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ON THE MAXIMUM OF A BRANCHING PROCESS

CONDITIONED ON THE TOTAL PROGENY

Tzvetozar B. Kerbashev

Communicated by J.-P. Dion

Abstract. The maximum M of a critical Bienaymé-Galton-Watson process
conditioned on the total progeny N is studied. Imbedding of the process in
a random walk is used. A limit theorem for the distribution of M as N → ∞
is proved. The result is trasferred to the non-critical processes. A corollary
for the maximal strata of a random rooted labeled tree is obtained.

1. Introduction. Consider a Bienaymé-Galton-Watson (BGW) pro-
cess {Zt} defined by the reccurrence

Zt =

Zt−1
∑

i=1

Xi(t), t = 1, 2, . . . ; Z0 ≡ 1 a.s.,

where X = {Xi(t)}, i, t = 1, 2, . . . are independent and identically distributed
(i.i.d.) random variables, taking non-negative integer values.

As usual, we may think of Zt as the number of particles existing in the
moment t = 0, 1, 2, . . . Following the terms of standard interpretation we will

1991 Mathematics Subject Classification: Primary 60J80. Secondary 60J15, 05C05
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consider the distribution of X as offspring distribution of one particle, the moment
when Zt first becomes zero-moment of extinction and the sum N of all Zt – total
progeny of the process.

In general three cases are considered, according to the mean of the off-
spring distribution – the subcritical, the critical and the supercritical one. The
obtained results appear to differ significantly from each other.

Our main object of study is the random variable M , the maximal number
of particles existing at the same time. The probability that M does not exceed
a given level has been obtained by Bishir [4] and Adke [1]. A different approach
to the same problem has been used by Lindvall [15]. In fact Lindvall has proved
a limit theorem for the maximum of a suitably conditioned random walk and
exploiting the connection between the random walks and the BGW processes has
estimated the limit distribution of M .

Some interesting results about the partial maximum and its expectation
are due to Weiner [22], Kämmerle and Schuh [10], Pakes [16] and Athreya [2].
We also mention the recent papers by Borovkov and Vatutin [3] and Vatutin
and Topchii [21] where previous results are shown to be still valid under weaker
restrictions.

Nevertheless, the usual way of getting interesting results about the var-
ious characteristics of the BGW process is to condition on some set of non-
degenerating trajectories. Most often conditioning on non-extinction has been
used. Unfortunately a limit theorem in this case has not yet been proved, though
Spǎtaru [18] has made some steps in that direction.

Sometimes, similar results to those in the critical case are obtained via
conditioning on the total progeny. It has been shown that when such conditioning
is used the criticality of the process has little influence on the final formulas.
Moreover the results for the critical process are easily transferred to the non-
critical ones with minimum extra requirements. The conditioning on the total
progeny is even more interesting in the light of the connection between the BGW
processes and the random rooted labelled trees (see e.g. [13, 6.2] and [19]).

Our main goal is to estimate the limit behaviour of M when the process
is conditioned on the total progeny. At first we will consider only the critical
case. Again it is natural to use imbedding of the process into a random walk.
The problem for the asymptotic behaviour of the maximum of a random walk
conditioned on the first return to zero has been an object of study in several
papers. Kaigh [9] and Smith and Diaconis [17] have found the limit distribution
in the case of a simple random walk. The invariance principle of Kaigh [8] shows
that these limits are valid for essentially any random walk on the integers. A



Maximum of a conditioned BGW process 143

different approach to the problem has been used by Chung [5] and Durret and
Iglehart [6], who have explored the limiting process, called Brownian excursion.

In Section 4 we are going to prove directly a limit theorem for the max-
imum of a left-continuous random walk under second moment assumption. The
interim results are used essentially in the proof of Theorem 2.2, which describes
the asymptotic behaviour of M when the branching process is conditioned on the
total progeny. Applying the results of Kennedy [11] we will transfer the result to
the non-critical cases.

It is well known that for many physical, biological and other processes the
maximum appears to be one of the most important and most easily measurable
characteristics. For example, imagine that in a computer system one of the users
starts a process, which lasts a definite period of time and dies out with probability
p0, or with probability pi starts i similar processes, i = 1, 2, 3, . . .. Thus the
total progeny, i.e. the total number of these transactions is proportional to the
running time of the program. The obtained in this paper correlation will allow us
to estimate whether the total running time of our program could exceed a given
level if the number of the processes existing at the same time exceeds another
given level. This is interesting, because in many simulation programs the time
limit is crucial. Of course one might use modeling with random walk but that
would require many more checks as to whether the maximum exceeds the given
level, and consequently – loss of time.

A tree can be defined as a connected non-ordered graph without cycles.
When we choose one of its nodes for a root and number the rest by 1, 2, 3, . . . , n
it becomes rooted and labelled. If we define uniform distribution on the set of all
labelled rooted trees with n nodes they become random, n = 1, 2, 3, . . .. Each
node is connected to the root by an unique path, which length is called height
of the node. The set of all nodes with height t = 1, 2, 3, . . . is called t-th strata
of the tree. The height of the tree can be defined as the maximal height of its
nodes.

The asymptotic results for the Brownian excursion have already been a
basis (see e.g. [20]) for obtaining limit results for the height of some classes of
random trees, like the plain ones. In Section 6 we will draw a corollary for the
asymptotic behaviour of the maximal strata of a random rooted labelled tree.

One more fact attracts out attention. It is that the asymptotic distrib-
ution of the normalised maximum is the same as that of the normalised height
(with different constants of normalisation). It should be no surprise that in one
case the variance appears in the numerator while in the other – in the denomina-
tor, since it is intuitively clear that when the total number of particles (or nodes)
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is fixed and we increase the width, the height decrease and the opposite.

2. Main results. Let f(s) =
∞
∑

i=0
pis

i, |s| ≤ 1 denote the offspring prob-

ability generating function of the process, p0 + p1 < 1 and p0 > 0.
Further on we will suppose that

A)











f
′
(1) = 1,

0 < f
′′
(1) = σ2 < ∞,

g.c.d.{k : pk > 0} = 1.

Let S = {Sn}, n = 0, 1, 2, . . . be a random walk defined by

Sn = 1 +

n
∑

i=1

ξi, S0 ≡ 1 a.s.,

where ξ = {ξi}∞1 are i.i.d. random variables taking values in {−1, 0, 1, . . .} with
P (ξ = j) = P (X = j + 1) for j = −1, 0, 1, . . ..

Denote
M = max

t>0
Zt,

τ = min{i : Si = 0},
M ′ = max

i≤τ
Si.

First we will prove

Theorem 2.1. Suppose that A) holds. If n → ∞ then uniformly for all
x, 0 < x < ∞

P

(

2

σ
√

n
M

′
> x|τ = n

)

→ 2

∞
∑

i=1

((ix)2 − 1)e−(ix)2/2.

The main result of this paper is

Theorem 2.2. Suppose that A) holds. If n → ∞ then uniformly for all
x, 0 < x < ∞

P

(

2

σ
√

n
M > x|N = n

)

→ 2

∞
∑

i=1

((ix)2 − 1)e−(ix)2/2.
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Now using [11, Lemma 1] it is not difficult to extend the assertion of
Theorem 2.2 to the subcritical and the supercritical cases.

We need the extra condition.

B)

{

there exists α > 0 with f(α) = αf
′
(α) < ∞,

f
′′
(α) < ∞.

Theorem 2.3. Suppose that A) holds with f ′(1) = a < ∞. Under the
condition B) if n → ∞ then uniformly for all x, 0 < x < ∞

P

(

2√
βn

M > x|N = n

)

→ 2
∞
∑

i=1

((ix)2 − 1)e−(ix)2/2,

where

β = α2f ′′(α)/f(α).

