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ABSTRACT. We consider a model eigenvalue problem (EVP) in 1D, with
periodic or semi—periodic boundary conditions (BCs). The discretization of
this type of EVP by consistent mass finite element methods (FEMs) leads to
the generalized matrix EVP K¢ = A M ¢, where K and M are real, symmetric
matrices, with a certain (skew—)circulant structure. In this paper we fix our
attention to the use of a quadratic FE—mesh. Explicit expressions for the
eigenvalues of the resulting algebraic EVP are established. This leads to an
explicit form for the approximation error in terms of the mesh parameter,
which confirms the theoretical error estimates, obtained in [2].

1. Introduction and problem setting. Elliptic EVPs on a bounded
interval in R with (semi-)periodic BCs may occur in the context of various phys-
ical and engineering problems on periodic structures. In particular, they are
closely related to EVPs in R with periodic coefficient functions, see e.g. [3] and
[5], the latter class containing the 1D—Schrodinger equation for an electron in a
crystalline medium. The error analysis of FEMs for this type of EVPs has been
dealt with in [2].

In this paper we consider the following model problem. Let @ = 1 or
a = —1. Find A € R and a corresponding smooth (nonzero) function y on [0, 1]
such that
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(L) —y'(z) =Ay(z), 0<z <1 y(0) =ay(l), ¥'(0) = ay/'(1).
Choosing

Ve ={ve H(Q)|v(0)=av(l)},
as the space of trial- and testfunctions, the formally equivalent variational EVP
reads

1 1
(1.2)  (Pygr) : Find [N\ u] e R x V* :/ y'v' dx = )\/ yvdx, Yv € V<.
0 0

The discretization of this variational EVP by a consistent mass finite
element method leads to the generalized matrix EVP

(1.3) Kc= AMec,

where the “stiffness matrix” K and the “mass matrix” M take a certain (skew—)
circulant structure, depending on the type of FE—meshes used. In particular, the
use of a uniform linear FE—mesh for the discretization of (1.1) leads to stiffness
and mass matrices of ordinary (skew—)circulant form. Closed expressions for
the eigenvalues of the latter types of matrices — and hence also for those of the
corresponding generalized EVP (1.3) — have been established e.g. in [1].

However, when using a uniform quadratic FE—mesh for the approximation
of the EVP (1.1), the matrices M and K will take a more general circulant form,
which, to the author’s knowledge, has not been dealt with so far. In the next
section we first introduce the notion of a doubly (skew—)circulant matrix and
we establish closed expressions for its eigenvalues. Next, we apply the general
results obtained to the specific algebraic EVP (1.3), encountered in the FE-
approximation of (1.2) with piecewise quadratic polynomials.

Section 3 contains some results on the approximation of the eigenvalues
of (1.1). In particular, we give an explicit form for the approximation error,
confirming the theoretical order of convergence of the FEM, proven in [2].

Throughout the paper, A* will denote the Hermitean conjugate of the
matrix A, while A will denote its complex conjugate. Analogously, Z is the
complex conjugate of the complex number z.

2. Doubly (skew—)circulant matrices. In the first subsection we give
the precise definition of a doubly (skew—)circulant matrix, and we derive a few
basic results concerning its spectrum. In the second subsection, we apply these
results to the specific algebraic EVP (1.3), resulting from the use of a uniform
quadratic FE—mesh for the consistent mass approximation of (1.2).
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2.1. General results.

Definition 2.1. Let n € Nyg. A doubly circulant, respectively a doubly
skew-circulant matriz of order 2n is a matriz of the form

ag ai az o A2p—2 (2p—1
bo by by o+ bap—2 bap—
$Gg2p—2 SA2pn—1 A0 - A2p—4 A2p-3
(2.1) Dy = | sban—2 sbap—1 bo -+ bon—a b2z ||
Sa9 sag Saq4 - ag al
Sbg Sbg Sb4 e bo b1
where s =1 or s = —1, respectively.

In what follows these matrices will also be denoted as

(2.2) Dy =dcirc ( U ) and D_; = dscirc ( R > .
bo -+ ban—1 bo -+ ban—1

Now, put
o =ekt’ and wp= O']%,

and consider the unitary Fourier matrix F} of order k, defined by

1 r—1)(s—
(2.3) (Fp),, = NG N A TN 3

Moreover, introduce the diagonal matrix €2; of order k,
(2.4) Qy, = diag (1,04, 0%, ...,00 ).

