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DIVISIBLE CODES – A SURVEY

Harold N. Ward

Communicated by R. Hill

Abstract. This paper surveys parts of the study of divisibility proper-
ties of codes. The survey begins with the motivating background involving
polynomials over finite fields. Then it presents recent results on bounds and
applications to optimal codes.

1. Introduction. Let C be an [n, k, d]q code over GF (q), where q is a
power of the prime p. Following Assmus and Mattson [2], we shall construe C as
a k-dimensional GF (q)-vector space endowed with an indexed set Λ = Λ(C) of n
coding (or coordinate) functionals λ1, . . . , λn that belong to the dual vector space
C∗. A member c of C is encoded as the n-tuple (λ1(c), . . . , λn(c)) in the ambient
space GF (q)n. The weight w(c) is the number of nonzero components of this
n-tuple, and d is the smallest nonzero weight among members of C. It may be
that some λi is a scalar multiple of some other λj , but one tacitly assumes that
none of the λi is the 0 functional. The λi must satisfy the coding axiom: if c ∈ C
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and c encodes to the all-0-word, then c = 0. The arc K = KC in the projective
space PG(C∗) based on C∗ is the multiset of points for which the multiplicity
K(P ) is the number of times that P is represented by a member of Λ.

If Λ′ ⊆ Λ, the shortened code C ′ of C determined by Λ′ is the subspace
{c|λi(c) = 0 for all λi ∈ Λ′}, with Λ(C ′) = {λj|λj /∈ Λ′}. On the other hand, the
residual code determined by Λ′ is C/K, where

K =
{

c ∈ C|λi(c) = 0 for all λi ∈ Λ′
}

and Λ(C/K) is the set of functionals induced by the members of Λ′ on C/K. For
the most common situation, that of the residual code C/ 〈c〉 of a member c of C,
one takes Λ′ = {λi|λi(c) = 0}.

If D is a subspace of the code C, the support supp(D) of D is the set of
coding functionals of C that do not vanish identically on D. The support length
n(D) is |supp(D)|. For a codeword c, we put |c| = supp(〈c〉); w(c) is the support
length of 〈c〉. The nonzero members of 〈c〉 form a ray of weight w(c). When
D is regarded as a code with Λ(D) = supp(D), one calls D a subcode of C to
emphasize this structure. Suppose that P is represented by a member of supp(D).
Then the restrictions to D of the KC(P ) functionals λi for which P = 〈λi〉 all
represent a point Q of KD with multiplicity KD(Q) ≥ KC(P ). We shall say that
point P of KC is contained in point Q of KD. To ease visualization we shall
often work with a generator matrix of a code. A column displays the values of
the corresponding coding functional on the members of the code selected for the
rows of the matrix.

One final item of record: if C is a k-dimensional code over GF (q), then

∑

c∈C

w(c) = n(C)(q − 1)qk−1,

or equivalently,
∑

w(c) = n(C)qk−1,

where this sum is taken over representatives of the rays in C. This well-known
average weight equation (AWE) is the second of the MacWilliams identities. It
is often proved separately by double-counting pairs of codewords and coordinate
values. As we all know, AWE is awesomely useful!

A linear code C is said to be divisible by ∆ if the weight of every codeword
is a multiple of ∆. We say that ∆ is a divisor of C and write ∆|C. The following
fact is elementary but important [27, Theorem 1]:
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Theorem 1. If ∆ is relatively prime to the field size q, then a code
divisible by ∆ (with no 0 coordinates) is a ∆-fold replicated code: ∆|KC(P ) for
all P .

Such a replicated code is equivalent to one obtained from a shorter code by
repeating each coordinate ∆ times.

2. The theorem of Ax. Several families of classical codes exhibit
nontrivial divisibility, and the most prominent family comprises the generalized
Reed-Muller (GRM) codes. The theorem of Ax [3] describes their divisibilities.

Theorem 2. The r-th order generalized Reed-Muller code Rq(r,m) over
the field GF (q) is divisible by q⌈m/r⌉−1. Moreover, if p is the prime dividing q,
this divisor is the highest power of p that divides the code.

