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We survey recent results on universal bounds on the energy of codes in Hamming
spaces. The universality means, in particular, that the bounds hold for a large class
of potential functions (the most important bounds – for absolutely monotone inter-
actions). Furthermore, we employ signed measures that are positive definite up to
certain degrees to establish Levenshtein-type upper bounds on the cardinality of codes
with given minimum and maximum distance, and universal lower bounds on the po-
tential energy for codes with given maximum distance and cardinality. In particular,
the results extend the Levenshtein framework.

1. Introduction. Let Hn
q be the Hamming space over Hq = {0, 1, . . . , q − 1}, where

q is not necessarily a prime power, i.e. we do not need any structure of the alpha-
bet. The Hamming distance d(x, y) between two points x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) from Hn

q the usual one, i.e. d(x, y) is equal to the number of coordinates
in which they differ.

We refer to any non-empty set C ⊂ Hn
q as a code. The main parameters of a code

C are the dimension n, the cardinality |C| = M and the minimum distance d = d(C) :=
min {d(x, y) : x, y ∈ C, x 6= y}). A set C with such parameters will be referred to as
(n,M, d)q-code.

In this paper we describe some recent results of investigations of codes in Hamming
spaces. The problems of obtaining the maximum possible cardinality of (n,M, d)q-codes
and the smallest possible potential energy of such codes are subject of investigations of
many researchers [11, 13, 15, 18, 19, 20]. The main tools used to obtained the presented
results are the linear programming techniques. First, we use the theory of orthogonal
polynomials which are orthogonal with respect to classical positive measures. Next, we
develop and apply the necessary theory of signed measures to derived the Levenshtein-
type upper bounds on the cardinality of codes with given minimum and maximum dis-
tance.

The paper is organized as follows. In Section 2 we collect the main notions and intro-
duce the Krawtchouk polynomials and their adjacent polynomials. Section 3 is devoted
to universal bounds for the size of codes and designs in Hamming spaces. In Section
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4 universal lower bounds on the potential energy for codes are shown. These bounds
are obtained by Boyvalenkov, Dragnev, Hardin, Saff and the author [8, 9]. Employing
signed measures that are positive definite up to certain degrees, the Levenshtein-type
upper bounds on the cardinality of codes with given minimum and maximum distance
are obtained. In Section 5 test-functions are introduced. They give necessary and suf-
ficient conditions for existence of improving polynomials of higher degrees for obtaining
the so-called “second level” bounds.

2. Linear programming framework in Hn
q
.

2.1. Codes and designs in Hn
q

and their energy. Let C ⊂ Hn
q be a (n,M, d)q-

code. For the linear programming techniques it is convenient to work with the “inner
product”

〈x, y〉 := 1−
2d(x, y)

n
= tn−d ∈ Tn,

instead of the distance d(x, y) (see [19]), where we denote by Zn := {0, 1, . . . , n} and

Tn :=

{

ti = −1 +
2i

n
: i = 0, 1, . . . , n

}

the sets of all possible distances and the set of all

possible inner products between points in Hn
q , respectively. In addition to the discrete

sets Tn ⊂ [−1, 1] and Zn ⊂ [0, n] we shall use the complete intervals 0 ≤ z ≤ n and

−1 ≤ t ≤ 1 with dependent variables z and t related through the equation t = 1−
2z

n
.

Then the minimum distance d(C) corresponds to the maximal inner product

s = s(C) = 1−
2d(C)

n
:= max {〈x, y〉 : x, y ∈ C, x 6= y} ∈ Tn,

and we will consider C to be (n,M, s)q-code too. We also use below the minimal inner
product

ℓ = ℓ(C) := min {〈x, y〉 : x, y ∈ C, x 6= y} ∈ Tn,

corresponding to the maximum distance dmax = dmax(C) = n(1− ℓ)/2 of a code C.

For fixed n, q and s, let

Aq(n, s) := max {|C| : C be a spherical (n,M, s)q-code}

be the maximum possible cardinality of a (n,M, s)q-code C.

One of the classical problems in coding theory is the investigation of the quantity
Aq(n, s). The linear programming techniques as explained below are a powerful tool for
obtaining the universal bounds on Aq(n, s) and their refinements.

