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Abstract: This paper deals with Lopatinskii type boundary value problem (bvp) for the (poly)
harmonic differential operators. In the case of Robin bvp for the Laplace equation in the ball B1 a
Green function is constructed in the cases c > 0, c 6∈ −N, where c is the coefficient in front of u in
the boundary condition ∂u

∂n + cu = f . To do this a definite integral must be computed. The latter
is possible in quadratures (elementary functions) in several special cases. The simple proof of the
construction of the Green function is based on some solutions of the radial vector field equation
Λu + cu = f . Elliptic boundary value problems for ∆mu = 0 in B1 are considered and solved in
Theorem 2. The paper is illustrated by many examples of bvp for ∆u = 0, ∆2u = 0 and ∆3u = 0 in B1

as well as some additional results from the theory of spherical functions are proposed.

Keywords: Laplace operator; biharmonic and polyharmonic operators; Dirichlet, Neumann and
Robin boundary value problems; Green function for elliptic second order operator; solutions into
explicit form of boundary value problems; Lopatinskii (elliptic) boundary conditions

MSC: 31B30; 31A30; 35J05; 35J40; 35J25; 35C05; 35C15

1. Introduction and Formulation of the Main Results

1. We shall begin with the classical Robin problem for Laplace operator in the unit ball
in Rn, n ≥ 2, namely∣∣∣∣ ∆u = g in B1 = {x ∈ Rn, |x| < 1}

∂u
∂n + cu = f on S1 = ∂B1, c = const ∈ R1.

(1)

Denote by ε(x) =

{
ln 1
|x−y| , n = 2, x, y ∈ R2

1
n−2 |x− y|2−n, n ≥ 3, x, y ∈ Rn the fundamental solution of the

Laplace equation ∆u = ∑n
j=1

∂2u
∂x2

j
= g in B1, i.e., ∆ε = δ(x) in R2, ∆ε = −ωnδ(x), where

ωn = (2π)n/2

Γ( n
2 )

is the area of the unit sphere S1 in Rn and ∂
∂n stands for the unit outward

normal to S1, i.e., ∂
∂n |S1 = ∂

∂ρ |ρ=1. The theory of (1) is well developed in different scales

of spaces: Hölder’s, Ck,α, 0 < α < 1 [1], Sobolev’s, Hs [2] and many others. Therefore, it
is interesting to find out explicit formulas for the solution of (1) in the cases c > 0, c = 0,
−n0 − 1 < c < −n0, n0 ∈ N and c = −n0. In the cases c = 0, −c ∈ N (1) possesses a
kernel—one dimensional for c = 0 and multidimensional for −c ∈ N. Certainly, then a
solution exists if several orthogonality type conditions are satisfied by g, f . The Green
function for (1) (see [1,3]) is the function with representation

GR(x, y) =
1

ωn
(ε(x− y) + g(x, y)), (2)
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where g(x, y) is harmonic function in B1 with respect to y for fixed x ∈ B1 and conversely,
g ∈ C1(B̄1) and satisfies the following boundary value problem:∣∣∣∣∣ ∆yg(x, y) = 0, x, y,∈ B1, x fixed

∂GR
∂ny

+ cGR = 0 on y ∈ S1, x fixed in B1
(3)

i.e., ( ∂
∂ny

+ c)g = −( ∂
∂ny

+ c)ε|y∈S1 .

In the Neumann case c = 0 :
∫

S1
f dS1 =

∫
B1

gdy. Moreover, for c = 0 we shall consider

the Green-Neumann function GN for which the boundary condition ∂GN
∂ny
|y∈S1 = − 1

ωn
.

Both the functions GR, c 6= 0; GN , c = 0 are symmetric with respect to their arguments
(x, y) ∈ B1 × B1. Finally if a solution u ∈ C1(B̄1) ∩ C2(B1) of (1) exists then it has the
following form

u(x) = −
∫

B1

GR(x, y)g(y)dy +
∫

S1

G(x, y) f (y)dSy. (4)

The Green function in the case n = 2 is very well known, while in the case n = 3
it was constructed in [4] in 1935. In the general case n ≥ 4 and following the previous
considerations GN was constructed in [5].

We propose an elementary proof of the above result for (1).

Theorem 1. Assume that c > 0. Then the Green function of (1) is given by the formula

GR(x, y) =
1

ωn
[ε(x− y) + ε(y|x| − x

|x| ) + (n− 2(1 + c))
∫ 1

0
tc−1ε(ty|x| − x

|x| )dt]. (5)

We point out that for x, y ∈ B̄1 \ 0⇒ |ty|x| − x
|x| |

2 = |tx|y| − y
|y| |

2 = |tx− y|2 + (1−

t2|x|2)(1− |y|2) and GR|y∈S1 = 1
ωn

(2ε(x, y) + (n − 2(1 + c))
∫ 1

0 tc−1ε(tx − y)dt) for each
x ∈ B1.

In the Neumann case c = 0 the integral in (5) is divergent at t = 0 as ε( x
|x| ) =

1
n−2 for

n ≥ 3 but it is convergent at t = 0 for n = 2 as ln| 1
x
|x|
| = 0. In order to construct GN for

n ≥ 3 one considers
∫ 1

0

[
ε(ty|x| − x

|x| )−
1

n−2

]
dt
t as ε(ty|x| − x

|x| )−
1

n−2 remains harmonic
with respect to y for fixed x 6= 0. If n = 2 and c = 0

GN =
1

2π

(
ln

1
|x− y| + ln

1
|y|x| − x

|x| |

)
,

∂GN
∂ny
|S1 = −1.