Finally, we will establish a corollary, exploiting the connection between
the random trees and the BGW processes.

Let Zt(Tn) be the number of the nodes in the t-th strata of the random
rooted labelled tree Tn. Denote max

1≤t≤n
Zt(Tn) by M(Tn). In the particular case

when the process {Zt} has a Poisson offspring distribution of one particle with
parameter 1 we will obtain

Corollary 2.1. If n → ∞ then uniformly for all x, 0 < x < ∞

P

(

2√
n

M(Tn) > x

)

→ 2
∞
∑

i=1

((ix)2 − 1)e−(ix)2/2.

3. Preliminaries. Consider two sequences ν = {νi}∞0 and Z = {Zi}∞0
of random variables defined as follows.

{

νi = νi−1 + Zi−1 for i = 1, 2, 3, . . . ; ν0 ≡ 0 a.s.,

Zi = Sνi for i = 1, 2, 3, . . . ;Z0 ≡ 1 a.s.

Evidently for k = 0, 1, 2, . . .

Zk+1 = Sνk+Zk
− Sνk

+ Sνk
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=

νk+Zk
∑

i=νk+1

ξi + Zk

=

νk+Zk
∑

i=νk+1

(ξi + 1),

hence Z is a BGW process, distributed just like Z.
Note that τ corresponds to the total progeny of the process.
Denote M = max

t>0
{Zt : νt < τ}.

Denote by {Zt(k)} a BGW process with the same offspring distribution

as {Zt} and Z0 ≡ k a.s., k = 1, 2, 3, . . .. Let N(k) =
∞
∑

t=0
Zt(k) denote its total

progeny.
Denote ζi = ξ1 + · · · + ξi for i = 1, 2, 3, . . ..
Dwass [7] has shown that for n ≥ m ≥ 0, n ≥ 1

P (N(m) = n) =
m

n
P (ζn = −m).(3.1)

It is well known that if n → ∞ then uniformly for all integer k

√
nP (ζn = k) =

1√
2πσ2

exp

{

− k2

2σ2n

}

+ o(1).(3.2)

Lindvall [15] has shown that as k → ∞

kP (M
′
> k) = 1 + o(1).(3.3)

Let us for s, n, k = 1, 2, 3, . . . denote the events

{ min
1<j<n

Sj > 1 − k − s; Sn = 1 − s} by A(s, k, n),

{ min
1<j<n

Sj ≤ 1 − k − s; Sn = 1 − s} by B(s, k, n),

{1 > Sj > 1 − k, j = 1, n − 1; Sn = 1 − k} by C(k, n),

{1 > Sj > 1 − k − s, j = 1, n − 1; Sn = 1 − s} by D(s, k, n).

Denote also ϕ(θ) = e−iθf(eiθ).
It was proved in [12] that if k → ∞ in a way that A) holds then

P (N(k) = n) = O

(

1

k2

)

(3.4)
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uniformly for all n ≥ k. From (3.1) it is equivalent to

P (ζn = −k) = O
( n

k3

)

.(3.5)

We are going to prove

Lemma 3.1. If k → ∞ in a way that A) holds then

P (ζn = k) = O

(√
n

k2

)

.

uniformly for all n ≥ k.

P r o o f. Clearly for n, k = 1, 2, 3, . . .

P (ζn = k) =
1

2π

∫ π

−π
e−iθkϕn(θ)dθ.

By puting z =
k

σ
√

n
and x = θσ

√
n we get

P (ζn = k) =
1

2πσ
√

n

∫ πσ
√

n

−πσ
√

n
e−ixzϕn

(

x

σ
√

n

)

dx.

Consider a sequence of functions G1(z), G2(z), G3(z), . . ., defined as fol-
lows

Gr(z) = z2

∫ πσ
√

r

−πσ
√

r
e−ixzϕr

(

x

σ
√

r

)

dx, r = 1, 2, 3, . . . .(3.6)

It is easy to see that for each choice of k and n, 1 ≤ k ≤ n

P (ζn = k) =

√
n

k2

σ

2π
Gn

(

k

σ
√

n

)

.

Hence the lemma will be proved if we show that uniformly for all z,

0 <
σz√

r
≤ 1 as r → ∞

Gr(z) = O(1).(3.7)

When θ → 0

ϕ(θ) = 1 − σ2θ2

2
(1 + o(1)),(3.8)
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hence there exists ε1 > 0, such that for |θ| < ε1

|ϕ(θ)| ≤ 1 − σ2θ2

4
≤ e−σ2θ2/4.(3.9)

From the basic properties of ϕ(θ) there exists such ε2 that for |θ| < ε2

|(ϕ(θ))′| ≤ 2σ2|θ| |(ϕ(θ))′′| ≤ σ2.(3.10)

Let ε = min(ε1, ε2) and without loss of generality assume r ≥ 4.

Since the process is aperiodic there exists such q = q(ε) < 1 that

sup
ε≤|θ|<π

|ϕ(θ)| < q, 0 < ε < π.

Therefore we have
∣

∣

∣

∣

∣

z2

∫

ε≤ |x|
σ
√

r
≤π

e−ixzϕr

(

x

σ
√

r

)

dx

∣

∣

∣

∣

∣

≤ r

σ2

∫

ε≤ |x|
σ
√

r
≤π

∣

∣

∣

∣

ϕ

(

x

σ
√

r

)∣

∣

∣

∣

r

dx(3.11)

=
r

σ2
σ
√

r

∫

ε≤|θ|≤π
|ϕ(θ)|rdθ

≤ 2π

σ
r3/2qr → 0, r → ∞.

Now from (3.6), (3.7) and (3.11) it suffices to show that if 0 <
σz√

r
≤ 1

and r → ∞ then

z2

∫ εσ
√

r

−εσ
√

r
e−ixzϕr

(

x

σ
√

r

)

dx = O(1).(3.12)

Using (3.9) and (3.10) one can obtain for

∣

∣

∣

∣

x

σ
√

r

∣

∣

∣

∣

< ε

∣

∣

∣

∣

∣

∣

∣

∣

dϕr
(

x
σ
√

r

)

dx

∣

∣

∣

∣

∣

∣

∣

∣

= r

∣

∣

∣

∣

∣

∣

∣

∣

ϕr − 1
(

x

σ
√

r

) dϕ

(

x
σ
√

r

)

dx

∣

∣

∣

∣

∣

∣

∣

∣

(3.13)

≤ 2|x|e− 3
16x2
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and

∣

∣

∣

∣

∣

∣

d2ϕr( x
σ
√

r
)

dx2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

r(r − 1)ϕr−2

(

x

σ
√

r

)









d

(

ϕ

(

x
σ
√

r

))

dx









2

+(3.14)

+ rϕr−1

(

x

σ
√

r

) d2ϕ

(

x
σ
√

r

)

dx2

∣

∣

∣

∣

∣

∣

∣

∣

≤ 4x2e−
1
8x2

+ e−
3
16x2

.

Next integrating by parts the left-hand side of (3.12) we get

z2

∫ εσ
√

r

−εσ
√

r
e−ixzϕr

(

x

σ
√

r

)

dx = iz

∫ εσ
√

r

−εσ
√

r
ϕr

(

x

σ
√

r

)

de−ixz

= ize−ixzϕr

(

x

σ
√

r

)

∣

∣

∣

∣

∣

εσ
√

r

−εσ
√

r

−iz

∫ εσ
√

r

−εσ
√

r
e−ixz

dϕr

(

x

σ
√

r

)

dx
dx.