For a given potential function h : [−1, 1) → (0,+∞), we define the h-energy of a code
C ∈ Hn

q by

Eh(n, C) :=
1

|C|

∑

x,y∈C,x 6=y

h(〈x, y〉).

Many problems of interest (cf. [2, 3, 4, 11, 21]) can be formulated as minimizing the
quantity Eh(n, C) for a suitable h over codes C of fixed cardinality; that is, to determine

Eh(n,M) := min{Eh(n, C) : |C| = M},

the minimal h-energy of a code C ⊂ Hn
q of cardinality M . While we only need the values

of h on the discrete set Tn for computing the h-energy, we shall further assume that h
is strictly/absolutely monotone on the interval [-1,1); that is, h and all its derivatives
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are defined and positive/non-negative on this interval. We remark that F (z) = h(t),
where z = n(1− t)/2, is completely monotone on (0, n] (that is, (−1)kF (k)(z) ≥ 0 for all
z ∈ (0, n]) if and only if h is absolutely monotone on [−1, 1].

Characterization of codes according to their strength as a design (the exact definition
is presented below) started with Delsarte [12], where τ + 1 = d′ is the dual distance of
the code C (see also [13, 15, 18, 19]).

For fixed strength τ and dimension n let

B(n, τ) = min{|C| : ∃ τ -design C ⊂ Hn
q }.

Since the designs are, in a certain sense, an approximation of the whole spaceHn
q , they

play an important role in the investigations of energy problems of such codes. Energies
of codes and designs (or orthogonal arrays) in Hn

q were considered first in 2014 by Cohn
and Zhao [11].

Furthermore, let

Cn,q(ℓ, s) :=
{

C ⊂ Hn
q : ℓ ≤ ℓ(C), s(C) ≤ s

}

be the set of codes in Hn
q with pairwise distances greater than or equal to the minimum

distance d and less than or equal to the maximum distance D. Let

Aq(n, ℓ, s) := max {|C| : C ∈ Cn,q(ℓ, s)}

be the maximum possible cardinality of a code from Cn,q(ℓ, s).

For absolutely monotone potentials h we consider the quantity

Eh(n,M, ℓ) := min{Eh(C) : C ∈ Cn,q(ℓ, 1− 2/n), |C| = M},

the smallest possible h-energy of a code from Cn,q(ℓ, 1− 2/n) with prescribed M .

The uniquely expansion of any real polynomial in terms of the Krawtchouk polyno-
mials plays an essential role in the techniques of linear programming.

2.2. Krawtchouk polynomials and their adjacent polynomials. For fixed n
and q, the (normalized) Krawtchouk polynomials are defined by

Q
(n,q)
i (t) :=

1

ri
K

(n,q)
i (z),

where z =
n(1− t)

2
, ri = r

(n,q)
i :=

(

n

i

)

(q − 1)i, and

K
(n,q)
i (z) :=

i
∑

j=0

(−1)j(q − 1)i−j

(

z

j

)(

n− z

i− j

)

, i = 0, 1, . . . , n,

are the (usual) Krawtchouk polynomials corresponding to Hn
q (see [1, 23, 12]).

The polynomials K
(n,q)
i (z) can be defined by the following three-term recurrence

relation

(i + 1)K
(n,q)
i+1 (z) = [i+ (q − 1)(n− i)− qz]K

(n,q)
i (z)− (q − 1)(n− i+ 1)K

(n,q)
i−1 (z),

for 1 ≤ i ≤ n− 1, where K
(n,q)
0 (z) = 1 and K

(n,q)
1 (z) = n(q − 1)− qz.

The measure of orthogonality [14] for the system {Q
(n,q)
i (t)}ni=0 is a discrete measure

given by

dµn(t) := q−n

n
∑

i=0

(

n

i

)

(q − 1)iδti ,
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where δti is the Dirac-delta measure at ti ∈ Tn. Note that the form

〈f, g〉 =

∫

f(t)g(t)dµn(t)

defines an inner product over the class Pn of polynomials of degree less than or equal to
n.

