τ
〈ψ, φ〉2 + α(ψ, φ)− 〈J(ψs; µ)ψ, φ〉2, ψ, φ ∈ Vh , (5)

where J is the Jacobian of f at u:

J(u; µ) =

(
a1 − µ− 2u1 − c1u2 −c1u1

−c2u2 a2 − c2u1 − 2u2

)
.

Note that J is bounded for u ∈ Vh. We solve for uk
h = ψ from G(ψ, φ; uk−1

h (µ)) = 0. ψ
can be approximated by successive Newton iterations (Algorithm 1):

Algorithm 1 Newton iteration.

Require: ψ0, uk−1
h (µ), εNewton

while ‖G(ψs, φ; uk−1
h (µ))‖ > εNewton do

solve
DG(δs, φ; µ, ψs) = −G(ψs, φ; uk−1

h (µ)) (6)

set ψs+1 = ψs + δs, s = s + 1
end while
Return: ψ = ψs

Lemma 1 together with the Lax–Milgram lemma [18] ensure that (6) has a unique
solution in Vh.

Lemma 1. For all µ ∈ M, the form DG(·, ·; µ, y) in (5) is continuous on Vh and coercive on Vh
for τ < max 1

ai
.
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Proof. We need to estimate the coercivity and continuity factors for DG(·, ·; µ, y) (those
depend on µ).

For the continuity factor, we use Hölder’s inequality and Poincaré’s inequality for
v, w ∈ Vh. Below, CΩ denotes the constant from Poincaré’s inequality [15] for Wh.

|DG(v, w; µ, u)| ≤ |α(v, w)|+ |〈( 1
τ
− J(u; µ))v, w〉2| ≤ γ(u, µ)‖v‖α‖w‖α

with

γ(u, µ) =
√

2 + CΩ

[
1
τ
+ sup

Ω
ρ(J(u; µ))

]
,

where ρ(J(u; µ)) denotes the spectral radius of J(u, µ).
For the coercivity, we obtain DG(v, v; µ, u) = α(v, v) + 〈( 1

τ − J(u; µ))v, v〉2 and

〈( 1
τ
− J(u; µ))v, v〉2 =

∫
Ω

(
( 1

τ − a1 + µ)v1
( 1

τ − a2)v2

)
·
(

v1
v2

)
+

(
(2u1 + c1u2)v1 + c1u1v2
c2u2v1 + (c2u1 + 2u2)v2

)
·
(

v1
v2

)
=
∫

Ω

[
(

1
τ
− a1 + µ)v2

1 + (
1
τ
− a2)v2

2

]
+
∫

Ω
(2u1 + c1u2)v2

1 + (c1u1 + c2u2)v1v2 + (c2u1 + 2u2)v2
2 .

By assumption c1, c2 < 1, the last form is positive semidefinite for u1, u2 ≥ 0 because

(c1u1 + c2u2)
2 − 4(2u1 + c1u2)(c2u1 + 2u2) =

− 2c1c2u1u2 − 16u1u2 + (c2
1 − 8c1)u2

1 + (c2
2 − 8c2)u2

2 ≤ 0 .

Hence, 〈( 1
τ − J(u; µ))v, v〉2 ≥ min{ 1

τ − a1 + µ, 1
τ − a2}‖v‖2, implying that, for the

chosen τ, DG(v, v; µ, u) ≥ ‖v‖2
α.

3.2. Offline and Online Phases

The chosen time integration scheme is used to construct the reduced basis elements ξi.
during the offline stage. Snapshots Uh(µ

∗) for carefully sampled values µ∗ ∈ M are used
to generate the reduced basis elements via a POD or a POD-greedy algorithm [6,7,16,17].
The training set Ξ ⊂ M for sampling must be chosen sufficiently rich to provide a good
approximation property of the resulting reduced basis. During this stage, all parameter-
independent objects (stiffness matrices and load vectors) required for the discrete solution
in VN

rb are computed and stored.
Assume that the reduced basis space VN

rb ⊂ Vh with N � dimVh has already been
found. Let uk

rb(µ) be the approximation in VN
rb to the solution uk

h(µ) in the truth space at
time layer t = kτ for a given µ. During the online stage, the computation of Urb(µ) for a
new parameter value µ shall involve the assembly of stiffness matrices and load vectors for
the low-dimensional problem from those obtained during the offline phase.