Finally, using (3.8), (3.9) and more integrating by parts we get uniformly

for all z, 0 <
zσ√

r
≤ 1 as r → ∞

z2

∫ εσ
√

r

−εσ
√

r
e−ixzϕr

(

x

σ
√

r

)

dx = o(1) +

∫ εσ
√

r

−εσ
√

r

dϕr
(

x
σ
√

r

)

dx
de−ixz

= o(1) + e−ixz
dϕr

(

x
σ
√

r

)

dx

∣

∣

∣

∣

∣

εσ
√

r

−εσ
√

r

−
∫ εσ

√
r

−εσ
√

r
e−ixz

d2ϕr
(

x
σ
√

r

)

dx2
dx

and from (3.13) and (3.14) follows that (3.12) holds, which completes the proof
of the lemma.

In the case when 0 < n ≤ k applying the Chebyshev inequality one gets

P (ζn = k) ≤ P (ζn ≥ k) <
nσ2

k2
= O

(

1

k

)

as k → ∞.(3.15)
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From Lemma 3.1 follows that (3.15) holds uniformly for all n = 1, 2, 3, . . .
as k → ∞.

Lemma 3.2. Suppose that A) holds. If n → ∞ then uniformly for all
integer k

n(P (ζn = k) − P (ζn = k + 1)) =
k√

2πσ3
√

n
e−k2/2σ2n + o(1).

P r o o f. Since for n = 1, 2, 3, . . . and every integer k

P (ζn = k) =
1

2π

∫ π

−π
e−iθk(ϕ(θ))ndθ

after the substitutions z =
−k

σ
√

n
and x = σθ

√
n we get

P (ζn = k) =
1

2πσ
√

n

∫ πσ
√

n

−πσ
√

n
eixz

(

ϕ

(

x

σ
√

n

))n

dx.(3.16)

Several additional notes should to be made here.
Consider some ε > 0.
It is easy to see that there exists such A1 = A1(ε) that uniformly for all z

1

2πσ2

∣

∣

∣

∣

∣

∫

A1<|x|
eixzxe−x2/2dx

∣

∣

∣

∣

∣

< ε.(3.17)

Obviously there exists also A2 = A2(ε) that

1

2πσ2

∫

A2<|x|
|x|e−x2/4dx < ε.(3.18)

Denote A = max(A1, A2).

When
x√
n
→ 0 we have

1 − e−ix/σ
√

n =
ix

σ
√

n
(1 + o(1)).(3.19)

Hence there exists such δ1 > 0 that if

∣

∣

∣

∣

x

σ
√

n

∣

∣

∣

∣

< δ1 then

|1 − e−ix/σ
√

n| ≤ 2|x|
σ
√

n
(3.20)
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Moreover if
x√
n
→ 0 then

ϕ

(

x

σ
√

n

)

= 1 − x2

2n
+ o

(

1

n

)

(3.21)

and

log

(

ϕ

(

x

σ
√

n

))n

= n log

(

1 − x2

2n
+ o

(

1

n

))

= −x2

2
+ o(1).(3.22)

From (3.21) there exists such δ2 > 0 that if |θ| < δ2

|ϕ(θ)| ≤ 1 − σ2θ2

4
≤ e−σ2θ2/4.(3.23)

Denote δ = min(δ1, δ2).

Our proof proceeds by an estimation of the expression

R(n, k) = n(P (ζn = k) − P (ζn = k + 1)) − k√
2πσ3

√
n

e−k2/2σ2n.

From (3.16) for n = 1, 2, 3, . . . and every integer k

P (ζn = k) − P (ζn = k + 1)

=
1

2πσ
√

n

∫ πσ
√

n

−πσ
√

n
(e

−ix k
σ
√

n − e
−ix k+1

σ
√

n )

(

ϕ

(

x

σ
√

n

))n

dx

=
1

2πσ
√

n

∫ πσ
√

n

−πσ
√

n
(1 − e−ix/σ

√
n)eixz

(

ϕ

(

x

σ
√

n

))n

dx.

Since for every z > 0

ze−z2/2 = − i√
2π

∫ ∞

−∞
eixzxe−x2/2dx

we may write

R(n, k) = I1 + I2 + I3 + I4, say,

where

Ij = Ij(n, k,A, δ) for j = 1, 2, 3, 4,
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I1 =

√
n

2πσ

∫ A

−A

(

1 − e
−ix
σ
√

n

)

eixz

(

ϕ

(

x

σ
√

n

))n

dx − i

2πσ2

∫ A

−A
eixzxe−x2/2dx,

I2 = − i

2πσ2

∫

A<|x|
eixzxe−x2/2dx,

I3 =

√
n

2πσ

∫

A<|x|≤δσ
√

n

(

1 − e
−ix
σ
√

n

)

eixz

(

ϕ

(

x

σ
√

n

))n

dx

I4 =

√
n

2πσ

∫

δσ
√

n<|x|≤πσ
√

n

(

1 − e
−ix
σ
√

n

)

eixz

(

ϕ

(

x

σ
√

n

))n

dx.

Here we used the fact that z =
−k

σ
√

n
and therefore

k√
2πσ3

√
n

= − z√
2πσ2

.

Let n → ∞.
With the help of (3.19) and (3.22) we get

I1 =

√
n

2πσ

∫ A

−A

ix

σ
√

n
(1 + o(1))eixz

(

ϕ

(

x

σ
√

n

))n

dx(3.24)

− i

2πσ2

∫ A

−A
eixzxe−x2/2dx

=
i

2πσ2

∫ A

−A
eixzxe−x2/2(1 + o(1))dx

− i

2πσ2

∫ A

−A
eixzxe−x2/2dx

= o(1).

From (3.17) follows that

|I2| < ε.(3.25)

Using (3.18), (3.20) and (3.23) we get

|I3| ≤ 1

πσ2

∫

A<|x|≤δσ
√

n
|x|

∣

∣

∣

∣

ϕ

(

x

σ
√

n

)∣

∣

∣

∣

n

dx(3.26)

≤ 1

πσ2

∫

A<|x|≤δσ
√

n
|x|e−x2/4dx

≤ 1

πσ2

∫

A≤|x|
|x|e−x2/4dx < ε.

Since A) holds there exists such q, 0 < q < 1 that when δ < |θ| < π

|ϕ(θ)| < q.
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Hence

|I4| ≤
√

n

πσ

∫

δσ
√

n<|x|≤πσ
√

n

∣

∣

∣

∣

ϕ

(

x

σ
√

n

)∣

∣

∣

∣

n

dx(3.27)

=
n

π

∫

δ<|θ|≤π
|ϕ(θ)|ndθ

≤ 2nqn = o(1).

Now from (3.24)–(3.27) follows that as n → ∞ we have R(n, k) = o(1)
uniformly for all integer k, which completes the proof of the Lemma.

Lemma 3.3. Suppose that A) holds. If n → ∞ then uniformly for all
m,k = 0, 1, 2, . . .

P (ζn = k) − P (ζn+m = k) = O

(

m

n
√

n

)

.

P r o o f. If m,n → ∞ in a way that n = O(m) the assertion of the Lemma
follows directly from (3.2), (3.15) and Lemma 3.1.

Hence it suffices to consider only the case m = o(n).
Since (3.21) still holds as x/σ

√
n → 0 we have

(

ϕ

(

x

σ
√

n

))m

= 1 − x2

2

m

n
(1 + o(1)).

Hence there exists such δ1 > 0 that when
|x|

σ
√

n
< δ1 we have

∣

∣

∣

∣

1 − ϕm

(

x

σ
√

n

)∣

∣

∣

∣

<
m

n
x2.(3.28)

From (3.21) there exists also such δ2 > 0 that when
|x|

σ
√

n
< δ2

∣

∣

∣

∣

ϕ

(

x

σ
√

n

)∣

∣

∣

∣

n

< e−x2/4.(3.29)

Denote δ = min(δ1, δ2).
We have again for k, n = 1, 2, 3, . . .