If c > 0 then in R2:

GR(x, y) =
1

2π
(ln

1
|x− y| + ln

1
|y|x| − x

|x| |
− 2c

∫ 1

0
tc−1ln

1
|ty|x| − x

|x| |
dt +

1
c
) =

1
2π

(
1
c
+ ln

1
|x− y| − ln

1
|y|x| − x

|x| |
+ 2

∫ 1

0

(x, y)− t|x|2|y|2
|t|x|y− x

|x| |2
tcdt

)
.

Further on we shall find the Green-Robin function for −n0 − 1 < c < −n0, n0 ∈ N in
the form of a series of a full system of homogeneous harmonic polynomials Hk of degree k
having the property of orthonormality on L2(S1).
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Example 1. Consider the Robin problem (1) on the unit circle B1 = {x ∈ R2 : |x| < 1} with
g ≡ 0 on B1 and look for solution of the standard from

u(ρ, ϕ) = A0 +
∞

∑
n=1

(Ancosnϕ + Bnsinnϕ), (6)

while f ∈ C2(S1) : f (Θ) = a0 + ∑∞
n=1(ancosnΘ + bnsinnΘ), a0 = 1

2π

∫ π
−π f (Θ)dΘ, an =

1
π

∫ π
−π f (Θ)cosnΘdΘ, bn = 1

π

∫ π
−π f (Θ)sinnΘdΘ. Substituting (6) in (1) one gets the system:

cA0 = a0, (n + c)An = an, (n + c)Bn = bn, n ≥ 1. So 3 cases appear:

(1)
∣∣∣∣ −c 6∈ N

c < 0,
, (2) c = 0,

∣∣∣∣ c = −n0 ∈ −N
an0 = bn0 = 0

, (3) c > 0.

Denote y = P ∈ S1 in polar coordinates (1, Θ) ∈ S1 and x = P0 = (ρ, ϕ) ∈ B1, i.e.,
∀t ∈ (0, 1) : tP0 = (tρ, ϕ) ∈ B1. Then |tP0 − P|2 = |tx − y|2 = (t2|x|2 − 2t(x, y) + 1)
= (t2ρ2 − 2tρcos(ϕ−Θ) + 1), y = S1.

In the case (3) c > 0

u(ρ, ϕ) =
1

2π

∫ π

−π
f (Θ)[

1
c
+ 2<

∞

∑
n=1

zn

n + c
]dΘ,

where z = ρei(ϕ−Θ). One can easily see that if g(z) = ∑∞
n=1

zn

n+c , then g(z) =
∫ 1

0
tc−1dt
1−zt −

1
c

= F(1,c,c+1,z)−1
c , F(1, c, c+ 1, z), |z| < 1 being the Gauss hypergeometric function; F(1, c, c+ 1, z)

is analytic in C1 \ {0 ≤ z < ∞}.
Evidently, <g(z) = − 1

c +
∫ 1

0
(1−ρtcos(ϕ−Θ))tc−1

|tP0−P|2 dt, =g(z) =
∫ 1

0
sin(ϕ−Θ)tc

|tP0−P|2 dt, <zn =

ρncosn(ϕ−Θ), =zn = ρnsinn(ϕ−Θ).
In the case (1) −n0 − 1 < c < −n0 for some n0 ∈ N

g(z) =
n0+1

∑
n=1

zn

n + c
+

∞

∑
n=n0+2

zn

n + c
= I + I I.

One can easily see that I I = zn0+1 ∑∞
m=1

zm

m+c̃ , where c̃ = c + n0 + 1 ∈ (0, 1), i.e., I I =
zn0+c

c̃ (F(1, c̃, c̃ + 1, z)− 1). There are no problems to find <I I.
Case (2) c = −n0 ∈ −N0. Then we have

g̃(z) =
n0−1

∑
n=1

zn

n− n0
+

∞

∑
n=n0+1

zn

n− n0
= I I I + IV,

IV = zn0 ∑∞
m=1

zm

m = −zn0 log0(1− z), |z| < 1, log0(1− z) is analytic in C1 \ {1 ≤ z < ∞}.
One can get that<log0(1− z) = log0|P− P0| = log0|x− y|,=log0(1− z) = −arctg ρsin(ϕ−Θ)

1−ρcos(ϕ−Θ)

etc. In this case (1) possesses the kernel {ρn0 cosn0 ϕ, ρn0 sinn0 ϕ} while the Fourier coefficients of
f (Θ) : an0 = bn0 = 0.

If c = 0 we obtain Dini’s formula

u(ρ, ϕ) = A +
∫ π

−π
f (Θ)ln

1
|1 + ρ2 − 2ρcos(ϕ−Θ)|dΘ.

In Rn, n ≥ 3 the construction of the Green function is reduced to the calculation of the
integrals of the form ∫ 1

0
tc−1|t|x|y− x

|x| |
2−ndt, (7)

i.e.,
∫ 1

0
tc−1dt

(R(t))
n−2

2
, where the second order polynomial with respect to t R(t) = t2|x|2|y|2 −

2t(x, y) + 1 ≥ 0 for each t, x, y ∈ B1 \ 0. We put a = 1, b = −2(x, y), c1 = |x|2|y|2 ⇒
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R(t) = a + bt + c1t2, the discriminant ∆ = 4(|x|2|y|2 − (x, y)2) ≥ 0 and ∆ > 0 if x, y are not
collinear.

