


Serdica Math. J. 27 (2001), 67-90

FORMATION OF SINGULARITIES FOR WEAKLY

NON-LINEAR N × N HYPERBOLIC SYSTEMS

Chiara Boiti, Renato Manfrin

Communicated by I. D. Iliev

Abstract. We present some results on the formation of singularities
for C1-solutions of the quasi-linear N × N strictly hyperbolic system Ut +
A(U)Ux = 0 in [0, +∞) × Rx . Under certain weak non-linearity conditions
(weaker than genuine non-linearity), we prove that the first order derivative
of the solution blows-up in finite time.

Introduction. In this paper we consider the quasi-linear strictly hy-
perbolic system

Ut + A(U)Ux = 0 in [0,+∞) × Rx ,

where A(U) is an N × N matrix with C1(RN )-entries.

We look for sufficient conditions to obtain blow-up for the C1-solution of
the associated Cauchy problem with small compactly supported initial data.
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Denoting by λj(U), for j = 1, . . . , N , the distinct real eigenvalues of the
matrix A(U), and by rj(U) and lj(U) the relative right and left eigenvectors with
‖rj‖ = 1 and li · rj = δij , we shall consider the following non-linear condition:

∇λj(Uj(s)) · rj(Uj(s)) 6= 0 on a dense subset of Rs, for j = 1 or N(0.1)

along the j-th characteristic trajectory Uj(s) defined by











d

ds
Uj(s) = rj(Uj(s)) j = 1, . . . , N

Uj(0) = 0 .

This condition is weaker than the condition of genuine non-linearity

∇λj(U) · rj(U) 6= 0 ∀U ∈ R
N , ∀j = 1, . . . , N

introduced by Lax in [8].

Remark, moreover, that our condition (0.1) seems to be “quite sharp”
to obtain blow-up, since in [16] the existence of a unique global C1-solution of
the Cauchy problem for small initial data under the weakly linearly degenerate

condition

∇λj(Uj(s)) · rj(Uj(s)) ≡ 0 ∀j = 1, . . . , N

is proved.

Under the above assumption (0.1), we obtain the formation of singularities
for the C1-solution of the Cauchy problem







Ut + A(U)Ux = 0

U(0, x) = εUo(x) ∈ C1
o (R)

for ε small enough, if the following condition on the initial data is satisfied:

lj(0) · U ′
o(x) 6≡ 0(0.2)

for j = 1 or N (according to which j = 1 or N makes condition (0.1) valid).

If we consider, as in [16] and [17], the example of the one-dimensional gas
dynamics, we find that our condition (0.2) is in this case necessary and sufficient
to obtain blow-up (see §2, Example 2.4).

Finally, (see Theorem 3.1 below), we give also some sufficient conditions
for the formation of singularities in the case of general (not necessarily small)
initial data, but only in the case of 3 × 3 systems.
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1. Preliminaries. Given the system

Ut + A(U)Ux = 0 in [0,+∞) × Rx ,(1.1)

we shall assume in the following that the matrix A(U) has C1(RN ) entries and
N real distinct eigenvalues

λ1(U) < λ2(U) < . . . < λN (U) ∀U ∈ R
N .

We can then choose N right eigenvectors r1(U), . . . , rN (U):

A(U)ri(U) = λi(U)ri(U) ∀U ∈ R
N ,

and N left eigenvectors l1(U), . . . , lN (U):

li(U)A(U) = λi(U)li(U) ∀U ∈ R
N ,

normalized such that

‖ri(U)‖
RN = 1 and li(U) · rj(U) = δij ∀U ∈ R

N ,

for all i, j = 1, . . . , N .

Definition 1.1. We call i-th characteristic trajectory Ui(s) the solution

of the Cauchy problem










d

ds
Ui(s) = ri(Ui(s))

Uj(0) = 0 ,

(1.2)

for i = 1, . . . , N .

Definition 1.2. Given, for some T > 0, a solution U(t, x) ∈ C1([0, T )×
Rx)N of the hyperbolic system (1.1), and given p = (tp, xp) ∈ [0, T ) × Rx, we

denote by xi(t, p) the solution of the Cauchy problem










d

dt
xi(t, p) = λi(U(t, xi(t, p)))

xi(tp, p) = xp

(1.3)

for i = 1, . . . , N . The application

t 7→ γi(t, p) = (t, xi(t, p))

is then called the i-th characteristic curve passing through p, and we denote its

trace on the (t, x)-plane by Γi(p):

Γi(p) = {(t, x) ∈ [0, T ) × R : x = xi(t, p)} .
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When p = (0, y) we shall also write xi(t, y), γi(t, y) and Γi(y) instead of,

respectively, xi(t, p), γi(t, p) or Γi(p).

We now follow F. John, considering however C1-solutions (instead of C2-
solutions) U(t, x) of (1.1), and defining, for i = 1, . . . , N ,

wi(t, x) = li(U(t, x)) · Ux(t, x) .

By the choice of the eigenvectors of A(U), we immediately obtain that

Ux =

N
∑

i=1

wiri, Ut = −
N

∑

i=1

λiwiri .

