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ABSTRACT. We investigate infinite families of integral quadratic polyno-
mials {f.(X)}ien and show that, for a fixed k € N and arbitrary X € N,
the period length of the simple continued fraction expansion of /f,(X) is
constant. Furthermore, we show that the period lengths of \/m go to
infinity with k. For each member of the families involved, we show how
to determine, in an easy fashion, the fundamental unit of the underlying
quadratic field. We also demonstrate how the simple continued fraction ex-
pansion of \/f,.(X) is related to that of v/C, where f,(X) = a, X24+b, X +C.
This continues work in [1]—[4].

1. Introduction. In [4], we described the background to the study of
continued fraction expansions of \/ f(X) where f(X) is a polynomial, especially
quadratic, which we study herein. This includes the pioneering efforts of Stern
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[9] in the late nineteenth century, as well as the seminal work of Schinzel [5]-
[6], and work on the determination of fundamental units by Stender [8] in the
late twentieth century. The basic idea, for quadratic polynomials f(X) is to
look at, on the one hand, the period length ¢(/f(X)) of the simple continued
fraction expansion expansion of /f(X) as X — oo, and to provide families of

such polynomials { fi(X)}ren such that ¢ ( fk(X)> is some constant N € N for

all X € N; and on the other hand, to demonstrate that lim, .. £(y/ f.(X)) = oo.
Moreover, we are able to obtain, in an explicit fashion, the fundamental unit ¢, of

the quadratic order O; = 7Z [\/f(X)] for all k, X € N. For these families ¢, are
particularly small, since ¢(y/f,(X)) is independent of X, and this means that,

for reasons discussed in [4], the class number h;_ of Z [\/ fu(X )] is particularly

large. With numerous examples, we illustrate that lim,_ . h; = oo.

The means by which we achieve the above is somewhat ironic given that
we employ the well-studied theory behind Fztended Richaud-Degert type (ERD)-
radicands, those of the form D = a® +r > 0 where r | 4a for a,r € Z (see
[2]). The irony comes from the fact, explained in [4], that polynomials f(X)
of ERD-type satisfy £(/f(X)) < 12, so are ostensibly of little interest in the
aforementioned scenario. However, in [4], we observed that, for the quadratic
polynomials f,(X) = A2X?+2B, X + C investigated therein, A2f,(X) = (42X +
B)? — 1, which is of ERD-type. From the well-studied ERD-theory, we know
that €,,2,, x) = A2X + By, ++/ A2 f.(X). In [4], we proved that €442 (X)) = Eafp(x)s
and in the process developed for so doing, were able to explicitly determine the
simple continued fraction expansion of 1/ f,(X) in terms of that for v/C.

In this paper, we continue down the path established in [4] with a much
more sweeping set of results (see Theorems 4.1-4.2 below) that employ the above
techniques, in a different direction than that elucidated in [4]. As a consequence,
we are able to get extremely simple proofs of some classical results (see Corollaries
4.1-4.2 below), and we provide numerous informative examples to illustrate the
theory.

2. Notation and preliminaries. The background for the following
together with proofs and details may be found in [2]. Let A = d?D, (d € N, D, >
1 squarefree) be the discriminant of a real quadratic order Oa = Z 4 Z[VA] =
[1,vA] in Q(v/A), Ua the group of units of O, and e, the fundamental unit of
Oa.

Now we introduce the notation for continued fractions. Let o« € Oa.
We denote the simple continued fraction expansion of « (in terms of its partial
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quotients) by:

a:<QO;q17"'7Qn>"'>'

If « is periodic, we use the notation:

a=(q0;q1-Go- - - Qe—1: T Tor1s - > Gerh1) »

to denote the fact that ¢, = q,,, for all n > k. The smallest such ¢ = ¢(a) € N
is called the period length of a and qq, q1, - - - , qx_1 is called the pre-period of . If
k = 0 is the least such nonnegative value, then « is purely periodic, namely,
= Qi qi, - Ge1) -
The convergents (for n > 0) of a are denoted by
x R R e

2.1 — = (@i s Gn) = :
( ) yn < ’ ! > Qnyn—l +yn—2

We will need the following facts, the proofs of which can be found in most
standard undergraduate number theory texts (for example see [3], and see [2] for
a more advanced exposition).

(2.2) Tj=q;Tj1 + T (for j >0 withz_, =0, and _, = 1),

(2.3) Yi = GYi-1 T Yj—2 (for j > 0 with y_, = 1, and y_, = 0),

(2.4) Ty — @y = (—1)771 (j €N),
(2.5) (@G> @1y @) = Y;/Yj (j €N),
(2.6) (@r @iy @1, Qo) = T3/T5, (j €N),

In particular, we will be dealing with o« = v/D where D is a radicand. In
this case, the complete quotients are given by (P; + v/D)/Q; where the P, and

J
Q; are given by the recursive formulae as follows for any j > 0 (with P, = 0 and

Qo =1):

(2.7) q; = \\P] i \/EJ ’

Q;

(2.8) P =q,Q; — P,
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and

(2'9) D= Pj2+1 + Qij+1'

Thus, we may write:
(2.10) VD = <qo;q1, e @y (Pagr + @)/Qn+1> :

We will also need he following facts for o« = v/D. For any integer j > 0, and

¢ =((VD):

(2.11) VD = {40; 011401, 200)

(2.12) where ¢; = q,_; for j =1,2,...,4—1, and ¢, = | VD]
(2.13) Tje—1 = GoYje—1 t Yje—2,

(2.14) Dy 1 = qoTjo1 +Tjoo.

