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ABSTRACT. In this paper, we introduce a further generalization of the
gamma function involving Gauss hypergeometric function o F} (a,b; ¢; z) by
means of:

b o £\ t
(1) D (“’ ’C’p) - v_“/ gu-1 (1 - —) e PyF, <a,b; ; ——> dt
U7U75 0 v v

where Re u > 0,Re p > 0,|argv| < . This reduces to Kobayashi’s [7]
generalized gamma function when § = 1, p = 1 and b = ¢. Also, it reduces
to a function defined by Al-Musallam and Kalla [2, 3] when 6 = 1. The
generalized incomplete and the complementary incomplete functions asso-

ciated with D (i;bﬁs” ) are also introduced. For these functions we obtain

some properties and recurrence relations satisfied by them and we establish
asymptotic series expansions for each of them.
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1. Introduction. Special functions in advanced mathematics are fre-
quently defined by means of improper integrals.An important example is the
gamma function. The gamma function I'(u) for a complex variable u is defined
by

(1.1) ['(u) :/ t“le7tdt, Rewu>0
0

This function is one of the simplest but very important special functions occuring
in many branches of mathematical physics and a knowledge of this function is
required to study other special functions [4, 5, 9]. Kobayashi [7, 8] has considered
and studied the function:

[ee) ufleft
(1.2) Fm(u,v):/o Wdt

where m is a positive integer, Re u > 0, |v| > 0 and |argv| < m; which he called
it a generalized gamma function. The function, defined by (1.2) is essentially a
confluent hypergeometric function of the second kind [4, 5, 9].

This function is of great importance in the wave scattering and diffrac-
tion theory as related to the Wiener-Hopf technique [8], since the multiple edge
diffraction process can be described explicity in terms of this special function.

Although the Wiener-Hopf technique [10] is a powerful tool for studying
wave scattering and diffraction problems related to strips and slits [8], it is how-
ever restricted to the case where obstacles have a semi-infinite boundary. Some
geometries (obstacles) with finite boundaries can still be formally treated by this
technique to obtain some form of exact solutions. Applying asymptotic to the
formal solution, one obtains explicit approximate solutions.

Anticipating that some diffraction problems with obstacles of different
geometries (other than slits and strips), one may require the study of other forms
of generalized gamma functions, Al-Musallam and Kalla [1] introduced a furthest
generalization of the gamma function in the following form:

b 0 t
(1.3) D (“’ ’C’p> = v—a/ e Py Ry <a, bic; ——> dt
U, v 0 v

Re u > 0,|argv] < 7 where a,b and ¢ are complex parameters with ¢ #
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0,—1,—2,..., Re p > 0, and 2Fi(a,b;c; z) is the Gauss hypergeometric func-
tion [6]. These functions have been used to define and study several gamma-type
distributions [1, 6]. In this paper, we consider another generalization of the
Kobayashi’s function (1.2) in the following form:

00 6—1
(14) D (a’ i, C’p> = U_a/ ! <1 - E) e Py <a, b; c; —£> dt
U, v, 0 0 v v

where Re u > 0,Re p > 0,|argv| < m,b,a and ¢ are complex parameters with
c#0,—-1,-2,... and 2Fj(a,b; ¢; z) is the Gauss hypergeometric function.

We observe that for § = 1, (1.4) reduces to the function (1.3) defined and
studied in [1, 2].

The rest of the paper is organized as follows. In section 2 we describe the

a,b, c
generalized incomplete and complementary incomplete functions of D ( o ’f) .
u7 ,U7

In section 3 we give some properties including recurrence formulas associated with
these functions. Section 4 contains asymptotic series expansions associated with
the functions. Section 5 contains a summary and a brief discussion.

2. The generalized incomplete and complementary incom-

a,b,c b
plete functions of D &P . In relation with D (a, &P
u,v, u, v, 0
duce, for w > 0, the generalized incomplete gamma function defined by

b w £\ t
(2.1) Dy <a, ’c’p> = va/ et (1 — —> e Py Py (a, b; c; ——) dt
u, v, 0 0 v v

where Re u > 0,Re p > 0,|argv| < m,a,b and ¢ are complex parameters with

) we intro-

c#0,—1,-2,..., and oFj(a,b;c; z) is the Gauss hypergeometric function, and
the generalized complementary incomplete gamma function given by

b oo £\t t
(22) DX <a’ ’c’p> - v—“/ ol (1 - —) e PR (a, b; c; ——) dt
U, v, 0 w v v

with the same conditions established in (2.1).
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Thus, it follows that

a? b7c7p a? b7c7p a? b7c7p
D = DY D .
(u,v,(5> 0<u,v,(5>+ v <u,v,(5
For § =1,p =1,b = ¢, and a = m (m a positive integer) and using the relation
for Gauss hypergeometric function [9, p. 258]

Flo, B 52) = (1 —2)7%, arg[l —z[ <m

equation (2.2) reduces to the generalized incomplete gamma function I'y, (u, v, w)
considered by Kobayashi [7]

o0 tu—le—t
2.3 r = ——dt
(23) R ==
If m=0 this result reduces to the well known complementary incomplete gamma
function

o
(2.4) I'(u, w) :/ tvle~tdt
w

On the other hand, if § = 1, p =1 and a = 0 in (2.1) we obtain the incomplete
gamma function