P (ζn = k) =
1

2π

∫ π

−π
e−iθkϕn(θ)dθ.
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Setting z =
k

σ
√

n
and x = θσ

√
n we may write

P (ζn = k) − P (ζn+m = k)

=
1

2πσ
√

n

∫ πσ
√

n

−πσ
√

n
e−ixz

(

ϕ

(

x

σ
√

n

))n (

1 −
(

ϕ

(

x

σ
√

n

))m)

dx

= I1(n,m, k, δ) + I2(n,m, k, δ) , say,

where

I1(n,m, k, δ) =
1

2πσ
√

n

∫

|x|≤δσ
√

n

e−ixz

(

ϕ

(

x

σ
√

n

))n(

1 −
(

ϕ

(

x

σ
√

n

))m)

dx

I2(n,m, k, δ) =
1

2πσ
√

n

∫

δσ
√

n<|x|≤πσ
√

n

e−ixz

(

ϕ

(

x

σ
√

n

))n(

1 −
(

ϕ

(

x

σ
√

n

))m)

dx.

We will show that as n → ∞

I1(n,m, k, δ) = o

(

m

n
√

n

)

(3.30)

and

I2(n,m, k, δ) = o(1).(3.31)

Let n,m → ∞ in a way that m = o(n).
Using (3.28) and (3.29) we get

|I1(n,m, k, δ)| <
1

2πσ
√

n

∫

|x|≤δσ
√

n

m

n
x2e−x2/4dx

<
m

n
√

n

1

2πσ

∫ ∞

−∞
x2e−x2/4dx

= O

(

m

n
√

n

)

,

hence (3.30) holds.
Since A) holds there exists such q, 0 < q < 1 that if δ < |θ| < π then

|ϕ(θ)| < q.
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Hence

|I2(n,m, k, δ)| ≤ 1

2πσ
√

n

∫

δσ
√

n<|x|≤πσ
√

n

∣

∣

∣

∣

ϕ

(

x

σ
√

n

)∣

∣

∣

∣

n

|1 − (ϕ(
x

σ
√

n
))m|dx

≤ 1

2πσ
√

n

∫

δσ
√

n<|x|≤πσ
√

n

∣

∣

∣

∣

ϕ

(

x

σ
√

n

)∣

∣

∣

∣

n

dx

≤ 2qn = o(1)

and (3.31) holds, which completes the proof of Lemma 3.3.

Lemma 3.4. If n, k → ∞ in a way that kn−1/2 = O(1) then

P ( min
1<j<n

Sj > 0, Sn = k) = P (ζn = −k + 1) − P (ζn = −k − 1) + o

(

1

n

)

.

P r o o f. Clearly for n, k = 1, 2, 3, . . .

P ( min
1<j<n

Sj > 0;Sn = k) = P (Sn = k) − P ( min
1≤j≤n

Sj ≤ 0, Sn = k)

= P (Sn = k) −
n−1
∑

i=1

P ( min
1<j<i

Sj > 0;Si = 0)P (ζn−i = k),

and since
∞
∑

i=1
P (min1<j<i Sj > 0;Si = 0) = 1 using (3.1) we get

P ( min
1<j<n

Sj > 0;Sn = k) =

∞
∑

i=1

P ( min
1<j<i

Sj > 0;Si = 0)P (Sn = k)(3.32)

−
n−1
∑

i=1

P ( min
1<j<i

Sj > 0;Si = 0)P (ζn−i = k)

=
∞
∑

i=1

1

i
P (ζi = −1)P (ζn = k − 1)

−
n−1
∑

i=1

1

i
P (ζi = −1)P (ζn−i = k)

= S1(n, k) + S2(n, k) + S3(n, k), say,
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where

S1(n, k) =
n−1
∑

i=1

1

i
P (ζi = −1)(P (ζn = k − 1) − P (ζn = k)),

S2(n, k) =
∑

i≥n

1

i
P (ζi = −1)P (ζn = k − 1)

S3(n, k) =
n−1
∑

i=1

1

i
P (ζi = −1)(P (ζn = k) − P (ζn−i = k)).

Let n, k → ∞ in a way that kn−1/2 = O(1).
From Lemma 3.2 follows that as n → ∞ uniformly for all k = 1, 2, . . . , n−1

P (ζn = k − 1) − P (ζn = k) = P (ζn = −k + 1) − P (ζn = −k) + o

(

1

n

)

.

Hence

S1(n, k) =

n−1
∑

i=1

1

i
P (ζi = −1)(P (ζn = −k + 1) − P (ζn = −k)) + o

(

1

n

)

.(3.33)

Next, using (3.2) one could easily obtain that as n → ∞
∑

i≥n

1

i
P (ζi = −1) =

√
2√

πσ2n
(1 + o(1)).

From (3.2) we have also P (ζn = k − 1) = P (ζn = −k + 1) + o

(

1√
n

)

.

Therefore

S2(n, k) =
∑

i≥n

1

i
P (ζi = −1)P (ζn = −k + 1) + o

(

1

n

)

.(3.34)

Consider some ε > 0.
If n → ∞ a combination of (3.2) and Lemma 3.3 produces uniformly for

all m = 1, 2, 3, . . ., m < n

m
∑

i=1

1

i
P (ζi = −1)(P (ζn = k) − P (ζn−i = k)) =

m
∑

i=1

1

i
O

(

1√
i

)

O

(

i

(n − m)
√

n − m

)

=
m
∑

i=1

O

(

1

(n − m)
√

i(n − m)

)

.
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Hence there exists such δ1 = δ1(ε) > 0 that
∣

∣

∣

∣

∣

∣

∑

1≤i≤δ1n

1

i
P (ζi = −1)(P (ζn = k) − P (ζn−i = k))

∣

∣

∣

∣

∣

∣

<
ε

n
.

From (3.2) when i = O(n) we have

1

i
P (ζi = −1) = O

(

1

n
√

n

)

and from (3.5) uniformly for all i = 0, 1, . . . , n − 1

P (ζn−i = k) = O

(

n − i

k2

1

k

)

= O

(

1√
n

)

.

Hence there exists such δ2 = δ2(ε) > 0 that
∣

∣

∣

∣

∣

∣

∑

n−δ2n≤i<n

1

i
P (ζi = −1)(P (ζn = k) − P (ζn−i = k))

∣

∣

∣

∣

∣

∣

<
ε

n
.

Let δ = min(δ1, δ2).
With the help of Lemma 3.2 we obtain

∑

δn<i<(1−δ)n

1

i
P (ζi = −1)(P (ζn = k) − P (ζn−i = k))

=
∑

δn<i<(1−δ)n

1

i
P (ζi = −1)(P (ζn = −k) − P (ζn−i = −k)) + o

(

1

n

)

.

Hence

S3(n, k) =
∑

i≥n

1

i
P (ζi = −1)(P (ζn = −k) − P (ζn−i = −k)) + o

(

1

n

)

.(3.35)

Now from (3.32) – (3.35) follows that

P (Sj > 0, j = 1, n;Sn = k) =

n−1
∑

i=1

1

i
P (ζi = −1) ×

×(P (ζn = −k + 1) − P (ζn−i = −k))

+
∑

i≥n

1

i
P (ζi = −1)P (ζn = −k + 1) + o

(

1

n

)

= P (ζn = −k + 1) − P (ζn = −k − 1) + o

(

1

n

)

,
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which completes the proof of the Lemma. �

Lemma 3.5. If k → ∞ then

lim k
∑

i≥k

P (C(k, i)) ≤ σ2

2
.

P r o o f. Evidently for every k, n = 1, 2, 3, . . . , k ≤ n

P (A(k, 0, n)) = P (N(k) = n) =
k

n
P (ζn = −k).