Our aim is to examine the effect of the unitary reduction of Dy by Fy,.
We obtain

Proposition 2.1. The matriz Dy, (2.1), shows the following property:
Dy
(2.5) (E Fon) D1 (E Fop)" =
Dn—l

Here E is a suitable permutation matriz of order 2n (in the terminology of |1,
p.25]), while Fy, is the Fourier matriz of order 2n, defined by (2.3). The right
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hand side is a block diagonal matriz, with blocks of order 2, given by

Sk + w5, Tx  Skin + 05, Thin

_ 2 2 _
(2.6) Dy Se—k Th Spin—k Toon | k=0,...,n—1,
2 2
where
2n—1 2n—1
(2.7) S = Z ai(Wh,)" and T, = Z bi(wh,)', l=0,...,2n— 1.
=0 =

Proof. For the matrix Fy, D; F3,,, we readily find

(Fyu Dy F5) 1 (S i ) Ks_r, when r <s,
onD1F5 = — 1+ W, 1 r,s=1,...,2n,
" nirs T gp NP moe Fpr_s, When r > s,
where
n—1 )
mj:Z(wgz)J, j=0,...,2n—1.
=0

Next, noting that

P I when j =0 or j = n,
7771 0, otherwise,

we get
(FonD1F3),, = (S 4@, ' T), r=1,...,2n,
(Fy D1F2 Jerin = 3 (Srnc1+ @5 Tyn1),  r=1,...,n,
(FonD1F3,), 2 (Spo1 +whin 7 1), r=1,...,n,
(F2nD1F2n)rs = 0, r# s and |r — s| #n,

Finally, a suitable rearrangement of rows and colums of the matrix Fy, D; F3,
yields (2.5). O

Analogously, one has

Proposition 2.2. The matriz D_1, (2.1), shows the property
Dy

_ _ Dy
(2.8) (E Fy, Qo) D1 (E Fyy, Qo))" =

anl
Here, Qoay, is the (2n x 2n)-matriz defined by (2.4). Moreover, Dy, ..., D,_1 are
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still of the form (2.6), however now with
2n—1 . A 2n—1 ' A

(2.9) S =) aioh,(wh,)" and Tj= ) bioy ' (wh,), 1=0,....2n—1.
i=0 i=0

FE is the same permutation matrix as in the previous proposition.
Proof. Notice that

2n—1
e . agp a102p - A2n—-109
QQn D,l QQn = dcirc b 1 b b 2272 y
002n, 1 T 2n—109,

and proceed similarly as above. O

Corollary 2.1. The set of eigenvalues of the doubly circulant matriz
D1, (respectively of the doubly skew-circulant matrix D_1), is the union of the
sets of solutions of the quadratic equations

(2.10) det (D, —\) =0, k=0,....,n—1,

where the matrices Dy are of the form (2.6), with Sy and Ty given by (2.7),
(respectively, by (2.9)).

2.2. Application to finite element matrices. For the consistent
mass FE-approximation of (1.2), we consider a quadratic mesh, consisting of
n identical subintervals (taking the nodes in each interval to be the endpoints
and the midpoint). Number the nodes in [0, 1] globally from 1 to 2n + 1 and let
©; be the usual (piecewise quadratic) cardinal basis function, associated to the
i-th global node, see e.g. [4, §2.3.1]. Then the set of 2n functions

1 = o1+ Want1, P2 = P2, .., Pan = Pan,
is easily seen to form a suitable basis for the FE-spaces C V¢ (¢ =1 or a = —1).
Due to this proper choice of the basis, the (2n x 2n)-matrices K and M
entering (1.3) are found to be of the form
a® b X ac®  ab
bX  gX pX
X bX X bX X

X

c a c
(2.11) X = br at bt

acX ax %S

abX bX  aX

(with the convention that the non-written entries are zero). Here X = K or
X = M, and « is again 1 or —1. The respective non-zero matrix entries are given
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by
14 8 1 16
o = ?n, bE = —gn, K= gn, dr = 3 —n,
and
4 1 1 8
M M M M
“ T e Bn’ © 7 30m 15n
Referring to the notations (2.2), we clearly have
X X X X X
. a* b ¢ 0 -+ 0 ¢t b
X—dCer(bX X X 0 0 ), when a =1,
and
X X X X b'e
. a* b ¢ 0 -+ 0 —c* —b
X = dscirc ( pX gX X o 0 > ,  when oo = —1.