We also need the so-called adjacent polynomials as introduced by Levenshtein (cf.
[19, Section 6.2], see also [16, 17, 18])

Q
(1,0)
i (t) = Q

(1,0,n,q)
i (t) =

K
(n−1,q)
i (z − 1)

∑i

j=0

(

n
j

)

(q − 1)j
,

Q
(1,1)
i (t) = Q

(1,1,n,q)
i (t) =

K
(n−2,q)
i (z − 1)

∑i

j=0

(

n−1
j

)

(q − 1)j
,

Q
(0,1)
i (t) = Q

(0,1,n,q)
i (t) =

K
(n−1,q)
i (z)

(

n−1
i

)

(q − 1)i
,

where z = n(1− t)/2. The corresponding measures of orthogonality are, respectively,

(1 − t)dµn(t), (1− t)(1 + t)dµn(t), (1 + t)dµn(t).

If f(t) ∈ R[t] is a real polynomial of degreem ≤ n, then f(t) can be uniquely expanded

in terms of the Krawtchouk polynomials as f(t) =

m
∑

i=0

fiQ
(n,q)
i (t). Note that if the degree

of the polynomial f(t) exceeds n, then f(t) is taken modulo

n
∏

i=0

(t− ti).

3. Universal bounds for the size of codes and designs in Hamming spaces.
The linear programming method was introduced in coding theory by Delsarte [12] and
developed later by many researchers (see, for example [13, 19] and references therein).

3.1. General linear programming bounds. Let

F≥ := {f(t) : f0 > 0, fi ≥ 0, i = 1, 2, . . . , n}.

If fi > 0 for i = 0, 1, 2, . . . , deg(f), then we write f(t) ∈ F>.
The next theorem gives the linear programming upper bound on Aq(n, s).
Theorem 3.1 (LP bounds for codes in Hn

q , [12]). Let n, q, and s be fixed. Then

Aq(n, s) ≤ min
f∈Fn,s

f(1)

f0
,

where

Fn,s := {f ∈ F≥ : f(t) ≤ 0, t ∈ [−1, s]}.

Similarly, we have the following linear programming upper bound on Aq(n, ℓ, s).
Theorem 3.2 (LP bounds for codes in Cn,q(ℓ, s), [12]). Let n, q, ℓ, and s be fixed.

Then

Aq(n, ℓ, s) ≤ min
f∈Fn,ℓ,s

f(1)

f0
,

where

Fn,ℓ,s := {f ∈ F≥ : f(t) ≤ 0, t ∈ [ℓ, s]}.
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Let us set the following two subsets of the class Pn:

An,M ;h := {f(t) ∈ F≥ : f(t) ≤ h(t) for every t ∈ Tn},

and

An,ℓ;h := {f(t) ∈ F≥ : f(t) ≤ h(t), t ∈ [ℓ, 1)}.

There are known lower bounds analogous for Hamming spaces to Yudin’s linear pro-
gramming lower bounds for the energy of spherical codes [24], see also [11, Proposition
5].

Theorem 3.3 (LP bounds for energy of the codes in Hn
q , [24]). Let n be a positive

integer and h be an absolutely monotone function on [−1, 1). Then

Eh(n,M) ≥ max
f∈An,M;h

(f0M − f(1)), for every M ≥ 2.

Theorem 3.4 (LP bounds for energy of the codes in Cn,q(ℓ, s), [24]). Let n be a

positive integer, h be an absolutely monotone function on [−1, 1), and ℓ be a fixed minimal

inner product. Then

Eh(n,M, ℓ) ≥ max
f∈An,ℓ;h

(f0M − f(1)).

3.2. Levenshtein bounds. Here we explain the Levenshtein universal upper bounds
on the maximum possible cardinality of a (n,M, s)q-code, i.e. on quantity Aq(n, s). It is
important to note that, in Section 4 (see Theorem 4.6 below) the explicit upper bounds
for Aq(n, ℓ, s) are obtained. These bounds can be computed for all feasible values of q,
n, s, and ℓ, which makes them universal in the sense of Levenshtein bounds [19].