3.3. Solving the Problem in the Reduced Basis

The expansion coefficients uµ
k = {uµ

k,i}
N
i=1 in the reduced basis will be computed by

solving a problem in N dimensions. Let

uk
rb(µ) =

N

∑
i=1

uµ
k,iξi . (7)
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Using scheme (3), we solve for the reduced basis solution uk
rb(µ). We let φ = ξ j,

1 ≤ j ≤ N in (6) and obtain a linear system for uµ
k . For the Newton iteration step, we set

xs =
N

∑
i=1

xs
i ξi, δ =

N

∑
i=1

δiξi

which transforms (6) into an N-dimensional system. Then, we follow an analogous
Algorithm 2:

Algorithm 2 Newton iteration reduced basis.

Require: x0, uµ
k−1, εNewton

while ‖G(∑N
i=1 ys

i ξi, ξ j, µ; uµ
k−1,i)‖2 > εNewton do

solve

DG(ξi, ξ j, µ; xs)δ = −G(
N

∑
i=1

xs
i ξi, ξ j, µ; uµ

k−1,i) (8)

set xs+1 = xs + δ, s = s + 1
end while
Return: uµ

k = xs

Note that (8) admits a unique solution as a consequence of the well-posedness of the
truth scheme (6), and the inclusion VN

rb ⊂ Vh ([17], Lemma 3.1).
We now present the matrix formulation for the offline stage of (8), and rewrite the

matrix DG and the functional G in terms of the reduced basis elements ξi: Denote the ma-
trices

AN =

(
a1IN 0

0 a2IN

)
, CN =

(
0 c1IN

c2IN 0

)
, IN =

(
IN 0
0 0

)
where Im, m ∈ N is the m×m identity matrix. In fact, we have (in matrix-vector notation):
f (w, µ) = (AN − IN)w− w2 − wTCNw.

Define the matrices M,A,B1,B2 via

(M)ij
def
= 〈ξi, ξ j〉2, (A)ij

def
= α(ξi, ξ j), (B1)ij

def
= 〈ANξi, ξ j〉2, (B2)ij

def
= 〈INξi, ξ j〉2, i, j = 1, . . . , N.

Denote the following trilinear forms:

β0(ξi, ξ j, ξl)
def
=
∫

Ω
ξiξ jξl , β1(ξi, ξ j, ξl)

def
=
∫

Ω
(CNξi)ξ jξl , β2(ξi, ξ j, ξl)

def
=
∫

Ω
ξi(CNξ j)ξl ,

which are used to define the matrix

L(y) : (L)ij(y)
def
= −

N

∑
l=1

yl

2

∑
m=0

βm(ξl , ξi, ξ j), y ∈ RN

and the arrays of matrices Pj,Qj, j = 1, . . . , N defined by

(Pj)i1i2
def
= β0(ξi1 , ξi2 , ξ j) , (Qj)i1i2

def
= β2(ξi1 , ξi2 , ξ j)

with i1, i2 = 1, . . . , N.
To evaluate the nonlinear terms inside (8) in the reduced basis setting, we have

to compute the following vectors in RN : P(y) def
= {yTPjy}N

j=1, Q(y) def
= {yTQjy}N

j=1 for

appropriate y ∈ RN .
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In this matrix notation, we rewrite the linear problem (8) as:

DG(µ, xs)δ = −G(µ, xs, uµ
k−1) where

DG(µ, xs) =
1
τ
M+A−B1 + µB2 +L(xs)

G(µ, xs, uµ
k−1) =

1
τ
M(xs − uµ

k−1) +Ays −B1xs + µB2xs + P(xs) +Q(xs)

(9)

where the objects M,A,B1,B2,Pi,Qi, i = 1, . . . , N are matrices or arrays of matrices that are
independent of µ. Finally, the solution resulting from the reduced basis approximation is
recovered from uµ

k via (7).