This theorem was the end of a sequence of theorems about the existence of zeros
for polynomials in several variables that were proved in response to a conjecture
of Artin. The intermediate results were established by Chevalley and Warning in
the early 1930s.

Ax’s theorem leads naturally to two sorts of generalizations. Let V be
the underlying vector space upon which Rq(r,m) is based. That is, V has di-
mension m over GF (q), and the codewords of Rq(r,m) are the evaluation vectors
on V of polynomials in m variables of degree at most r over GF (q). The affine
general linear group AGL(V ) consists of the transformations v → Av + b, where
A is a nonsingular linear transformation from V to V (a member of the general
linear group GL(V )) and b ∈ V . The group AGL(V ) induces automorphisms of
Rq(r,m) by the induced change of polynomial variables. On the one hand, the
translation subgroup T (V ), consisting of the transformations with A the identity,
is an elementary Abelian group of order qm. Because of the action of T (V ), the
GRM codes can be realized as ideals in the group algebra of T (V ) over GF (q)
[20]. On the other hand, GL(V ) contains an element of order qm − 1 permuting
the nonzero members of V (leading to the famous Singer cycle on PG(V )). Punc-
turing Rq(r,m) by omitting the evaluation at 0 produces a cyclic code Rq(r,m)∗

which is, in fact, a subcode of a BCH code whose designed minimum weight is
that of Rq(r,m)∗ itself [1, Section 5.5]. Thus the GRM codes arise as (extended)
group algebra codes for which the group algebra is semisimple (the group order
is relatively prime to q) in the cyclic case, and as far as possible from being semi-
simple in the elementary Abelian case. Both of these aspects of the GRM codes
have served as inspirations for the study of divisibility properties of other families
of group algebra codes.
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2.1. The semisimple case. Delsarte and McEliece proved a major
generalization for Abelian groups in the semisimple case, using Ax’s techniques
[9]. It is rather complicated, but for a cyclic code over the prime field GF (p), it
becomes an easily stated earlier theorem of McEliece [22].

Theorem 3. Let C be a cyclic code over GF (p), p a prime, whose length
n is prime to p. Let x be the cyclic shift of order n involved in the definition of
C, and let E be the set of eigenvalues of x on C. Then the highest power of p
dividing C is pe, where m = (p − 1)(e + 1) is the smallest multiple of p − 1 for
which a product of m members of E (allowing repetitions) is equal to 1.

(Note that when 1 is an eigenvalue C contains the all-1 word and e = 0.) For
example, if ζ is a primitive 11-th root of unity over GF (3), the 5-dimensional
“even-like” cyclic subcode of the [11, 6, 5]3 ternary Golay code of words with
weight divisible by 3 can be taken to have check polynomial equal to the minimal
polynomial of ζ. Then E =

{

ζ, ζ3, ζ4, ζ,5 , ζ9
}

. No product of two members of E
is 1, but ζ × ζ × ζ4 × ζ5 = 1. Thus e = 1 (as is obvious - the word weights are 6
and 9!).

The fact that a product of m eigenvalues of x is 1 means that the code
C, as a space on which the cyclic group 〈x〉 acts, has a nontrivial 〈x〉-invariant
multilinear form of degree m. Such forms can be produced from 〈x〉-invariant
functions, using the inclusion-exclusion polarization formula developed in [26]1 .
In particular, if C is divisible by pe, the function c → w(c)p−e can be read modulo
p to produce such a function on C. This was the point of departure for the paper
[28] that led to generalizations both of Theorem 3 and of results in [9]. Among
the codes studied in the paper are one-sided ideals that are direct summands of
the group algebra GF (q)G of a finite group G. Such codes include group algebra
codes in the semisimple case.

Some recent researches deal with the binary case of McEliece’s theorem.
In one direction, the theorem was reproved and extended to cyclic codes over
Z2l , l arbitrary, by Calderbank, Li, and Poonen [8]. Their methods involve local
fields, and they suggest that their strategy will extend to group ring codes for
Abelian groups over Zq, where q is a prime power relatively prime to the group
order. In another direction, Hollmann and Xiang have used the theorem to
determine weight distributions of a number of binary cyclic codes of primitive
length (n = 2m − 1) whose generator polynomials are products of few irreducible

1When I wrote [26], I was sure the idea was not new, but I did not discover a source.
Recently I found a number of papers that deal extensively with this form of polarization for
modules (some preceding mine), including a long series by A. Prószyński beginning with [23].
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polynomials [14, 15]. Their work involves developing methods for computing the
required shortest product of eigenvalues equal to 1.