Moreover for every s, k, n, n1 = 1, 2, 3, . . . , n1 < n we have

P (A(s + k, 0, n)) =

n−s
∑

i=k

P (A(s, k, n − i))P (C(k, i))(3.36)

>
∑

i<n1

P (A(s, k, n − i))P (C(k, i))

=
∑

i<n1

(P (ζn−i = −s) − P (B(s, k, n − i))P (C(k, i))

Consider some δ > 0.

For each choice of s, k, n, i = 1, 2, 3, . . . , i < n we have

P (B(s, k, n − i)) =

n−i−k−s
∑

l=1

P (A(s + k, 0, n − i − l))P (ζl = k)

=
∑

l<δk2

P (A(s + k, 0, n − i − l))P (ζl = k)

+
∑

l≥δk2

P (A(s + k, 0, n − i − l))P (ζl = k)

Let s, k, n, n1 → ∞ simultaneously in a way that k = o(s), n = O(s2),

n1 = o(n) and kn
−1/2
1 = o(1).

From (3.4) and (3.15) follows that

∑

l<δk2

P (A(s + k, 0, n − i − l))P (ζl = k) =
∑

l<δk2

O

(

1

s2

)

O

(

1

k

)

= o

(

1

s

)

.
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Next using (3.2) we get
∑

l≥δk2

P (A(s + k, 0, n − i − l))P (ζl = k) =

=
∑

l≥δk2

P (A(s + k, 0, n − i − l))P (ζl = −k)(1 + o(1)).

Hence

P (B(s, k, n − i)) =
∑

l≥δk2

P (A(s + k, 0, n − i − l))P (ζl = −k)(1 + o(1)) + o

(

1

s

)

.

Using (3.5) and (3.15) we obtain

∑

l<δk2

P (A(s + k, 0, n − i − l))P (ζl = −k) =
∑

l<δk2

O

(

1

s2

)

O

(

1

k

)

= o

(

1

s

)

,

therefore

P (B(s, k, n − i))(3.37)

=

n−i−k−s
∑

l=k

P (A(s + k, 0, n − i − l))P (ζl = −k)(1 + o(1)) + o

(

1

s

)

= P (ζn−i = −s − 2k) + o

(

1

s

)

.

Now from (3.36) we have

P (A(s + k, 0, n))

>
∑

i<n1

(

P (ζn−i = −s) − P (ζn−i = −s − 2k) + o

(

1

s

))

P (C(k, i))

= 2k(P (ζn−i = −s) − P (ζn−i = −s − 1))(1 + o(1))
∑

i<n1

P (C(k, i))

hence

∑

i<n1

P (C(k, i)) <
P (A(s + k, 0, n))

2k(P (ζn = −s) − P (ζn = −s − 1))
(1 + o(1)).

Finally, from (3.1), (3.2) and Lemma 3.2 we get that as k → ∞

lim
∑

i<n1

P (C(k, i)) <
σ2

2k
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which completes the proof of the lemma. �

Lemma 3.6. If k → ∞ then uniformly for all n = k, k + 1, k + 2, . . .

P (C(k, n)) = O

(

1

k3

)

.

P r o o f. Evidently for every s, n, k = 1, 2, 3, . . ., s < k

P (C(k, n)) =
∑

i<n

P (D(k − s, s, i))P (C(s, n − i)).(3.38)

Let n, k, s → ∞ in a way that kn−1/2 = O(1) and ks−1 = 2 + o(1).
For every i = k − s, k − s + 1, . . . , n − s we have

P (D(k − s, s, i)) < P (max
j<i

Sj < 1;Si = 1 − k + s)

=

i
∑

l1,l2,...,li=−1

pl1pl2 . . . pli×

×I(max
j<i

(l1 + l2 + . . . + lj) < 1; l1 + l2 + . . . + li = 1 − k − s)

=
i
∑

l1,l2,...,li=−1

plipli−1
. . . pl1×

×I(min
j<i

(li + li−1 + . . . + li−j+1) > 1 − k − s; l1 + . . . + li = 1 − k − s)

= P (min
j<i

Sj > 1 − k + s;Si = 1 − k + s)

and from (3.4) uniformly for all i = k − s, k − s + 1, . . . , n − s we get

P (D(k − s, s, i)) = O

(

1

k2

)

.

Hence from (3.38)

P (C(k, n)) = O

(

1

k2

)

∑

i<n

P (C(s, n − i))

and from Lemma 3.5 follows that uniformly for all n ≥ k

P (C(k, n)) = O

(

1

k2

)

O

(

1

k

)

= O

(

1

k3

)

,
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which completes the proof of the lemma. �

Lemma 3.7. If s, n, k → ∞ in a way that kn−1/2 = O(1) and ks−1=O(1)
then

∑

l<n

(P (B(s, k, n − l)) − P (B(s + 1, k, n − l)))P (C(k, l))

=
∑

l<n

(P (ζn−l = −s − 2k) − P (ζn−l = −s − 2k − 1))P (C(k, l)) + o

(

1

k3

)

.

P r o o f. Write
∑

l<n

(P (B(s, k, n − l)) − P (B(s + 1, k, n − l)))P (C(k, l))

=
∑

l<n

n−l−s−k
∑

i=1

(P (A(s + k, 0, n − l − i)) − P (A(s + k + 1, 0, n − l − i))) ×

×P (ζi = k)P (C(k, l))

The proof leans on the fact that if Eξ = 0 and i, k → ∞ in a way that
ki−1/2 = O(1) then

P (ζi = k) = P (ζi = −k)(1 + o(1)).

The parts of the sum for which that can not be applied will be properly
estimated.

Consider some δ, 0 < δ < 1. Then
∑

l<n

(P (B(s, k, n − l)) − P (B(s + 1, k, n − l)))P (C(k, l))(3.39)

=
∑

l<n

∑

i≥δn

(P (A(s+k, 0, n−l−i))−P (A(s+k+1, 0, n−l−i)))P (ζi=k)P (C(k, l))

+
∑

l<n

∑

i<δn

(P (A(s+k, 0, n−l−i))−P (A(s+k+1, 0, n−l−i)))P (ζi=k)P (C(k, l))

Let s, n, k → ∞ in a way that kn−1/2 = O(1), ks−1 = O(1).
Using (3.2) we get
∑

l<n

∑

i≥δn

(P (A(s+k, 0, n−l−i))−P (A(s+k+1, 0, n−l−i)))P (ζi=k)P (C(k, l))(3.40)

=
∑

l<n

∑

i≥δn

(P (A(s + k, 0, n − l − i)) − P (A(s + k + 1, 0, n − l − i))) ×

×P (ζi = −k)P (C(k, l))(1 + o(1)).
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On the other hand from (3.15) uniformly for all i = 1, 2, 3, . . . we have

P (ζi = k) = O

(

1

k

)

,

and applying (3.15) and Lemma 3.6 we obtain

∑

l<n

∑

i<δn

(P (A(s+k, 0, n−l−i))−P (A(s+k+1, 0, n−l−i)))P (ζi=k)P (C(k, l))

=
∑

i<δn

∑

i≤l<n

(P (A(s+k, 0, n−l))−P (A(s+k+1, 0, n−l)))P (ζi=k)P (C(k, l−i))

< δO(
1

k2
)
∑

l<n

(P (A(s + k, 0, n − l)) − P (A(s + k + 1, 0, n − l)))

= δO(
1

k2
)
∑

l<n

(P (A(s + k, 0, l)) − P (A(s + k + 1, 0, l))).

In order to estimate the sum
∑

l<n

(P (A(s + k, 0, l)) −P (A(s + k + 1, 0, l)))

first note that when 0 < l < n

1

P (ζ2n−l = −k)
= O(k).

