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FIRST ORDER CHARACTERIZATIONS OF
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Abstract. First order characterizations of pseudoconvex functions are
investigated in terms of generalized directional derivatives. A connection
with the invexity is analysed. Well-known first order characterizations of
the solution sets of pseudolinear programs are generalized to the case of
pseudoconvex programs. The concepts of pseudoconvexity and invexity do
not depend on a single definition of the generalized directional derivative.

1. Introduction. Three characterizations of pseudoconvex functions are

considered in this paper. The first is new. It is well-known that each pseudo-

convex function is invex. Then the following question arises: what is the type of
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the function η from the definition of invexity, when the invex function is pseudo-

convex. This question is considered in Section 3, and a first order necessary and

sufficient condition for pseudoconvexity of a function is given there. It is shown

that the class of strongly pseudoconvex functions, considered by Weir [25], coin-

cides with pseudoconvex ones.

The main result of Section 3 is applied to characterize the solution set of

a nonlinear programming problem in Section 4. The base results of Jeyakumar

and Yang in the paper [13] are generalized there to the case, when the function

is pseudoconvex.

The second and third characterizations are considered in Sections 5, 6. In

many cases the pseudoconvex functions are quasiconvex. It is interesting when

a quasiconvex function is pseudoconvex. Is there any quasiconvex and invex

function, which is not pseudoconvex? These questions in the case of differen-

tiable functions defined on the space R
n are discussed in the papers [6, 9, 16, 11].

Crouzeix and Ferland [6] gave a first order necessary and sufficient condition for

pseudoconvexity of a quasiconvex function. Giorgi [9] showed that the intersec-

tion of the sets of quasiconvex differentiable functions and invex differentiable

ones is the set of pseudoconvex functions. Komlósi [16] analysed the connec-

tion of this problem with the pseudolinear functions. Giorgi and Thierfeldar [11]

proved in a very short way the sufficient condition of pseudoconvexity. In their

papers Komlósi [15] considered the case of Dini directional derivatives, Tanaka

[24] obtained that a quasiconvex and invex function, which is locally Lipschitz

and regular in the sense of Clarke [5], is pseudoconvex with respect to the Clarke’s

generalized directional derivative. Aussel [3] analysed the second characterization

with the help of the abstract subdifferential, introduced by Aussel, Corvellec and

Lassonde [2]. In the most of these papers is used the property that if f(y) < f(x),

then the derivative of f at the point x in the direction y − x is nonpositive. In

Section 6 of our paper this property is replaced by weaker. As a consequence of

the main result of Sections 5, 6 quasiconvex functions cannot be characterized in

a similar way like pseudoconvex ones.

A similar characterization of the pseudomonotone generalized directional

derivatives to the characterization of Section 3 is considered in Section 7.

Our analysis does not depend on a single definition of the directional

derivative. The cases, when the generalized directional derivatives are the Psche-

nichnyi quasiderivative, the Clarke’s, Dini, Dini-Hadamard (sometimes called

contingent), Michel-Penot derivatives, are considered especially.
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2. Preliminaries. Throughout this work E is a given real topological

vector space, X ⊂ E is an open set, and S ⊂ X is a convex set. The (topological)

dual space of E is denoted by E∗, and the canonical pairing between E and E∗

by 〈·, ·〉. The set of the reals we denote by R, and R = R∪{±∞} is its extension

with the two infinite elements −∞ and +∞. The algebraic operations and limits

with infinite elements are defined as usually in the convex analysis.

Consider a given function f : X → R. Suppose that h(x, u) is a gener-

alized directional derivative of f at the point x in the direction u. The function

h(x, u) may be considered as a bifunction h : X × E → R.

Recall the following concepts.

The point x ∈ X is said to be stationary with respect to h if h(x, u) ≥ 0

for all u ∈ E.

The function f : X → R is said to be quasiconvex on S if

f(x + t(y − x)) ≤ max {f(x), f(y)}, whenever x, y ∈ S and 0 ≤ t ≤ 1.