Example 2. (a) c = n
2 − 1 > 0, n ≥ 3. Then

GR =
1

ωn
(ε(x− y) + ε(y|x| − x

|x| )).

(b) n = 4, c = 1/2⇒ n− 2(c + 1) = 1. Then

GR =
1

ω4

(
ε(x− y) + ε(y|x| − x

|x| ) +
∫ 1

0
t1/2ε(t|x|y− x

|x|dt
)

.

Put f (t)
∣∣∣∣ t = 1

t = 0
= f (t)− f (0) . After some calculations (see 160.01, 160.11 from [6]) one

obtains that∫ 1

0

t1/2dt
R(t)

=
1√
b1
{ 1

2
√

c
ln
√

c1 − b1 + 1
√

c1 + b1 + 1
+

b1√
c1∆

arctg
4
√

c1∆
−b− b2 + 2

√
c1
},

where b1 =
√

2
√

ac1 − b =
√

2
√
|x||y|+ (x, y) − b − b2 + 2

√
c1 = 2(|x||y| + (x, y) −

2(x, y)2). In fact, arctg x + arctg y = arctg x+y
1−xy if xy < 1 and similar results hold for x > 0,

xy > 1; x < 0, xy > 1.
(c) n = 5, c = 1. Then we must compute (see 380.03 [6])

∫ 1

0

dt
(R(t))3/2 =

4c1t + 2b
∆
√

R(t)

∣∣t=1
t=0 =

1
|x|2|y|2 − (x, y)2 [

|x|2|y|2 − (x, y)
||x|y− x

|x| |
+ (x, y)].

The integral (7) can be found in quadratures (elementary functions) if and only if c is integer
for n-odd and c is rational for n-even ((7) is a differential binomial).

In calculating the integrals of the type (7) the following recurrent formulas could be very
useful:

∫ tm
√

R2p+1 , m ∈ N, p ∈ N0, 2.263.1, 2.263.2, p. 82, p. 83 from [7] and 2.263.3, p. 83 from

the same book in the case m = 0. We note that for s ∈ N :
√

Rs(t) =

{
1, t = 0
|y|x| − x

|x| |
s, t = 1.

This is our last example for constructing of Green function for (1), c > 0 in the
multidimensional case.

Example 3. (a) Assume that n > 6, n is even, n = 2m + 2, m > 2, c = 1. Put m = k + 1, k > 1
and find the corresponding Green function for (1). We have to compute via formula 2.171, p. 79
from [8] the integral

∫ 1

0

dt
R(t)m =

∫ 1

0

dt
R(t)k+1 =

2c1t + b
2k + 1

k−1

∑
i=0

2i(2k + 1) . . . (2k− 2i + 1)c1

k . . . (k− i)∆i(R(t))k−i

∣∣t=1
t=0+

2k (2k− 1)!!ck
1

k!∆k

∫ 1

0

dt
R(t)

,

∫ 1

0

dt
R(t)

=
2√
∆

arctg
b + 2c1t√

∆

∣∣t=1
t=0 =

1√
|x|2|y|2 − (x, y)2

arctg
√
|x|2|y|2 − (x, y)2

1− (x, y)
.

Here 1 < k = m− 1 = n−2
2 − 1 = n−4

2 .
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(b) c = 1, n -odd, n > 5, i.e., n = 2m + 1, m = k + 1, m > 2, k > 1. According to (5) we
shall calculate∫ 1

0

dt√
(R(t))2k+1

=
2(2c1t + b)√

R(t)2k−1(2k− 1)∆

{
1 +

k−1

∑
i=1

8i(k− 1) . . . (k− i)
(2k− 3) . . . (2k− 2i− 1)

ci
1

∆i Ri(t)

}
|t=1
t=0.

(see Formula 2.263, p. 96 from [8]).

Certainly, 2c1t + b =

{
−2(x, y), t = 0

2|x|2|y|2 − 2(x, y), t = 1
, 1 < k = m− 1 < n−3

2 .

2. Our next step is to formulate several properties of the radial vector field

Λ =
n

∑
j=1

xj
∂

∂xj

which are useful in the study of the properties of the polyharmonic operators in B1. So consider the
equation

Λu + cu = f (x) ∈ Ck(B̄1), k ≥ 2, c = const ∈ R1 (8)

looking for smooth solutions u ∈ Ck(B̄1). Concerning the kernel Λ + c, we know that its solutions
are functions, positively homogeneous of order (−c). Therefore, dim ker(Λ + c) ∩ C1(B1) = +∞
for c ≤ −1, dim kerΛ ∩ C1(B1) = 1, ker(Λ + c) ∩ C1(B1) = {0} for c > 0. Assume that
c = −n0, n0 ∈ N. Then dim ker(Λ + c) ∩ C∞(B1) < ∞ as ker(Λ + c) contains the polynomials,
homogeneous of order n0. Many of the results proposed below are valid for c ∈ C1.

Proposition 1. (i) Assume that < c > 0. Then the Equation (8) possesses the solution

u(x) =
∫ 1

0
f (tx)tc−1dt ∈ Ck(B̄1) (9)

if f ∈ Ck(B̄1); u(x) ∈ Ck(B̄1). Shortly, we shall write u = (Λ + c)−1 f .

(ii) Put ul(x) = (−1)l−1

(l−1)!