3.4. Reduced Basis Construction via the POD-Greedy Algorithm

The greedy algorithm is used for construction of reduced basis approximations in the
context of elliptic problems (see [16,17] for references). It enriches at every iteration the
constructed reduced basis by adding an additional snapshot associated with the parameter
value µ∗ that maximises the approximation error (in some norm) between the snapshot
Uh(µ) and its approximation Urb(µ) spanned by the reduced basis constructed thus far,
in other words µ∗ = arg maxµ∈M ‖Uh(µ)−Urb(µ)‖. An estimate of this error should be
easily computable for various values of µ. The performance of the greedy algorithm relies
upon a sufficiently dense training subset Ξ = {µj, j = 1, . . . m} ⊂ M, which is used to find
a good value for µ∗.

In our context, the greedy algorithm is complemented by a proper orthogonal decom-
position step (Algorithm 3). The motivation for this lies in (3) whose solutions converge
to a stationary in time solution. The POD step minimises redundancy of storage of basis
elements and prevents possible stalling of the algorithm.

Furthermore, the approximation error ‖Uh(µ)−Un(µ)‖ should be estimated by an a
posteriori error estimator ∆rb(µ), ∀µ ∈ M, which is computationally inexpensive in order
to serve as a stopping criterion in the POD-greedy algorithm. When the prescribed accuracy
εtol is reached, the algorithm returns the N-dimensional reduced basis {ξi}N

i=1.

Algorithm 3 POD-greedy algorithm.

Require: εtol, Ξ, n1, n2 ∈ N, n2 < n1, µ1
Ensure: N = 0, ` = 1, ∆rb(µ1) = 2εtol,Z = ∅

while ∆rb(µ`) > εtol do
compute snapshot Uh(µ`)
compress Uh(µ`) using POD, retain n1 principal nodes {ζ j}n1

j=1

set Z = Z ∪ {ζ j}n1
j=1

if ` = 1 then
N = n1

else
N = N + n2
compress Z using POD, retain N principal nodes {ξ j}N

j=1

Z = {ξ j}N
j=1

end if
compute the error estimator ∆rb(µ), ∀µ ∈ Ξ using Z as basis
set µ`+1 = arg maxµ∈Ξ ∆rb(µ), Ξ = Ξ \ µ`+1, ` = `+ 1

end while
Return: Z , N

3.5. A Posteriori Error Analysis

In line with the time integration scheme, we derive an a posteriori estimate for the
approximation error between the solution in the truth space uk

h and in the reduced basis
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uk
rb at the k-th time layer, ek(µ)

def
= uk

h(µ) − uk
rb(µ) ∈ Vh. Note that f (·; µ) is Lipschitz

continuous on [0, a1]× [0, a2], so

| f (z; µ)− f (z′; µ)| ≤ ` f |z− z′| . (10)

Let the residual associated with uk
rb be

rk(φ; µ) = 〈 f (uk
rb; µ), φ〉2 −

1
τ
〈uk

rb − uk−1
rb , φ〉2 − α(uk

rb, φ), ∀φ ∈ Vh. (11)

rk is a linear functional on Vh, whose norm in the dual space V′h is

‖rk(·; µ)‖α′
def
= sup

φ∈Vh

|rk(φ; µ)|
‖φ‖α

. (12)

the Riesz representation theorem, implies that there exists a unique r̃k ∈ Vh such that

α(r̃k(µ), φ) = rk(φ; µ), ∀φ ∈ Vh,

and ‖rk(·; µ)‖α′ = ‖r̃k(µ)‖α.
Because rk has an affine dependence on µ, its norm can be efficiently computed. We

have the following evolution equation for the error ek based on (3):

1
τ
〈ek − ek−1, φ〉2 + α(ek, φ) = 〈 f (uk

h; µ)− f (uk
rb; µ), φ〉2 + rk(φ; µ), k ≥ 1, ∀φ ∈ Vh. (13)

The following result gives an estimate for the approximation error ek.