We shall need in the sequel the following John’s formula for a solution
U ∈ C1([0, T ) × Rx)

N (for the proof in the case of C1-solutions see [12]):

wi(γi(t1, p)) − wi(γi(t0, p)) =

=

∫ t1

t0

N
∑

j,k=1

γijk(U(γi(τ, p)))wj(γi(τ, p))wk(γi(τ, p))dτ
(1.4)

for all t0, t1 ∈ [0, T ) and i = 1, . . . , N , where γijk = γijk(U(t, x)) are given by:

γijk = (λj − λk)liDrk{rj} − δik∇λi · rj(1.5)

(here Drk{rj} denotes the differential of U 7→ rk(U) applied to rj).

In particular, it will be useful to notice that

{

γijj ≡ 0 for i 6= j

γiii = −∇λi · ri .

Let us finally recall two lemmas from [12] that we shall need in the fol-
lowing:

Lemma 1.3. Let U(t, x) ∈ C1([0, T ) × Rx)
N be the solution, for some

T > 0, of the hyperbolic Cauchy problem







Ut + A(U)Ux = 0

U(0, x) = Uo(x) ∈ C1
o (Rx)N .

(1.6)

Assume, moreover, that for some real α < β and io ∈ {1, . . . , N}

wi(0, x) = 0 ∀x ∈ [α, β], i ∈ {1, . . . , N} \ {io} .
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Then, for i 6= io we have that wi(t, x) ≡ 0 in the region

Ωβ
α = {(t, x) : 0 ≤ t < T, xm(t, α) ≤ x ≤ xℓ(t, β)} ,

where

ℓ = min{1 ≤ i ≤ N : i 6= io}, m = max{1 ≤ i ≤ N : i 6= io} .

Lemma 1.4. Let U(t, x) ∈ C1([0, T ) × Rx)
N be the solution, for some

T > 0, of the hyperbolic Cauchy problem (1.6).
Assume, moreover, that, for fixed β ∈ R, io ∈ N, with 1 < io < N , and

p = (tp, xp) ∈ ([0, T ) × Rx) \ Γio(β), the graphs Γio−1(p) and Γio+1(p) intersect

Γio(β).
It follows that if

wi(t, xio(t, β)) = 0 ∀t ∈ [0, T ), i ∈ {1, . . . , N} \ {io}
then also

wi(t, x) ≡ 0 in Ω(io, β, p) for i 6= io ,

where Ω(io, β, p) is the region bounded by Γio(β), Γio−1(p) and Γio+1(p).

2. Blow-up for N ×N hyperbolic systems with small initial data.

Using the notation introduced in the previous section, we now prove:

Theorem 2.1. Let us consider the hyperbolic Cauchy problem in [0,+∞)×
Rx:

{

Ut + A(U)Ux = 0
U(0, x) = εUo(x) ,

(2.1)

where ε ∈ R, Uo ∈ C1
o (Rx)N , and A(U) is an N ×N matrix with C1(RN ) entries

and N distinct real eigenvalues

λ1(U) < λ2(U) < . . . < λN (U) ∀U ∈ R
N .(2.2)

Let us assume, moreover, that

d

ds
λi(Ui(s)) 6= 0 on a dense subset of Rs(2.3)

and

li(0) · U ′
o(x) 6≡ 0(2.4)
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both for i = 1 or for i = N .

Then, for ε 6= 0 small enough, the C1-solution of the Cauchy problem

(2.1) must develop some singularities in finite time.

P r o o f. Let suppUo ⊂ [α, β] with α < β.
Let us first recall that by the local existence theorem for hyperbolic sys-

tems (cf. [4]) there exists Tε > 0 such that the Cauchy problem (2.1) admits a
unique solution U ∈ C1([0, Tε) × Rx)

N , and Tε → +∞ as ε → 0. More precisely,

by direct inspection of the proof, we know that Tε ≥ C

|ε| provided ε 6= 0 is small

enough.
Besides, for every fixed T > 0 there exist c = c(T ) > 0 and δ = δ(T ) > 0

such that for |ε| ≤ δ the solution exists in [0, T ] × R and

‖U‖C1([0,T ]×Rx)N ≤ c|ε| .(2.5)

For the next we now need to fix some To > 0 so that using the estimate
(2.5), for ε small enough, the graphs Γi(α) and Γj(β) of the characteristic curves
γi(t, α) and γj(t, β) intersect in the strip [0, To] × R if i > j.

Remark that since we have compactly supported initial data, by the finite
speed of propagation property

U(t, x) ≡ 0 for x ≤ α + λ1(0)t and for x ≥ β + λN (0)t, t ≥ 0 .

Therefore, if U(t, x) ∈ C1([0, Tε) × Rx)
N is the (local) solution of the

Cauchy problem (2.1), then U(t, x) is uniformly bounded on every strip [0, T ]×Rx

with 0 < T < Tε, and this implies that for every p = (tp, xp) ∈ [0, Tε) × Rx the
characteristic curves γi(t, p) are defined for all t ∈ [0, Tε).

Let us set

λ = min
1≤i≤N−1

(λi+1(0) − λi(0)) ,

and fix then

To = 2
β − α

λ
.