For a, b ∈ {0, 1} and i ∈ {1, 2, . . . , n − a − b}, denote by ta,bi the greatest zero of

the adjacent polynomial Q
(a,b)
i (t) and also define t1,10 = −1. We have the interlacing

properties t1,1k−1 < t1,0k < t1,1k , see [19, Lemmas 5.29, 5.30]. For a positive integer τ , let Iτ
denote the interval

Iτ :=







[

t1,1k−1, t
1,0
k

]

, if τ = 2k − 1,
[

t1,0k , t1,1k

]

, if τ = 2k.

Then the intervals Iτ are well defined and form partition I = [−1, 1) into subintervals
with non-overlapping interiors.

Using suitable polynomials Levenshtein obtained the following universal upper bounds
for Aq(n, s).

Theorem 3.5 (Levenshtein bound, [19, Equation (6.45) and (6.46)]). For every τ
and s ∈ Iτ , the Levenshtein bound

(1) Aq(n, s) ≤































L2k−1(n, s) =

(

1−
Q

(1,0)
k−1 (s)

Q
(n,q)
k (s)

)

k−1
∑

j=0

(

n

j

)

(q − 1)j, if τ = 2k − 1,

L2k(n, s) = q

(

1−
Q

(1,1)
k−1 (s)

Q
(0,1)
k (s)

)

k−1
∑

j=0

(

n− 1

j

)

(q − 1)j , if τ = 2k.

holds.

As mentioned above, some characteristics of the designs in Hn
q play an important role

in the investigations of energy problems of codes in Hamming spaces. There are several
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equivalent definitions of designs and here we present the one useful in obtaining bounds
on B(n, τ).

Definition 3.6. A τ-design C ⊂ Hn
q is a code such that the equality

∑

x∈C

f(〈x, y〉) = f0|C|

holds for any point y ∈ Hn
q and any real polynomial f(t) =

r
∑

i=0

fiQ
(n,q)
i (t) of degree

r ≤ τ .
Remark 3.7. In statistics and combinatorics, the designs in Hamming spaces are

known as orthogonal arrays and have been studied for a wide range of practical applica-
tions such as planning experiments, parts testing, drug testing, clinical trials, and also
in computer science for software testing, big data, and data protection. There are also
applications of orthogonal arrays in cryptography. The main reference for orthogonal
arrays is the book ”Orthogonal Arrays: Theory and Applications” by Hedayat, Sloane
and Stuffken [15].

The classical universal lower bound on B(n, τ) is due to Rao [22] (see also [13, 15, 19]).
Theorem 3.8 (Rao bound,[22]). Let n, q and τ be fixed. Then

(2) B(n, τ) ≥ Rq(n, τ) :=























q
k−1
∑

i=0

(

n− 1

i

)

(q − 1)i, if τ = 2k − 1,

k
∑

i=0

(

n

i

)

(q − 1)i, if τ = 2k.

There are the following important connections between the Rao (2) and the Leven-
shtein (1) bounds.

Theorem 3.9. The bounds (1) and (2) are related by the equalities

L2k−2(n, t
1,1
k−1) = L2k−1(n, t

1,1
k−1) = Rq(n, 2k − 1),

L2k−1(n, t
1,0
k ) = L2k(n, t

1,0
k ) = Rq(n, 2k)

(3)

at the ends of the intervals Iτ .

The relations (3) in Theorem 3.9 explain and justify the connection between the
cardinality M and the strength (degree) τ = τ(n,M). In fact, for fixed cardinality M ,
Rao bounds show which parameters must be chosen in order to obtain universal lower
bounds on Eh(n,M) and Eh(n,M, ℓ). More precisely, for given length n and cardinality
M , we find the unique

τ := τ(n,M) such that M ∈ (Rq(n, τ), Rq(n, τ + 1)] .

Then all other necessary parameters come with n, M and τ as shown in the next sub-
section.

3.3. Levenshtein-type quadrature. Next we explain the useful quadrature that
can be applied for deriving and calculation of universal lower bounds on energies of the
codes and designs in Hamming spaces.

Levenshtein [17] proves (see also [19, Section 5, Theorem 5.39] and [18]) that for every
fixed (cardinality) M > Rq(n, 2k − 1) there exist uniquely determined real numbers
(called nodes) −1 < α0 < α1 < · · · < αk−1 < 1 and positive numbers (called their
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weights) ρ0, ρ1, . . . , ρk−1, such that the equality

f0 =
f(1)

M
+

k−1
∑

i=0

ρif(αi)

holds for every real polynomial f(t) of degree at most 2k − 1.

