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Abstract. It is shown that the invertible polynomial maps over a finite
field Fq, if looked at as bijections F

n

q
−→ F

n

q
, give all possible bijections in

the case q = 2, or q = pr where p > 2. In the case q = 2r where r > 1
it is shown that the tame subgroup of the invertible polynomial maps gives
only the even bijections, i.e. only half the bijections. As a consequence it
is shown that a set S ⊂ Fn

q
can be a zero set of a coordinate if and only if

#S = qn−1.

1. Introduction. Though many theorems about polynomial maps are

true for an arbitrary field, or an arbitrary algebraically closed field, these theorems

are mostly used for the characteristic zero case, or more specifically, for the

complex numbers. However, it might be interesting to study polynomial maps

over characteristic p > 0, or even over finite fields. Some research in this direction
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has been done, see for example in [6], [1], [2] and [3] (Chapter 10, Paragraph

3). The case that we are considering, the automorphism group, or the tame

automorphism group, over a finite field might be very useful, as can be seen in

the paper [5]. In fact, it might be one of the few useful applications of polynomial

mappings in the “real” world of “money, economics and data travel”: in [5] a

method is given on how to encrypt data using the tame automorphism group

over a finite field. Therefore, a theoretical approach of the automorphism group

or the tame automorphism group over a finite field can give a good foundation

for similar applications. Also it might induce some ideas on already standing

conjectures over the complex numbers, like the tame generators conjecture.

2. Bijections induced by automorphisms over Fpn.

Definition 2.1. Let k be a field, An := k[X1, . . . ,Xn]. Following the

tradition, and since the endomorphisms of An are determined by the images of

the variables X1, . . . ,Xn, we identify the endomorphisms with the n-tuples in An
n.

P(kn) is the set of all maps kn −→ kn.
B(kn) ⊂ P(kn) is the set of all bijections kn −→ kn.

E : Endk(An) −→ P(kn) is the functor sending e ∈ Endk(An) (e = (e1, . . . , en) ∈

An
n) to the map E(e) : kn −→ kn defined by

E(e)(α1, . . . , αn) := (e1(α1, . . . , αn), . . . , en(α1, . . . , αn)).

Aut(k, n) := {e ∈ Endk(An) | E(e) ∈ B(kn)}.

Autk(An) := the group of automorphisms of the k-algebra An, (i.e. Autk(An) is

the set of invertible elements of Endk(An)).

T (k, n) is the tame automorphism subgroup of Autk(An), generated by (X1 +

f(X2, . . . ,Xn),X2, . . . ,Xn) for all f ∈ k[X2, . . . ,Xn] and by all linear maps.

As usual, “#S” will denote the number of elements in a finite set S.

Remark. Aut(k, n) is in general larger than Autk(An): when k is

the finite field with pn elements, let ϕ := (Xpn

1 ,X2, . . . ,Xn). Then the map

E(Xpn

1 ,X2, . . . ,Xn) is a bijection kn −→ kn but ϕ is not an invertible element of

Endk(An).

In this article we will try to answer the question whether E(Autk(An)) =

B(kn). The case when k is infinite is easy:
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Lemma 2.2. If k is not a finite field then E(Aut(k, n)) (and hence

E(Autk(An))) is smaller than B(kn).

P r o o f. Suppose F = (F1, . . . , Fn) is a polynomial map kn −→ kn inter-

changing 0 and A := (1, 0, . . . , 0), and the identity anywhere else. Then Fi − Xi

is a polynomial map kn −→ k which is zero everywhere if i ≥ 2 or zero almost

everywhere if i = 1. Over an infinite field this implies Fi − Xi = 0. �

In the case when k is a finite field we have a surprising result:

Theorem 2.3. Let k be a finite field. Then:

(i) #E(T (k, 1)) = #B(k)/(#k − 2)!, so E(T (k, 1)) = B(k) only if k = F2, F3.

(ii) If n ≥ 2 and char(k) 6= 2 or k = F2, then E(T (k, n)) = B(kn).

(iii) If n ≥ 2 and k = F2m , where m ≥ 2, then #E(T (k, n)) = #B(kn)/2.

In fact, E(T (k, n)) is the alternating subgroup Al of the symmetric group

Sl
∼= B(kn) where l = #kn.

The proof will go in several steps. It will involve the fact that B(kn), with

composition of maps as operation, is isomorphic to the symmetic group Sl where

l = (#kn), because every bijection σ ∈ B(kn) can be seen as a permutation of

elements in kn. This enables us to use a theorem of Jordan:

Definition 2.4. Let G be a transitive subgroup of Sn. G is called a

primitive subgroup if there exist no two elements i, j ∈ {1, . . . , n} such that for

any g ∈ G we have either {g(i), g(j)} = {i, j} or {g(i), g(j)} ∩ {i, j} = ∅.

Theorem 2.5. Let G be a primitive subgroup of Sn. Suppose G contains

a 3-cycle. Then G contains the alternating subgroup An.

For a proof, see [4].

Definition 2.6. Let k be a finite field, and let α = (α1, . . . , αn) ∈ kn,

b ∈ k. Let

fi :=
∏

a ∈ k

a 6= αi

(Xi − a) ∈ k[Xi].