Also, for any j € N

(2.15) 275 — Dyyy, 1 = (1Y Py,
(2.16) P, =P, =q and Qo=Q; =1,
(2.17) ol -y D= (-1)Q,

(2.18) Dyje 1 = qoTre—r + Tjoa,

(2.19) q; < 2qo-

When ¢ is even,

(2-20) PZ/Q = Pe/2+1 = P(2g>1)£/2+1 = P(2g>1)£/2 and QZ/Q = Q(2171)Z/2a

whereas when £ is odd,

(2-21) Q(z-n/z = Q(z+1)/2-

Lastly, the following result on Pell’s equation will be quite useful in establishing
results in the next section. In fact, this gives more detail to the fact exhibited in
(2.17) in the case where the index is a multiple of /.
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Theorem 2.1. For j > 0, let x; and y; be as above in the simple contin-
ued fraction expansion of D for a nonsquare D > 0 and let £ = E(\/ﬁ) If 0 is
even, then all positive integer solutions of

(2.22) 2> — Dy* =1

are given by (x,y) = (T;0-1,Y;0_1) for j > 1, whereas there are no integer solutions
of

(2.23) z? — Dy? = —1.

If ¢ is odd, then all positive solutions of (2.22) are given by

(337 y) = (112]'[717 y2jl71)

for 7 > 1, whereas all positive solutions of (2.23) are given by

(xvy) = (x(2j—1)l—17y(2j—1)£—1)-
Proof. See [3, Corollary 5.3.3, p. 249]. O

3. Preliminary lemmas. In this section, we prove a sequence of
lemmas which are needed for the main results in the next section. For the balance
of the paper, we make the following assumptions.

We let A,B,C,k,X € N with C not a perfect square. Suppose that
(x,y) = (B, A) is the smallest positive solution of 22 — Cy? = 1 and define, for
each k € N,

B, + AVC = (B+ AVC)F.
Also, for n > 0, set
VT = (e rrem B0
where this is understood to mean v/C = <co;2_co> in the case where n = 0.

Lemma 3.1. Forn € N odd and k = (2m + 1) where m is a nonnegative
nteger:

B, = T 2m+1)(n+1) /29 @m+1) (n+1)/2—=1 T T@2m+1)(n+1)/2—1Y(@m+1)(n+1)/2—2

and

A, = y(2m+1><n+1)/271(y(2m+1><n+1)/2 + y(2m+1><n+1)/272).
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Proof. For convenience, set N = (2m + 1)(n + 1). By (2.1), (2.5), and
(2.11)~(2.12):

In-1 . _ . Yny2 _
_<COacl7°--7cN—l>_ Co;C1y---3CNj2—1, =
Yn-1 N/2-1

YN/2
<—/$N/2—1 + mN/z—z)

YN/2—1 _ Yn/2TNj2-1 + Tnj2—2Yny2-1
YN/2 _ —+ _
(myN/QA _|_yN/272) Yny2 1(yN/2 Yny2 2)

Thus, yy_, = yN/2—1(yN/2 + yN/Q—Q) and ry_, = YNn/2TNj2—1 T TNj2a—2Yn/2-15 which
by (2.4) equals,

N/2 N/2—1

Tn/2Ynj2—1 T (—1) + Tnjo—1Ynj2—2 T (—1) = Tn/2YNnj2—1 T Tnj2—1Yn/j2—2-

Since n is odd, then B, = z,_, and A, = yy_, by Theorem 2.1, so we have
secured the result. O

Lemma 3.2. Ifn is odd and k = 2m + 1 with m a nonnegative integer,

then
2x(2m+l)(n+1)/271 = Q(n+1)/2 (y(2m+1><n+1)/2 + y(2m+1><n+1)/271).
Proof. Let N be as in the proof of Lemma 3.1. Then by (2.17) and
(2.20),
(3'24) x?\//271 - Cy12\1/271 = (_1)(n+1)/2Q(n+1)/2’

and by (2.8), (2.15) and (2.20),
(3-25) TN/j2N/2—1 — CyN/QyN/2—1 = (_1)(n+1)/2p(n+3)/2 = C(n+1)/2Q(n+1)/2/2'
Therefore, by (3.24)—(3.25),

2 n n
TNny2-1 + (_1)( +3)/2Q(n+1)/2 o 2331\7/2%‘1\7/2—1 + (—1)( +3)/2c(n+1)/2Q(n+1)/2

C =
?/12\7/2—1 2:’/N/zyN/Q—l

from which it follows that
203 5 1 Unyz + 2(=1) " 2Q i) j2Ynye =

(_1)(n+3)/2

2$N/2$N/271yN/271 + c(n+1)/2Q(n+1)/2yN/271 =
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20 n /21 (TjaaYnje + (= 1)"2) 4 (=1 e Q) 2o
where the last equality follows from (2.4). Thus,
2(=1)"2Q 1) 2Ynye = 282 (1) (=1 24 Qi 2Y a1
SO
Qnivy2Yns2 + Qi 2(Coniny 2Ynsa1 + Unja2) = 2Tn0 1 + i) 2Qn1) 2Yn/a-15
by (2.3) and (2.20). Hence,
22531 = Qeuiny2(Uny2 + Ynja-2),

as required. 0O

Lemma 3.3. Forn €N odd, k =2m + 1, and m > 0,

— .2 2
Q(n+1)/2Bk = Tomi1)(nt1)/2-1 + y(2m+l)(n+1)/2—10

and

Q(n+l)/2Ak = 2% (2m+41)(n+1)/2-1Y @mt1) (n+1)/2—1+

Proof. Let N be as the proof of Lemma 3.1. Then by that lemma,
Qi) 2Br = Qusny2(Tnj2Ynja—1 + Tnjzo1Ynja—2) =