By definition of λ, since the eigenvalues λi(U) are continuous functions
of U ∈ R

N , we can find ρ > 0 such that

‖U‖
RN , ‖V ‖

RN ≤ ρ ⇒ λi+1(U) − λi(V ) ≥ λ

2
∀i = 1, . . . , N − 1 .(2.6)

By (2.5) we can then find c = c(To) > 0 and δ = δ(To) > 0 such that

if |ε|≤ε0= min
{

δ,
ρ

c

}

, then ‖U‖C0([0,To]×R)N≤‖U‖C1([0,To]×R)N≤c|ε| ≤ ρ,(2.7)
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and hence by (2.6):

λi+1(U(t1, x1)) − λi(U(t2, x2)) ≥
λ

2
∀(t1, x1), (t2, x2) ∈ [0, To] × R ,(2.8)

for all i = 1, . . . , N − 1. Then we can easily see that in this strip [0, To] × R all
the graphs Γi(α) and Γj(β) intersect if i > j. Indeed, by (2.8) it follows that for
all t ∈ [0, To] we have xj(t, β) − xi(t, α) ≤ β − α − λ

2 t. This will be useful in the
sequel.

Let us now take |ε| ≤ ε0, assume by contradiction that the solution U ∈
C1([0, To]×R)N is in fact defined and C1 on the whole [0,+∞)×R, and prove that
it must develop, on the contrary, some singularities at some finite time T > To.

Let us first recall (cf. [5]) that in the regions C2 and DN−1, where

Ci = {(t, x) ∈ [0,+∞) × R : x ≤ xi(t, α)} i = 1, . . . , N(2.9)

Di = {(t, x) ∈ [0,+∞) × R : x ≥ xi(t, β)} i = 1, . . . , N ,(2.10)

the solution U(t, x) is a simple wave, i.e.:

w2(t, x) ≡ · · · ≡ wN (t, x) ≡ 0 in C2(2.11)

and

w1(t, x) ≡ · · · ≡ wN−1(t, x) ≡ 0 in DN−1 .(2.12)

Let us assume conditions (2.3) and (2.4) to be satisfied for i = N and let
us then prove the formation of singularities in the region DN−1 (analogously, if
conditions (2.3) and (2.4) are satisfied for i = 1, then the blow-up occurs in C2).

By (2.12)

Ux(t, x) = wN (t, x)rN (U(t, x)) in DN−1

and hence, denoting by
d

dit
, for i ∈ {1, . . . , N}, the derivation in the direction of

the i-th characteristic curve, in DN−1 we have:

d

dN t
U(t, x) = Ut(t, x) + λN (U(t, x))Ux(t, x)

= Ut(t, x) + λN (U(t, x))wN (t, x)rN (U(t, x))

= Ut(t, x) + A(U(t, x))Ux(t, x) ≡ 0 .

This means that for all p = (tp, xp) in DN−1

U(t, xN (t, p)) ≡ U(tp, xp) ∀t ≥ tp
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and hence

xN (t, p) = xp + λN (U(tp, xp))(t − tp) ∀p ∈ DN−1, t ≥ tp ,

i.e. ΓN (p) is a straight line for each p ∈ DN−1.
We shall prove the formation of singularities by showing that some of these

graphs ΓN (y) = ΓN (0, y), for y ∈ [α, β], intersect in DN−1, contradicting the
uniqueness property of solutions of the Cauchy problem (1.3) if U ∈ C1([0,+∞)×
Rx)N .

Since the ΓN (y)’s are straight lines in DN−1, the intersection depends on
their slope and hence on their angular coefficient along ΓN−1(β).

By the above arguments it’s now clear that to prove our theorem it’s
enough to show that t 7→ λN (U(t, xN−1(t, β))) is not monotone decreasing for
t ∈ [0,+∞).

To this aim we first remark that


















d

dt
U(t, xN−1(t, β))=Ut(t, xN−1(t, β))+λN−1(U(t, xN−1(t, β)))Ux(t, xN−1(t, β))

= [λN−1(U(t, xN−1(t, β))) − λN (U(t, xN−1(t, β)))]·
·wN (t, xN−1(t, β))rN (U(t, xN−1(t, β)))

U(0, xN−1(0, β)) = U(0, β) = 0 ,

and hence

U(t, xN−1(t, β)) = UN (φN (t)) ∀t ≥ 0 ,(2.13)

where φN (t) is the solution of the Cauchy problem







φ′
N (t) = [λN−1(UN (φN (t))) − λN (UN (φN (t)))]wN (t, xN−1(t, β))

φN (0) = 0 .

(2.14)

Indeed, this can be easily checked by computing the derivative of UN (φN (t))
and noticing then that U(t, xN−1(t, β)) and UN (φN (t)) satisfy the same Cauchy
problem.

But to prove that λN (UN (φN (t))) is not monotone decreasing, it’s enough
to show that φN (t) is not monotone. As a matter of fact, if φN (t) is not monotone
we can then find 0 ≤ t1 < t2 < t3 such that

φN (t1) = φN (t3) < φN (t2)

or

φN (t1) = φN (t3) > φN (t2) .
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This implies that

λN (UN (φN (t1))) = λN (UN (φN (t3))) .

But λN (UN (φN (t))) is not constant in [t1, t3], since by assumption (2.3) we have

that
d

ds
λN (UN (s)) does not vanish identically in the interval of extremities φN (t1)

and φN (t2).
To prove, finally, that φN (t) is not monotone, it’s enough to show, by

(2.2) and (2.14), that wN (t, xN−1(t, β)) changes sign for some t > 0.
To this aim we first begin by estimating the sign of wN (t, xN (t, y)) for

t > 0 and y ∈ [α, β]. This will give also the estimate of wN (t, xN−1(t, β)) when
the characteristic curve γN (t, y) intersects the characteristic curve γN−1(t, β).