The numbers αi, i = 0, 1, . . . , k − 1, are the roots of the equation

(4) Q
(1,0)
k (t)Q

(1,0)
k−1 (αk−1)−Q

(1,0)
k (αk−1)Q

(1,0)
k−1 (t) = 0.

It is convenient to find first αk−1 = s from the equation M = L2k−1(n, s) and to solve
then (4).

Similarly, for every fixed number (cardinality or non-integer) M > Rq(n, 2k) there
exist uniquely determined real numbers (nodes) −1 = β0 < β1 < · · · < βk < 1 and
positive numbers (their weights) γ0, γ1, . . . , γk, such that the equality

f0 =
f(1)

M
+

k
∑

i=0

γif(βi)

holds for every real polynomial f(t) of degree at most 2k. The numbers βi, i = 1, . . . , k,
are the roots of the equation

(5) Q
(1,1)
k (t)Q

(1,1)
k−1 (βk)−Q

(1,1)
k (βk)Q

(1,1)
k−1 (t) = 0.

Similarly to the odd case, βk = s can be found from the equation M = L2k(n, s) and
then (5) can be solved.

We also need and use the kernels (see (2.69) in [19, Section 2]; also Section 5 in [19])

Tk(u, v) =

k
∑

i=0

riQ
(n,q)
i (u)Q

(n,q)
i (v) = c ·

Q
(n,q)
k+1 (u)Q

(n,q)
k (v)−Q

(n,q)
k+1 (v)Q

(n,q)
k (u)

u− v

(c is a positive constant, u 6= v, this is in fact the Christoffel-Darboux formula). Note that
the (1, 0) and (1, 1), which are analogs of Tk(u, v), define the Levenshtein polynomials.

4. Universal energy bounds for codes in Hamming spaces.

4.1. Energy bounds for Eh(n,M). Boyvalenkov, Dragnev, Hardin, Saff and the
author [8, 9] applied linear programming techniques to derive explicit lower bounds for
E(n,M ;h). These bounds can be computed for all feasible values of q, n, s, and ℓ,
(respectively) which makes them universal in the sense of Levenshtein [19].

Theorem 4.1 ([8, Theorem 4.2]). If n is a positive integer and h is absolutely mono-

tone on [−1, 1), then

(6) E(n,M ;h) ≥























M

k−1
∑

i=0

ρih(αi), ∀M ∈ (Rq(n, 2k − 1), Rq(n, 2k)] ,

M

k
∑

i=0

γih(βi), ∀M ∈ (Rq(n, 2k), Rq(n, 2k + 1)] .

It is clear that all maximal codes which attain the Levenshtein bounds Lτ (n, s), have
the necessary strength and the suitable inner products and therefore achieve the bounds
(6) as well. In [11] (see also [3]), a table of universally optimal codes in Hn

q is presented.
Clearly, all codes which attain (6) are universally optimal (for more details see [8]).
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Recall that the Levenshtein bound (see [17, 18, 19]) and the energy bound [8] work
for ℓ = −1. The bounds depend on the properties of Krawtchouk polynomials and their
adjacent polynomials which are orthogonal with respect to classical positive measures
(discussed at the end of Subsection 2.2). For the case ℓ > −1, however, we need to
develop and apply the necessary theory of signed measures.

4.2. Energy bounds for Eh(n,M, ℓ). For ℓ ∈ Tn we introduce further adjacent

polynomials Q1,ℓ
i (t) as generalizations of the polynomials Q1,1

i (t) (note that ℓ = −1 in

Q1,ℓ
i (t) gives Q1,1

i (t); see definitions in [19, Eqn. (5.66)]).

Suppose that the numbers k, ℓ, and s are chosen to satisfy the following conditions

(7) −1 ≤ ℓ < t1,0k,1 < t1,0k,k < s ≤ 1,

and

(8)
Q1,0

k+1(ℓ)

Q1,0
k (ℓ)

< 1.