The following cone is connected to f at each fixed point x ∈ S:

N (x) = {ξ ∈ E∗ | y ∈ S, f(y) ≤ f(x) imply 〈ξ, y − x〉 ≤ 0}.

Actually, this is the normal cone to the sublevel set Lf(x) = {y ∈ S |

f(y) ≤ f(x)} at x. Since f is quasiconvex, then Lf(x) is convex.

The notion of pseudoconvexity for differentiable functions is introduced

by Mangasarian in 1965. Without differentiability assumptions in our case it

might look so: the function f , is said to be pseudoconvex (strictly pseudoconvex )

with respect to h on S if

x, y ∈ S, f(y) < f(x) (x, y ∈ S, x 6= y, f(y) ≤ f(x)) imply h(x, y − x) < 0.

The notion of invexity for differentiable functions is introduced by Hanson

[12]. The function f : X → R is said to be invex with respect to h on S if there

exists a mapping η : S × S → E such that

f(y) − f(x) ≥ h(x, η) for all x, y ∈ S.(1)

The notion of subdifferential issues from the convex analysis, and may

be applied to our directional derivative h. Each continuous linear functional ξ

over E satisfying 〈ξ, u〉 ≤ h(x, u) for all u ∈ E is said to be a subgradient of

f with respect to h at x. The set of all subgradients ∂f(x) at x is called the

subdifferential of f at x. ∂f(x) is (possibly empty) closed convex subset of E.
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3. A characterization of pseudoconvex functions. In this sec-

tion we assume that the derivative h(x, u) satisfies for all distinct x, y ∈ S, u ∈ E

the properties:

1. h(x, u) < ∞.

2. If f is pseudoconvex on S, then f(y) = f(x) implies h(x, y − x) ≤ 0.

The following two theorems gives necessary and sufficient conditions for

pseudoconvexity and strict pseudoconvexity.

Theorem 3.1. Suppose that the derivative h satisfies Properties 1, 2.

Then f : X → R is pseudoconvex on S if and only if there exists a positive

function p : S × S → R such that

f(y) − f(x) ≥ p(x, y) h(x, y − x) for all x, y ∈ S.(2)

P r o o f. The sufficiency is obvious. We shall prove the necessity. Let f be

pseudoconvex. If h(x, y − x) = −∞, then the inequality (2) is obvious. Assume

that h(x, y − x) > −∞. We construct explicitly the function p in the following

way.

p(x, y) =











f(y) − f(x)

h(x, y − x)
, if f(y) < f(x) or h(x, y − x) > 0,

1, otherwise.

The function p(x, y) is well defined, strictly positive, and it satisfies inequality (2).

Indeed, if f(y) < f(x), then h(x, y−x) < 0 by pseudoconvexity. If h(x, y−x) > 0,

then f(y) ≥ f(x) because of the pseudoconvexity again. Let f(y) = f(x) be

possible. According to Property 2, h(x, y − x) ≤ 0, which is a contradiction.

Hence f(y) − f(x) > 0. �

Theorem 3.2. Assume that the derivative h satisfies Property 1. Then

f : X → R is strictly pseudoconvex on S if and only if there exists a positive

function p : S × S → R such that

f(y) − f(x) > p(x, y) h(x, y − x) for all x, y ∈ S.
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P r o o f. The proofs of this and previous theorems are similar. A function

which satisfies the inequality is

p(x, y) =



































2
f(y) − f(x)

h(x, y − x)
, if f(y) < f(x),

1

2

f(y) − f(x)

h(x, y − x)
, if h(x, y − x) > 0,

1, otherwise. �

We shall consider some examples of generalized directional derivatives h.

Example 3.1. Suppose that f is Frèchet differentiable. Let h(x, u) be

the Frèchet directional derivative of f at x in the direction u. This is the clas-

sical case, and our pseudoconvex functions coincide with the pseudoconvex ones,

introduced by Mangasarian [19]. All the properties are fulfilled.