∫ 1
0 tc−1(ln t)l−1 f (tx)dt, l ≥ 1, f ∈ Ck(B̄1). Then for < c > 0 ul

satisfies the equation
(Λ + c)lul = f (x), k ≥ 2, u ∈ Ck(B̄1).

Shortly we write ul = (Λ + c)−l f .
(iii) Consider the Equation (8) with the additional condition u|ρ=1 = 0, where ρ = |x|,

Θ̃ = x
|x| , x = ρΘ̃. Then this boundary value problem is satisfied for |x| > 0 by

u(x) = −
∫ 1/ρ

1
f (xt)tc−1dt ∈ Ck(B̄1 \ {0}).

Then solution u ∈ Ck(B̄1) if and only if for each Θ̃ ∈ S1 the integral
∫ 1

0 tc−1 f (tΘ̃)dt = 0.

In other words, if for some Θ̃0 ∈ S1 the integral
∫ 1

0 tc−1 f (tΘ̃0)dt 6= 0 it follows that
u(ρΘ̃0) develops power type nonlinearity ρ−c for ρ→ 0.

Remark 1. Consider the Equation (8) with < c < 0. Then it possesses for ρ > 0 the smooth solution

u(x) =
∫ 1

1/ρ
f (xt)tc−1dt = ρ|c|

∫ ρ

1
f (tΘ̃)tc−1dt,

where x = ρ x
|x| = ρΘ̃, Θ̃ ∈ S1. The latter function is smooth at the origin.
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If c = 0 then Λu = f in B1 implies that f (0) = 0. Therefore, the general solution of
Λu = f is

u(x) =
∫ 1

0

f (tx)
t

dt + A, A = const.,

as f (tx)
t ∈ Ck−1(B1).
We shall remind several classical results concerning the Dirichlet, Robin and Neumann

boundary value problem [1]:

(D)

∣∣∣∣ ∆u = g in B1, g ∈ Ck,α(B̄1)
u|S1 = f ∈ Ck+2,α(S1),

(R)
∣∣∣∣ ∆u = g in B1

∂u
∂n + cu = f ∈ Ck+1,α(S1).

(N)

∣∣∣∣ ∆u = g in B1
∂u
∂n = f ∈ Ck+1,α(S1).

It is well known that for (D) problem there exists a unique smooth solution u ∈ Ck+2,α(B̄1),
while for c 6∈ {o,−1,−2, . . . ,−n, . . .} the problem (R) possesses a unique solution u ∈
Ck+2,α(B̄1); if c = −n0 ∈ −N0 there exists a kernel of finite dimension and one can
find u ∈ Ck+2,α(B̄1) if ( f , g) satisfies

∫
B1

Hn0 gdx =
∫

S1
Hn0 f dS1 orthogonality conditions.

Certainly, in this case the solution of (R) is not unique. Suppose that g ≡ 0. Then one can
reduce (R) to (D), respectively (N) to (D). To do this we shall use the commutator property
[∆, L] = 2∆ and Proposition 1 (i).

Concerning (D), g ≡ 0 we have the Poisson formula [6]: u(x) = 1−ρ2

ωn

∫
S1

f (y)
|x−y|n dSy,

n ≥ 2, ρ = |x|.
3. Now we shall consider Lopatinskii type boundary value problem for the polyhar-

monic operator ∆mu = 0 in B1, m ≥ 2. Almansi proved in [1] that each polyharmonic
function in the ball u can be presented in the form

u(x) =
m

∑
l=1

(ρ2 − 1)l−1ul , ∆ul = 0 in B1. (10)

(see also [7]).
One can easily see that ∆L2 = L2∆ + 4L∆ + 4∆ and by induction verify that ∆u = 0⇒

∆Lku = 0, ∆(ρk duk

dρk ) = 0, ∆p((ρ2 − 1)qu) = 0 if p > q and [∆k, L] = ck∆k, ck = const 6= 0.
We shall study the following boundary value problem:∣∣∣∣∣∣∣∣

∆mu = 0 in B1, m ≥ 2, n ≥ 3
B0(u) = ϕ1 on S1
. . .
Bm−1(u) = ϕm on S1,

(11)

where B0(u) = u, B1(u) = ∑n
l=1 al Dxl u + b(x)Dρu . . . Bj(u) = ∑k+|α|=j akα(x)Dα

x Dk
ρu,

j = 1, 2, . . . , m− 1.
The boundary operators Bj have smooth coefficients. As usual α = (α1, . . . , αn) ∈ Nn

0 ,
Dxj =

1
i

∂
∂xj

, Dρ = 1
i

∂
∂ρ . The vector fields ∂

∂x1
, . . . , ∂

∂xn
, ∂

∂ρ are linearly dependent in Rn.

Theorem 2. Consider boundary value problem (11) with smooth right-hand sides ϕj,
j = 0, 1, . . . , m− 1 and suppose that for each integer j = 1, 2, . . . , m− 1 the expression

Aj(x) = ∑
k+|α|=j

akα(x)Dα
x Dk

ρ((ρ
2 − 1)j) 6= 0 at S1 (12)
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Then (11) has a unique solution of the form (10) where the functions uj satisfy the Dirichlet
problems for Laplace equation in the ball B, namely∣∣∣∣ ∆u1 = 0, B1

u1|S1 = ψ1,

∣∣∣∣ ∆u2 = 0, B1
u2|S1 = ψ2,

. . . ,
∣∣∣∣ ∆um = 0, B1

um|S1 = ψm,
(13)

ψ1 = ϕ1 and ψj for j ≥ 2 is expressed by ϕj as well as by ϕ1, . . . , ϕj−1 and their derivatives up to
some order.