Theorem 4.2 ([9]). For given positive integers n ≥ 2, q ≥ 2, let k, ℓ, and s be

such that the inequalities (7) are satisfied. Then the following two classes of orthogonal

polynomials are well-defined:

{Q1,ℓ
j (t)}kj=0, w.r.t. dµn,ℓ(t), Q1,ℓ

j (1) = 1;

{Q1,ℓ,s
j (t)}k−1

j=0 , w.r.t. dµn,ℓ,s(t), Q1,ℓ,s
j (1) = 1.

The Gram-Schmidt orthogonalization procedure implies the existence and uniqueness
(for the so-chosen normalizations) of the orthogonal series from Theorem 4.2. More

precisely, the polynomials Q1,ℓ
i (t) can be defined as follows. Let us assume that

(9) t1,0k+1,1 < ℓ < t1,0k,1.

Theorem 4.3 ([9, Theorem 4.2]). Let n, q, k, and ℓ be such that (8) and (9) are

satisfied. Then

Q1,ℓ
i (t) =

T 1,0
i (t, ℓ)

T 1,0
i (1, ℓ)

= η1,ℓi ti + · · · , i = 0, 1, . . . , k,

with η1,ℓi > 0 and the polynomial Q1,ℓ
i (t) has i simple zeros t1,ℓi,1 < t1,ℓi,2 < · · · < t1,ℓi,i in the

interval (ℓ, 1). Furthermore, the following interlacing properties

t1,ℓi,j ∈
(

t1,0i,j , t
1,0
i+1,j+1

)

, i = 1, . . . , k − 1, j = 1, . . . , i;

t1,ℓk,j ∈
(

t1,0k+1,j+1, t
1,0
k,j+1

)

, j = 1, . . . , k − 1,

and, finally, t1,ℓk,k ∈
(

t1,0k+1,k+1, 1
)

hold true.

The polynomials Q1,ℓ
i (t) are orthogonal with respect to the signed measure

dµn,ℓ(t) := c1,ℓ(t− ℓ)(1− t)dµn(t),

where

c1,ℓ :=
nq2

2(q − 1)(2(n− 1)− nq(1 + ℓ))

is a normalizing positive constant. With the next step, this new series can be used for
the construction of polynomials Q1,ℓ,s

i (t) which are orthogonal with respect to the signed
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measure

dµn,ℓ,s(t) := c1,ℓ,s(t− ℓ)(s− t)(1− t)dµn(t),

where

c1,ℓ,s :=
n2q3

2(q − 1)[4(n− 1)(nq(2 + ℓ+ s)/2− n− q + 2)− n2q2(1 + ℓ)(1 + s))]
.

Consider the Christoffel-Darboux kernel associated with the polynomials Q1,ℓ
j (t) (see

[9]):

R1,ℓ
i (x, y) :=

i
∑

j=0

r1,ℓj Q1,ℓ
j (x)Q1,ℓ

j (y) = r1,ℓi b1,ℓi

Q1,ℓ
i+1(x)Q

1,ℓ
i (y)−Q1,ℓ

i+1(y)Q
1,ℓ
i (x)

x− y
,

for 0 ≤ i ≤ k− 1 (when x = y appropriate derivatives are used). Given (9) and assuming

that t1,0k,k < s < t1,ℓk,k we define

Q1,ℓ,s
i (t) :=

R1,ℓ
i (t, s)

R1,ℓ
i (1, s)

, i = 0, 1, . . . , k − 1.

Again the Gram-Schmidt orthogonalization provides the existence and uniqueness (for

the normalization from Theorem 4.2) of the polynomials Q1,ℓ,s
i (t).

In addition to (8) we require

(10)
Q1,ℓ

k (s)

Q1,ℓ
k−1(s)

>
Q1,ℓ

k (ℓ)

Q1,ℓ
k−1(ℓ)

in order to get the smallest root of Q1,ℓ,s
k−1 (t) inside the interval (ℓ, t1,ℓk,1). Then we can

define the Levenstein-type polynomials fn,ℓ,s
2k (t) as follows:

(11) fn,ℓ,s
2k (t) := (t− ℓ)(t− s)

(

Q1,ℓ,s
k−1 (t)

)2

.

They will be applied to derive the universal upper bounds forAq(n, ℓ, s) and lower bounds
for Eh(n,M, ℓ) in an approach which is analogous to the case ℓ = −1.