A Frèchet differentiable function, which satisfies inequality (2) in the

finite-dimensional case is called by T. Weir [25] strongly pseudoconvex. But as

we see this class of functions coincides with the differentiable pseudoconvex ones.

Example 3.2. Let h(x, u) be the upper or lower Dini directional deriva-

tive. When f is radially lower semicontinuous, Property 2 is fulfilled, since each

radially lower semicontinuous pseudoconvex function is quasiconvex [10, Theorem

3.5], and for radially lower semicontinuous functions quasiconvexity is equivalent

to the following implication f(y) ≤ f(x) imply h(x, y − x) ≤ 0 if h is the upper

or lower Dini derivative [8, Theorem 4]. When the function is locally Lipschitz,

then the Dini derivatives are finite-valued.

Remark 3.1. Suppose that f(x) is a given pseudoconvex function, and

h(x, u) is its generalized directional derivative such that there exists a positive

function p, satisfying (2). Let g(x, u) be another smaller generalized derivative

of f , that is h(x, u) ≥ g(x, u) for all x ∈ S, u ∈ E. It is obvious that g fulfills (2)

with the same function p. Using this fact we may construct other examples of

generalized derivatives, which are smaller than the Dini derivatives and satisfies

Theorems 3.1, 3.2: lower Dini-Hadamard, lower Clarke’s, lower Michel-Penot

directional derivatives.
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4. Characterizations of the solution sets.Consider the global mini-

mization problem

(P ) min f(x), subject to x ∈ S.

As an application of Theorem 3.1 we give first-order characterizations of the

solution set of the program (P ) in terms of any its minimizer. Characterizations

of solutions sets are useful for understanding the behavior of solution methods

for programs that have multiple optimal solutions.

Denote by S the solution set arg min {f(x) | x ∈ S}, and let it be

nonempty. Suppose that the following property is satisfied in this section.

3 (Fermat rule). If f(x) = min {f(x) | x ∈ S}, then h(x, x − x) ≥ 0

for all x ∈ S.

The following lemma is a trivial generalization of a well-known property

of the Frèchet differentiable functions [19, Theorem 9.3.3].

Lemma 4.1. Let f : X → R be pseudoconvex on S, and Property 3 be

satisfied. Then S coincides with the set S∗ = {z ∈ S | h(z, x − z) ≥ 0 for all

x ∈ S}.

P r o o f. The inclusion S ⊂ S∗ follows from Property 3, and the opposite

inclusion is a consequence of the definition of pseudoconvexity. �

The following theorem and corollary are given in the work of Jeyakumar

and Yang [13, Theorem 3.1 and Corollary 3.1] in the case when f is a pseudolinear

Frèchet differentiable function.

Theorem 4.1. Assume that f : X → R is pseudoconvex on S, and

Properties 1, 2, 3 are satisfied. Let x be any fixed point of S. Then S = S̃ ⊂ Ŝ,

where S̃ = {z ∈ S | h(z, x − z) = 0}, and Ŝ = {z ∈ S | h(x, z − x) = 0}.

P r o o f. To show the inclusion S ⊂ S̃ suppose that z is an arbitrary point

of S. By Theorem 3.1 there exists p > 0 such that

0 = f(x) − f(z) ≥ p h(z, x − z).

It follows from Lemma 4.1 that h(z, x − z) = 0. Therefore z ∈ S̃. The proof of

the statement S ⊂ Ŝ uses the same arguments.

To prove the inclusion S̃ ⊂ S suppose that z is an arbitrary point of S̃,

but z /∈ S. Therefore f(x) < f(z). By pseudoconvexity h(z, x − z) < 0, which

contradicts the assumption z ∈ S̃. �
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Corollary 4.1. Let all the hypotheses of Theorem 4.1 be satisfied. Then

S = S̃1, where S̃1 = {z ∈ S | h(z, x − z) ≥ 0}.

P r o o f. The inclusion S ⊂ S̃1 is a corollary of the theorem. The opposite

inclusion follows from the definition of pseudoconvexity.