Example 4.

∣∣∣∣∣∣
∆2u = 0 in B1, n ≥ 3
u|S1 = ϕ1
B1(u) = ϕ2 = ∑n

l=1 al(x)Dxl u + b(x)Dρu|S1 .
Then condition (12) takes the form

A1(x) =
n

∑
j=1

xjaj(x) + b(x) 6= 0 onS1,

u = (ρ2 − 1)u2 + u1;
∣∣∣∣ ∆u1 = 0

u1|S1 = ϕ1

∣∣∣∣∣ ∆u2 = 0
u2|S1 = i ϕ2−B1(u1)

2A1
|S1

There are many paper on the subject but we quote only [9,10].
The paper is organized as follows. Section 1 deals with introduction and formulation

of the main results. In Section 2 some additional results from the theory of spherical
functions are given. The short proofs are contained in Section 3.

2. Additional Results from the Theory of Spherical Functions

We shall follow here [11]. The spherical change of the variables is defined by

x1 = ρcosΘ1, ρ = |x|, n ≥ 3
x2 = ρsinΘ1cosΘ2
. . .
xn−1 = ρsinΘ1sinΘ2 . . . sinΘn−2cosΘn−1
xn = ρsinΘ1sinΘ2 . . . sinΘn−2sinΘn−1,

where the polar angles are: 0 ≤ Θj ≤ π, 1 ≤ j ≤ n − 2, −π ≤ Θn−1 ≤ π, x
|x| =

(Θ̃1, . . . , Θ̃n) ∈ S1 and x → (ρ, Θ̃), |x| = ρ.
In this coordinates ∆ = ∂2

∂ρ2 +
n−1

ρ
∂

∂ρ + 1
ρ2 δΘ̃, δΘ̃ being the Laplace-Beltrami operator

on S1. δΘ̃ admits a sequence of eigenvalues {−λk}with multiplicity µk equal to the number
of linearly independent homogeneous harmonic polynomials of degree k, i.e., δΘ̃v = −λkv,
v ∈ C∞(S1). In other words if Hk(ξ) is harmonic polynomial in B1 ⊂ Rn, Hk(λξ) =

λk Hk(ξ), |ξ| = ρ, then ρ−k Hk(ξ) = Hk(
ξ
|ξ| ) = Hk(Θ̃), Θ̃ ∈ S1. Thus, the spherical harmonic

Hk(Θ̃) = Yk(Θ) of degree k is continuous on S1. Moreover, λk = k(n + k − 2), H0 = 1.
From [11] it is known that there exists a full system of orthogonal spherical harmonics
of degree k ≥ 0 on L2(S1) : {H(i)

k and such that 1
ωn

∫
S1

H(i)
k (x)H(j)

m (x)dS = δijδkm. The

quantity of these polynomials H(i)
k is hk = (2k + n − 2) (k+n−3)!

k!(n−2)! = O(kn−2), k → ∞,
i = 1, 2, . . . , hk. Each harmonic function u in B1 can be written in the form of following
series of spherical polynomials:

u(ρ, Θ̃) =
∞

∑
k=0

ρk
hk

∑
i=1

a(i)k H(i)
k (

x
|x| ), ρ = |x|, x

|x| = Θ̃.
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For the Dirichlet problem f (Θ̃) = u|ρ=1 we have that a(i)k = 1
ωn

∫
S1

f (Θ̃)H(i)
k (Θ̃)dS1,

dS1 = (sinΘ1)
n−2 . . . sinΘn−2dΘ1 . . . dΘn−1, δH(i)

k (Θ̃) = −k(k+n− 2)H(i)
k (Θ̃), i = 1, 2, . . . ,

hk and one can prove that
k

∑
i=1

(H(i)
k (ξ))2 = hk, ∀ξ ∈ S1.

After the spherical change the vector field Λ → ρ ∂
∂ρ , ρ ≥ 0. So Λ|S1 = d

dρ |S1 = d
dn |S1

and Ker(ρ d
dρ + c) ∩ C1[0, 1) =


0, c > 0
A = const, c = 0.
Aρ−c, c ≤ −1

Certainly, ρ−c ∈ C∞ iff c ∈ −N0.

A direct proof of Theorem 1 can be given by using the following Proposition 2 (Lemma
2.1 from [5]).

Proposition 2. Let ε = |x−y|2−n

n−2 be the fundamental solution of the Laplace equation for n ≥ 3.
Then

ε(x− y) =
∞

∑
k=0

1
2k + n− 2

|x|k
|y|k+n−2

hk

∑
i=1

H(i)
k (

x
|x| )H(i)

k (
y
|y| ) (14)

for |x| < |y| ≤ 1 and

ε(x− y) =
∞

∑
k=0

1
2k + n− 2

|y|k
|x|k+n−2

hk

∑
i=1

H(i)
k (

x
|x| )H(i)

k (
y
|y| ) (15)

for 1 ≥ |x| > |y| > 0.