From Propositions 2.1-2.2 it follows that the matrices M and K can be
brought into the block diagonal form (2.5) by the same unitary transformation,
viz (E Fy,), when o = 1, and (E Fy, Q2,), when o = —1. The k-th block along
the diagonal (k =0,...,n — 1) is found to be

#—F%xcos RIT | X o5 2B oXd® 4 X o k)T
Xp= |
o 4 eXcos n(k) M—%xcos %—I—cxcos —"(IZ)”

where, again, X = K or X = M, and where

2k, when o = 1,
=1

(2.12) 2k +1, when a = —1.

This leads us to the main result of this section.

Theorem 2.1. The eigenvalues of the present EVP (1.3) are given by
n(k)m n(k)m n(k)w
)\(1)(143) 2N? (11—1—400827:{:\/14—26860827—4400847
(2.13) =

(2) ’
A (k) 5 cos2IE)T
2n

where k =0,...,n — 1 and where n(k) is given by (2.12).

Proof. Leaning upon well-known properties of block matrices, see e.g.
[1, §2.1], M~'K can be transformed into a block diagonal form by the same
unitary transformation as the matrices M and K, the blocks along the diagonal
being Mk_lKk, k=0,...,n—1. Thus, on account of Corollary 2.1, the eigenvalues
of the present EVP (1.3) are given by the union of the sets of solutions of the
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quadratic equations

(2.14) det (M, 'Ky —\) =0, k=0,...,n—1.
These last equations can be written explicitly as
44 + 16cos QM 1 — cos 2 k)T
A2 = N2 2n N 440Nt 20 _ (o g —=0,... n-1. 0
2 — 2cos 21(k)T 2 — 0052M
n 2n

3. Some computational aspects.

(a) Case of periodic BCs (o« = 1). The exact eigenvalues of the
differential EVP (1.1) are directly found to be

(3.1) A =0, and Ay = Apy1 = m?m2, m=2,4,6,....

We aim at establishing an explicit form of the approximation error, by
comparing (3.1) with the closed expression (2.13), derived for the approximate
eigenvalues. To this end, note that

AYE®) =2 —k) and AYHk) =2 (n-k), k=1,....n—L

Hence, all approximate eigenvalues are double, except )\(1)(0), and, when n is

even, also except the eigenvalues A" () and A? (%), which are simple.

To fix the ideas, we take n to be odd. A straightforward calculation reveals
that, for £k = 0,..., ”51, /\(l)(k) is an increasing function of k, while /\(2)(k) is
a decreasing function of k. Thus, the approximate eigenvalues, numbered in

increasing order of magnitude, read

A= 2"(0),

(1)

A () m=2,4,...,n—1
3.2 Meo=2h = 20 T ’
(3:2) " il A(Q)(n—%), m=n-+1n+3,...,2n—2,

(2)
b= X7(0).

Note that A; = 0 is recovered exactly. For the other eigenvalues, combination of
(3.2) and (3.1) leads to

1
(33) A, — A=A = A1 = %wﬁmﬁh‘* +0O(h%), m=24,6,...,

when n > m + 1.

(b) Case of semi—periodic BCs (o = —1)
Here, the exact eigenvalues of (1.1) are given by

(3.4) A = Amg1 =mPm%, m=1,3,5,....
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Again we notice some symmetries in the set of approximate eigenvalues

(2.13), viz
A& =A"m—k-1) and X&) =2 (m—-k-1), k=0,...,n—1.
Here, all eigenvalues are double, except, when n is odd, the eigenvalues AW (”T_l)

and \? (251), which are simple.

Hence, in this case we take n to be even. By similar arguments as above,
the approximate eigenvalues, numbered in increasing order of magnitude, are
found to be

=13,...,n—1
(3.5) A%:AQMZ{ M= 59— 4

(1) —
A (),
@ -2y m=n+1,n+3,...,2n—1.

A7 (n 5
Thus, by combination of (3.4) and (3.5), we infer (3.3) to hold again, however
now for m=1,3,5,..., when n > m + 1.

I [\

Consequently, in both cases, the theoretical order h*-convergence for a
quadratic FE—mesh is recovered.
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