5. Criterion for pseudoconvexity of a quasiconvex function. The

viewpoint of the following section is to establish whether a quasiconvex function

can be characterized by a similar inequality of the type (1) like pseudoconvex

functions.

Let from now on S ≡ X. In this section we suppose that the derivative h

satisfies for all x ∈ X Property 3 and the following other properties:

4. The set ∂f(x) is nonempty.

5. h(x, u) considered as a function of u is the support function of ∂f(x),

and h(x, u) = max{〈ξ, u〉 | ξ ∈ ∂f(x)} for all u ∈ E.

6. If f is quasiconvex, then ∂f(x) ⊂ N (x).

In the considered case Property 3 implies that each local minimizer is a

stationary point. As a consequence of Property 5, h(x, u) is positively homoge-

neous, subadditive function of u, and h(x, 0) = 0. It follows from Property 4 that

h(x, u) > −∞ for all x ∈ X, u ∈ H, since for all x ∈ X there exists ξ ∈ ∂f(x).

Therefore h(x, u) ≥ 〈ξ, u〉 > −∞ for all u ∈ E.

Properties 4, 5, 6 are stronger than Properties 1, 2. To prove this fact,

we need of the following statements.

Proposition 5.1. Each pseudoconvex function f : X → R, which satis-

fies Property 4, is quasiconvex.

P r o o f. Assume in the contrary that there exist x, y ∈ X and z =

x + t(y − x), t ∈ (0, 1) with f(z) > max{f(x), f(y)}. By Property 4, there exists

ξ ∈ ∂f(z). Hence, by pseudoconvexity

t〈ξ, x − y〉 = 〈ξ, x − z〉 ≤ h(z, x − z) < 0

(1 − t)〈ξ, y − x〉 = 〈ξ, y − z〉 ≤ h(z, y − z) < 0.

These inequalities contradict each other. �
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Lemma 5.1. Let the function f : X → R satisfy Properties 4, 5. Then

Property 6 is equivalent to the following implication:

If f is quasiconvex, then x, y ∈ X, f(y) ≤ f(x) imply h(x, y − x) ≤ 0.(3)

P r o o f. Suppose that Property 6 is satisfied and f(y) ≤ f(x). By Prop-

erty 5 there exists ξ ∈ ∂f(x) such that h(x, y − x) = 〈ξ, y − x〉. It follows from

Property 6 that ξ ∈ N (x). Therefore 〈ξ, y − x〉 ≤ 0.

Assume that implication (3) is fulfilled. To prove Property 6 suppose that

ξ ∈ ∂f(x) and f(y) ≤ f(x). Hence 〈ξ, y−x〉 ≤ h(x, y−x) ≤ 0, and ξ ∈ N (x). �

Property 1 follows from Properties 4, 5. By Proposition 5.1 and Lemma 5.1

we conclude that Property 2 is a consequence of Properties 4, 5, 6.

We shall use the following lemma, which is given without proof in the

book of Nesterov [21], when the space is R
n.

Lemma 5.2. Let f : X → R be upper semicontinuous and quasiconvex.

Then

x, y ∈ X, f(y) < f(x) imply 〈ξ, y − x〉 < 0 for all ξ ∈ N (x), ξ 6= 0.

P r o o f. Assume in the contrary that there exist x, y ∈ X, f(y) < f(x)

and ξ ∈ N (x), ξ 6= 0 satisfying 〈ξ, y − x〉 ≥ 0. By the definition of the cone

N (x), we obtain 〈ξ, y − x〉 = 0. Since f is upper semicontinuous, then the strict

sublevel set SLf(x) = {z ∈ X | f(z) < f(x)} is open. Therefore there exists a

neighborhood Uy of y such that Uy ⊂ SLf(x). There exists a neighborhood U

of the origin of the space such that Uy = y + U . By the definition of the cone

N (x), 〈ξ, y + z − x〉 ≤ 0 for all z ∈ U . Hence 〈ξ, z〉 ≤ 0 for all z ∈ U . There

exists a balanced neighborhood V of the origin, that is λz ∈ V for all z ∈ V and

λ ∈ [−1, 1], satisfying V ⊂ U . Since −z ∈ V for all z ∈ V , then 〈ξ, z〉 = 0 for all

z ∈ V . Using the continuity of the linear operations, it follows from 0.z1 = 0 for

all z1 ∈ E that there exist t ∈ R and z ∈ V , which fulfill the equality z1 = tz.