(2.5) ’y(u,w):/ t“ e tdt.
0

This function most commonly arises in probability theory especially in those

applications involving the chi-square distribution.
a7 b7 c? p

and Dy which
U, v, 0 u, v, 0
can be easily deduced by using the fundamental theorem of Calculus and from

a? b7 c?
Now,we list some properties of Dy ( P

the corresponding definition.
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d . _ w1 | (6 —=1) a,b,c,p a,b,c,p
_ qu — u—1 Dw s Uy &y Dw s Uy &y
dw [’w 0] v [ v 0 <u—|—1,v,5—1 +rPo uw+1,v,0

ab a+1,b+1,c+1,p
2. —Dy ’ ’ ’
(26) +c 0( u+1,v,0 ﬂ

v v

(27) _((5_ 1)D(1)u < a7b¢cvp ) —pDZjU< a,b,c,p >

v u+1,v,6 —1 u+1,v,6

i [(1 _ B)l_és DE“)”] =t (1 — B)_M—l [w (1 — E>_1 (9 ; 1)D6" + uDy

abDw a+1,b+1,c+1,p
¢ 9 u+1,v,6

d a,b,c,p
= [ePW DW] = pePw DW AR g)
ey = pereny (40

i—1
(2.8) +o vt (1 — E) o F1 (a, b; c; —E> .
v v

d —u oo —u—1 ((5_1) 00 avb)cap 00 a,b,c,p
@[w D) =—w [ v Dy u+1,v,0 —1 T pDy u+1,v,0

b 1,b+1 1
(2.9) I
c u+1,v,0

i [(-3) o] = () [ (1) o s
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(5_ 1) a, bu ¢ p a, b7cap
v Y A\u+1,v,6 -1 PHw u+1,v,0

ab . (a+1,0+1,c+1,p
(2.10) —?Dw ( w106 ﬂ

d o u— w91 w
(2.11) T [P D] = peP? D — p~%qyu ! (1 - ;) o1 ((17 b; ¢; _;)

For p =1, a =0 and § = 1 then the above formulas become:

% [y (u,w)] = —w " Ty (u+ 1,w),
L ()] =y ) — u+ 1),
L o (u,w)] = €y, 0) +

d . . R

A [0 T w)] = 0T L)
) = 07 ) — T 1,
d

70 [€“T (u, w)] = e“T(u, w) — w* L.
These formulas indicate relationship between the generalized incomplete and com-
plementary incomplete functions with the familiar complementary gamma func-
tion and its companion.

For p=1,b=cand 6 =1 then (2.9), (2.10), (2.11) give the new relations
for Iy (u, v, w)

%[w_"I’a(u,v,w)] = —w Ty (u + 1,v,w) + alqpq (u + 1,v,w)],

d

%[Fa(u,v,w)] = w ulg(u,v,w) — To(u+ 1,v,w) — algy1(u + 1,0, w)],

—[€“T o (u,v,w)] = e“Ty(u,v,w) — w* (v 4+ w)™
w
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3. Recurrence relations. Using the relations of Gauss between con-
tiguous functions 9Fj(a,b;c;z) [5, pgs. 103-104, No.(2.8.31)—(2.8.45)] and
the definition of the generalization of the gamma function (1.4), the following
relations hold.

b
For Convenience D = D (a, ,c,p) )

u, v, 0
a,b+1,¢p a+1,b,¢c,p
1 b—a)D = bD — auD
(3:1) (b=a) < 00,8 > w ( .8 )

a7buc7p a_17buc7p
—24)uD = (a — b)D —a)D
(¢ —2a)v (a —b) <u+ 1’7)75) +(c—a) ( w06 >
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(c—a—bvD = (c—a)D (G—l,b,qp) D <a7b+1ucyp>

’LL,’U,(; ’LL,’U,(;

a>b+1>cvp
3.6 —bD
(3.6) ( u+1,v,6 )

— a_17bucyp a,b,c,p
(b—a)vD = (c a)D( w6 > (b a)D<u+1’v75>

(3.7) -4c_byu>(%b-'Lap>

u, v, 0

a—1,b,¢c,p a,b,c,p a,b,c+1,p
3.8 D =c¢D —cD —b\D
(38) cv ¢ ( u, v, > ¢ <u+1,v,(5>+(c ) <u+1,v,5>

a,b,c—1,p a,b,c—1,p
—1DvD = (¢c—1)vD —1)D
(@a—1)v (c—1)v ( w8 >+(c ) (u—l—l,v,é)

a’ub7cap a—l,b,c,p
39 —e—o-np( NP ) —eap (07 1N

a,b—1,¢,p a,b,c,p a,b+1,¢c,p
—2b)vD = (c—b)vD b—a)D D
(c=2b)v (c=b)v ( 0. >+( a) <u+ 1’7}75) v ( 0.8