Remark 2. We remind of the reader that Λ + c → ρ d
dρ + c in R1, Θ̃ being a parameter. After

the change ρ = et, t ∈ R1
− (ρ = e−t, t ∈ R1

+) the operator ρ d
dρ for ρ ∈ (0, 1] becomes d

dt

for t ∈ (−∞, 0] (ρ d
dρ becomes d

dt for t ∈ [0, ∞)). We can apply Laplace transform for t = 0

( ⇐⇒ ρ = 1), i.e., u(0) = 0 obtaining for ρ du
dρ + cu = f , u|ρ=1 = 0 ⇐⇒ du

dt + cu = f ,
u(0) = 0 the algebraic equation (s + c)L(u)(s) = L( f )(s) ⇒ L(u) = L( f )L(e−ct). The
convolution formula enables us to conclude that u(t) =

∫ t
0 f (τ)e−c(τ−t)dτ. Going back to the x -

coordinates we come to Proposition 1 (iii).

3. Proofs of the Main Results

1. We shall begin with the proof of Proposition 1 (i). Then

Λu =
∫ 1

0
tc

n

∑
j=1

xj
∂ f
∂xj

(tx)dt =
∫ 1

0
tc d

dt
f (tx)dt = tc f (tx)|1t=0 − cu(x) = f (x)− cu(x).

Inductively one proves (iii). In fact,

Λul+1 =
(−1)l

l!

∫ 1

0
tc(ln t)l d

dt
f (tx)dt =

(−1)l

l!
[−c

∫ 1

0
tc−1(ln t)l f (tx)dt−

l
∫ 1

0
tc−1(ln t)l−1 f (tx)dt] = −cul+1 +

(−1)l+1

(l − 1)!

∫ 1

0
tc−1(ln t)l−1 f (tx)dt = −cul+1 + ul .

According to the inductive assumption (Λ + c)l+1ul+1 = (Λ + c)lul = f (x).
Direct calculation shows that u from (iii) is a solution of (Λ + c)u = f in B1 \ {0},

u|S1 = 0. Put v =
∫ 1

0 tc−1 f (tx)dt for a solution of (Λ + c)v = f in B1. Then

u(x)− v(x) =
∫ 0

1/ρ
λc−1 f (λΘ̃)dλ
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after the change tρ = λ and the notation x = ρ x
|x| = ρΘ̃, Θ̃ ∈ S1. In other words,

u(x) = u(ρΘ̃) does not develop singularity at the origin iff
∫ 1

0 λc−1 f (λΘ̃)dλ = 0 =
v|ρ=1 = v(Θ̃), ∀Θ̃ ∈ S1 ⇐⇒ u ≡ v in B1, u|ρ=1 = 0.

Assume that c ≤ −1, f ∈ Ck(B̄1) and f (x) = O(|x|[|c|]+2), x → 0. Then the general
solution of (Λ + c)u = f (x) is given by (9) plus arbitrary linear combination of finitely
many smooth functions, which are homogeneous of degree |c|; [|c|] stands for the integer
part of |c|. Evidently. u(x) = O(|x|[|c|]+2), x → 0.

2. Concerning the proof of Theorem 1 we shall use the fact that Λyu = ∂u
∂ny

for y ∈ S1.

Therefore, Λyε(y− x) = −|x|2|y|2+(x,y)
|y|x|− x

|x| |
n and if ε1(x, y) stands for the integral term of (5) then

according to Proposition 1 (i)

Λyε1(x, y) =
(n− 2(1 + c))

n− 2
|y|x| − x

|x| |
2−n, (x, y) ∈ B1 × B1.

The identity |y|x| − x
|x| | = |x− y| for y ∈ S1 gives that for

y ∈ S1 : ∂GR
∂ny

= −1+2c/(n−2)+1−2c(n−2)
|x−y|n−2 = 0. The proof is completed. The proof in the case

n = 2, c > 0 is similar and it is omitted.
Following [4,12] one can give another proof of Theorem 1. To do this we look for g

from (2) of the form

g(x, y) =
∞

∑
k=0

bk|x|k|y|k
hk

∑
i=1

H(i)
k (

x
|x| )H(i)

k (
y
|y| ), (16)

where the coefficients are unknown. Fixing x ∈ B1 we obtain harmonic function with
respect to y ∈ B1 and vice versa; g(x, y) = g(y, x) ∀(x, y) ∈ B1 × B1. We shall consider only
the case (14). We write r = |x|, ρ = |y| and for r < ρ ≤ 1 we differentiate (14) and put
the expression (14) for ∂ε

∂ρ (x− y) and the corresponding expression for ∂
∂ρ g(x, y) from (16)

into the boundary condition from (3): ρ = 1. Equalizing to 0 the coefficients in front of hte
spherical harmonics we get that for k ≥ 0

(c + k)bk =
c + 2− (k + n)

2k + n− 2
, (17)

i.e., for c 6= 0 , c 6= −k, k ∈ N

bk =
k + n− 2− c

(2k + n− 2)(k + c)
=

1
2k + n− 2

+
A

(k + c)(2k + n− 2)
, (18)

A = n− 2(1 + c) = const.
If some c = −k0, k0 ∈ N, the coefficients bk, k 6= k0 are given by (18) but bk0 does

not exist.
Conclusion. For each c 6∈ −N the Green function for (1) exists and is given by

the formula

g(x, y) =
∞

∑
k=0

|x|k|y|k
2k + n− 2

hk

∑
i=1

H(i)
k

(
x
|x|

)
H(i)

k

(
y
|y|

)
+ (19)

A
∞

∑
k=0

|x|k|y|k
(k + c)(2k + n− 2)

hk

∑
i=1

H(i)
k (

x
|x| )H(i)

k (
y
|y| ) = I + I I.