N/2—1

Q(n+1)/2($N/271yN/2 + (_1) + xN/2flyN/2—2)

where the last equality follows from (2.4), and by Lemma 3.2, this equals,

21 (Quarny2(YUnyz + Unjo—2)) + (=12 Qi) =

2 N/2—1 2 2
2xN/2—l + (_1) / Q(n+1)/2 = Tnya1 + CyN/2—l

where the last equality follows from (2.17). This yields the first result. For the
second result, we invoke Lemmas 3.1-3.2 which tell us that

Q(n+1)/2Ak = Q(n+l)/2yN/271(yN/2 + yN/272) = 2xN/2—1yN/2717
and the entire result is proved. O

Lemma 3.4. Forn € N odd, k =2m + 1, and m > 0,

n+1)/2
AT a1y narys2—1 = (Bi £ D)Ymanymany/2—1 = Yemenmrn2-1 (=12 F1).
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Proof. Let N be as in the proof of Lemma 3.1. Then by Lemma 3.3,

Akl’N/QA - (Bk + 1)yN/271 =

2 2 2
2xN/2—1yN/2*1 - (xN/2—1 + CyN/2—l + Q(n+1)/2)yN/2*1 o

Qni1)2

2 3
TNj2—1Ynj2—1 — CyN/2—1 T Qur1)/2Un/2-1 _

Q(n+1)/2

Yny2-1 [(x]2\l/2—1 - Cy?\f/Q—l) + Q(n+1)/2] o

Q(n+1)/2

Ynyo—1 [(=1)"2Q 1) 2 F Qs o]

Q = Ynjpa (D)2 F 1)
(n+1)/2

where the penultimate equality comes from (2.17). O
Lemma 3.5. Ifn € N is odd, and m > 0, then

n+3)/2 __
B+ (1) =y iy 21 (Teminy itz + Tamin ety 2-2)

Proof. Let N be as in the proof of Lemma 3.1. By that lemma and (2.4)

we have, Ynj2—1Tny2 + Tnje—2Ynj2—1 = Ynj2—1Tny2 T Tnje—1Ynj2—2 — Tnj2—1Ynyj2—2 +
TNj2—2Ynj2—1 = Bk + (_1)(n+3)/2' 0

4. Main results. Assuming m > 0, in the following, we set:
Wy = ClyeeeyCpy2CayCryenyCrny2ChyeveyCrynnnyCry

which is m iterations of ¢, ..., c,,2¢, followed by one iteration of ¢,,...,c,. In
the case where n = 0, w,, is just m iterations of 2¢,, and when m =n =0, w,, is
the empty string. Also, for odd n > 1,

N
Up= C1,Coy ... ,Cn,200,61,627. . 7cn72007 ceeyCryen 72007617627 s 7c(n71)/27

which means m iterations of ¢,, c,,...,c,,2¢c, followed by one iteration of
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Ci5Cay ..y Cin1y/2, and the reverse of this is denoted by
—
U= c(n—l)/27 <oey G,y G, 26070717 ceeCry e 72607 Crny--5Cp,
one iteration of ¢,,_1y/s, Cp, - - . , ¢, followed by m iterations of 2¢,, c,, ..., c,. Lastly,

the symbols @;, defined in formulas (2.7)-(2.9), refer to the continued fraction
expansion of v/C.

Theorem 4.1. Let
Diy(X) = (B, — 1)242X? +2(B, — 1)*X + C.
Then the fundamental solution of
22— D(X)y? =1
18
(,y) = (B = )(AIX +1)* + 1, A} X + A,),
and, for

Go= (B — 1A X + ¢ :

(a) If both n,k € N are even, then C' | (B, — 1) and:

De(X) = (a0 w1, 0, 2B = DAKX/C o, 041,240 )
with £ ( Dk(X)> = 2k(n+1)+2.
(b) If n >0 is even and k is odd, then
VD(X) = {qo; w1, 20)
and ¢ ( Dk(X)) = k(n+1).
(¢) Ifn is odd, then one of the following holds.

(i) Ifk=2m+1, m>0, and (n+1)/2 > 1 is odd, then Q1. divides
(B, — 1) and:

-Dk(X) = <QO§ Umu 2(Bk - 1)AkX/Q(n+1)/2 + Clnt1y/2; ;Wm QQO>

with £ ( Dk(X)> = k(n+1).
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(i) If k=2m+1, m>0, (n+1)/2 is even, and ¢(,11y2 s even, then C
divides Qny1y2(By — 1) and: /Dy (X) =

<QO; ?mu C(n+1)/2/27 2@(n+1)/2(Bk - 1)AkX/C, C(n+1)/2/2, ;Wm QQO>

with e( Dk(X)> = k(n+1)+2.

(iii) If k =2m, m € N, then C' | (B, — 1) and:

Dk(X) = <q0;wm—1>0072(Bk - 1)AkX/Ca CO>wm—172q0>>
with £(x/Dr(X)) = k(n + 1) + 2.

Proof. First, we observe that
(4.26) A2D,(X) = (B, — 1)2(A2X +1)2 + 2(B,, — 1).
Since
(B, —1)(A2X +1)2 +1)2 — (A2X + A4,)’D,(X) =1,
D, (X) is not a perfect square. Thus, by [2, Theorem 3.2.1, p. 78],

Era2py = (Be = D(AZX +1)2 + 1+ (A7X + 1)1/ AZD,(X).