a,b+1,¢c,p
3.10 —bD
310 <U+Lw5>

b b+1 b+1
cbuD = —c(c — a)D a,0,¢,p + bevD a,b+1,¢,p 4 beD a,b+1,¢,p
U+17’(},(5 U,U,5 u—|—]_’/1)75
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a7b7c+]‘7p
1 — —b)D
(3.11) He-a)e-np (4N
avb>c_17p a>b+1>cvp
12 —b—1)D=(c—1)D —bD
(312) (e b-1)D=(c—1) ( e ) ( o )

a7buc7p a7b_1uc7p a7buc7p
. <ww5> . ( 0,0 > ‘ <u+Lu5

a7b7c+17p
U, v, 0

(3.13) —@—@D(

et (4170 (52

u, v, 0 u+1,v,0

a,b,c,p aab_lacvp
(3.14) (c—a 1)D<u—|—1,’u,5> (c b)vD( w06 >

a7 b7 C7p

—1)vD = —c(2c—a—b—1)D
clc—1)v c(2c—a—b—1) <u—|—1,v,5

> +(c—a)(c—b)D (“’b’H Lp)

u+1,v,6
a,bc—1,p a,bc—1,p
(3.15) +c(e—1) [vD( 0. > +D< wt 10,6 >]

To show the first recurrence relations we use the formula and definition (1)

t
(b—a)F(a,b;c;2) +aF(a+1,b;¢;2) —bF(a,b+ 1;¢;2) =0 where z = ——
v
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o 5—1
t t

(b—a)D = (b-— a)va/ tulempt <1 - —> e Py Fy (0% b; ¢ ——> dt
0 v

v

t t
X |:_O’F <a+1>b7ca_5> + bF <a,b+ 1,07—;>:| dt
0 ¢ 6—1 "
= —av [v(a+1)/ telept <1 — —) [F (a +1,b;¢ ——>] dt]
0 v v
0 ¢ 6—1 "
+bva/ tulept <1 - —) F (a,b +1Lic ——) dt
0 v v

1 . e 1. .
:_avD<a'+ 7b’c7p>+bD<a'7b+ 7C’p>’
U, v

u, v
and this is the required recurrence relation. Applying the same method we can
show the remaining relations.

b b
Similarly, we can obtained the relations of D G2HEPY and Dy GHGPY
u, v, 0 u, v, 0

a,b,c a.b.c
4. Asymptotic expansions for D ( T ,p) , D ( ) ,p)
U, v, 4 u, v, 0

and D™ (aa b,c,p

) . In this section we assume that v — oo0. Using the

u, v,
expansion in series of the Gauss hypergeometric function [6, p. 238, No (9.1.2)]
(4.1) o Fy (a, B;7; 2) Z kzk, lz| <1

1
Pt (7 kk‘
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After substitution in the definition (1) we get

a.b.ep _ axe (CD (@O /°° pramt (1)
4.2 D =0 ¢ ~ R thtu 1— = Pt gt
(#2) <u6> ° kZO (Ok* o v) °

Where we have interchanged the order of integral and sum. From the binomial
expansion [9, p. 275]

[ee]
(1—2)"“%= Z (a)'mzm, |z < 1
m!
m=0

then the result (4.2) is equivalent to

(43) D <a’ . c’p> = v_“i (=1)*(@)x(b) i (L= )m /OOO gmetktu—1,—pt

U, 0,0 Pt (c)pk!vF

To facilitate our analysis we will make the following change of variables:

D <a, b,c,p) _ v = (—1)F(a)i (b i W(Ll —0)m

u, v, 0

o0
(4.4) / ymktu=lemy gy,
0

from the definition of gamma function (1.1) equation (4.4) can be written as

O e S D @elbe $5 A= Omp

u,’u,é p E—0 (C)kk'(pv)k
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Following the same procedure we get from the definition (2.1),

—a o0 k (0. ]
Dw a, b7 ¢, p — v ( k Z
O\ u,v,8 pU (c) kk:' '(vp m+k

pw
/ ym"'k'"'“_le_ydy.
0

and by using the result (2.5) this can be written as

o)

a,b,c,p 7 o= (—1)F(a)g(b)p (1
4.6 k
(4.6) D (uv 5> P z:;) Ckk;l Zoml( +k’Y (m+k+u,pw)

a7b7c7p

Similarly, we can find the asymptotic expansion of Dgy ( Y ) From equation

(2.2) we have

D (“’b’c’p> _ vt 5 CDA@ (O

wn =Sy @O i L= O)m o 1kt i, puo)

where we have used the result (2.4).
If in results of this paper we put § = 1 we obtain the expressions given
by Al-Musallam and Kalla [2]. This concludes our extension of the generalized

complementary and incomplete gamma function.

5. Summary and conclusion. In the previous sections, we have pre-
sented an extension of Kobayashi [7] function that include a further generalization
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of incomplete and complementary incomplete gamma function.

The aim of this paper was to consider further generalization of the gamma

function. Also, to obtain some properties and recurrence relations and establish-

ing the asymptotic series expansions for each of them.
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