Lemma 2. Let f be a Lipschitz-continuous function with Lipschitz constant `sup (10). Consider
the implicit Euler scheme (3). Let rk(·; µ) be the residual from (11), with norm ‖rk(µ)‖α′ defined
in (12). Then, the following estimate for the approximation error ek(µ) between the solutions in the
truth and the reduced basis space holds for τ < 1

2`sup
:

‖ek‖2
2 ≤

‖e0‖2
2

(1− 2τ`sup)k +
τ

αmin

k

∑
j=1

‖rj(µ)‖2
α′

(1− 2τ`sup)k+1−j (14)

Proof. Letting φ = ek in (13), using the coercivity of the bilinear form α, and doing algebraic
transformations, we arrive to:

1
τ
〈ek − ek−1, ek〉2 + α(ek, ek) ≥

1
τ
‖ek‖2

2 −
1
τ
〈ek, ek−1〉2 + αmin‖ek‖2

α,

The local Lipschitz continuity of f (10), Hölder’s inequality, and the embedding
H1

0(Ω) ⊂ L2(Ω) give

〈 f (uk
h; µ)− f (uk

rb; µ), ek〉2 ≤
∫

Ω×Ω
| f (uk

h; µ)− f (uk
rb; µ)||ek| dx ≤ `sup‖ek‖2

2 . (15)

Hence, the right-hand side of (13) when φ = ek can be bounded by

〈 f (uk
h; µ)− f (uk

rb; µ), ek〉2 + rk(ek; µ) ≤ `sup‖ek‖2 + ‖rk(µ)‖α′ · ‖ek‖α .

Using next Young’s inequality, we have

〈ek, ek−1〉2 ≤ 1
2
(‖ek‖2

2 + ‖ek−1‖2
2)

‖rk(µ)‖α′ · ‖ek‖α ≤
‖rk(µ)‖2

α′

2αmin
+

αmin
2
‖ek‖2

α .
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Combining these inequalities gives

‖ek‖2
2

τ
+ αmin‖ek‖2

α ≤
‖ek‖2

2 + ‖ek−1‖2
2

2τ
+ `sup‖ek‖2

2 +
‖rk(µ)‖2

α′

2αmin
+

αmin
2
‖ek‖2

α,

and, if we choose τ such that 1
2τ > `sup, this implies

(
1

2τ
− `sup)‖ek‖2

2 ≤
‖ek−1‖2

2
2τ

+
‖rk(µ)‖2

α′

2αmin
,

giving

‖ek‖2
2 ≤

‖ek−1‖2
2

1− 2τ`sup
+

τ‖rk(µ)‖2
α′

αmin(1− 2τ`sup)
.

Applying telescopic sum and induction in k, we arrive at (14).

3.6. Computing the a Posteriori Error Estimator

Lemma 2 provides a bound for the approximation error ek(µ) between the solutions
at k-th time layer in the truth space and the reduced basis space. The expression on the
right-hand side of (14), which we denote by ∆k(µ), can be used as an a posteriori error
estimator in the POD-greedy algorithm, because for a given solution trajectory Uh(µ), the
quantity ∆k(µ) attains its maximum at k = kmax [7]. By setting as the a posteriori error
estimator ∆N

rb(µ)
def
= ∆kmax (µ) for a reduced basis with N elements, we have to find an

efficient manner to compute ∆N
rb(µ). Recall from (12) that ‖rk(µ)‖α′ = ‖r̃k(µ)‖α. The affine

dependence in (3) allows us to decompose the norm of rk into summands that are computed
efficiently during the online stage. Using the reduced basis expansion (7), we rewrite the
residual as

rk(φ; µ) = 〈 f (uk
rb), φ〉2 −

1
τ
〈uk

rb − uk−1
rb , φ〉2 − α(uk

rb, φ)

=
N

∑
i=1

uµ
k,i〈ANξi, φ〉2 − µ

N

∑
i=1

uµ
k,i〈INξi, φ〉2 −

N

∑
i1,i2=1

uµ
k,i1

uµ
k,i2
〈ξi1(I2N + CN)ξi2 , φ〉2

− 1
τ

N

∑
i=1

(uµ
k,i − uµ

k−1,i)〈ξi, φ〉2 −
N

∑
i=1

uµ
k,iα(ξi, φ), ∀φ ∈ Vh .