Hence using Lemma 3.2 we get

∑

l<n

(P (A(s + k, 0, n − l)) − P (A(s + k + 1, 0, n − l)))

= O(k)
∑

l<n

(P (A(s + k, 0, n − l)) − P (A(s + k + 1, 0, n − l)))P (ζ2n−l = −k)

< O(k)(P (ζ2n = −s − 2k) − P (ζ2n = −s − 2k − 1))

= O

(

1

k

)

.

Therefore

∑

l<n

∑

i<δn

(P (A(s + k, 0, n − l)) − P (A(s + k + 1, 0, n − l))) ×(3.41)

×P (ζi = k)P (C(k, l)) < δO

(

1

k3

)
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In the same way, using this time (3.5) and Lemma 3.6 one gets

∑

l<n

∑

i<δn

(P (A(s+k, 0, n−l−i))−P (A(s+k+1, 0, n−l−i)))P (ζi=−k)P (C(k, l))

< δO

(

1

k2

)

∑

l<n

(P (A(s + k, 0, n − l)) − P (A(s + k + 1, 0, n − l))

< δO

(

1

k

)

∑

l<n

(P (A(s + k, 0, n − l)) − P (A(s + k + 1, 0, n − l))P (ζ2n−l = −k),

i.e.

∑

l<n

∑

i<δn

(P (A(s + k, 0, n − l)) − P (A(s + k + 1, 0, n − l))) ×(3.42)

×P (ζi = −k)P (C(k, l)) < δO

(

1

k3

)

.

Now since (3.39) – (3.42) hold for any δ ∈ (0, 1) we have

∑

l<n

(P (B(s, k, n − l)) − P (B(s + 1, k, n − l)))P (C(k, l))

=
∑

l<n

(P (ζn−l = −s − 2k) − P (ζn−l = −s − 2k − 1))P (C(k, l)) + o

(

1

k3

)

,

which completes the proof of the Lemma. �

Lemma 3.8. If m,k → ∞ in a way that m = o(k2) then

∑

i<m

(P (ζi = −k + 1) − P (ζi = −k − 1)) = o(1).

P r o o f. For k = 1, 2, 3, . . . write

P (ζk6 = −k3 − k + 1) − P (ζk6 = −k3 − k − 1)

=
∑

i<k6

P (A(k3, 0, k6 − i))(P (ζi = −k + 1) − P (ζi = −k − 1))

>
∑

i<k4

P (A(k3, 0, k6 − i))(P (ζi = −k + 1) − P (ζi = −k − 1)).



164 Tzvetozar B. Kerbashev

Applying Lemma 3.2 to the left hand side and using (3.1) and (3.2) to
estimate P (A(k3, 0, k6 − i)) one can easily obtain that

lim
k→∞

∑

i>k

(P (ζi = −k + 1) − P (ζi = −k − 1)) ≤ 1

σ2
.(3.43)

Consider some A and B, 0 < A < B < ∞.
When k → ∞ using Lemma 3.2 we obtain

∑

Ak2<i<Bk2

(P (ζi = −k + 1) − P (ζi = −k − 1))

=
1

σ2
√

2π

∑

Ak2<i<Bk2

σ2

k2

(

k

σ
√

i

)3

exp

{

− k2

2σ2i

}

(1 + o(1))

=
1

σ2
√

2π

∫ 1/σ
√

A

1/σ
√

B
e−x2/2dx(1 + o(1)).

From this statement and (3.43) we get

∑

i<Ak2

(P (ζi = −k + 1) − P (ζi = −k − 1)) = O

(

∫ ∞

1/σ
√

A
e−x2/2dx

)

and since A can be arbitrary small then for m = o(k2) we have
∑

i<m

(P (ζi = −k + 1) − P (ζi = −k − 1)) = o(1),

which completes the proof of the Lemma. �

Lemma 3.9. If k → ∞ then

lim k
∑

i≥k

P (C(k, i) =
σ2

2
.

P r o o f. From Lemma 3.5 follows that it suffices to show that

lim
k→∞

kP (C(k, i)) ≥ σ2

2
.(3.44)

Evidently for every s, k, n = 1, 2, 3, . . .

P (A(s + k, 0, n)) =
∑

i<n

P (A(s, k, i))P (C(k, n − i)).
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Consider some ε > 0.

Let s, k, n → ∞ simultaneously in a way that n =
s2

3σ2
(1 + o(1)) and

k = O(s), but P (A(s, 0, n)) − P (A(s + k, 0, n)) <
ε

n
.

If 0 < n1 < n from (3.5) and Lemma 3.6

∑

i≤n1

P (A(s, k, i))P (C(k, n − i)) = O

(

1

k3

)

∑

i≤n1

P (A(s, k, i))

≤ O

(

1

k3

)

∑

i≤n1

P (ζi = −s))

= O
( n1

k3s

)

,

hence there exists such δ = δ(ε) > 0 that

lim n
∑

i≤δn

P (A(s, k, i))P (C(k, n − i)) < ε.

Therefore

lim n
∑

i>δn

P (A(s, k, i))P (C(k, n − i)) ≥ lim nP (A(s + k, 0, n)) − ε(3.45)

≥ lim nP (A(s, 0, n)) − 2ε.

We will also show that

lim n
∑

i>δn

P (A(s, k, i))P (C(k, n − i)) ≤ lim nP (A(s, k, n))
∑

i≥k

P (C(k, i)).(3.46)

Without loss of generality we may assume that δn > k.
For every i, δn < i < n we have

P (A(s, k, i)) = P (ζi = −s)− P (B(s, k, i))

and since (3.37) holds either for k = O(s) and k = o(s) then

P (A(s, k, i)) = P (ζi = −s) − P (ζi = −s − 2k) + o

(

1

s

)

= 2k(P (ζi = −s) − P (ζi = −s − 1))(1 + o(1)).

Now Lemma 3.2 yelds

P (A(s, k, i)) =
2ks√

2πσ3i
√

i
e−s2/2σ2i(1 + o(1))(3.47)
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and since the function g(x) = x3x−x2/2 reaches its maximum at x =
√

3 then

P (A(s, k, i)) =
2k

s2

1√
2π

s3

σ3i3/2
e−s2/2σ2i(1 + o(1))

≤ 2k

s2

1√
2π

s3

σ3n3/2
e−s2/2σ2n(1 + o(1))

= P (A(s, k, n))(1 + o(1)).

From this inequality and the simple fact that
∑

i>δn

P (C(k, i)) ≤
∑

i≥k

P (C(k, i))

follows that (3.46) holds.
Next, (3.45) and (3.46) imply

∑

i≥k

P (C(k, i)) ≥ lim nP (A(s, 0, n)) − 2ε

lim nP (A(s, k, n))

Finally from (3.2) and (3.47) follows that

∑

i≥k

P (C(k, i)) ≥ σ2

2k

(

1 −
√

8πe3

3
ε

)

,

hence (3.44) holds and we are done. �

Lemma 3.10. If m,k → ∞ in a way that mk−2 = o(1) then

∑

n<m

P

(

min
j<n

Sj > 0;Sn = k

)

= o(1).

P r o o f. Evidently for k = 1, 2, 3, . . .

P (M ′ > k) =

∞
∑

n=1

P

(

min
j≤n

Sj > 0;Sn = k

) ∞
∑

l=k

P (C(k, l)),

therefore from (3.3) as k → ∞

k

∞
∑

n=1

P

(

min
j≤n

Sj > 0;Sn = k

) ∞
∑

l=k

P (C(k, l)) = 1 + o(1).

Aplying Lemma 3.9 we get that

k
∞
∑

n=1

P

(

min
j≤n

Sj > 0;Sn = k

)

σ2

2k
= 1 + o(1),
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i.e.
∞
∑

n=1

P

(

min
j≤n

Sj > 0;Sn = k

)

=
2

σ2
+ o(1).