2.2. The radical case. When GRM codes over GF (q) are viewed as
ideals of the group algebra of an elementary Abelian p-group, p the prime dividing
q, one is confronted with what might be called the radical case, since the radical
of the group algebra has codimension 1 (it is the set of elements whose coefficient
sum is 0). The paper [31] dealt with codes that are powers of the radical of
GF (q)G, where G is a p-group, and certain generalizations. The description of
their divisibility properties required the results of [29]. These provide criteria
for determining the highest power of p dividing a code in terms of computations
made from a spanning set of the code. The criteria involve lifting components
of codewords back to a p-adic field by means of Teichmüller representatives.
Methods employed in their development are similar to those used in [3] and [9],
and they make use of polarization formulas.

The criterion for divisibility for binary codes is particularly easy to de-
scribe. It can be proved from the classic formula

w(a + b) = w(a) + w(b) − 2w(a ∗ b)

for binary words a, b, where a ∗ b is the component-wise product of a and b. This
formula itself is the prototype for the polarization process applied to codes. Let
M be a generator matrix for a binary code, and let M0 be M regarded as a matrix
of 0s and 1s in Z. The m-fold dot product of a collection of rows r1, . . . , rm of
M0 is the sum of the entries in r1 ∗ · · · ∗ rm. In this binary case this is simply the
weight of r1 ∗ · · · ∗ rm with the ri taken as the original binary words; but it is the
computation in Z that generalizes.

Proposition 4. The code with generator matrix M has 2e as a divisor
exactly when for all positive m ≤ e, 2e−m+1 divides the m-fold dot product of all
collections of m rows of M0, duplications allowed.

For example, the matrix












1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0













generates R2(1, 4) and satisfies the criterion with e = 3 (as it should, by Ax’s
theorem!).
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For ternary codes, the analogous result is

Proposition 5. Let M be a generator matrix for a code over GF (3), with
GF (3) = {0, 1,−1}, and let M0 be the matrix obtained by reading the members of
GF (3) as integers. Then 3e is a divisor of the code exactly when 3e+1−m divides
all 2m-fold dot products of the rows of M0 (again with duplications allowed), for
all positive m ≤ e.

Here is a generator matrix for the [11, 5, 6]3 subcode of the Golay code mentioned
before:













1 0 0 0 0 1 0 1 −1 −1 1
0 1 0 0 0 1 1 0 1 −1 −1
0 0 1 0 0 1 −1 1 0 1 −1
0 0 0 1 0 1 −1 −1 1 0 1
0 0 0 0 1 1 1 −1 −1 1 0













Of course, in this case the check amounts to verifying that the code is self-
orthogonal. For general q the divisibility criteria are more complicated. They
were recently used in all their detail by Chris Boner in his thesis [5, 6], in which
he determined the divisors of the projective GRM codes.

Theorem 2 is reproved in [29], but the proof is quite close to that of
Ax. Rather unexpectedly, when the divisibility criteria are applied to the codes
in [31] and tailored to the situation there, a bin-packing problem emerges for
finding the divisor! The divisors of the radical powers of the group algebras of
several classes of p-groups were determined in [31]. Further investigations along
these lines appear in the thesis of Deirdre Smeltzer [25]. A major tool in these
p-group investigations is the Jennings basis for powers of the radical of the group
algebra [17] (see also [16, Chapter VIII]). This basis was important in the paper
of Landrock and Manz [20].

3. The divisible code bound. Theorem 1 implies that if C is an
[n, k]q code divisible by ∆, and ∆ is relatively prime to q, then k ≤ n/∆. The
divisible code bound removes the relatively prime restriction. With p the prime
dividing q, let v be the p-adic valuation on Z: v(x) is the exponent of the highest
power of p dividing x, with v(0) = ∞.