Consequently, 〈ξ, z1〉 = 0 for all z1 ∈ E. This is impossible according to the

assumption ξ 6= 0. �

The following theorem is a necessary and sufficient condition for pseudo-

convexity of a quasiconvex function [3, 6, 9, 11, 15].
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Theorem 5.1. Assume that the derivative h satisfies Properties 3, 4,

5 and 6. Let f : X → R be quasiconvex and upper semicontinuous. Then f is

pseudoconvex on X if and only if the set of global minimizers coincides with the

set of stationary points.

P r o o f. Necessity. By Property 3 each global minimizer is a stationary

point. Suppose in the contrary that there exist a stationary point x, which is

not a global minimizer. Therefore there exist y ∈ X such that f(y) < f(x). By

pseudoconvexity, h(x, y − x) < 0. This is impossible, since x is stationary.

Sufficiency. Suppose that x, y ∈ X and f(y) < f(x). Since x is not a

global minimizer, according to the hypotheses of the theorem, x is not stationary.

This means that 0 /∈ ∂f(x). By Lemma 5.2, 〈ξ, y−x〉 < 0 for all ξ ∈ N (x), ξ 6= 0.

It follows from Properties 4, 6 that 〈ξ, y − x〉 < 0 for all ξ ∈ ∂f(x). Using

Property 5 we obtain that h(x, y − x) < 0. �

Proposition 5.2. Suppose that the derivative h satisfies Properties 3, 4,

5 and 6. Then each pseudoconvex function f : X → R is invex.

P r o o f. The claim follows directly from Theorem 3.1. �

As a consequence of Propositions 5.1 and 5.2 we make a conclusion that

the set of pseudoconvex functions is a subset of the intersection between the

quasiconvex functions and the invex ones. The converse is valid, too [9, 24].

Theorem 5.2. Assume that the derivative h satisfies Properties 3, 4, 5

and 6. If the upper semicontinuous function f : X → R is quasiconvex and invex,

then it is pseudoconvex.

P r o o f. Otherwise, by Theorem 5.1, there exist a stationary point x ∈ X,

which is not a global minimizer. Therefore there exists y ∈ X with f(y) < f(x).

According to the invexity, there exists η ∈ E such that 0 > f(y) − f(x) ≥

h(x, η) ≥ 0. Now, we obtained a contradiction. �

Example 5.1. Let f be locally Lipschitz, and h(x, u) be the upper

Clarke’s generalized derivative of f at x in the direction u. ∂f(x) coincides

with the generalized gradient of Clarke. All the properties are fulfilled [5], except

for Property 6. If f is regular, then Property 6 is also satisfied [5, Corollary 1

from Theorem 2.4.7].

Example 5.2. Let f be quasidifferentiable in the sense of Pschenichnyi

[23], that is there exists the usual directional derivative f ′(x, u) for all x ∈ X, u ∈

E, it is finite, f ′(x, ·) is convex, and there exists a nonempty closed convex set
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∂f(x) such that f ′(x, u) = max{〈ξ, u〉 | ξ ∈ ∂f(x)} for all x ∈ X. This class of

functions contains the functions, which are regular in the sense of Clarke. In this

case h(x, u) ≡ f ′(x, u). All the properties are fulfilled.

Example 5.3. Let f : X → R be locally Lipschitz and its upper Dini

derivative f↑
D(x, u) = lim sup

t→+0
t−1(f(x+ tu)−f(x)) be upper semicontinuous (as a

function of x) for any fixed direction u. Then f↑
D(x, u) = f↑

Cl(x, u) for all x and u

[7, Proposition 2.1.9]. Therefore the upper Dini derivative satisfies Properties 3,

4, 5. Let’s verify that Property 6 is fulfilled, too. Suppose that f is quasiconvex,

ξ ∈ ∂f(x), and f(y) ≤ f(x). Hence 〈ξ, y − x〉 ≤ f↑
D(x, y − x) ≤ 0, since f is

quasiconvex.