Let £ =4(\/D,(X)) and X,/Y; be the i-th convergent of \/D,(X). Then
by Theorem 2.1, there is a 5 € N such that

(Bk - 1)(A£X + 1)2 + 1= XjZ—I and AgX =+ Ak = }/;'Z—l-

First, we prove part (a) for which we now show that j = 1. Thus, we show via
Theorem 2.1 that €442y (x) = EaDj (X)) since ¢ will be shown to be even. In the

process of doing this, the continued fraction expansion in (a) will be shown to
hold.
If x,/y, is the i-th convergent of v/C, then by (2.1),

<q07wk—17007 Q(Bk - 1)AkX/07 CO>wk—1> =

<QO> Wg—1, Co, 2(Bk - 1)AkX/C + Z/k(n+1)—1/$k(n+1)—1> =

2¢o(By = DAXTymin-1 + CColmin-1 + C:Ck(n+1)—1>

4.27 s Wy _1,
( ) <q0 o Q(Bk - 1)AkX33k(n+1)—1 + Cyk(n+1)_1
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If we set,

_ 2¢o(By — 1)AkX$k(n+1)—1 + Ccolinsny—1 + CTi(ni1y—1

M ;
2By — 1A XZhns1y-1 + CUrininy—

then (4.27) equals,

Mxk(n+1)—1 + Tpng1)—2
Myk(n+1)—1 + Yr(n+1)—2

which may be manipulated using (2.4), (2.13), and (2.17)-(2.18) to equal:

(B, —1)AX +

9

(B — DA X +

2$k(n+1)—1yk(n+1)—10(3k — 1A X + C(2$Z(n+1)_1 + (_1)}“(”“)71)
2Cyk(n+1)—11'k(n+1)—1 + 2(Bk - 1)AkXx%(n+1)71 '

(4.28)
However, since n+1 is odd, we must have that By, = Za(y 1)1 and Ay = Yornr1)—1
by Theorem 2.1. Also since

Bk + Ak\/a — (.’L‘n + yn\/5)2k - (.I'k(n+1)_1 + yk(n+1)_1\/6)2 —

2 2 /
Ti(ng1y—1 T yk(n+1)71c + 2%k (i) 1Yt 1)1V O,
and in turn, by (2.17), this equals,
2 /
2$k(n+l)fl =14 2244 1)-1Yrmr 1 VO,
S0,
2
$2k(n+1)71 = ka(n+1)_1 - ]- = Bk

(4.29) and

Yok(n+1)—1 = 2$k(n+1)71yk(n+1)71 = A,.

Thus, (4.28) equals

C(B,—1)A2X +CB,

B, — 1A, X
(B = DAX + o B DA x

given that (n + 1)k is even by hypothesis, and since B? — 1 = C'A2 this equals

C(B, —1)A2X +CB,

B, — 1A X
(B = DAX+ — ey T )
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(B, — 1)(A2X +1)2 +1
AL (A2X +1)
Since 2((By —1)Ax X +¢,) # ¢, for any 0 < j < £ by (2.19), and Theorem 2.1 tells

us that a convergent X, ,/Y), , can only occur at the end of the j-th period,
then 7 = 1. We have shown that

X

<(Bk — 1)AkX + CO; wk_l, Co, 2(Bk — 1)AkX/C7 CO) wk_1> - Y .
-1

Since this is the (¢ — 1)-th convergent, then \/D,(X) is as given in (a) and
0(/Dr(X)) = 2k(n + 1) + 2.
One final note is in order. By (4.29) and Theorem 2.1,

B, —1= 2($i(n+1)—1 -1)= QCyz(nJrl)*l’

so C | (By — 1), ensuring that 2(B, — 1)A,X/C € Z in the simple continued
fraction expansion of /D, (X), thereby establishing part (a).
For part (b), we show that j = 2. We have,

_ B, —1
<q07wk—1> = (Bk — 1)AkX + Letmin—1 = (B,€ — 1)AkX + k ,
Yrk(n+1)—1 A,

where the second equality follows from (4.29), and this equals,
(B, — )(A2X +1) X,

A Y, '
where
B, —1)(A2X +1 A
Xl_lz(k )(Aj +)andn_1: e
2~Tk(n+1)—1 2xk(n+1)—1
since

ged(By — 1, A;) = ng(2x£(n+l)—l? 2% k(1) =1 Yk(nt1)=1) = 2Tk(nt1)-1

by (2.17). Thus, ¢ = k(n + 1), which is odd since n is even and k is odd.
Therefore, the fundamental solution of X? — D, (X)Y? = 1 comes from (X,_; —

}/lfl\/ Dk(X))2 =Xyt }/M—l\/ Dk(X) =
2B, — 1)((Br, — 1)(A2X +1)2 + 1) + 2(B, — 1)(A3 X + A,)/D,(X)
4:6%(

n+1)—1

(B — 1)(A2X +1)2 + 1+ (A2 X + A)V/Di(X),
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since 427, ,)_, = 2(By, — 1). Hence, we have established part (b).

For the proof of case (c), we present only the salient features of the proofs
that distinguish them from cases (a)—(b). The reader may fill in the details using
the methodology presented in those cases. We now establish case (c), part (i).
Let N be as in the proof of Lemma 3.1. Then,