Theorem 6. Let C be an [n, k]q code whose nonzero word weights lie in
the sequence (b − m + 1)∆, . . . , b∆ of m consecutive multiples of ∆. Then

kv(q) ≤ m(v(∆) + v(q)) + v

((

b

m

))

.
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This bound was proved in [30] by character-theoretic means that were inspired by
polarization formulas. A more combinatorial proof using divisibility properties
of Stirling numbers (of both kinds!) appears in [33]. There the divisible code
bound is a special case of a more general bound: let C be an [n, k]q code whose
nonzero weights are among w1, . . . , wm. Then

kv(q) ≤
∑

j

v(wj) + max
i:i≤m

{iv(q) − v(i!)}.

Both of these bounds can be disappointingly weak, but there are cases of equality.
For example, the [11, 5, 6]3 Golay subcode has ∆ = 3, m = 2, and b = 3. The
right side of the divisible code bound is indeed 2 × (1 + 1) + v(

(

3

2

)

) = 5.

The main use of the bound was a sharpening of the upper bound on the
minimum weight of type I binary self-dual codes that comes from Gleason’s the-
orem on the form of the weight enumerator of such codes (see the comprehensive
report [24] by Rains and Sloane on self-dual codes). For an [n, n/2, d]2 self-dual
code, the Gleason bound is d ≤ 2 ⌊n/8⌋ + 2; asymptotically this is d . n/4.
Conway and Sloane improved this to d . n/5 (with a small bounded error term).
When the divisible code bound is applied to the subcode of words with weights
divisible by 4, one obtains the asymptotic bound d . n/6, with an error term
that is O(log n) (coming from the binomial coefficient). Finally, Rains showed
that d ≤ 4 ⌊n/24⌋ + 4, except when n ≡ 22(mod 24), when the “+ 4” becomes a
“+ 6.” Even here, however, the divisible code bound rules out the possibility of
equality in some cases.

For type II, III, and IV self-dual codes, the divisible code bound generally
matches the bound obtained by applying the appropriate version of Gleason’s
theorem – provided that the binomial coefficient term can be controlled! That
term cannot be dispensed with in general, as the example suggests, but one might
hope it could be tightened.

The classification of divisible formally self-dual codes (codes with the same
weight-enumerators as their duals) into five types in the Gleason-Pierce theorem
(see [24, Section 4.1]) has a divisible code version [27]:

Theorem 7. Suppose an [n, n/2]q code C is divisible by ∆ > 1. Then
the possibilities for q and ∆ are limited to the following five types:
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Type I q = ∆ = 2.
Type II q = 2, ∆ = 4, and C is self-dual.
Type III q = ∆ = 3 and C is self-dual.
Type IV q = 4, ∆ = 2, and C is Hermitian self-dual.

Type V ∆ = 2 and C is equivalent to the 2-fold replication of GF (q)n/2.

In this classification, codes that are formally but not actually self-dual appear in
types I and V. The divisible code bound leads to the following result upon which
the previous theorem can be based [33, Section 6]:

Proposition 8. For a given constant δ > 1, consider [n, k]q codes that
are divisible by ∆ and for which k ≥ n/δ. Then ∆ is bounded; and if ∆ > δ, then
q is also bounded.

4. Optimal codes. For given k, q, d, let nq(k, d) be the smallest value
of n among [n, k, d]q codes, a code with that n being called length-optimal. Then
one has the classic Griesmer bound:

nq(k, d) ≥ gq(k, d) =
k−1
∑

j=0

⌈

d

qj

⌉

.

A code attaining this bound is called a Griesmer code. For such a code, the last
term in the sum,

⌈

d/qk−1
⌉

(traditionally labelled s), is the largest multiplicity
among points in the corresponding arc K. A point P with K(P ) = s will be called
an endpoint, since such points occur at the end of the usual generator matrix for
Griesmer codes, represented by the last s columns. Shortening at an endpoint P ,
that is, shortening with Λ′ equal to the set of λi for which 〈λi〉 = P , produces a
Griesmer code of dimension k − 1.