If δ > 0 using Lemma 3.2 and Lemma 3.4 one can obtain

∑

n≥δk2

P

(

min
j≤n

Sj > 0;Sn = k

)

=
∑

n≥δk2

(P (ζn = −k + 1) − P (ζn = −k − 1))(1 + o(1))

= 2
∑

n≥δk2

k√
2πσ3n

√
n

exp{−k2/2σ2n}(1 + o(1))

=
2

σ2

∑

n≥δk2

k√
2πσ2

1

n
√

n
exp{−k2/2σ2n}(1 + o(1)).

Noting that as k → ∞
∑

n>0

k√
2πσ2

1

n
√

n
exp{−k2/2σ2n} = (1 + o(1))

we conclude that if m,k → ∞, mk−2 = o(1)

∑

n<m

P

(

min
j<n

Sj > 0;Sn = k

)

= o(1),

and the Lemma is proved. �

4. Proof of Theorem 2.1. Consider some ε > 0.

Let k, n → ∞ in a way that
k

σ
√

n
→ x, where 0 < x < ∞.

From Lemma 3.6 and Lemma 3.8 follows the existence of such r = r(ε, x)
that

∑

i<n

(P (ζi = −(2r+1)k+1)−P (ζi = −(2r+1)k−1)) P (C(k, n−i)) <
ε

3k3
.(4.1)

From Lemma 3.6 and Lemma 3.10 there exists such δ1 = δ1(ε, x) > 0 that

∑

i<δ1n

P

(

min
j<i

Sj > 0;Si = k

)

P (C(k, n − i)) <
ε

3k3
.(4.2)
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Moreover using Lemma 3.6 and Lemma 3.8 one can easily obtain that
there exists such δ2 = δ2(ε, x) > 0 that

∑

i<δ2n

(P (ζi = −k + 1) − P (ζi = −k − 1))P (C(k, n − i)) <
ε

3k3
.(4.3)

Let δ = min(δ1, δ2).
The idea of the proof is to show that

P (M ′ > k, τ = n) =
r
∑

l=1

(P (A(2lk−1, 0, n))−P (A(2lk+1, 0, n)))+o

(

1

k3

)

.(4.4)

and use Lemma 3.2 to estimate the terms of the sum.
Write

P (M
′
> k, τ = n) =

n−k
∑

i=1

P

(

min
j<i

Sj > 0;Si = k

)

P (C(k, n − i))(4.5)

=
∑

i<δn

P

(

min
j<i

Sj > 0;Si = k

)

P (C(k, n − i))

+
∑

i≥δn

P

(

min
j<i

Sj > 0;Si = k

)

P (C(k, n − i))

Applying Lemma 3.4 and Lemma 3.6 we get

∑

i≥δn

P

(

min
j<i

Sj > 0;Si = k

)

P (C(k, n − i))

=
∑

i≥δn

(P (ζi = −k + 1) − P (ζi = −k − 1))P (C(k, n − i)) + o

(

1

k3

)

=

n−k
∑

i=1

(P (ζi = −k + 1) − P (ζi = −k − 1))P (C(k, n − i))

−
∑

i<δn

(P (ζi = −k + 1) − P (ζi = −k − 1))P (C(k, n − i)) + o

(

1

k3

)

.

Hence from (4.5)

P (M ′>k, τ=n) =
n−k
∑

i=1

(P (ζi = −k+1) − P (ζi = −k−1))P (C(k, n−i))(4.6)
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+
∑

i<δn

P

(

min
j<i

Sj > 0;Si = k

)

P (C(k, n − i))

−
∑

i<δn

(P (ζi = −k + 1) − P (ζi = −k − 1))P (C(k, n − i)) + o

(

1

k3

)

.

Obviously for each choice of i, j, k = 1, 2, 3, . . . we have

P (ζi = −j) = P (A(j, k, i)) + P (B(j, k, i)).

Then for every l = 1, 2, . . . , r

∑

i<n

(P (ζi = −(2l − 1)k + 1) − P (ζi = −(2l − 1)k − 1))P (C(k, n − i))

=
∑

i<n

(P (A((2l − 1)k − 1, k, i)) + P (B((2l − 1)k − 1, k, i))

−P (A((2l − 1)k + 1, k, i)) − P (B((2l − 1)k + 1, k, i)))P (C(k, n − i))

=
∑

i<n

P (A((2l − 1)k − 1, k, i))P (C(k, n − i))

−
∑

i<n

P (A((2l − 1)k + 1, k, i))P (C(k, n − i))

+
∑

i<n

(P (B((2l − 1)k − 1, k, i)) − P (B((2l − 1)k + 1, k, i)))P (C(k, n − i))

= P (A(2lk − 1, 0, n)) − P (A(2lk + 1, 0, n))

+
∑

i<n

(P (B((2l − 1)k − 1, k, i)) − P (B((2l − 1)k + 1, k, i)))P (C(k, n − i))

and with the help of Lemma 3.7 we obtain for l = 1, 2, 3, . . . , r

∑

i<n

(P (ζi = −(2l − 1)k + 1) − P (ζi = −(2l − 1)k − 1))P (C(k, n − i))

= P (A(2lk − 1, 0, n)) − P (A(2lk + 1, 0, n))

+
∑

i<n

(P (ζi = −(2l+1)k+1) − P (ζi = −(2l+1)k−1))P (C(k, n − i)) + o

(

1

k3

)

.
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Applying consequently this equality to (4.6) with l = 1, 2, . . . , r one gets

P (M ′ > k, τ = n) =
r
∑

l=1

(P (A(2lk − 1, 0, n)) − P (A(2lk + 1, 0, n)))

+
∑

i<n

(P (ζi = −(2r + 1)k + 1) − P (ζi = −(2r + 1)k − 1))×

×P (C(k, n − i))

+
∑

i<δn

P

(

min
j<i

Sj > 0;Si = k

)

P (C(k, n − i))

−
∑

i<δn

(P (ζi = −k + 1) − P (ζi = −k − 1))P (C(k, n − i)) + o

(

1

k3

)

and from (4.1)-(4.3) we conclude that (4.4) holds.
Finally by using (3.1), (3.2) and Lemma 3.2 we get

P (M ′ > k, τ = n) =

r
∑

l=1

(

2lk − 1

n
P (ζn = −2lk + 1

)

−2lk + 1

n
P (ζn = −2lk − 1)) + o

(

1

k3

)

=
r
∑

l=1

2lk + 1

n
(P (ζn = −2lk + 1) − P (ζn = −2lk − 1))

−2

r
∑

l=1

1

n
P (ζn = −2lk + 1) + o

(

1

k3

)

= 2

r
∑

l=1

(
2lk

σn
)2P (ζn = −2lk + 1)(1 + o(1))

−2

r
∑

l=1

1

n
P (ζn = −2lk + 1) + o

(

1

k3

)

= 2
r
∑

l=1

(

(2lk)2

σ2n2
− 1

n

)

1√
2πσ2n

exp

{

−(2lk)2

2σ2n

}

(1 + o(1)) + o

(

1

k3

)

= 2

r
∑

l=1

(

(

2lk

σ
√

n

)2

− 1

)

1√
2πσ2

1

n
√

n
exp

{

−(2lk)2

2σ2n

}

+ o

(

1

k3

)

.

Noting also that

n
√

nP (τ = n) =
1√

2πσ2
+ o(1)
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we complete the proof of Theorem 2.1. �

5. Proof of Theorem 2.2. For every n, k = 1, 2, 3, . . . , n ≥ k

P (M > k, τ = n) ≤ P (M ′ ≥ k, τ = n).

Hence it suffices to show that if n, k → ∞ in a way that kn−1/2 = O(1)
then

lim P (M > k, τ = n) ≥ lim P (M ′ ≥ k, τ = n).(5.1)

Denote for k = 1, 2, 3, . . .