Following ([16], Chapter 4.2), we introduce the coefficient vector rk(µ) ∈ RN2+4N

rk(µ)
def
= (uµ

k ,−µuµ
k ,−(uµ

k )
T · uµ

k ,− 1
τ (u

µ
k − uµ

k−1),−uµ
k )

T

where ((uµ
k )

T × uµ
k )N(i1−1)+i2

def
= {uµ

k,i1
uµ

k,i2
}, Consider the vector of N2 + 4N linear func-

tionals

R
def
= ({〈ANξi, ·〉2}N

i=1, {〈INξi, ·〉2}N
i=1, {〈ξi1(I2N + CN)ξi2 , ·〉2}N

i1,i2=1,

{〈ξi, ·〉2}N
i=1, {α(ξi, ·)}N

i=1) ,

such that Rj : VN
rb → R, where each element Rj ∈ V′rb, the dual space of VN

rb. Using
rk(µ),R, we obtain the following representation of the residual rk(φ; µ)

rk(φ; µ) =
N2+4N

∑
j=1

rk
j (µ)Rj(φ), ∀φ ∈ VN

rb ,

which can be computed efficiently. Let r̂j denote the Riesz representation of the j-th element
of R, so that α(r̂j, φ) = Rj(φ), ∀j (which is independent of the time layer k). To find r̂j,
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we solve the linear elliptic problem α(r̂j, φ) = Rj(φ) during the offline stage. The Riesz
representation of rk and its norm can be expressed as

r̃k(µ) =
N2+4N

∑
j=1

rk
j (µ)r̂j ⇒ ‖r̃k(µ)‖2

α =
N2+4N

∑
j=1

N2+4N

∑
j′=1

rk
j (µ)r

k
j′(µ)α(r̂j, r̂j′) .

The inner products α(r̂j, r̂j′) can be computed during the offline stage because they are
independent of µ. In this manner, the a posteriori error estimator for every new parameter
value µ ∈ M can be computed efficiently during the online stage.

4. Numerical Experiment

The offline stage in the reduced basis construction for the scheme (3) is implemented
in the finite element library FreeFem++ [19]. To test the performance of the constructed
basis, several computations for various values of the free parameter are run during the
online stage. The error between the reduced basis approximation and the truth solutions is
calculated, as well as the computational effort.

The domain of definition is Ω = [0, 10]2. The finite element approximation space Wh
consists of Lagrange finite elements of degree 2 on Ω with 6561 degrees of freedom. The
time range is Tend = 3.99, and the tolerance for the Newton iteration is εNewton = 10−6. The
diffusion parameters are d1 = d2 = 1, and the range of the parameter µ isM = [0, 0.16].
The initial condition for the Lotka-Volterra model is u1(0, x, y) = u2(0, x, y) = sin πx sin πy.
Two experiments with different parameter values in (3) and time step for the integration τ
are presented (values in Table 1).

Table 1. Parameter values for the numerical experiment.

Experiment a1 a2 c1 c2 τ

I 1.5 1.0 0.05 0.03 0.03
II 1.5 1.0 0.07 0.15 0.03

In Figures 1 and 2, we plot the evolution of the a posteriori error estimator during the
POD-greedy algorithm in the offline stage. The dimension of the reduced basis N increases
until the error estimator ∆N

rb reaches the desired level of accuracy εtol. The training set for
the algorithm is Ξ = {0, 0.02, 0.04, . . . 0.16}.

In the experiment, we use an algorithm that intertwines a POD step with a greedy
step [17]. We also use a simple POD-based construction of the reduced basis via computa-
tion and compression of Uh(µ) by sequential sampling of µ ∈ Ξ as an alternative offline
stage. In this method, we skip the while condition and just do a loop over ` in Algorithm 3.