For this reason we can restrict here to consider 0 ≤ t ≤ To, since all
graphs ΓN (y), for y ∈ [α, β], intersect ΓN−1(β) for 0 ≤ t ≤ To, by the choice of
To.

By John’s formula (1.4):

wN (t, xN (t, y)) =

=wN (0, y)+

∫ t

0

N
∑

j,k=1

γNjk(U(τ, xN (τ, y)))wj(τ, xN (τ, y))wk(τ, xN (τ, y))dτ,(2.15)

where

wN (0, y) = εlN (0) · U ′
o(y) + O(ε2) .(2.16)

Let us now estimate the integral in (2.15).
Since the γijk’s, given by (1.5), are continuous functions of U , we can find,

because of (2.7), a real constant M > 0 such that

|γijk(U(τ, xN (τ, y)))| ≤ M ∀τ ∈ [0, To], y ∈ R, i, j, k = 1, . . . , N .(2.17)

Let us set

w(t) = max
1≤i≤N

sup
x∈R

|wi(t, x)| .

This is a well defined bounded and continuous function of t ∈ [0, To] (because of
(2.7)), since U(t, x) ≡ 0 for x ≤ α + λ1(0)t or x ≥ β + λN (0)t.

Therefore, as in (2.15), we find that

|wi(t, xi(t, y))| ≤ w(0) +

∫ t

0

N
∑

j,k=1

|γijk(U(τ, xi(τ, y)))|w2(τ)dτ ∀i = 1, . . . , N
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and hence, from (2.17):

0 ≤ w(t) ≤ w(0) + N2M

∫ t

0
w2(τ)dτ .

Therefore

w(t) ≤ w(0)

1 − N2Mw(0)t
∀ 0 ≤ t < min

{

To ,
1

N2Mw(0)

}

.

Besides, we easily have, as in (2.16), that w(0) ≤ |ε|L for some L > 0,
and hence

0 ≤ w(t) ≤ |ε|L
1 − |ε|N2MLt

∀ 0 ≤ t < min

{

To ,
1

|ε|N2ML

}

.

Then
∣

∣

∣

∣

∣

∣

∫ t

0

N
∑

j,k=1

γNjk(U(τ, xN (τ, y)))wj(τ, xN (τ, y))wk(τ, xN (τ, y))dτ

∣

∣

∣

∣

∣

∣

≤ N2M

∫ t

0

ε2L
2

(1 − |ε|N2MLτ)2
dτ

= N2M
ε2L

2

1 − |ε|N2MLt
t ∀ 0 ≤ t < min

{

To ,
1

|ε|N2ML

}

,

and choosing

|ε| ≤ ε1 < min

{

ε0 ,
1

N2MLTo

}

,

we have that
∣

∣

∣

∣

∣

∣

∫ t

0

N
∑

j,k=1

γNjk(U(τ, xN (τ, y)))wj(τ, xN (τ, y))wk(τ, xN (τ, y))dτ

∣

∣

∣

∣

∣

∣

≤ ε2 N2ML
2
To

1 − ε1N2MLTo

∀ 0 ≤ t ≤ To .(2.18)

Hence, from (2.15), (2.16) and (2.18):

wN (t, xN (t, y)) = εlN (0) ·U ′
o(y) + O(ε2) ∀ 0 ≤ t ≤ To, y ∈ [α, β], |ε| ≤ ε1.(2.19)

Since

lN (0) · U ′
o(y) =

d

dy
(lN (0) · Uo(y))
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is the derivative of a function with compact support in [α, β], it must change sign
in the interval [α, β]. Therefore, by (2.19), wN (t, xN−1(t, β)) must change sign in
the interval [0, To], provided ε is small enough.

This concludes the proof of Theorem 2.1. �

Remark 2.2. The assumption (2.3) seems “not too far” from being
sharp, since Theorem 4.1 of [16] shows that if

d

ds
λi(Ui(s)) = 0 ∀s ∈ R, ∀i = 1, . . . , N ,

then for ε sufficiently small the Cauchy problem (2.1) admits a unique global
C1-solution.

Remark 2.3. If we assume

d

ds
λi(Ui(s)) 6= 0 ∀s ∈ R,(2.20)

for i = 1 or N , instead of (2.3) (which is still a little bit weaker than the genuine
non-linearity condition), then from the proof of Theorem 2.1 we can also give an
estimate of the life-span Tε of the solution of the form:

∃c1, c2 > 0 such that
c1

|ε| ≤ Tε ≤
c2

|ε| .(2.21)

Indeed,

d

dt
λN (U(t, xN−1(t, β)))

= [λN−1(U(t, xN−1(t, β))) − λN (U(t, xN−1(t, β)))]wN (t, xN−1(t, β)) ·
·∇λN (U(t, xN−1(t, β))) · rN (U(t, xN−1(t, β))) .

Since it is not restrictive to assume ε > 0 in (2.1), we can then choose
0 < ε < ε1 sufficiently small, so that assumption (2.20) implies

∇λN (U(t, xN−1(t, β))) · rN (U(t, xN−1(t, β))) ≥ η > 0 ∀t ∈ [0, To](2.22)

or

∇λN (U(t, xN−1(t, β))) · rN (U(t, xN−1(t, β))) ≤ −η < 0 ∀t ∈ [0, To](2.23)

for some η > 0, because of (2.7).
Let us assume, for instance, that (2.22) is satisfied. Then we fix [y2, y1] ⊂

[α, β] such that

lN (0) · U ′
o(y) ≤ −δ < 0 ∀y ∈ [y2, y1] ,(2.24)
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for some δ > 0 (if (2.23) is satisfied, then we fix [y2, y1] ⊂ [α, β] where lN (0) ·
U ′

o(y) ≥ δ > 0); this is possible since lN (0) · Uo(y) has compact support in [α, β]
and is not identically zero because of (2.4).