<qO§ ?;m 2(B, — 1) A, X/Qs1y)2 + C(n+1)/2){;n> =

<QO§ 72;7 Q(Bk - 1)AkX/Q(n+1)/2 + yN/Q/yN/2—1> =

< — 2( - 1)A XyN/z 1+ Q(n+1)/2yN/2>
qu .
Q(n+1)/2yN/2—1
If we set
M — 2( — 1)A XyN/z 1+ Q(n+1)/2yN/2
Q(n+1)/2yN/2 1

then by (2.1) the above equals,

MxN/2—1 + Tnja—2
M?JN/271 + Ynya—2

2(Bk - 1)AkXyN/2711‘N/271 + (yN/2$N/271 + $N/272yN/271)Q(n+1)/2
Q(Bk - 1)AkX912v/271 + (yN/2yN/2—1 + yN/272yN/271)Q(n+1)/2

and by Lemmas 3.1-3.4 and (2.4) this equals,

9

(By — 1)AX + (B = DAZQin) o X + (Tn2Ynya 1 + Ynjz 2Twjo 1)Q("+1)/2
k k
2A2 i X T2 1Ynja-1 T ArQngry 2

so by Lemmas 3.1 and 3.3, this equals,

(B, — 1)A, X + (B — 1)A%Q(n+1)/2X + BiQu+1y/2 _
A%XQ(W.+1)/2 + AL Qi) )2

(B, — 1)A{X? + (B, —1)A2X 4+ (B, —1)A2X + B,)/(A3X + A,) =

(Be = DAIX + 1) +1)/(A7X + Ay).

Hence, as in cases (a)—(b), the result follows for D,(X). (Note, as well,
that by Lemmas 3.2-3.4, Q.11),2 | (Br, — 1), 50 2(By — 1) A, X/Qny1),2 € N.)
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We now establish ¢, part (ii) for D,(X). We have,

.7 Catny/2 2(Bk B 1)AkXQ(n+l)/2 Cint+1)/2
QOﬂ Um? Y 9 7Um
2 C 2

< .= Cny1)/2 2(Bk - 1)AkXQ(n+1)/2 Cin+1)/2 Yny2 > .
o5 Um,; 9 y + -
2 C 2 Yny2—1
<q o Comny 2(Br = DAXQuivys2 2Ynsz — Cntny/2Yn/a— )>
0y m 2 ) C ) QyN/Q_l

By Lemma 3.1, (2.3) and (2.20), this equals,

< —  Cny1)/2 2(By — 1)AkXQ(n+1)/2 X 23/12\7/21> _

QO; /Um7 2 ) C Ak

. e (Bi — 1)A£XQ(n+l)/2c(n+l)/2 + Cy?v/Q_lc('rH»l)/Q +24,C
05 Ums 2(B, — 1)A2XQni1y2 + 2CY% 5,

<QO§ 'L:m M > )
where M is the last term in the preceding continued fraction, and by (2.1), this

equals,

Mﬂ?N/z—1 + Tnjoo
MyN/2_1 + Ynja—2

(4.30) (B, — DA X +

The denominator of (4.30) equals,

(Bk - 1)A£XQ(n+1)/2(C(n+1)/2yN/2—1 + 291\7/2—2) + AkCyN/2—1+

Cy12\f/2—1(c(n+1)/2yN/2—1 + 2Yny2-2);
so by (2.3) and (2.20), this equals,
(Br = DAY X Qus1y2(Unyz + Ynjo—z) + AClYnyas + Cy?\f/Q—l(yN/Q + Ynso-2),
and by Lemma 3.1, this equals,

(B, — ]')AiXQ(nJrl)/Q/yN/Q—l + ACYnjo1 + CYnjpi Ay =
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AC
Ynyj2-1

(4'31) ((Bk - 1)A3XQ(H+1)/2/C + 2912\7/271)'

However, we may employ Lemmas 3.3-3.4, (2.17), and (2.20) to verify that
(B = 1)Qus1y2/C = 2y3% ), 50 (4.31) equals,

(4.32) 2AkCyN/271(AiX +1).

Given the calculated denominator (4.32) of (4.30), we may now use it to calculate
the numerator, which is,

2AHB, — 1) X?Cyyyo_s+
(Bk - 1)A£X(2CyN/2—1 + Q(n+1)/2(c(n+1)/2~TN/2_1 + 21‘]\7/2_2))-1—

ACnyon + Cy12\7/2—1(c("+1)/2x1\7/2—1 + 22 n/52),
and by using Lemma 3.5, (2.2), and (2.20), this equals,
2AHB, — 1) X*Cynyos+

(B, — 1)A5X(209N/2—1 + Qur1y/2(Tny2 + Tjaa))+
A Crypp oy + Cy?v/gfl(xwg + Tnjaa)) =
2AH By — 1) X2Cyn ot
(B, —1)A7X (2CYnj2-1 + Quyry/2(Br — 1) /ynja—1)+

ACxysy + C(By — 1)ynja -
However, it may be verified using Lemma 3.3 and (2.17) that
2CYns2-1 = Qniny2(Be — 1) /ynjaa
so the above equals
240 (B, — 1) X?Cynjos + 4By — 1) A X Cynjor + ACyjoy + C(By — 1)Ynjas

and since Lemma 3.4 tells us that A,z 1 = (By — 1)Ynja—1 + 2Yny2-1, then the
above equals,

2A3( - 1)X CyN/2 1 +4( - 1)A XCyN/Q 1 +20( - 1)ZUN/271 +20?JN/271 =
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2By — 1)Cyn o1 (AL X? + 242X +1) 4 2Cyn/oy =

2CYnyo1((Br — 1)(AZX +1)? +1).
Hence, we have shown that (4.30) equals

20Ynjo1 (B — D(A2X +1)2 +1) (B, — D(A2X +1)2 +1

2A,Cynss1(A2X + 1) B AL(AZX +1)

The balance of the proof now follows as in cases (a)-(b). One final note is
in order for this case. Since Lemmas 3.3-3.4 and (2.17) allow us to deduce
that when (n +1)/2 is even, we must have, Qu41)/2(Br —1) = 2Cy3,_,, then
C | Quyry2(Br — 1), so 2(B, — 1)A,Qns1),2X/C € N in the simple continued
fraction expansion of /D (X).