Dodunekov and Manev proved that for a binary Griesmer code, the high-
est power of 2 dividing the minimum weight of the code is a divisor of the code
itself [10]. Making use of the criteria in [29], one can extend this result to Griesmer
codes over prime fields [32]. This general theorem has recently been reproved by
Landjev using polynomial methods [19]. These same methods were used to show
the divisibility of certain of the codes arising in the study of (q2 +q+2, q+2)-arcs
by Ball, Hill, Landjev, and me [4].

Theorem 9. Let C be a Griesmer code over GF (p), p a prime. Then if
pe divides the minimum weight, pe is a divisor of the code.

This theorem places restrictions on the weight enumerator of a Griesmer
code, and they are often strong enough to show that a particular set of parameters



Divisible Codes – A Survey 271

for such a code is impossible. For example, g3(5, 45) = 68, but it has been
known for some time that there is no [68, 5, 45]3 code. The theorem quickly rules
such a code out: the dual code would have no words of weight 1 or 2, since
the corresponding shortenings violate the Griesmer bound. As the only nonzero
weights for the code would be 45, 54, and 63, the first three MacWilliams identities
determine the weight enumerator. But the solution does not have integer values.

On the other hand, there is a [69, 5, 45]3 code, discovered and shown to
be unique by Hill and van Eupen [12]. It is also divisible by 9, a fact illustrating
what seems to be a fairly common phenomenon: divisibility of length-optimal
codes. Such divisibilities can often be proved by careful examination of residual
codes and judicious applications of AWE. The thesis of Chris Jones contains many
examples of such divisibilities for optimal ternary codes that are not Griesmer
codes [18].

There seems to be sufficient evidence to support the following conjecture:

Conjecture 10. Let C be a [gq(k, d), k, d]q Griesmer code, where q is a
power of the prime p. Suppose that pe|d, with pe ≥ q. Then C is divisible by
pe+1/q.

In what follows, we shall prove this conjecture for q = 4 by rather ele-
mentary means.

Lemma 11. Let C be a [gq(k, d), k, d]q Griesmer code. Let s =
⌈

d/qk−1
⌉

and put t = d−(s−1)qk−1. Then the number of endpoints of C is at least gq(k, t).

P r o o f. We have gq(k, d) = KC(PG(C∗)). If e is the number of endpoints,
then

KC(PG(C∗)) ≤ se + (|PG(C∗)| − e)(s − 1)

= e + (s − 1)
qk − 1

q − 1
= e +

k−1
∑

j=0

(s − 1)qk−1−j.

Therefore

e ≥ gq(k, d) −
k−1
∑

j=0

(s − 1)qk−1−j =
k−1
∑

j=0

⌈

d − (s − 1)qk−1

qj

⌉

= gq(k, t). �

In the same vein, we have
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Lemma 12. Let D be an l-dimensional Griesmer subcode of the
[gq(k, d), k, d]q Griesmer code C. That is, n(D) = gq(l, d). Then each endpoint
of D contains at least

qk−l −

{

qk−l

⌈

d

qk−1

⌉

−

⌈

d

ql−1

⌉}

endpoints of C (and this number is positive).

P r o o f. The positivity follows from the fact that ⌈x⌉ < x + 1:

qk−l

⌈

d

qk−1

⌉

−

⌈

d

ql−1

⌉

< qk−l

(

d

qk−1
+ 1

)

−
d

ql−1
= qk−l.

Let Q be an endpoint of D. For a given member µ of D∗, the number of λ in C∗

for which λ|D = µ is qk−l. Suppose that e endpoints of C are contained in Q.
Then

KD(Q) =

⌈

d

ql−1

⌉

≤ e

⌈

d

qk−1

⌉

+ (qk−l − e)

(⌈

d

qk−1

⌉

− 1

)

.

That is,
⌈

d

ql−1

⌉

− qk−l

(⌈

d

qk−1

⌉

− 1

)

≤ e,

the desired inequality. �

Here are some consequences of these two lemmas.

Proposition 13. Let C be a [gq(k, d), k, d]q Griesmer code, and suppose
that q|d. Then C is divisible by p, the prime dividing q.