µk =

{

max{i : Si = k, i < τ} if M ′ ≥ k
1 if M ′ < k

Let us define for i = −1,−2,−3, . . .

Si ≡ 1 a.s..

Consider some ε > 0.
From Theorem 2.1 for every c > 0 there exists such A = A(ε, c) > 0 that

for each choice of n, k = 1, 2, 3, . . . , k > cn1/2 we have

P (M > Ak, τ = n) ≤ P (M ′ > Ak, τ = n) <
ε

6
n−3/2.

Then for every k, n = 1, 2, 3, . . . , k > cn1/2 we get

P (M > k − k3/4, τ = n)(5.2)

≥ P (Ak + k3/4 > M > k − k3/4, Ak > M ′ > k, τ = n) +
ε

6
n−3/2

= P (Ak + k3/4 > M > k − k3/4, Sµk
= k,Ak > M ′, τ = n) +

ε

6
n−3/2

≥ P (Sµk
= k,Ak > M ′, max

1≤j≤Ak
|Sµk

− Sµk−j| ≤ k3/4, τ = n) +
ε

6
n−3/2

≥ P (Sµk
= k, max

1≤j≤Ak
|Sµk

− Sµk−j| ≤ k3/4, τ = n) +
ε

3
n−3/2

Let k, n → ∞ in a way that kn−1/2 = O(1).
Then there exist such c > 0 and A > 0 that k > cn1/2 and (5.2) holds.
Clearly for every k, n, n1 = 1, 2, 3, . . ., n1 < n

P (Sµk
= k, µk ≤ n1, τ = n) =

∑

i≤n1

P (min
j<i

Sj > 0, Si = k)P (C(k, n − i)),
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therefore from Lemma 3.6 and Lemma 3.10 there exists such δ, 0 < δ < 1 that

P (Sµk
= k, µk ≤ δn, τ = n) <

ε

3
n−3/2.(5.3)

Hence

P (Sµk
= k, max

1≤j≤Ak
|Sµk

− Sµk−j | ≤ k3/4, µk ≤ δn, τ = n) <
ε

3
n−3/2.(5.4)

Without loss of generality we may assume that δn > Ak.
Then for k, n = 1, 2, 3, . . ., δn > Ak we have

P

(

Sµk
= k, max

1≤j≤Ak
|Sµk

− Sµk−j| ≤ k3/4, µk > δn, τ = n

)

(5.5)

=
∑

δn<i<n−k

∑

k−k3/4<l<k+k3/4

P

(

min
j<i−Ak

Sj > 0, Si−[Ak] = l

)

×

×P

(

max
1≤j<Ak

|Sj + l − 1| < k3/4, S[Ak] = k − l + 1

)

P (C(k, n − i))

=
∑

δn<i<n−k

∑

|k−l|<k2/3

P

(

min
j<i−Ak

Sj > 0, Si−[Ak] = l

)

×

×P

(

max
1≤j<Ak

|Sj + l − 1| < k3/4, S[Ak] = k − l + 1

)

P (C(k, n − i))

+
∑

δn<i<n−k

∑

k2/3≤|k−l|<k3/4

P

(

min
j<i−Ak

Sj > 0, Si−[Ak] = l

)

×

×P

(

max
1≤j<Ak

|Sj + l − 1| < k3/4, S[Ak] = k − l + 1

)

P (C(k, n − i)).

From Lemma 3.2 and Lemma 3.4 follows that if |l − k| < k3/4 and δn <
i < n − k then

P ( min
j<i−Ak

Sj > 0, Si−[Ak] = l) = P (min
j<i

Sj > 0, Si = k)(1 + o(1)).

Evidently
∑

k2/3≤|k−l|<k3/4

P ( max
1≤j<Ak

|Sj + l − 1| < k3/4, S[Ak] = k − l)

<
∑

k2/3≤|k−l|
P (S[Ak] = k − l) = o(1)
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and therefore

∑

δn<i<n−k

∑

k2/3≤|k−l|<k3/4

P

(

min
j<i−Ak

Sj > 0, Si−[Ak] = l

)

×(5.6)

×P

(

max
1≤j<Ak

|Sj + l − 1| < k3/4, S[Ak] = k − l + 1

)

P (C(k, n − i)) = o(n−3/2).

It is not difficult to see that

∑

|k−l|<k2/3

P

(

max
1≤j<Ak

|Sj + l − 1| < k3/4, S[Ak] = k − l + 1

)

=
∑

|k−l|<k2/3

P (S[Ak] = k − l + 1) + o(1) = 1 + o(1),

hence

∑

δn<i<n−k

∑

|k−l|<k2/3

P

(

min
j<i−Ak

Sj > 0, Si−[Ak] = l

)

×(5.7)

×P

(

max
1≤j<Ak

|Sj + l − 1| < k3/4, S[Ak] = k − l + 1

)

P (C(k, n − i))

=
∑

δn<i<n−k

P

(

min
j<i

Sj > 0, Si = k

)

P (C(k, n − i))(1 + o(1)).

Now from (5.5), (5.6) and (5.7) we get that if k, n → ∞ in a way that
kn−1/2 = O(1) then

P

(

Sµk
= k, max

1≤j≤Ak
|Sµk

− Sµk−j| ≤ k3/4, µk > δn, τ = n

)

=
∑

δn<i<n−k

P

(

min
j<i

Sj > 0, Si = k

)

P (C(k, n − i))(1 + o(1))

= P (Sµk
= k, µk > δn, τ = n)(1 + o(1))

and obviously for sufficiently big k and n we have

P

(

Sµk
= k, max

1≤j≤Ak
|Sµk

− Sµk−j| ≤ k3/4, µk > δn, τ = n

)

> P (Sµk
= k, µk > δn, τ = n) +

ε

3
n−3/2.
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Combining this statement with (5.2), (5.3) and (5.4) we obtain

P (M > k − k3/4, τ = n) > P (Sµk
= k, τ = n) + εn−3/2,

hence

lim P (M > k − k3/4, τ = n) ≥ lim P (M ′ ≥ k, τ = n)

and (5.1) holds.

Theorem 2.2 is proved. �

Kennedy [11] has shown that if a =
∞
∑

i=1
ipi < ∞ and the distribution

p0, p1, p2, . . . satisfies the condition B) we can define a new process {Z̃t}∞t=0 with
offspring distribution p̃k = αkpk/f(α), k = 0, 1, 2, . . . which is a critical one. For
each n ≥ 1, j ≥ 1, 0 ≤ k1, . . . , kj ≤ n and all choices of r1, . . . , rj ≥ 1 we have

P (Zk1
= r1, . . . , Zkj

= rj|N = n) = P (Z̃k1
= r1, . . . , Z̃kj

= rj |Ñ = n),

where Ñ denotes the total progeny of {Z̃t}.
From this construction and Theorem 2.2 it is clear that Theorem 2.3

holds.

6. An Application for Random Trees. Consider a random labelled
rooted tree Tn with n nodes. For each node the number of arcs, connected to it,
excluding the one that belongs to the path, leading to the root, is called a number
of its direct successors. Let Zt(r, Tn) be the number of the nodes in the tree with
height t and exactly r direct successors, n = 1, 2, 3, . . . ; r = 0, 1, . . . , n − t.

Let G be a critical BGW process with a Poisson offspring distribution of
one particle with parameter 1. Let us denote the number of particles in the t-th
generation of G with exactly r direct successors by Zt(r,G), t, r = 0, 1, 2, . . .. Let
N(G) denote the total progeny of the process.

Using Theorem 2.2 and the arguments of Kolchin [13, Th.7] one can prove
Corollary 2.1.
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