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Abstract

An important result about the geometry of the arc space of an algebraic
variety is the theorem of Drinfeld–Grinberg–Kazhdan, representing the formal
neighbourhood of a non-degenerate arc. We start with a brief review of some
important results and notions. Then the complete proof of the theorem with
examples is given. A generalization to the relative case is discussed for smooth
and étale morphisms.
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1. Introduction. Let X be a variety over a field k. Locally it is defined by
a system of polynomial equations

fj(x1, . . . , xn) = 0, j = 1, . . . , r.

An (closed) arc is a k-point in the space of arcs X∞ parameterizing the solu-
tions of that system in k[[t]]. That is, the arc space parameterizes all morphisms
Spec(K[[t]]) → X, for any field extension K/k, and it comes with natural projec-
tion π : X∞ → X defined by truncation. When k = C an arc could be viewed as
a germ of analytic curve on X. If dim(X) > 0, the space of arcs is non Noethe-
rian scheme of infinite dimension, encoding information about the geometry of
the singular locus Xsing.
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Remark 1.1. Some notations. As topological space, SpecK[[t]] = {0, η},
with 0 being the closed point corresponding to the ideal (t), and η being the
generic point. It could be viewed as infinitesimally small neighbourhood of 0 ∈ A1

k.
Denote by FNγ0 the formal neighbourhood of an arc γ0 ∈ X∞, i.e.

Spf(ÔX∞,γ0), the completion being taken with respect to the maximal ideal mγ0 .
The formal disc Spf(k[[t]]) is denoted by D, and the formal scheme
Spf(k[[xi, i ∈ N]]) is denoted by D∞. Each element in its ring could be rep-
resented as

∑∞
i=0 fi, with fi homogeneous polynomial of degree i, i ∈ N. The

ring itself is the completion of k[xi, i ∈ N] with respect to the (xi, i ∈ N)-adic
topology, viewed as an object in the category of topological rings and continuous
homomorphisms. Denote the ideal (xi, i ∈ N) as (x). That is, we get complete
local ring with maximal ideal (x) and the topology of projective limit, having a
neighbourhood basis at 0 consisting of ideals In = {f = Σfn | fi = 0, i ≤ n}. This
linear topology is weaker than the (x)-adic one, and k[[x]] is non complete in the
latter topology because k[x] is non Noetherian ring [9].

An arc γ whose generic point γ(η) is not contained in Xsing is called non
degenerate arc.

2. Few theorems and definitions. Some deep results given below describe
how the geometry of X and the geometry of its arc and jet spaces are related.

Theorem 2.1 (Kolchin [11]). If X is a variety over a field of characteristic
0, then X∞ is irreducible.

This may not hold if the characteristic is positive.
Theorem 2.2 (Nash [14]). If char k = 0, then there is an injective map:

(irreducible components of {π−1(Xsing)}) ↪→ (essential divisors over X). It is
called the Nash map for X.

The space of arcs is associated with the variety by reflecting intrinsically its
geometry, especially the geometry of Xsing. The Nash problem is asking for which
classes of varieties the Nash map is bijective. It has positive answer in dimension 2
([4]), but in higher dimensions there are counterexamples ([5,10]).

The following result characterizes how “bad” are the singularities of the variety
in terms of its jet spaces.

Theorem 2.3 (Mustata [13]). If X is a variety over C, then the jet scheme
Xn is irreducible for any n iff X has at most rational singularities.

The main topic in this article is the following theorem.
Theorem 2.4 (Drinfeld–Grinberg–Kazhdan). If γ0 ∈ X∞ \ (Xsing)∞ is a

k-arc, then there exists a scheme of finite type Y over k and a point y ∈ Y (k)
with formal neighbourhood FNy, such that FNγ0 ≃ FNy×̂D∞.

The theorem of Drinfeld–Grinberg–Kazhdan ([7,8])(or briefly, DGK theorem)
claims that the singularity of γ0(0) is encoded in a finite dimensional scheme Y .
The corresponding formal neighbourhood FNy is called formal model for γ0.

Definition 2.5. A minimal formal model of an arc γ is a formal model Ŷy
which is indecomposable, i.e. cannot be represented as FNy = FNz×̂D.
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As follows from a theorem in [1], for any non-degenerate arc the minimal
formal model exists and is unique up to isomorphism. If the arc is degenerate
though, its image is contained inXsing and the claim does not hold, as the following
theorem shows.