It remains to verify case (c), part (iii). By (2.1) and (2.5) we have,

< 2B, — 1)A, X >
qo; Wp—1, Co, #)coawm—l =

2(B, —1)AX .
<QO;wm—lacOa ( u C) t + ym(n+1) 1> ==
$m(n+1)71

<q w Q(Bk - ].)AkXCOQfm(nJrl)fl + Ccoym(nJrl)*l + me(n+l)l> =
05 Wim—1, 2(B, — ]_)AkXxm(anl)*l + Ymnin 1 C

M‘/Em(nnkl)fl + xm(n+l)72

( ) (qo 1 ) = (B )A; MY,ns1y—1 + Ymntr1)—2

where M is the last term in the above continued fraction expansion. Now we
calculate the denominator of (4.33). It is

Q(Bk - 1)AkX-Tm(n+1)—1(Coym(n+1)—1 + ym(n+1)—2)+

CYmint-1(CoYmmin-1 T Ymmin-2) + CTmmin) - 1Ymmin -1,
and by (2.13), this equals
(4.34) 2B, — 1) AX 2 1y + 2CT i1yt Ymnr 1)1
However, by Theorem 2.1,
B+ AV C = (2, + 4,.VO) = (2, + 4. VO™ = (i1 + Ymniy-1VO)* =
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22 i1+ Yoins 1y 1C F 2T i1y 1YV C.
Hence,
(4.35) B, = x?n(nﬂ)_l + yi(nﬂ)_lc and Ay, = 2%, 1)1 Ym(ns1)—1-
Thus, using (4.35) in conjunction with (2.17), we get that (4.34) equals,
AAX T2 iy Y1 C + AC = C(AJX + A,),
which is the denominator of (4.33), so we can now calculate its numerator:

(Bk - 1)AkXC(A}:)X + Ak) + 2(Bk - 1)Akam(n+1)—1(COmm(n+1)—1 + xm(n+l)—2)+

C(Coxm(n+l)—l + xm(n+1)—2)ym(n+1)—1 + CfCTQn(HJrl),l
which (2.14) tells us is equal to,
(B, — )A2XC(A2X + 1)+

2(Bk — 1)Akchm(n+1)—1ym(n+l)—l =+ CZyTZn( + CfCTZn(

n+1)—1 n+1)—1

and (4.35) allows us to rewrite this as
(B, — 1)A2XC(A2X +1) + CB,, = C[(B, — 1)(A2X +1)* + 1]
Hence, we have shown that (4.33) equals,

C[(B, — D(A2X +1)2+1] (B, —1)(A2X +1)2+1

C(A3X + A,) A3X 4 A, ’

and the balance of the proof follows as in cases (a)—(b). (Note, as well, that from
(2.17), it follows that C' | (B, — 1), so 2(B, —1)A,X/C e N.) O

Remark 4.1. Theorem 4.1 provides a paradigm for construction of
infinite families of polynomials f,(X) such that ¢(y/f.(X)) is independent of
the variable X, lim, ... (¢(1/f:(X))) = oo, and we are able to explicitly give the
fundamental unit of the order Z[+/ f.(X)]. Furthermore, it is known that if D is
a fundamental radicand with discriminant A, and f € N is the least value such
that f2D = a? + r with f | 4a, an ERD-type, then

a+ fVD if [r] =1, (D, f) # (5,1),

ca=1{ (a+fVD))2 if |r] = 4,
(202 + 7+ 2afVD)/Ir| if |r] & {,4},
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(see [2, Exercise 3.2.7, p. 85|, for example). In Theorem 4.1, one of the things
we demonstrate is that for D,(X), f = A, ensures that f2D,(X) is of ERD-
type. However, we cannot ensure that A, is the least such value. For instance, if
C =3, B, =26, A; = 15, D,(X) = D;5(3) = 1269378 and 9D,(X) = 3380% + 2
(see Example 4.2 below). Nevertheless, we have verified in general for the cases
given in Theorem 4.1 that €442, (x) 18 either e,p, (x) or Esz(X).

We provide an illustration of all cases in Theorem 4.1 and of subsequent
results below.

Example 4.1. Let C = 85 for which
VC = (9 TT,T,4,18) = (co; ¢, 03, Cs, Ca, 260

son =4 and we can illustrate Theorem 4.1 (a)—(b) as follows. We have that
B, = 285769 and A, = 30996. Thus,

VD (X) = /D, (2) = V/313832912233538380117 =

(17715329865; 4, 1,1, 4, 35430659730 ) =

<(31 C ) AX + o0, 2((Br — DA X + co)> :

and £(y/D,(2)) =5 = k(n +1). Also, the least positive solution of
X2 -D,(2)Y?=1
is given by (X,Y) = ((B; — 1)(242 +1)2 + 1,243 + A)) =
(1055106250929156033953353, 59558939006868),

which illustrates part (b). Note that this is not the same as the fundamental unit
of Z[\/D:(2)] which is

E€4p,(2) = 126328524474 + 41v/313832912233538380117.

In fact, the (X,Y) above is achieved by squaring the fundamental unit whose
norm is necessarily —1 since €(1/D:(2)) is odd (see Theorem 2.1).