From (2.19) and (2.24) we deduce that there exists δ′ > 0 such that

wN (t, xN (t, y)) ≤ −εδ′ ∀t ∈ [0, To], y ∈ [y2, y1]

if ε is small enough.
Denoting by (t1, x1) and (t2, x2) the intersection points of, respectively,

ΓN (y1) and ΓN (y2) with ΓN−1(β), we have that 0 ≤ t1 < t2 ≤ To (since ΓN (y1)
and ΓN (y2) cannot intersect for 0 ≤ t ≤ To) and

wN (t, xN−1(t, β)) ≤ −εδ′ < 0 ∀t ∈ [t1, t2] .

Finally, by (2.8), we obtain the estimate

d

dt
λN (U(t, xN−1(t, β))) ≥ ε

δ′ηλ

2
> 0 ∀t ∈ [t1, t2] .(2.25)

This implies that the life-span Tε of the solution is bounded from above by
the time T when the straight line ΓN (y1) intersects the straight line ΓN (y2)
(in DN−1).

To estimate this time T let us set, for simplicity,

λN,i = λN (U(ti, xN−1(ti, β))) for i = 1, 2 .

In DN−1 the straight lines ΓN (yi), for i = 1, 2, are thus described by the
equations

x = λN,i(t − ti) + xi ,

where xi = xN−1(ti, β). Therefore they intersect for

T =
x1 − λN,1t1 − x2 + λN,2t2

λN,2 − λN,1
.

Note that λN,2 > λN,1 by the choice of t1 and t2.
For ε sufficiently small, because of (2.7):

λN,i = λN (0) + O(ε) for i = 1, 2

and

xi = xN (ti, yi) = yi + λN (0)ti + O(ε) for i = 1, 2 .

Then

x1 − λN,1t1 − x2 + λN,2t2 = y1 − y2 + O(ε) .
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Moreover,

λN,2 − λN,1 = λN (U(t2, xN−1(t2, β))) − λN (U(t1, xN−1(t1, β)))

=

∫ t2

t1

d

ds
λN (U(s, xN−1(s, β)))ds

= εΛ(t2 − t1) + o(ε)(2.26)

for some Λ > 0 and for ε small enough, because of (2.25).

To estimate t2 − t1 let us still choose ε sufficiently small so that all char-
acteristic curves can be approximated by straight lines, and hence t1 and t2 can
be approximatively defined by:

β + λN−1(0)ti = yi + λN (0)ti + O(ε), i = 1, 2 .

Then

t2 − t1 =
β − y2

λN (0) − λN−1(0)
− β − y1

λN (0) − λN−1(0)
+ O(ε)

=
y1 − y2

λN (0) − λN−1(0)
+ O(ε) ,

and hence, from (2.26):

λN,2 − λN,1 = ε
Λ(y1 − y2)

λN (0) − λN−1(0)
+ o(ε) .

Therefore

T =
y1 − y2 + O(ε)

εΛ(y1 − y2)

λN (0) − λN−1(0)
+ o(ε)

=
λN (0) − λN−1(0)

εΛ
+ O(1).

This gives a bound from above of the life-span Tε of the solution.

From the proof of Theorem VI of [4] we have a similar estimate also from
below, so that we finally obtain (2.21). �

Let us now consider an example of application of Theorem 2.1:

Example 2.4 (system of one-dimensional gas dynamics). The following
system in Rt × Rx is considered in gas dynamics:







∂tu + ∂xp = 0
∂tp + a(p, S)∂xu = 0
∂tS = 0 ,

(2.27)



80 C. Boiti, R. Manfrin

where u is the velocity, S the entropy, p the pressure and

a(p, S) ∈ C1(R2), a(p, S) > 0 ∀p, S ∈ R

is connected with the state equation of the gas p = p(τ, S) by the relation

a(p, S) = − ∂

∂τ
p(τ, S) ,(2.28)

where τ is the specific volume. Remark that condition a(p, S) > 0 makes system
(2.27) strictly hyperbolic. Indeed, if we set U(t, x) = t(u(t, x), p(t, x), S(t, x)), we
can rewrite system (2.27) in the standard form Ut + A(U)Ux = 0 with

A(U) =





0 1 0
a(p, S) 0 0

0 0 0



 .

The eigenvalues of A(U) are

λ1(U) = −
√

a(p, S) < 0 = λ2(U) <
√

a(p, S) = λ3(U) .

The normalized right eigenvectors ri(U) and left eigenvectors li(U) are
given by:































r1(U) =
1

√

1 + a(p, S)
t(1,−

√

a(p, S), 0)

r2(U) = t(0, 0, 1)

r3(U) =
1

√

1 + a(p, S)
t(1,

√

a(p, S), 0)

and



































l1(U) =

√

1 + a(p, S)

2
√

a(p, S)
(
√

a(p, S),−1, 0)

l2(U) = (0, 0, 1)

l3(U) =

√

1 + a(p, S)

2
√

a(p, S)
(
√

a(p, S), 1, 0) .