Let λ := f1(α1) · · · fn(αn). Then define

f(α,b) := bλ−1
n

∏

i=1

fi(Xi).
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Notice that f(α,b)(α) = b and f(α,b)(β) = 0 for all β ∈ kn\{α}.

Definition 2.7. Let k be a finite field.

(i) Let α ∈ kn−1, b ∈ k. Then define

σ(α,b) :=
(

X1 + f(α,b)(X2, . . . ,Xn),X2, . . . ,Xn

)

.

(ii) Let i ∈ {2, . . . , n}. Define

σi :=
(

Xi,X2, . . . ,Xi−1,X1,Xi+1, . . . ,Xn

)

,

the map interchanging Xi and X1.

(iii) Choose some a ∈ k∗ such that {1, a, a2, . . .} = k∗. Define

τ := (aX1,X2, . . . ,Xn).

(iv) Let G be the subgroup of T (k, n) generated by all σ(α,b), all σi and τ .

Lemma 2.8. E(G) = E(T (k, n)).

P r o o f. We need to show that (1) for any f ∈ k[X2, . . . ,Xn] there exists

σ ∈ G such that E(σ) = E(X1 + f,X2, . . . ,Xn), and that (2) for each linear map

L we have some σ ∈ G such that E(σ) = E(L).

Part (1): Let ζ := (X1 + f,X2, . . . ,Xn) for some f ∈ k[X2, . . . ,Xn]. Notice that

σ(α′,b′)σ(α′′,b′′) = σ(α′′,b′′)σ(α′,b′) = (X1 + g,X2, . . . ,Xn), where g ∈ k[X2, . . . ,Xn]

satisfies (in case α′ 6= α′′) g(α′) = b′, g(α′′) = b′′. In the same way we see that if

we define σ to be the composition of all σ(α,f(α)), where α runs through kn−1, then

σ = (X1 + g,X2, . . . ,Xn) and g(α) = f(α) for all α ∈ kn−1. Thus E(σ) = E(ζ).

Part (2): Since σiτ
mσi = (X1, . . . ,Xi−1, a

mXi,Xi+1, . . . ,Xn) and {1, a, a2, . . .} =

k∗, we can get any map Li,λ := (X1, . . . ,Xi−1, λXi,Xi+1, . . . ,Xn) where λ ∈ k∗

is arbitrary. It is well-known that these maps, together with the maps σγ :=

(X1 + γ2X2 + . . . + γnXn,X2, . . . ,Xn) where γ := (γ2, . . . , γn) ∈ kn−1, generate

the group of linear maps. By part (1) for each γ ∈ kn−1 there exists a map

µγ ∈ G such that E(σγ) = E(µγ), and that suffices to prove (2). �

Lemma 2.9. Let k be a finite field. Let G be as in Definition 2.7 (iv).

Then
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(i) E(G) is a primitive group;

(ii) E(G) contains a 3-cycle.

P r o o f. (i): The fact that E(G) is transitive follows from the fact that

G contains all linear bijections kn −→ kn. So we need to show that for arbitrary

r = (r1, . . . , rn), s = (s1, . . . , sn) ∈ kn, r 6= s, there exists some σ ∈ G such that

σ(r) 6= r, σ(s) = s. Let i ∈ {1, . . . , n} be such that ri 6= si. If i ≥ 2, then we take

the map σ(α,1), where α ∈ kn−1 is the n− 1-tuple of the last n− 1 coordinates of

r = (r1, α) ∈ kn. Then σ(α,1)(r) = (r1 + 1, α) and σ(α,1)(s) = s. In the case i = 1

we can take σ2σ(α,s)σ2 for some other appropriate r, s.

(ii): Let o:= (0, . . . , 0) ∈ kn−1 and let

σ := σ(o,1) =
(

X1 + f(o,1)(X2, . . . ,Xn),X2, . . . ,Xn

)

,

µ := σ2σσ2 =
(

X1,X2 + f(o,1)(X1,X3, . . . ,Xn),X3, . . . ,Xn

)

.

Then σ permutes only the set V1 := {(a, 0, . . . , 0) | a ∈ k} and µ permutes only

the set V2 := {(0, a, 0, . . . , 0) | a ∈ k}. Both σ and µ are cyclic of order char(k) on

V1, respectively on V2. Let ζ := σ−1µ−1σµ. Then ζ acts trivially on kn\(V1 ∪V2)

and nontrivially only on a subset of V1 ∪ V2. Now if α 6∈ V2, σ(α) 6∈ V2, then

one can easily check (using the fact that µ works only on elements of V2) that

ζ(α) = α. Also if α 6∈ V1, µ(α) 6∈ V1, then one can easily check (using the fact

that σ works only on elements of V1) that ζ(α) = α. Thus the only cases left are:

1) α 6∈ V2, σ(α) ∈ V2 (the element A := (−1, 0, . . . , 0)),

2) α 6∈ V1, µ(α) ∈ V1 (the element B := (0,−1, 0, . . . , 0)),

3) α ∈ V1, α ∈ V2 (the element O := 0).