The locally Lipschitz function f : X → R is said to be pseudo-regular if

f↑
D(x, u) = f↑

Cl(x, u) for all x ∈ X and u ∈ E. It is known that a pseudo-regular

function is not necessarily regular (see [22] for an example).

In the considered case the upper Dini-Hadamard derivative coincides with

the the upper Dini derivative, and it satisfies all these properties.

Example 5.4. Let h(x, u) be the Michel-Penot derivative [20]. When

the function is locally Lipschitz, Properties 3, 4, 5 are fulfilled. If the function

is semiregular [4], that is there exists the usual directional derivative, and it

coincides with the Michel-Penot derivative, then it satisfies Property 6, too.

Remark 5.1. A quasiconvex function f : X → R, which is not pseudo-

convex on X cannot be characterized by a similar inequality of the type (1), as

the pseudoconvex functions can. Indeed, suppose that there exist a mapping

η : X × X → E of some type, which satisfies (1). Thanks to Theorem 5.2,

f is pseudoconvex. This conclusion contradicts the assumptions that f is not

pseudoconvex.

6. ∂-pseudoconvex functions. The properties assumed in Section 5

that the directional derivative must satisfy are too strong. In this section we

weaken Property 5 into the following.

7. h(x, u) is positively homogeneous function of u for all x ∈ X.

8. h(x, 0) ≤ 0 for all x ∈ X.



First order characterizations of pseudoconvex functions 213

In this case another notion of pseudoconvexity may be used to satisfy

Theorems 5.1 and 5.2. The function f : X → R is called ∂-pseudoconvex if

x, y ∈ X, f(y) < f(x) imply 〈ξ, y − x〉 < 0 for all ξ ∈ ∂f(x).

Each pseudoconvex function is ∂-pseudoconvex. When Properties 4, 5 are satis-

fied, these two notions coincide. But when Property 5 is replaced into Properties

7, 8, Property 6 is weaker than the implication (3). In this case a ∂-pseudoconvex

function is not necessarily quasiconvex.

Example 6.1. Consider the function

f(x) =

{

x2, if x 6= 0,

1, if x = 0.

It is ∂-pseudoconvex, if we take h(x, u) to be the lower Dini-Hadamard

derivative, but f(x) is not quasiconvex.

If Property 4 is fulfilled, then Proposition 5.1 can be generalized to the

following.

Proposition 6.1. Each ∂-pseudoconvex function f : X → R, which

satisfies Property 4, is quasiconvex.

P r o o f. It repeats the arguments of the proof of Proposition 5.1. �

We must change Propositions 5.2 as follows.

Proposition 6.2. Let Properties 7, 8 be fulfilled. Then each ∂-pseudo-

convex function f : X → R is invex.

P r o o f. Assume that there exists a function f , which is ∂-pseudoconvex,

but it isn’t invex. Then there exist x, y ∈ X such that

f(y) − f(x) < h(x, u) for all u ∈ E(4)

Since h(x, 0) ≤ 0, we conclude that f(y) < f(x). If there exists some η ∈ E such

that h(x, η) < 0, then the inequality (4) will not be satisfied for all directions of

the type tη, where t > 0 is sufficiently large. Therefore 〈0, u〉 = 0 ≤ h(x, u) for all

u ∈ E. According to the definition of the subdifferential 0 ∈ ∂f(x). But the last

inclusion contradicts the inequality f(y) < f(x), because f is ∂-pseudoconvex. �

We must change Theorems 5.1, 5.2 as follows. Their proofs remain the

same.
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Theorem 6.1. Assume that the derivative h satisfies Properties 3 and

6. Let f : X → R be quasiconvex and upper semicontinuous. Then f is ∂-

pseudoconvex on X if and only if the set of global minimizers coincides with the

set of stationary points.