The Cauchy problem considered in gas dynamics is the one obtained by
associating to system (2.27) the initial data

u(0, x) = uo + εuo(x), p(0, x) = po + εpo(x), S(0, x) = So + εSo(x),
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where uo, po, So ∈ R are constants, while uo(x), po(x), So(x) ∈ C1
o (Rx); ε is a

parameter to be chosen sufficiently small.
Setting

Uo = t(uo, po, So) ∈ R
3 and Uo(x) = t(uo(x), po(x), So(x)) ∈ C1

o (Rx)3 ,

the Cauchy problem (2.27) is then of the same form as (2.1) shifted by a constant
Uo:







Ut + A(U)Ux = 0

U(0, x) = Uo + εUo(x) .

(2.29)

Let us verify whether the assumptions of Theorem 2.1 are satisfied. Set-
ting

Uj(s) = t(uj(s), pj(s), Sj(s)) for j = 1, 2, 3,

we obtain, for j = 1, 3:

∇λj(Uj(s)) · rj(Uj(s)) =
ap(pj(s), So)

2
√

1 + a(pj(s), So)
,

since Sj(s) ≡ So here. Note also that ∇λ2(U2(s)) ·r2(U2(s)) ≡ 0 since λ2(U) ≡ 0.

Condition (2.3) of Theorem 2.1 is thus expressed here by:

ap(pj(s), So) 6= 0 on a dense subset of Rs ,(2.30)

for j = 1 or 3, which will be verified if

ap(p, So) 6= 0 on a dense subset of Rp ,

by the strict monotony of pj(s).
Let us now verify condition (2.4), for i = 1 or 3:

lj(Uo) · U ′
o(x) = ε

√

1 + a(po, So)

2
√

a(po, So)
[

√

a(po, So)u
′
o(x) ∓ p′o(x)] .

This means that if condition (2.4) was not satisfied, then we should have







√

a(po, So)u
′
o(x) − p′o(x) ≡ 0

√

a(po, So)u
′
o(x) + p′o(x) ≡ 0 ,
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and hence u′
o(x) ≡ p′o(x) ≡ 0, i.e.

u(0, x) ≡ uo, p(0, x) ≡ po .

But in this case the Cauchy problem (2.29) would have the global solution
U(t, x) ∈ C1([0,+∞) × R) given by:

u(t, x) = uo, p(t, x) = po, S(t, x) = So + εSo(x) .

Note also that l2(0) ·U ′
o(x) = εS′

o(x) which can be identically zero or not,
and, at the same time, the Cauchy problem (2.29) could have a global solution
or blow-up may occur.

We can conclude that in this example of one-dimensional gas dynamics
Theorem 2.1 is “quite sharp”, in the sense that if condition (2.30) is satisfied,
then condition (2.4) is necessary and sufficient to have blow-up in finite time (for
ε sufficiently small).

Remark that from (2.28), by the local invertibility theorem, we can com-
pute:

ap(p, S) = −pττ (τ, S)

pτ (τ, S)
=

pττ (τ, S)

a(p, S)
.

This shows that our condition (2.30) is weaker than the following condition of [17]:

∂α

∂τα
p(τ o, So) = 0 for 1 < α < β,

∂β

∂τβ
p(τ o, So) 6= 0(2.31)

for some integer β ≥ 2, where τ o > 0 is determined by po = p(τ o, So).

Let us finally remark that if

ap(pj(s), So) 6= 0 ∀s ∈ R ,

for j = 1 or 3, instead of (2.30), then condition (2.20) is satisfied and hence, from
Remark 2.3, we obtain an estimate of the life-span Tε of the solution of the form
(2.21), i.e. Tε ∼ ε−1, which is the same estimate obtained in [17] when (2.31) is
satisfied with β = 2.

3. Blow-up for 3 × 3 hyperbolic systems with general initial

data. In the case of 3× 3 hyperbolic systems we are able to give some sufficient
conditions for the formation of singularities, without the assumption of small
initial data. With respect to Theorem 2.1, we can also eliminate condition (2.4),
but we need to strengthen assumptions (2.2) and (2.3):
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Theorem 3.1. Let us consider the hyperbolic Cauchy problem in [0,+∞)×Rx







Ut + A(U)Ux = 0

U(0, x) = Uo(x) ,

(3.1)

where Uo ∈ C1
o (Rx)3, Uo 6≡ 0, and A(U) is a 3 × 3 matrix with C1(R3) entries

and real distinct eigenvalues λj(U) satisfying, for a suitable constant Λ > 0:

λi+1(U) − λi(V ) ≥ Λ ∀U, V ∈ R
3, i = 1, 2 .(3.2)

Let us assume, moreover, that

d

ds
λi(Ui(s)) ≥ 0 ∀s ∈ R and is different from zero on a dense subset(3.3)

of Rs, for i = 1, 3

d

ds
λ2(U2(s)) 6= 0 on a dense subset of Rs(3.4)

d

ds
λ2(Ui(s)) ≥ 0 ∀s ∈ R and is different from zero on a dense subset(3.5)

of Rs, for i = 1, 3 .

Then, the C1-solution of the Cauchy problem (3.1) must develop some

singularities in finite time.

P r o o f. Let suppUo ⊂ [α, β], with α < β, and, by contradiction, let
U(t, x) be a C1 global solution of (3.1) in [0,+∞) × Rx.

We use the same notation as in the proof of Theorem 2.1; in particular,
the regions Ci and Di are defined by (2.9) and (2.10).