From (14) one easily gets that

ε(x|y| − y
|y| ) = ε(y|x| − x

|x| ) = I.
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Assume c > 0. The identity
∫ 1

0 tc−1+kdt = 1
k+c gives us that A

∫ 1
0 ε(ty|x| − x

|x| )t
c−1dt =

I I. This way we have another proof of Theorem 1.
Suppose now that −k0 − 1 < c < −k0 for some k0 ∈ N, i.e., |k0| < |c| < |k0| + 1,

−c 6∈ N0. Certainly, [|c|] = k0. In this case the Green function for (1) can be written as:

GR(x, y) =
1

ωn
[ε(x− y) + (n− 2(c + 1))

k0

∑
k=0

|x|k|y|k
(2k + n− 2)(k + c)

hk

∑
i=1

H(i)
k (

x
|x| )H(i)

k (
y
|y| )+ (20)

(n− 2(c + 1))
∫ 1

0
tc−1

[
ε(ty|x| − x

|x| )−
k0

∑
k=0

tk|x|k|y|k
2k + n− 2

hk

∑
i=1

H(i)
k (

x
|x| )H(i)

k (
y
|y| )

]
dt .

We can reduce to (D) and solve (R) and (N) problems for Laplace operator ∆u = 0 in
the standard way. Put v = Λu + cu. Then ∆v = ∆Λu + c∆u = (Λ + 2)∆u + c∆u = 0 in B1
and v|S1 = ∂u

∂n + cu|S1 = f . Applying Poisson formula for the above (D) problem we obtain

v(x) ∈ Ck+2,α(B̄1). If c > 0 we can apply Proposition 1 (i) to find u =
∫ 1

0 v(tx)dt, while

v(x) = 1−ρ2

ωn

∫
S1

f (y)
|x−y|n dSy etc.

In the (N) case
∫

S1
f dS1 = 0, limρ→0v = limρ→0Λu = 0, i.e., v(0) = 0 ⇒ u =∫ 1

0
v(tx)

t dt etc.
3. We shall prove now Theorem 2. We are looking for the solution of (11) of the form

(10) Evidently,
∣∣∣∣ ∆u1 = 0 in B1,

u1|S1 = ϕ1.
For j ≥ 1

Bj(u) =
m

∑
l=1

∑
k+|α|=j

akα(x)Dα
x Dk

ρ((ρ
2 − 1)l−1ul).

Having in mind that (ρ2 − 1)l−1 = (ρ− 1)l−1(ρ + 1)l−1 vanishes of sharp order l − 1
at S1 = {ρ = 1} we shall consider three different cases:

(a) l − 1 = j ⇐⇒ l = j + 1
(b) j + 1 < l ⇐⇒ l − 1 > j
(c) j + 1 > l ⇐⇒ l − 1 < j.
In the case (a) Bju|S1 contains the term

∑
k+|α|=j

akα(x)Dα
x Dk

ρ((ρ− 1)j(ρ + 1)juj+1)|S1 = Aj(x)uj+1,

as Dα
x Dk

ρ(ρ− 1)j = 0 if |α|+ k < j, Aj is given by (12).
(b) implies that l − 1 > j ⇒ Dα

x Dk
ρ((ρ

2 − 1)l−1ul)|S1 = 0 if |α| + k = j, i.e., Bj(u)
does not contain ul or its derivatives for l > j + 1. Assume now that l − 1 < j. Then
Dα

x Dk
ρ((ρ

2 − 1)l−1ul) can contain ul and its derivatives for l < j + 1 according to the
Leibnitz rule. Certainly, |α|+ k = j.

One can easily see that for j ≥ 1

ϕj+1 = Bj(u)|S1 = Ajuj+1+ (21)

a linear combination of u1, . . . , uj and their derivatives of some order.
The boundary value problem (11) decomposes to the solvability of m -Dirichlet bound-

ary value problems of the type (13). As u1 can be found directly via Poisson formula the
other solutions can be constructed inductively via (21), respectively the solution u of (11) is
written in the form (10).

We shall complete this paper with several examples for solutions into explicit form of
the boundary value problem for ∆2 and ∆3.
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Example 5. (a) ∣∣∣∣ ∆2u = 0 in B1
u|S1 = ϕ1, Au + B ∂u

∂n + ∆u|S1 = ϕ2

The solution can be found in the form u = u1 + (ρ2 − 1)u2, ∆u1 = 0, ∆u2 = 0 in B1.
Evidently, ∣∣∣∣ ∆u1 = 0, B1

u1|S1 = ϕ1,
(22)

while ∆u = 2nu2 + 4Λu2, ∂u
∂n |S1 = ∂u1

∂ρ |S1 + 2u2|S1 . Therefore,∣∣∣∣∣ ∆u2 = 0
4 ∂u2

∂ρ + 2(B + n)u2|S1 = ϕ2 − Au1 − B ∂u1
∂ρ |S1

(23)

Assume that B + n ≥ 0. At first we find the solution u1 of (22) and then the solution of the
Robin problem for (23) via Robin (Neumann) function (5) and [4]. On the other hand, define in B1
v = Au1 + BΛu1 + 2(B + n)u2 + 4Λu2. Evidently,∣∣∣∣∣ ∆v = 0 in B1

limρ→1v = Au1 + B ∂u1
∂ρ + 2(B + n)u2 + 4 ∂u2

∂ρ = ϕ2
(24)

Under the assumption c = 1
2 (B + n) > 0 we find v(x) =

∫
S1

ϕ2(y)dSy
|x−y|n and then solve the

equation (Λ + c)u2 = 1
4 (v− Au1 − BΛu1) via (9); u1 = 1

ωn

∫
S1

ϕ1(y)
|x−y|n dSy.