Theorem 2.6 (Chiu, Hauser [3]). Suppose char(K) = 0. For α = αx, the
constant arc centred at x ∈ X, there is a decomposition ÔX∞,α = ÔY,y⊗̂K[[x]]

iff there is such a decomposition for ÔX,x. In particular, if x ∈ Xsing there is no
such a decomposition for αx.

3. Proof of Drinfeld–Grinberg–Kazhdan theorem. In this section is
given a complete proof over arbitrary field, which follows the original proof ([7,8])
with some additional explanations.

Definition 3.1. Test ring A is a local k-algebra having residue field k, with
nilpotent maximal ideal m (i.e. mn = 0 for some n ∈ N). Let Testringsk be the
category of test rings with local homomorphisms as morphisms.

We can make a few observations.
If γ0 : Spec k[[t]] → X, and X ′ is the closure of the irreducible component of

Xreg containing γ(η), then X∞,γ = X ′
∞,γ , so we can assume X to be reduced and

irreducible. Because the claim is local we could take X to be affine as well. The
scheme Y does not need to be neither reduced nor irreducible in general (see the
example below).

The reason that the category Testringsk is enough to define the functor of
points is that every ÔS,P is a projective limit of test rings.

To start the proof we take X to be reduced irreducible scheme of dimension
n, embedded in AN .

Claim 1. When working with local properties of π−1(Xsing), we could sup-
pose that X is locally complete intersection, which may be reducible. Indeed,
let r = codim(X), and let the ideal defining X be IX = {f1, . . . , fs}. Put
Fi =

∑
aijfj , i = 1, . . . , s, with aij being generic elements in k, and let M ⊂ AN

be the zero set of ideal IM = (F1, . . . , Fr), defined by the first r of Fi’s. Then the
following hold:

1) any irreducible component of M has dimension n, so M is a complete
intersection scheme;

2) X ↪→ M is a closed subscheme, and X and M coincide at the generic
point of X, that is, on an open nonempty subset;

3) there is some r-minor of the Jacobian matrix of M not vanishing at ηX ;
4) Xsing ⊂Msing.
Claim 2. There exists closed affine complete intersection scheme of finite

type X ′ ⊃ X of the same dimension such that Im(γ0) is not contained in X ′ \X.
Indeed, take L to be the index set of all the r-tuples (i1, . . . , ir) of distinct

integers with ij ∈ {1, . . . , s}, and let Ml, for l ∈ L, be the corresponding complete
intersection scheme. If there is no such an X ′ as claimed, for all Ml we would have
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Im(γ0) ⊂Ml \X, thus Im(γ0) is contained in their intersection. ButMl \X∩X ⊂
Sing(Ml), and

⋂
l Sing(Ml) = Xsing, contradicting the choice of γ0.

For such an X ′ we have FNX
γ0 = FNX′

γ0 , because γ0(η) ∈ Xreg, so without
loss of generality we can replace X by X ′.

Now take X to be complete intersection affine variety, contained in
Spec k[x1, . . . , xn, y1, . . . , yr], and defined by equations pi = 0, i = 1, . . . , r. Also,
γ0(t) = (xo(t), yo(t)) = (xo1(t), . . . , x

o
n(t), y

o
1(t), . . . , y

o
r(t)) is not contained for any

t in Xsing = Z(det(∂pi/∂yj)).
For a test ring A let γ = (x(t), y(t)) with x(t) ∈ A[[t]]n, y(t) ∈ A[[t]]r be

an A-deformation of γ), i.e. its reduction modulo m ⊂ A is equal to γ0. Because
Im(γ0) ̸⊂ Z(det(∂pi/∂yj)), not all coefficients of the power series det(∂pi/∂yj))(γ0)
are 0. So we apply:

Lemma 3.2 (Weierstrass preparation theorem). Let (R,m) be complete local
separated ring with respect to a linear topology, which is weaker than the m-adic
topology, f =

∑
i cit

i ∈ R[[t]], with not all ci ∈ m. If d is the first index such that
ci /∈ m, then we have unique representation f = q.u, for some monic polynomial
q = td +

∑
0≤l<d alt

l ∈ R[t] of degree d, with al ∈ m for all l, and u ∈ R[[t]]
invertible.

Thus, det(∂pi/∂yj))(x(t), y(t)) = q(t)u(t), for some u(t) ∈ A[[t]]∗, and q(t) ∈
A[t] a monic polynomial of degree d whose reduction modulo m is td. The degree
d depends on γ0 only, not on the choice of its deformation γ. We may assume
d ≥ 1 because, if d = 0 we can eliminate y, and the claim holds.