We can first remark that condition (3.2) ensure us that all the graphs

Γi(β) and Γj(α) must intersect for i < j at some positive time T ≤ β − α

Λ
.

Arguing therefore as in the proof of Theorem 2.1, we can say that the
graphs Γ3(p), for p = (tp, xp) ∈ D2, are straight lines which cannot intersect, so
that we must have:

d

dt
λ3(U(t, x2(t, β))) ≤ 0 ∀t ≥ 0 .

But Ux(t, x) = w3(t, x)r3(U(t, x)) in D2, and hence

0 ≥ d

dt
λ3(U(t, x2(t, β)))(3.6)

= [λ2(U(t, x2(t, β))) − λ3(U(t, x2(t, β)))]w3(t, x2(t, β)) ·
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·∇λ3(U(t, x2(t, β))) · r3(U(t, x2(t, β))).

Recall that, from (2.13) and (2.14),

U(t, x2(t, β)) = U3(φ3(t)) ∀t ≥ 0

with

φ′
3(t) = [λ2(U(t, x2(t, β))) − λ3(U(t, x2(t, β)))]w3(t, x2(t, β)) .(3.7)

Therefore, if by contradiction

w3(t̃, x2(t̃, β)) < 0 for some t̃ > 0 ,(3.8)

then there exists δ > 0 such that

w3(t, x2(t, β)) < 0 ∀t ∈ (t̃ − δ, t̃ + δ) = Ĩ .

This implies that

φ′
3(t) > 0 ∀t ∈ Ĩ ,(3.9)

and hence φ3(Ĩ) contains some interval I . By assumption (3.3) there must then
exist some s ∈ I ⊂ φ3(Ĩ) such that

∇λ3(U3(s)) · r3(U3(s)) > 0 .

Since s ∈ φ3(Ĩ) there is t̃′ ∈ Ĩ such that φ3(t̃
′) = s and hence

∇λ3(U(t̃′, x2(t̃
′, β))) · r3(U(t̃′, x2(t̃

′, β))) = ∇λ3(U3(φ3(t̃
′))) · r3(U3(φ3(t̃

′))) > 0 .

But this contradicts (3.6), because of (3.9) and (3.7), since t̃′ ∈ Ĩ.
Then (3.8) cannot be satisfied, i.e.

w3(t, x2(t, β)) ≥ 0 ∀t ≥ 0 .(3.10)

Analogously, Γ1(p) are straight lines for p = (tp, xp) ∈ C2 which cannot
intersect, so that for all t ≥ 0

0 ≤ d

dt
λ1(U(t, x2(t, α)))

= [λ2(U(t, x2(t, α))) − λ1(U(t, x2(t, α)))]w1(t, x2(t, α)) ·

·∇λ1(U(t, x2(t, α))) · r1(U(t, x2(t, α)))

and hence

w1(t, x2(t, α)) ≥ 0 ∀t ≥ 0 .(3.11)
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Let us now show that we cannot have, at the same time,

w3(t, x2(t, β)) ≡ 0 ∀t ≥ 0(3.12)

and

w1(t, x2(t, α)) ≡ 0 ∀t ≥ 0 .(3.13)

If this was the case, indeed, we should have:



































d

dt
U(t, x2(t, β)) = Ut(t, x2(t, β)) + λ2(U(t, x2(t, β)))Ux(t, x2(t, β))

= [λ2(U(t, x2(t, β))) − λ3(U(t, x2(t, β)))]·

·w3(U(t, x2(t, β)))r3(U(t, x2(t, β))) ≡ 0
U(0, β) = 0

and, analogously,











d

dt
U(t, x2(t, α)) ≡ 0

U(0, α) = 0 .

Therefore

U(t, x2(t, β)) ≡ 0 ∀t ≥ 0(3.14)

and

U(t, x2(t, α)) ≡ 0 ∀t ≥ 0 .(3.15)

Since

d

dt
U(t, x3(t, y)) = Ut(t, x3(t, y)) + λ3(U(t, x3(t, y)))Ux(t, x3(t, y))

= 0 in D2 ,

then (3.14) implies that U(t, x) ≡ 0 in D2, and hence

wi(t, x) ≡ 0 in D2, ∀i = 1, 2, 3 .

Then from Lemma 1.4 we deduce that

wi(t, x) ≡ 0 in D1, for i = 1, 3 .(3.16)
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Analogously, since

d

dt
U(t, x1(t, y)) = 0 in C2 ,

from (3.15) we have that U(t, x) and hence wi(t, x) are identically zero in C2, for
i = 1, 2, 3, and hence from Lemma 1.4 again:

wi(t, x) ≡ 0 in C3, for i = 1, 3 .(3.17)

Using now Lemma 1.3 for 0 ≤ t ≤ t, where t is the time when Γ3(α)
intersects Γ1(β), from (3.16) and (3.17) we obtain that

w1(t, x) ≡ w3(t, x) ≡ 0 ∀(t, x) ∈ [0,+∞) × R .(3.18)

This means that

Ux(t, x) = w2(t, x)r2(U(t, x)) ∀(t, x) ∈ [0,+∞) × R(3.19)

and hence

d

dt
U(t, x2(t, y)) = Ut(t, x2(t, y)) + λ2(U(t, x2(t, y)))Ux(t, x2(t, y))

= 0 ∀(t, y) ∈ [0,+∞) × R ,

i.e.