Theorem 6.2. Assume that the derivative h satisfies Properties 3 and 6.

If the upper semicontinuous function f : X → R is quasiconvex and invex, then

it is ∂-pseudoconvex.

Example 6.2. The following example shows that the word “global” in

Theorem 6.1 cannot be replaced by the word “local”, as it is in the differentiable

case [6, Theorem 2.2]. Consider the function

f(x) =

{

0, if x < 0,

1, if x ≥ 0.

It is quasiconvex and upper semicontinuous on R. Let h be the lower Dini-

Hadamard derivative. Then this function satisfies Properties 3 and 6. The set of

local minimizers and the set of stationary points coincide with (−∞, 0) ∪ (0,∞),

but f is not ∂-pseudoconvex on R.

Example 6.3. Let h(x, u) be the lower Dini-Hadamard directional deriv-

ative. It satisfies all the properties assumed in this section [1]. We must only prove

Property 6. Really, let ξ ∈ ∂f(x) and y ∈ X be arbitrary such that f(y) ≤ f(x).

Using the quasiconvexity of f , we obtain

〈ξ, y − x〉 ≤ f↓
DH(x, y − x) = lim inf

(t,u′)→(+0,y−x)

1

t
(f(x + tu′) − f(x))

≤ lim inf
t→+0

1

t
(f(x + t(y − x)) − f(x)) ≤ 0.

Here we have denoted by f↓
DH(x, u) the lower Dini-Hadamard directional deriva-

tive of f at x in the direction u. Therefore ξ ∈ N (x), and ∂f(x) ⊂ N (x).

It is seen that a function for which the lower Dini-Hadamard subdifferen-

tial ∂f(x) 6= ∅ for all x, is lower semicontinuous.

Example 6.4. The lower Dini derivative f↓
D(x, u) of an arbitrary func-

tion is an example of generalized derivative, which satisfies Properties 3, 6, 7, 8.
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7. A characterization of pseudomonotone bifunctions. In a

very general treatment, a generalized directional derivative might be considered

as a bifunction h(x, u) with values from R, where x refers to a given point of a

given subset X of E and u refers to a given direction of E.

The pseudomonotone maps were introduced by Karamardian [14]. A

study of the pseudomonotonicity for generalized directional derivatives (bifunc-

tions) has appeared in Komlósi [17, 18] (see also references contained therein).

The bifunction h(x, u) is called pseudomonotone (strictly pseudomono-

tone) on X, if for every pair of distinct points y, z ∈ X we have

h(y, z − y) > 0 (respectively h(y, z − y) ≥ 0) implies h(z, y − z) < 0.

The following theorem is a necessary and sufficient condition for pseu-

domonotonicity.

Theorem 7.1. Let the bifunction h(x, u) take only finite values. Then

h is pseudomonotone (strictly pseudomonotone) on X if and only if there exists

a negative function p : X × X → R such that

h(z, y − z) ≤ p(y, z) h(y, z − y) for all y, z ∈ X(5)

(h(z, y − z) < p(y, z) h(y, z − y) for all distinct y, z ∈ X).

P r o o f. We shall consider only the pseudomonotone case, because the

strictly pseudomonotone one is analogous. The proof is similar to the proof of

Theorem 3.1. The sufficiency is obvious.

Necessity. Suppose that h is pseudomonotone. We construct explicitly

the function p in the following way.

p(y, z) =











h(z, y − z)

h(y, z − y)
, if h(y, z − y) > 0 or h(z, y − z) > 0,

−1, otherwise.

The function p(y, z) is well defined, strictly negative, and it satisfies inequality

(5). �

Example 7.1. An example of a generalized derivative, which is pseu-

domonotone or strictly pseudomonotone, is the lower Dini derivative of pseudo-

convex (respectively strictly pseudoconvex) functions [17, Theorems 4, 5]. It is
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finite-valued, when the function is locally Lipschitz.
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