The idea of the proof is to consider q as a new variable. Then all A-
deformations of γ0 are in one-to-one correspondence with the solutions of the
following system of equations with unknowns q ∈ A[t], x ∈ A[[t]]n, y ∈ A[[t]]r:

(I) det

(
∂pi
∂yj

)
(x, y) = 0 mod q, p(x, y) = (p1, . . . , pr) = 0.

Here, if the first equation holds, q−1 det(∂pi/∂yj) is invertible because it is
invertible modulo m which is nilpotent.

Next, for any fixed e ∈ N, consider the following system with unknowns
q ∈ A[t], x ∈ A[[t]]n, y ∈ A[[t]]r/(qe), such that q is monic polynomial of degree
d, q = td mod m, x = xo mod m, y mod m = yo mod ted:

(II)
det

(
∂pi
∂yj

)
(x, y) = 0 mod q,

p(x, y) ∈ Im

(
qe

(
∂pi
∂yj

)
(x, y) :

A[[t]]r

qA[[t]]r
→ qeA[[t]]r

qe+1A[[t]]r

)
.

The second condition makes sense, if one takes the Taylor expansion of p(x, y)
and noting that p(x, y) is well defined modulo Im

(
qe

(
∂pi
∂yj

)
(x, y)

)
. Moreover, it

is equivalent to the equation Ĉp(x, y) = 0 mod qe+1, where Ĉ is the adjoint
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matrix to C =
(

∂pi
∂yj

(x, y)
)

(i.e. CĈ = det(C).Ir), with y = y(t) ∈ A[[t]]r in the
pre-image of y. Indeed, if p(x, y) = qeC(x, y).v for some v ∈ A[[t]]r/(q), then
Ĉp(x, y) = qe+1v. Conversely, if Ĉp(x, y) = 0 mod qe+1, there is some w such
that Ĉp(x, y) = qe+1w, so CĈp(x, y) = Cqe+1w. Then for some invertible u,
p(x, y) = Cqeuw, that is p(x, y) ∈ Im qeC.

Furthermore, for any fixed e ∈ N the last condition in (II) is equivalent to
the following equations:

p(x, y) = 0 mod qe;

B̂p(x, y) = 0 mod qe+1, where B =

(
∂pi
∂yj

(x, y)

)
.

Both come from the second condition in (II), and the second equation makes sense
once the first one holds. So (II) is equivalent to the following system which does
not need any choice of y ∈ A[[t]]r such that y mod qe = y, and x(t) is relevant
up to x = x mod qe+1:

(III)

det

(
∂pi
∂yj

)
(x, y) = 0 mod q,

p(x, y) = 0 mod qe;

B̂p(x, y) = 0 mod qe+1, where B =

(
∂pi
∂yj

(x, y)

)
.

Lemma 3.3. For any e, the natural map from the set of solutions over A of
system (I) to the set of solutions over A of system (II) is bijective.

Proof. Let c ∈ N be the minimal number such that mc = 0; we will prove
the lemma by induction on c. If c = 1, i.e. m = 0, A = k, this holds because
both systems have one solution. Let c ≥ 2, and suppose the claim holds for c− 1,
that is, there exists ỹ ∈ A[[t]]r with ỹ mod qe = y and p(x(t, ỹ(t))) ∈ mc−1[[t]]r.
This is the second equation of system (I) taken over A/mc−1. Such a ỹ is unique
modulo qeA[[t]]r∩mc−1[[t]]r. To prove that the map between the set of solutions of
system (I) and the set of solutions of system (II) is bijective we have to prove it has
an inverse. That is, we have to find z(t) ∈ qeA[[t]]r∩mc−1[[t]]r s.t. p(x, ỹ−z) = 0.
As before, letting C :=