U(t, x2(t, y)) = U(0, y) ∀(t, y) ∈ [0,+∞) × R

and the graphs Γ2(y) are straight lines.
Since we are assuming by contradiction to have a global C1 solution, these

straight lines can never intersect, and therefore we must have:

λ2(U(0, y)) ≡ λ2(Uo(y)) ≡ λ2(0) ∀y ∈ R .

This implies that

0 ≡ d

dt
λ2(U(0, y)) = ∇λ2(Uo(y)) · U ′

o(y) = ∇λ2(Uo(y)) · w2(0, y)r2(Uo(y))(3.20)

= w2(0, y)∇λ2(U2(φ2(y))) · r2(U2(φ2(y))) ,

where

φ2(y) =

∫ y

α

w2(0, x)dx ,

since U2(φ2(y)) and U(0, y) satisfy the same Cauchy problem, because of (3.19).
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We can then argue as in the proof of (3.10), showing that (3.4) and (3.20)
imply that

w2(0, y) ≡ 0 ∀y ∈ R .

If there would exist, indeed, some ỹ ∈ R such that w2(0, ỹ) 6= 0, then we should
find, because of (3.4), some ỹ′ ∈ R such that

w2(0, ỹ
′)∇λ2(U2(φ2(ỹ

′))) · r2(U2(φ2(ỹ
′))) 6= 0 ,

contradicting (3.20).
Then w2(0, y) ≡ 0 together with (3.18) imply that ∂xU(0, x) = U ′

o(x) = 0
for all x ∈ R. This contradicts the assumption Uo 6≡ 0, and therefore we cannot
have both (3.12) and (3.13). Then, from (3.10) and (3.11), one at least of the
two following strict inequalities must be satisfied:

w3(t, x2(t, β)) > 0 in some [t1, t2] ⊂ [0,+∞)(3.21)

or

w1(t, x2(t, α)) > 0 in some [t1, t2] ⊂ [0,+∞).(3.22)

But

d

dt
λ2(U(t, x2(t, β))) = [λ2(U(t, x2(t, β))) − λ3(U(t, x2(t, β)))]w3(t, x2(t, β)) ·

·∇λ2(U(t, x2(t, β))) · r3(U(t, x2(t, β)))

≤ 0 ∀t ≥ 0(3.23)

by (3.5) and (3.10), and analogously

d

dt
λ2(U(t, x2(t, α))) = [λ2(U(t, x2(t, α))) − λ1(U(t, x2(t, α)))]w1(t, x2(t, α)) ·

·∇λ2(U(t, x2(t, α))) · r1(U(t, x2(t, α)))

≥ 0 ∀t ≥ 0(3.24)

by (3.5) and (3.11).
Moreover, from (3.21) and (3.22), arguing as in the proof of (3.10), we have

that at least one of the two preceding inequalities, (3.23) or (3.24) must be strict
for some t ≥ 0, because of (3.5). This means that the graphs Γ2(α) and Γ2(β)
must intersect somewhere, contradicting the existence of a global C1-solution of
the Cauchy problem (3.1). We must then have blow-up in finite time. �
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Remark 3.2. Conditions (3.3) and (3.4) are weaker then the genuine
non-linearity condition. Assumption (3.5) is, on the contrary, an extra condition.

Let us now consider an example of application of Theorem 3.1:

Example 3.3 Let us consider the 3 × 3 matrix of U = t(U1, U2, U3):

A(U) =





U3
1 0 U2

2 + 2
0 U3

1 + U2
2 + 1 0

0 0 U3
1 + U2

2 + 2



 .

The matrix A(U) has eigenvalues

λ1(U) = U3
1 , λ2(U) = U3

1 + U2
2 + 1 , λ3(U) = U3

1 + U2
2 + 2 .

They satisfy condition(3.2) with Λ = 1.
We can find the right eigenvectors

r1(U) = t(1, 0, 0), r2(U) = t(0, 1, 0), r3(U) =
1√
2

t(1, 0, 1),

and then compute

U1(s) = t(s, 0, 0), U2(s) = t(0, s, 0), U3(s) =
1√
2

t(s, 0, s) for s ∈ R .

Let us verify that conditions (3.3), (3.4) and (3.5) are satisfied:

d

ds
λ1(U1(s)) = ∇λ1(U1(s)) · r1(U1(s)) = 3s2

d

ds
λ3(U3(s)) = ∇λ3(U3(s)) · r3(U3(s)) =

3

2
√

2
s2

d

ds
λ2(U2(s)) = ∇λ2(U2(s)) · r2(U2(s)) = 2s

d

ds
λ2(U1(s)) = ∇λ2(U1(s)) · r1(U1(s)) = 3s2

d

ds
λ2(U3(s)) = ∇λ2(U3(s)) · r3(U3(s)) =

3

2
√

2
s2 .

Since all assumptions of Theorem 3.1 are satisfied, the solution of the
associated Cauchy problem







Ut + A(U)Ux = 0

U(0, x) = Uo(x) ∈ C1
o (R)3, Uo 6≡ 0
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must develop some singularities in finite time.

Remark that this system is not genuinely non-linear, since all
d

ds
λi(Ui(s))

vanish for s = 0. Not even the assumptions of the theorems of [12] are satisfied
in this example, since U = 0 is not a minimum point nor a maximum point for
any of the eigenvalues λ1(U), λ2(U), λ3(U).
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