P r o o f. For fixed d, induct on k; the proposition is trivially true at k = 1.
We present functions on C by means of polynomials, as in the construction of
Reed-Muller codes [1, Section 5.4]. Thus let c1, . . . , ck be a basis of C and
let x1, . . . , xk be indeterminates corresponding to the components relative to
c1, . . . , ck. As usual, we use the abbreviation x = (x1, . . . , xk). Then any function
on C with values in GF (q) is represented by a polynomial f(x), the value of the
function on c =

∑

ξici being f(c) = f(ξ1, . . . , ξk). Interpret each λ ∈ C∗ as
the linear polynomial λ(x) =

∑

λ(ci)xi, and let Λ(C) = {λ1, . . . , λn}. Then if

w(x) =
n
∑

i=1

λi(x)q−1, we have w(c) ≡ w(c)mod(p) for c ∈ C. Let P be an endpoint

of C, with P = 〈λ〉. Change variables in GF (q)[x1, . . . , xk] to make λ(x) one of
the new variables, and set w(x) =

∑

wj(x)λ(x)j , where the coefficients wj(x)
involve the remaining new variables. Since P is an endpoint, the shortening of
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C at P is a Griesmer code of dimension k − 1. This code is divisible by p, by
induction. Thus w(c) = 0 when λ(c) = 0, so that w0(c) = 0 for all c. The
key point now is that since w0(x) has degree at most q − 1, it must be the 0
polynomial, and so λ(x) is a divisor of w(x).

By Lemma 11, C has at least gq(t, k) endpoints, where

t = d − (
⌈

d/qk−1
⌉

− 1)qk−1.

As q|d and k > 1, we have t ≥ q and gq(t, k) ≥ q + 1. Since GF (q)[x1, . . . , xk] is
a unique factorization domain, w(x) must now be divisible by the product of at
least q + 1 distinct linear factors, and that violates the fact that w(x) has degree
at most q − 1. Consequently w(x) = 0 and p is a divisor of C. �

For example, Jones has used this result to show that there is no [85, 5, 72]8
Griesmer code, as part of a research project with Angela Matney and me. By
Proposition 13, the possible nonzero codeword weights of such a code are the
even numbers from 72 to 84. Standard residual arguments rule out 74 and 82. If
w(c) = 78, the residual at c is a [7, 4, 4]8 code. Producing a word of weight 4 in
the residual requires a codeword c′ with n(〈c, c′〉) = 82. Then AWE demands that
78+ eight values from {72, 76, 78, 80, 84} = 8× 82. But 8× 82 = 78+ 7× 72+ 74
shows no such combination exists, and A78 = 0 (with the usual weight enumerator
notation of As for the code and Bs for the dual). Again by a standard argument
from shortenings, one finds that B1 = B2 = B3 = 0. The first four MacWilliams
identities have A72, A76, A80, and A84 as unknowns; but the solution gives
A84 = −1470.

Theorem 14. Let C be a [g4(k, d), k, d]4 code for which 2e|d, with t ≥ 2.
Then 2e−1 is a divisor of C.

P r o o f. Induct on both e and k: the theorem is true for e = 2 by
Proposition 13, and it is true trivially for k = 1. First scale the columns of a
generator matrix of C so that for each point P , the KC(P ) columns corresponding
to P are all the same. Then let c ∈ C, c 6= 0, and rescale the columns of the
generator matrix so that the nonzero entries in c are all 1s. If c has 0 entries in the
columns for some endpoint, then c can be regarded as a member of the shortening
of C at that endpoint. Since the shortening is a Griesmer code, 2e−1|w(c) by
induction. Thus assume that c has 1s at each endpoint (that is, 1s in all the
columns corresponding to endpoints). The strategy now is to find a minimum
weight word z that has each of the nonzero members 1, α, β of GF (4) appearing
at some endpoint. If that can be done, we invoke AWE in the form that counts
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by rays:

w(c) + w(z) + w(z + c) + w(z + αc) + w(z + βc) = 4n(〈z, c〉).