(b).

∣∣∣∣∣∣∣∣∣
∆3u = 0 in B1, n ≥ 3
u|S1 = ϕ1
Au + ∂u

∂n |S1 = ϕ2, A = const.
B ∂2u

∂n2 + ∆2u|S1 = ϕ3, B = const.
The solution u (if it exists) has the form

u = u1 + (ρ2 − 1)u2 + (ρ2 − 1)2u3, ∆uj = 0, j = 1, 2, 3.

Thus,
∣∣∣∣ ∆u1 = 0, B1

u1|S1 = ϕ1,

∣∣∣∣∣ ∆u2 = 0, B1

u2|S1 = ϕ2−Au1
2 |S1 .

One can compute that ∆2u = ∆2(ρ2 − 1)2u3 = 8(n(n + 2) + 4(n + 1)Λ + 4Λ2)u3 and
∂2u
∂ρ2 |S1 = ∂2u1

∂ρ2 + 2u2 + 4 ∂u2
∂ρ + 8u3|S1 , i.e.,∣∣∣∣∣ ∆u3 = 0, B1

8
[
n(n + 2) + B + 4(n + 1)Λ + 4Λ2]u3|S1 = ϕ3 − B(2u2 + 4 ∂u2

∂ρ + ∂2u1
∂ρ2 )|S1 .

One can easily check that Λ|S1 = ∂
∂ρ |S1 , (Λ2 − Λ)|S1 = ∂2

∂ρ2 |S1 . Having in mind the

identities ∆Λ = (Λ + 2)∆ and ∆L2 = (Λ + 2)2∆ we have that v = 8(n(n + 2) + B + 4(n +
1)Λ+ 4Λ2)u3 + B(2u2 + 4Λu2 + (Λ2−Λ)u1) is harmonic in B1 and its trace on S1 : v|S1 = ϕ3.
Consequently, v is given by the Poisson formula, u1, u2 are well known and we must solve with
respect to u3 the following equation in B1[

n(n + 2) + B + 4(n + 1)Λ + 4Λ2
]
u3 =

1
8
[v− B(2u2 + 4Λu2 + (Λ2 −Λ)u1] = w(x), x ∈ B1. (25)

As the roots of the equation 4λ2 + 4(n + 1)λ + (n + 2)n = 0 are λ1 = − n
2 , λ2 = −n−2

2
we can see that for 0 ≤ B1 ≤ 1 the roots of P(λ) = 4λ2 + 4(n + 1)λ + (B + n(n + 2)) remain
negative, while for B > 1 they have negative real parts: µ1, µ2, <µ1 < 0, <µ2 < 0.
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To solve (25) we use methods from the operational calculus (Laplace transformation). 1
P(λ) =

A1
λ−λ1

+ A2
λ−λ2

, if B 6= 1, i.e., λ1 6= λ2 are roots of P(λ) = 0, <λ1 < 0, <λ2 < 0, where
Aj =

1
P′ (λj)

, j = 1, 2. If B = 1, i.e., λ1 = λ2 = − n+1
2

1
P(λ)

=
1
4

1
(λ− λ1)2 .

Having in mind Proposition 1 (i), (ii) we can conclude that u3 = A1(Λ− λ1)
−1w + A2(Λ−

λ2)
−1w, respectively u3 = 1

4 (Λ− λ1)
−2w for B = 1. Of course, −<λj > 0 for j = 1, 2.

4. Discussion

The bvp (D),(R),(N) are classical and participate in each manual and handbook on PDE
as they describe important physical stationary processes corresponding to the propagation
of electromagnetic and sound waves and the heat propagation. The problem was to
construct explicitly the Green function for (R) problem in the simple domain B1. The (D)
and (N) problems for n = 2 have numerous applications in the complex analysis. B.Wirth
in 2019 found and interesting link between the Green function for (N) and the Green
function for the forward problem of the electroencephalography (EEG). It is well known
that the Robin problem for the electrostatic equilibrium in B1 is closely linked with (N).
Concerning the biharmonic operator, it has applications to the theory of elasticity (clamped
plate, the buckled plate problem and others) and solid mechanics. In the field of bvp for
polyharmonic operators are actively working K. Dang, F. Gazzola, A. Gomez-Polanko, H.
Grunau, V. Karachik, G. Sweers and many others.

Below we propose several possible generalizations of the results of this paper. They
are in two different directions. The first one is elliptic (Lopatinskii) type boundary value
problem with possible applications in mechanics and the second one is non-elliptic bound-
ary value problem. In the first case a-priori estimates and Fredholm type theorems for
existence of classical (Hölder) and generalized (Sobolev) solutions are proved. In the second
case the results are a few. For the biharmonic operator overdetermination appears, i.e.,
the boundary data are not independent. One can construct examples of boundary value
problems with infinite dimensional kernel or cokernel too.

Because of the above reasons we shall formulate the following open problems.
1. To construct Green function to the Dirichlet problem for the polyharmonic operator

in a domain with C1,1 ( C2) boundary. For the classical Laplace operator it was done by Z.
Zhao in J. Math. Anal. Appl., 116, 309–334, 1986. It is interesting to estimate from below
and above the Green function.

2. To construct the Green function for the non homogeneous polyharmonic operator
satisfying elliptic (Lopatinskii) type boundary conditions with variable coefficients in the
unit ball B1 and eventually in some bounded domains with smooth boundary.
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