(
∂p
∂y

)
(x(t), ỹ(t)), we would have p(x, ỹ)−C.z = 0, because

m2c−2 = 0 by the assumption c ≥ 2. By the first equation in (II) and the argument
following system (I), det(C) = q.u for some invertible u(t) ∈ A[[t]]. This means
that z(t) will be unique if it exists, because C.z = p(x, ỹ), and det(C) ̸= 0.
By the second equation in (II), p(x, ỹ) ∈ qeC.A[t]r + qe+1A[t]r. But C.A[t]r ⊃
C.Ĉ.A[t]r = det(C)Is.A[t]

r = q.u.A[t]r, so qe+1A[t]r = q.qeA[t]r ⊂ qeC.A[t]r.
Thus p(x, ỹ) ∈ qeCA[t]r, that is, there is z ∈ qeA[t]r such that p(x, ỹ) = C.z. It
remains to prove that z ∈ mc−1[t]r. By the induction we have C.z = p(x, ỹ) = 0
mod mc−1, and multiplying both sides by Ĉ we have det(C)Is.z = q.u.Is.z = 0
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mod mc−1. Thus q.z = 0 mod mc−1, and as q is monic, z = 0 mod mc−1 as
expected.

We are continuing the proof of Theorem 2.4. From Lemma 3.3, the A-
deformations of γ0 are in one-to-one correspondence with the set of solutions
of system (II), and thus, with the set of solutions of system (III) (for any fixed
e ∈ N). The latter is defined by finite number of equations in finitely many
variables, because x(t) could be replaced with x = x(t) mod qe+1. Take e = 1,
for example, so that x(t) = q2.ξ + x, where ξ ∈ A[[t]]n, x ∈ A[t]n, deg(x) < 2d.
We can consider x, y, ξ, q as a new system of unknowns, replacing x, y, q.
Then (II) becomes a finite system of equations over k for x, y, q, without involv-
ing ξ. By the remark about the restricted functor of points above, this proves
that the formal neighbourhood of γ0 is FNγ0 ≃ Spf(R[[zi, i ∈ N]]), where R
is a complete local Noetherian ring which defines the formal neighbourhood of
a point on a scheme of finite type y ∈ Y (k). FNy is defined by equations in-
cluding the variables x, y, q in terms of its functor of points. Thus for any k-
algebra S, if D :=

(
∂p
∂y

)
(x, y), let Y (S) := {(q, x, y) : q ∈ S[t], x ∈ S[t]n/(q2), y ∈

S[t]s/(q) : det(D) = 0 mod q, p(x, y) = 0 mod q, D̂.p(x, y) = 0 mod q2}. The
point y ∈ Y (k) corresponds to (q = td, x = x0(t) mod (t2d), y = y0(t) mod (td)).
Then the second factor is D∞ = Spf(k[[zi, i ∈ N]]), because for ξ ∈ A[[t]]n there
is no restriction. This completes the proof. □

Remark 3.4. The number d = deg(q) in the proof of Theorem 2.2 is equal
to ordγ0(JacX), if the variables yj , j = 1, . . . , r, are chosen so that the r × r
minor defined by them in the Jacobian matrix of X has the minimal possible
order defining locally the ideal of Xsing.

Example 3.5. 1) Let char(k) = 0 and X : f(x1, . . . , xn) + xsn+1y = 0 be
a hypersurface in An+2, for f ̸= 0 a polynomial, f(0, . . . , 0) = 0 and s ≥ 1
an integer. Take γ0 = (0, . . . , 0, t, 0) ∈ X∞, so that an A-deformation γ is an
(n+ 2)-tuple of power series (x1(t), . . . , xn+1(t), y(t)) satisfying

(i) xi(t) ∈ m[[t]], i = 1, . . . , n, y(t) ∈ m[[t]],

where m ⊂ A is the maximal ideal of the test ring A. By Weierstrass division the-
orem, any A-deformation of x0n+1(t) = t will be of the form xn+1(t) = (t−α).u(t)
for some α ∈ m and u(t) ∈ A[[t]] invertible. Now, given α, u(t), x1(t), . . . , xn(t),
there will be at most one y(t), satisfying (i), and it exists iff
(ii)
f(x1(α), . . . , xn(α)) = f ′(x1(α), . . . , xn(α)) = · · · = f (s−1)(x1(α), . . . , xn(α)) = 0,

the derivation taken with respect to t.
Indeed, if a solution y(t) of f(x1(t), . . . , xn(t)) + xsn+1(t)y(t) = 0 exists, then

it is unique, and (t− α)s divides f(x1(t), . . . , xn(t)). Conversely, if for an α ∈ m,
f(α) = f ′(α) = · · · = f (s−1)(α) = 0, then y(t) exists because (t − α)s divides
f(x1(t), . . . , xn(t)).