In this equation, z + c, z + αc, z + βc all belong to Griesmer codes that are
shortenings of C, and their weights are divisible by 2e−1 by induction. For the
right side, n(〈z, c〉) − w(z) is the weight of the image of c in the residual code
C/z, a Griesmer code of minimum weight d/4 = 2e−2 and thus divisible by 2e−3,
by induction. Rewriting the equation as

w(c) = 4{n(〈z, c〉) − w(z)} + 3w(z) − w(z + c) − w(z + αc) − w(z + βc)

shows that, indeed, 2e−1|w(c).
We are assuming that e ≥ 3, so that any 2-dimensional Griesmer subcode

is a replicated simplex code [32, Corollary 5] and any of its nonzero words has
weight d. In particular, we may take k ≥ 3. Let D be a 3-dimensional Griesmer
subcode, and let D′ be a 2-dimensional Griesmer subcode of D. If d = 8m,
Lemma 12 shows that each endpoint of D′ contains at least 4−{4 ⌈m/2⌉−2m} ≥ 2
endpoints of D. Set up three rows for a generator matrix of C from words of D,
with the first two rows from D′, in such a way that we see the submatrix





0 0 0 1
0 1 γ 0
1 0 δ 0





where γ and δ are not 0. Here each column represents the
⌈

d/4k−1
⌉

columns of
an endpoint of C each of which is an endpoint of D. Moreover, the second and
third columns are in two endpoints of D contained in a single endpoint of D′.
If a combination of these rows has a 0 anywhere in the displayed columns, then
the combination will be in a 2-dimensional Griesmer subcode of D (being 0 at an
endpoint of D) and thus be a word of weight d.

First of all, we may assume that γ = 1. For if not, then if 1, γ, γ′ are
the three nonzero members of GF (4), γ′ × [row1] + [row2] displays 0, 1, γ, γ′ and
produces the needed z. The matrix above is now





0 0 0 1
0 1 1 0
1 0 δ 0





Then if δ = 1, the combination α × [row2] + β × [row3] shows β, α, 1, 0, again
providing a desired z. Thus we may assume that δ 6= 1. But now if δδ′ = 1, then
δ × [row1] + [row2] + δ′ × [row3] gives δ′, 1, 0, δ and yields the needed z. �
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Hill and Landjev [13] showed that n4(4, 80) = g4(4, 80) + 1 = 108. To see
that no [107, 4, 80]4 code exists from Theorem 14, suppose that C is such a code.
Then C is divisible by 8, and its possible word weights are 80, 88, 96, 104. Known
values of n4(3, d) rule out 96 and 104 by their residual parameters. Letting
Ai(D) and Bj(D) refer to the enumerators involving code D in what follows,
we find from the MacWilliams identities that A80(C) = 237, A88(C) = 18, and
B2(C) = 75. Now with thanks to Ray Hill, we construct a [6, 4, 2] code “dual”
to C in the sense of Brouwer and van Eupen [7]. The code space for the dual is
indeed C∗. We identify C∗∗ and C and take representatives e1, . . . , e6 of the six
rays of 88s in C to be the coordinate functionals. Then the weight of a nonzero
λ in C∗ is 6 − e(λ), where

e(λ) = |{j|λ(ej) = 0}| = A88(ker λ)/3.

Using the fact that dim(ker λ) = 3 and n(ker λ) = 107 − KC(〈λ〉), the first two
MacWilliams identities determine the A88(ker λ):

KC(〈λ〉) number of such λ A88(ker λ) e(λ)
2 75 (= B2) 0 0
1 171 (= 3(107 − 2B2/3)) 6 2
0 9 (= 255 − 75 − 171) 12 4

(notice that since no e(λ) is 6, the coding axiom is satisfied for C∗). Thus
A2(C

∗) = 9, A4(C
∗) = 171, A6(C

∗) = 75. But now more MacWilliams identities
yield B3(C

∗) = −6, which will not do!
We close by calling attention to the problem discussed at the end of [32],

which may be expanded to this: for odd q, does there exist a
[3(q2 + 1)/2, 4, 3(q2 − q)/2]q two-weight code, the second weight being
(3q2 − q)/2? For q > 3, such a code would meet the Griesmer bound. When
q = 3, the [15, 4, 9]3 sporadic code discovered by van Lint and Schrijver [21] is
such a code. Moreover a [39, 4, 30]5 code arises in the construction of certain
difference sets cited in [32]. For q > 5, however, the existence of such a code
seems to be unknown.
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