As in the classical Levenshtein case with ℓ = −1, denote the roots (again called nodes)
of the polynomial (11) by α0 < α1 < · · · < αk−1 < αk < 1 and let Li(t), i = 0, 1, . . . , k+1
be the Lagrange basic polynomials generated by these nodes. Then we can define the
corresponding positive weights by

ρi :=

∫ 1

−1

Li(t)dµn(t), i = 0, 1, . . . , k + 1.

Furthermore, the roots of the polynomial fn,ℓ,s
2k (t) form the Radau quadrature formula

with positive weights.
Theorem 4.4. Let α0 := ℓ and αk := s. Then the Radau quadrature formula

f0 =

∫ 1

−1

f(t)dµn(t) = ρk+1f(1) +

k
∑

i=0

ρif(αi)

is exact for all polynomials of degree at most 2k. Moreover, the weights ρi, i = 0, . . . , k,
are positive, and ρk+1 > 0 provided (t− ℓ)Q1,ℓ

k (t) ∈ F>.

In the proof of the positive definiteness of his polynomials Levenshtein used (see [19,
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(3.88) and (3.92)]) what he called the strengthened Krein condition

(12) (t+ 1)Q1,1
i (t)Q1,1

j (t) ∈ F>

for every i, j ∈ {0, 1, . . . , n− 3}. We need the following modification.

Definition 4.5. We say that the polynomials {Q1,ℓ
i (t)}ki=0 satisfy (k, ℓ)-strengthened

Krein condition if

(13) (t− ℓ)Q1,ℓ
i (t)Q1,ℓ

j (t) ∈ F>

for every i, j ∈ {0, 1, . . . , k} except possibly for i = j = k.

The strengthened Krein condition (12) holds true in Fn
q for all admissible i and j (see

[19, Lemma 3.25]). However, the (k, ℓ)-strengthened Krein condition (13) is not true for
every ℓ, and for fixed ℓ it is true only for relatively small k. On the other hand, for fixed
n, all relevant pairs (k, ℓ) are finitely many and can be therefore subject to computational
checks.

Let

Sj =

j
∑

i=0

ri =

j
∑

i=0

(q − 1)i
(

n

i

)

for j ∈ {k − 1, k, k + 1}.

The Levenshtein-type universal upper bound on Aq(n, ℓ, s) as an analog of Theorem
5.42 of [19] follows.

Theorem 4.6 ([9, Theorem 5.2, part 1]). Let n, q, k, ℓ ∈ (t1,0k+1,1, t
1,0
k,1), and s ∈

(t1,0k,k, t
1,ℓ
k,k) be such that the conditions (8) and (10) are fulfilled and the (k, ℓ)-strengthened

Krein condition is satisfied. Then the polynomial fn,ℓ,s
2k (t) belongs to Fn,ℓ,s and, therefore,

(14) Aq(n, ℓ, s) ≤
fn,ℓ,s
2k (1)

f0
=

1

ρk+1
:= L2k(n, ℓ, s),

where

L2k(n, ℓ, s) =
Sk

(

Q1,ℓ
k−1(s)−Q1,ℓ

k (s)
)

rk+1Qk+1(ℓ)Q
1,ℓ

k−1
(s)

Sk+1(Q1,0

k+1
(ℓ)−Q

1,0

k
(ℓ))

−
rkQk(ℓ)Q

1,ℓ

k
(s)

Sk−1(Q1,0

k
(ℓ)−Q

1,0

k−1
(ℓ))

.

Furthermore, an universal lower bound on Eh(n,M, ℓ), as an analog of the universal
lower bound for Eh(n,M,−1) from [8], follows.

Theorem 4.7 ([9, Theorem 5.2, part 2]). For fixed ℓ, for h being an absolutely

monotone function on [−1, 1), and for M determined by fn,ℓ,s
2k (1) = Mf0, the Hermite

interpolant1

gn,ℓ,M2k (t) := H((t− s)fn,ℓ,s
2k (t);h)

belongs to An,ℓ;h, and, therefore,

Eh(n,M, ℓ) ≥ M(Mg0 − gn,ℓ,M2k (1))

= M2
k
∑

i=0

ρih(αi).
(15)

1The notation g = H(f ; h) means that g is the Hermite interpolant to the function h at the zeros
(taken with their multiplicity) of f .
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The bounds (14) and (15) can be attained only simultaneously by codes which have

all their inner products in the roots of fn,ℓ,s
2k (t) and which are the 2k-designs in Hn

q .