Also, since B, = 163327842721 and A, = 17715391848, then for k = 2
and X =1,

VD, (1) = V/8371860393543383432522015026708959273830485 =
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(2893416733473314146569;

I,1,1,4,18,4,1, 1, 4, 9, 68080393728 783862272,

9,4,1,1,4,18,4,1,1,4,5786833466946628293138) =

((By = 1) A,X + o5y, 0, 2B — ) A,X]C, ey w,, (B, — DAX + o) )
and £(\/D,(1)) = 22 = 2k(n+1) + 2, which illustrates part (a). Note as well that
the least positive solution of X? — D,(1)Y? =1 is given by,

X = 16086563501731702982949366706880488582876338641988001 =

(B, — 1)(A2 4+ 1)% + 1,
and

Y = 5559711919693322890764178184040 = A3 + A,,
and E4D2(1) = X + Y\/ Dg(l)

Remark 4.2. In Theorem 4.1, we have that ¢(\/D,(X)) — oo as k —
00, so we have numerous parametric families for which the fundamental unit
is explicitly known even though the period length gets arbitrarily large. As
explained in [4], the first such sequence discovered with this property was the
Shanks sequence, S, = (2" + 3)? — 8. For such families, the regulator R =
log(esp, (x)) is “small” compared to log(y/4D, (X)) so we necessarily have large
class number hyp, (x). The following provide illustrations.

Example 4.2. Let C = 21 for which we have B; = 55, A; = 12, and
) =26

VC = (4;T,1,2,1,1,8), son =5. For k=X =1, {(/D,(1)
Q5 = 3, where

VD, (1) = V425757 = (652; 1, 1,434, 1,1,1304) =

<QO7 U072( - 1)A X/QB + Cs, UO>2qO>
Also, €4p, 1) =

1135351 + 1740/ D D(AZX + 1) + 1+ (A2X + A) /D (1).
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The above illustrates part (c)-(1). Note as well, with respect to Remark 4.2, that
h4D1(l) — 30 whllle IOg(E4D1(1)) — 14.6355 ey and log(\/ 4D1(1)) — 7.17395 e

Example 4.3. Take C = 3 for which /3 = <1;1,—2> son = 1. Since
B, =97 and A, = 56, we have for k =4, and X =1, \/D,(X) =

VD, (1) = V28919811 = (5377;1,2,1,1,3584,1,1,2,1,10754) =

2B, — DA, X

<(B4 - 1)A4X + Co; Wy, Co, 3

700771)172((34 - 1)A4X + Co)> ,
and £(y/D,(1)) = 10 = k(n+1)+2, which illustrates case (c)-(iii). Also, we may
illustrate Remark 4.2 with the facts:

h4D4(1) = 348,10g(54D4(1)) = 21.35953....

and

log (M) —9.97631. ...

Example 4.4. Let C = 46 for which we have
VC =(6;1,3,1,1,2,6,2,1,1,3,1,12),

son = 11 and (n + 1)/2 is even. Since By = 57643991108495 and A; =
8499142809612, we have for k=3, X =1, \/Di(X) = /Ds(1) =

v/240026027994508490757009224437081746297020737290867702 =

(489924512547094841478044334;

1,3,1,1,2,6,2,1,1,3,1,12,1,3,1, 1, 2, 3, 126021315253834334041569072,

3,2,1,1,3,1,12,1,3,1,1,2,6,2,1, 1, 3, 1, 979849025094189682956088668 ) =

qo;> V1, o Vi,

- % 2Q(n+1)/2(3k—1)AkX Co —
2’ C 2 qo }

where q, = (Bs — 1) A3 X + ¢y, which illustrates case (c)-(ii).
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The following provides an analogue of Theorem 4.1 for the case where the
minus sign therein is replaced by a plus sign in the representation of D,(X), and
this result illustrates the comments made in the last statement of Remark 4.1.
We do not provide a proof of he following since the reader may use the techniques
in the proof of Theorem 4.1 mutatis mutandis.

Theorem 4.2. Let
D(X) = (B, +1)?A2X? + 2(B,, + 1)°X + C,
and let (z,y) denote the fundamental solution of x> — D, (X)y? = 1. Then for
G =B + DAX + ¢ :

(a) If both n,k € N are even, then,
D,(X) = <q0;/wk—17 2(]0> )

with ¢ ( Dk(X)> = k(n+1), and

(%y):((BkH)(A%H) A, >

)
2xk(n+l)—l 2-/I/‘Ic(77.+1)—1

(b) If n is even and k is odd, then C' | (B, + 1),

D,(X) = <q0;wk_1,co,2(Bk +1)A,X/C, co,wk_1,2q0> ,
with ¢ ( Dk(X)> = 2%(n+1)+2, and
(z,y) = (B + D)(A;X +1)° — 1, A} X + A)).
(¢) If n is odd, then one of the following holds.

(i) Ifk=2m+1, m>0, (n+1)/2>1is odd, and ¢y, is even, then

C ‘ Q(n+1)/2(Bk + 1)7 vV Dk(X) =
<(Jo; ?mu C(n+1)/2/27 2@(n+1)/2(Bk + 1)AkX/C, C(n+1)/2/2, ;Wm 2%>

with ¢ (\/m) = k(n+1)+2, and

(z,y) = (B, + D)(A2X +1)2 -1, 42X + A,).
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(i) If k =2m+1, m > 0, and (n + 1)/2 is even, then Q.1 > divides
2(B, + 1),

Do(X) = <q0; Vs 2(Br + 1) A X/ Qustr o + Consnryzs Vs 2q0>
with ¢ ( Dk(X)> = k(n+1), and
(z,9) = (B, + D(A2X +1)2 -1, A3X + A,).
(iti) If k = 2m, m € N, then
Di(X) = (qo; W1, 20)
with £ ( Dk(X)> = m(n+1), and

(z.y) = ((Bk+ 1)(AZ +1) A, ) '

)
2% (ng1)—1 2% (nt1)-1

Now we illustrate how to use the above results to obtain quite simple
proofs of some classical results in the literature. The first may be found, for
instance, in [7, Theorem 5, p. 324].