1712 P. Petrov



That is, (ii) defines a scheme of finite type Y with k-point y = (0, . . . , 0).
(2) Let again char(k)= 0 and takeX : Σn

1x
2
i = 0 ⊂ An with γ0 = (a1t, . . . , ant)

such that Σn
1a

2
i = 0 and (a1, . . . , an) ̸= (0, . . . , 0). Then deg q = 1 and we take

s = 1, so a deformation γ is given by xi(t) = ui(t−α)+ vi, with ui invertible and
α ∈ A, the testring. We may take Y = {(α, u1, . . . , un, v1, . . . , vn) ∈ A2n+1 : vn =
0,Σn−1

1 uivi = 0,Σn−1
1 v1i = 0} and the point (a1, . . . , an) ∈ Y (k). For n = 3,

Y ≃ Spec k[t]/(t2) is the minimal formal model for γ0.
4. The relative case of Drinfeld–Grinberg–Kazhdan theorem. One

may ask how the relative case of the theorem would look like. In this section we
discuss this in the case of smooth and étale morphisms.

Suppose f : X → Y is a morphism between algebraic varieties, inducing f∞ :
X∞ → Y∞. Given non degenerate k-arcs γ ∈ X∞, δ ∈ Y∞ such that f∞(γ) = δ,
one has the induced morphism f̂ : FNγ → FNδ. By DGK theorem the domain
is FNu×̂D∞ with u ∈ U(k) for a scheme of finite type U , and the target is
FNv×̂D∞ with v ∈ V (k) for some scheme of finite type V . The question above is
for which classes of morphisms f holds that f∞ induces a well defined morphism
between the first factors? If this is the case for any choice of γ, δ as above, we say
that the relative case of DGK theorem holds for f .

Take k to be algebraically closed and let f be an étale morphism of finite
type. As the fibres of f are finite sets of reduced points ([12]) and we have X ×
Y∞ = X∞, for any γ ∈ Y∞ non-degenerated arc, with γ(0) = P and f−1(P ) =
{Q1, . . . , Qs}, we get uniquely determined arcs αi ∈ X∞ centred at Qi for all i.
As π−1

Y (γ) ≃ π−1
X (αi) for all i, the formal neighbourhoods are isomorphic. So,

taking the minimal formal models of γ, α1, . . . , αs in the representation given by
Theorem 2.4, from this isomorphism the first factor of FNγ becomes isomorphic
to the first factor of FNαi for all i.

Theorem 4.1. Let f : X → Y be a smooth morphism of finite type of relative
dimension n, f∞(γ) = δ for non-degenerate k-arcs γ, δ. Then the relative case of
DGK theorem holds.

Proof. In an open neighbourhood P ∈ U , f could be represented as a
composition of étale g : U → Y ×An followed by the projection pr1 : Y ×An → Y .
Now we need the following:

Lemma 4.2. For any smooth V , and pr1 : X × V → X, if γ, δ are non-
degenerated closed arcs such that pr1,∞(γ) = δ, then GKD for pr1, γ, δ holds.

Proof. As (X×k V )∞ = X∞×V∞, then γ = (δ, η), and FNγ = FNδ×̂FNη.
By Theorem 2.4 FNδ = Spf R[[xi, i ∈ N]] for a complete local Noetherian ring
R, thus FNγ = Spf(R[[xi, i ∈ N]]⊗̂k[[zj , j ∈ N]]). Define ϕ : R → R⊗̂k ≃ R,
ϕ(q) = q⊗ 1, take ψ to be the inclusion k[[xi, i ∈ N]] ↪→ k[[xi, zj , i, j ∈ N]]. Then
ϕ⊗̂ψ defines the morphism FNγ → FNδ induced by pr1,∞.

Now the claim of the theorem holds by Lemma 4.2 and the observations prior
to Theorem 4.1.

C. R. Acad. Bulg. Sci., 75, No 12, 2022 1713



Recently Chiu, de Fernex and Docampo [2] generalized the notion of em-
bedding codimension for arbitrary local ring (A,m, k) as ecodim(A) := ht(ker(ϕ))
for the natural homomorphism ϕ : Symk(m/m

2) → gr(A). It coincides with the
embedding codimension in the Noetherian setting, and could be viewed as a rough
measure of singularities. Taking the local ring of a non degenerate arc, it permits
to provide a converse to DGK theorem and moreover, it gives an optimal bound of
the embedding codimension of the formal model. Given a morphism f : X → Y
it would be interesting to understand how the embedding codimension of the
minimal formal model changes for smooth f .
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