5. Test functions and refinements by polynomials of higher degrees. In
1998 Boyvalenkov and Danev [6] (see also [7, 5]) introduced the test-functions (16) in
the context of maximal codes in polynomial metric spaces (which include Hn

q ). Let n
and M be fixed and τ = τ(n,M) such that M ∈ (Rq(n, τ), Rq(n, τ + 1)]. As explained
in the end of Section 2, the equation Lτ (n, s) = M , s = αk−1 or βk, defines all necessary
parameters (αi, ρi) or (βi, γi), respectively.

Let j ≥ τ + 1 be a positive integer. The test-functions in n and s are defined as
follows.

(16) Pj(n, s) :=























1

M
+

k−1
∑

i=0

ρiQ
(n,q)
j (αi) for s ∈ I2k−1

1

M
+

k
∑

i=0

γiQ
(n,q)
j (βi) for s ∈ I2k.

The next theorem shows that the test-functions Pj(n, s) give necessary and suffi-
cient conditions for existence of improving polynomials of higher degrees satisfying the
condition f(t) ≤ h(t) in [−1, 1].

Theorem 5.1 ([8, Theorem 5.1]). Let h be strictly absolutely monotone function. The

bounds (6) can be improved by a polynomial of degree at least τ+1 from An,M,h, satisfying

f(t) ≤ h(t) in [−1, 1] if and only if Pj(n, s) < 0 for some j ≥ τ + 1. Furthermore, if

Pj(n, s) < 0 for some j ≥ τ +1, then (6) can be improved by a polynomial from An,M,h,

satisfying f(t) ≤ h(t) in [−1, 1] of degree exactly j.
Similarly, we can define the corresponding test-functions which give necessary and

sufficient conditions for existence of improving polynomials of higher degrees from An,ℓ,s

or An,ℓ;h, satisfying the condition f(t) ≤ h(t) in [ℓ, 1], and then we can improve the
bounds (14) and (15).

We refer to Levenshtein bounds (Theorem 3.5 and Theorem 4.6) and the universal
lower bounds on energy (Theorem 4.1 and Theorem 4.7) obtained by Boyvalenkov, Drag-
nev, Hardin, Saff and the author [8, 9], as “first level” bounds. Then we call “second
level” bounds any improvements of these bounds by polynomials of higher degrees. A
framework for obtaining the “second level” bounds in the Euclidean case was developed
in [10], but the “second level” in the Hamming case, described in this survey, is still to
be claimed.
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УНИВЕРСАЛНИ ГРАНИЦИ ЗА МОЩНОСТТА И ЕНЕРГИЯТА

НА КОДОВЕ В ХЕМИНГОВИ ПРОСТРАНСТВА

Мая Стоянова

В статията се представят систематизирано резултати за универсалните гра-
ници за размерността и енергията на кодовете в Хемингови пространства. Уни-
версалността означава, че границите са валидни за голям клас от потенциални
функции (най-важните от тях са в сила за абсолютно монотонни потенциали).
Освен това, като се използват променливи по знак мерки, положително определе-
ни до дадена степен, са получени горни граници от тип Левенщейн за мощността
на кодовете с дадено минимално и максимално разстояние и универсални долни
граници на потенциалната енергия за кодове с дадено максимално разстояние и
мощност. Представените методи и техники могат да се разглеждат като обобще-
ние и продължение на разработената от Левенщейн теория.

Ключови думи: Пространства на Хеминг, граници на Левенщейн2, потенци-
ални функции, енергия на код, кодове, коригиращи грешки, τ -дизайни, промен-
ливи по знак мерки.

2020 Mathematics Subject Classification: 74G65, 94B65, 52A40, 05B30

2По молба на автора оставяме фамилията на руския математик Левенщайн (рус. Владимир
Иосифович Левенштейн) в негова памет, както се произнася на руски. (бел. ред.)
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