Corollary 4.1. Given cy,cq,...,c,,n € N fized and
VG = (cpior e Za),
there exist infinitely many D,d, € N such that
VD = (dyi 0 0 30)

Proof. If n is even, let kK = 1 in Theorem 4.1 part (b). Then

Dy (X) = <(31 “DAX +eoien 0 2[(Br — DAX + cO]>

for all X € N. If n is odd, take m = 1 in Theorem 4.2, part (c)—(iii). Then

Di(X) = <(B1 FDAX + coicnyeaen 2[(Br + )AX 1 c0]>
forall X e N. O

The following provides an alternative proof of another classic result (see
[7, Theorem 6, p. 325], for instance).
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Corollary 4.2. For any k € N there are infinitely many D € N such that

(VD) = k.

Proof. If K = 2m for any m € N, set C' = 3, for which n = 1, and
invoke Theorem 4.2, part (c)-(iii) to get that for any X € N, and any fixed
m €N, (y/Dy(X)) =2m. If k =2m + 1, then take C' = 2 for which n = 0 and
invoke Theorem 4.1 part (b) to get that for any X € N and any fixed m > 0,
U(\/Dy(X))=2m+1. O

To see how Corollary 4.2 works, for instance in the case where k = 2m+1
is arbitrary but fixed, note that C' = 2, B, + A,v/2 = (3 4+ 2v/2)*, so for any
X eN,

D2m+1(X) — <(Bk - 1)AkX + 1; 2, 27 [ 72, 2[(Bk - 1)AkX + 1]>
——
2m copies
provides infinitely many values with period length 2m + 1.

In the case where k = 2m is arbitrary but fixed, choose C' = 3, X € N
arbitrary, B, 4+ A,v/3 = (24++/3)*, and n = 1 in Theorem 4.2, part (c)-(iii). Then

D, (X) = <(Bk +1)AX +1;1,2,1,2,...,1,2,1,2[(B, + DAX + 1]>

m—1 copies of 1,2

provides infinitely many values with period length 2m. We conclude with some
illustrations of Theorem 4.2.

Example 4.5. We revisit the value C = 85 discussed in Fxample 4.1.
Forn=4,k=1=X, we have,

D,(1) = (B, + 1)?A2 + 2(B, + 1)? + C = 78459326352621672285,

and \/D,(1) =

(8857726929 : 4,1,1,4,9,208417104,9,4,1,1,4,17715453858 ) =

(B + 1) AX + cojwo, e, 208, + A, [T, ¢, 0,240 )

with £(y/D,(1)) = 12 = 2k(n + 1) + 2, which illustrates part (b) of Theorem 4.2.
Notice that the fundamental solution of 2> — D,(1)%y% =1 is

(z,y) = (Bi + D(AIX +1)° = 1,47 + A,) =
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(263778409095717529947529, 29779469518932),

and x 4+ y+/D,(1) is also the fundamental unit of the order Z [ Dl(l)].

Now consider \/D,(1) = {(qo; w1, 2qy) =

(2803416733508744930265; 1, 1, 1, 4, 18, 4, 1, 1, 4, 578683346701 7489860530
with £(y/Dy(1)) =10 = k(n + 1). The fundamental unit of Z[/D,(1)] is
(x,y) = (89684345071837057858500745, 30996) =

22, " 27

<(B2 +1)(A2+1) A, ) |

which is the fundamental solution of x> — D,(1)y? = 1. This illustrates Theorem
4.2, part (a).

Example 4.6. Now we return to the value C = 21 considered in Example
4.2. Fork=1= X and n =5, we have

/D, (1) = V457877 = (676;1,1,1,192,1,1, 1, 1352) =

<QO§7?0703/27 QQS(Bl + 1)A1/C7 03/27 770; 2(]o>a
and 0(\/D,(1)) =8 =k(n +1) + 2. Also,
Eip,(1) = 1177399 + 1740\/D1(1)

which is the fundamental solution of x> — D,(1)y* = 1. This illustrates Theorem
4.2, part (c)—(i).

Example 4.7. Let C' = 46 as in FEzample 4.4. Then (n+1)/2 =6, and
fork=1=X, B, = 24335 and A, — 3588,

VD (1) = V7624358865916462 =

(87317574; 1,3, 1,1,2,87317574, 2, 1, 1,3, 1, 174635148 ) =

<QO§7?()7 2(31 + 1)A1X/Q6 + 067%707 2(]0>a
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and {(\/D,(1)) =12 =k(n +1). Also,
€4p, (1) = 4033285840069808399 + 46190997060\/m

which is also the fundamental solution of x*>— D, (1)y? = 1. This depicts Theorem
4.2, part (c)—(ii).

Example 4.8. Let C' = 3 as in Fxample 4.3, for which n = 1. Also, for
X=1,and k =4,

D,(1) = (B, + 1)?A? + 2(B, + 1)* + C = 30137355,
for which
D,(1) = (5489;1,2,1,10978) = (qo; w1, 24o)

0(\/D,(1))=4=m(n+1), and

B,+1)(A2+1
Capyny = 21959 + 4y/D;(1) — L2 g)if >+2—x3 Dy(1)

which illustrates Theorem 4.2, part (c)—(iii).

Remark 4.3. In later work, we will show how to obtain such families,
as above, for the simple continued fraction expansions of (1 + v/D)/2 where
D =1 (mod 4) is a nonsquare natural number. Moreover, we will show that any
palindrome of natural numbers may be represented by the symmetric part of the
simple continued fraction expansion of either v/D or (1 ++/D)/2 in infinitely
many ways. Finally, we will demonstrate how to find, explicitly and easily for a
given palindrome, the fundamental unit of the underlying quadratic order. This
has applications for the class numbers of those orders.
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