We compare the performance of the POD-greedy algorithm and the sequential sam-
pling POD during the online stage. The results of the two approaches for the offline stage
are shown in Tables 2 and 3 for Experiments I and II. We define the CPU time gain factor
as the ratio between the CPU time for the truth solution and the CPU time for its reduced
basis approximation, averaged over 10 runs. Increasing the dimension of the reduced basis
N decreases the CPU time gain factor.

The L2 error between the truth solution and its reduced basis approximation at Tend is
below the a posteriori error estimator. However, in Experiment I, the difference in errors is
of the order 102:103, meaning that the error estimator derived in Lemma 2 is not very sharp.
The sharpness of the a posteriori estimator ∆N

rb could be improved by reducing the time
step τ, but that would offset the benefits of the implicit integration scheme, requiring more
time layers where the Newton iteration must be performed.
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Figure 1. Plot of the value of the a posteriori error estimator max ∆N
rb = maxµ∈Ξ ∆N

rb(µ) during the
offline stage computed by the POD-greedy algorithm. The dimension of resulting reduced basis is
N = 19, εtol = 1 (Experiment I).

Table 2. CPU time gain factor and approximation error between the truth and the reduced basis
solution at t = Tend with a reduced basis of dimension N. The reduced basis is computed with a
POD-greedy algorithm (Experiment I).

µ
CPU Time Gain

Factor L2-Error a Posteriori Error

POD-greedy algorithm (N = 19)
0.04 15.99 4.02× 10−4 5.45× 10−1

0.07 17.13 3.91× 10−4 3.03× 10−1

0.11 16.96 3.78× 10−4 1.83× 10−1

POD with sequential sampling (N = 24)
0.04 8.80 8.84× 10−5 1.92× 10−1

0.07 8.87 8.35× 10−5 3.81× 10−1

0.11 8.73 7.73× 10−5 5.99× 10−1

0 5 10 15 20
10−1

100

101

102

103

104

N

m
ax

∆
N rb

Figure 2. Plot of the value of the a posteriori error estimator max ∆N
rb = maxµ∈Ξ ∆N

rb(µ) during the
offline stage computed by the POD-greedy algorithm. Dimension of resulting reduced basis is N = 20
for εtol = 1 (Experiment II).
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Table 3. CPU time gain factor and approximation error between the truth and the reduced basis
solution at t = Tend for a reduced basis of dimension N (Experiment II).

µ
CPU Time Gain

Factor L2-Error a Posteriori Error

POD-greedy algorithm (N = 20)
0.04 12.3880 3.03× 10−4 5.81× 10−2

0.07 12.3402 2.69× 10−4 4.81× 10−2

0.11 13.5057 2.47× 10−4 3.76× 10−2

POD with sequential sampling (N = 24)
0.04 7.6595 2.25× 10−4 3.13× 10−2

0.07 7.0407 2.18× 10−4 2.89× 10−2

0.11 7.6818 2.09× 10−4 2.99× 10−2

5. Conclusions

A reduced basis for approximating the solutions to a spatial Lotka-Volterra model (1)
based on the implicit Euler scheme for a Galerkin finite element approximation (3) is con-
structed by two approaches: a POD-greedy algorithm and a POD with sequential sampling,
and their performance is compared. Due to the offline/online decomposition and the
low dimension of the constructed reduced basis space, the method leads to significant
computational savings.

An a posteriori estimator for the approximation error used for the POD-greedy algo-
rithm is derived based on the chosen scheme for the time integration. The development
of a posteriori error estimators for the reduced basis approximation is closely linked to
the problem at hand, as has been noted elsewhere in the literature [16,17]. However, its
performance in the case of this system of nonlinear reaction-diffusion equations reveals a
challenge in terms of the trade-off of sharpness of the estimate and the time integration step.

The presented work attempts to bring forward the problem of generalisability and
performance of the reduced basis method to nonlinear evolution models motivated by bio-
logical or biomedical applications. The development of appropriate methods that produce
near-real-time approximation of the solutions to such models at low computational effort
could serve contexts such as cancer therapy and increase the applicability of mathematical
models to emerging fields such as personalized treatments.
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