Notice that σ(A) = O,σ(B) = B,µ(B) = O,µ(A) = A,σ(O) 6∈ V2, µ(O) 6∈ V1.

Using this we see that ζ(A) = B, ζ(B) = O, ζ(O) = A, and hence ζ is a 3-

cycle. �

Now we are ready for the proof of the main result:

P r o o f o f T h e o r em 2.3. We will use notations as in Definition 2.7.

We will consider B(kn) as a subgroup of Sqn where q = #k. By Theorem 2.5,

Lemma 2.8 and Lemma 2.9 we see that Aqn is a subgroup of E(G) = E(T (k, n)).

(i) Case n = 1: T (k, 1) consists only of the linear maps x −→ ax + b where a ∈

k∗, b ∈ k. These maps are all different bijections, so these are #k∗×#k = (q−1)q

different maps. Since #B(k) = (#k)! the result follows.

(ii) Case n ≥ 2, char(k)6= 2: If we can find σ ∈ G such that E(σ) 6∈ Aqn , then
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E(G) = Sqn ; in other words, find σ ∈ G such that the sign of E(σ) is -1. Our claim

is: τ is such an element. τ (or E(τ)) has order q − 1 and consists of a number of

separate (q− 1)-cycles: there is a separate cycle in the set Vα := {(a, α) | a ∈ k∗}

for each α ∈ kn−1. Hence τ has qn−1 cycles of order q − 1. Now a cycle of order

q − 1 has sign −1 since q − 1 is even. Since q is odd, qn−1 is odd too, hence the

sign of τ is −1.

Case n ≥ 2, k = F2: In this case we can find another element of sign -1, namely

σ(o,1) where o= (0, . . . , 0) ∈ kn−1. This map acts nontrivially only on (0, . . . , 0)

and (1, 0, . . . , 0); it interchanges them. Hence the sign is −1. The rest is the same

as in the previous case.

(iii) Case n ≥ 2, k = Fq = F2r , r ≥ 2: We will show that every generator of G

has sign 1, so E(G) = Aqn .

1) σ2
(α,b) = (X1 + 2f(α,b),X2, . . . ,Xn) = Id, (since 2 ≡ 0 mod (2)). Hence

σ(α,b) consists only of 2-cycles. If we count the number of elements which stay

invariant, then we will know how many 2-cycles contains it. The set of non-

invariant elements is V := {(a, α) | a ∈ k}, hence we have #V/2 = 2r/2 = 2r−1

2-cycles. Since 2r−1 is even ( for r ≥ 2), the sign of σ(α,b) is 1.

2) σ2
i = Id, hence σi consists only of 2-cycles, too. Let us look at σ2. This

map leaves V := {(a, a, α) | a ∈ k, α ∈ kn−2} invariant. Hence we have (#kn −

#V )/2 = ((2r)n − (2r)n−1)/2 = 2rn−r−1(2r − 1) 2-cycles. This number is also

even (since rn − r − 1 ≥ 2 for n, r ≥ 2) hence the sign is 1.

3) τ has order 2r − 1 and consists of a number of (2r − 1)-cycles. These cycles

have sign 1, hence τ also has sign 1. �

3. Conclusions. Using Theorem 2.3 we can also completely define all

zero sets of coordinates over finite fields. Z(F ) will be the zero set of F , and k a

finite field of q elements. Recall that a coordinate is an element F ∈ k[X1, . . . ,Xn]

such that there exist F2, . . . , Fn ∈ k[X1, . . . ,Xn] satisfying k[F,F2, . . . , Fn] =

k[X1, . . . ,Xn].

Corollary 3.1. A set S ⊆ kn is a zero set of a coordinate

F ∈ k[X1, . . . ,Xn] if and only if #S = qn−1.

P r o o f. The case n = 1 is trivial, since every coordinate is of the form

aX1 + b where a ∈ k∗. So let n ≥ 2 and define V0 := {(0, α) | α ∈ kn−1}. S being

the zero set of a coordinate is equivalent to having an automorphism ϕ satisfying

ϕ(S) = V0 (the first component of ϕ will be the coordinate). The “only if”-part
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of Corollary 3.1 follows from the fact that ϕ induces a bijection kn −→ kn, and

thus #S = #ϕ(S) = #V0. Conversely, we need to find an invertible polynomial

map ϕ satisfying ϕ(S) = V0. In other words, we need to find a bijection B which

sends S to V0 and is induced by an invertible polynomial map ϕ (i.e. B := E(ϕ)).

Using Theorem 2.3, in the cases q = 2 or q = pr where p > 2 we can find such

a bijection B. In the case q = 2r, r ≥ 2, we will show that there exists an

even bijection which sends S to V0. We can achieve this by taking two elements

a, b ∈ kn\(S ∪ V0), a 6= b (this is possible since q > 2, n > 1) and then taking

a bijection B sending S to V0 and the identity on kn\(S ∪ V0 ∪ {a, b}) and then

either interchanging a and b or sending a to a and b to b. �

Notice that the first two results of Theorem 2.3 are also true if we replace

T (k, n) by Autk(An); however, the third one is unclear. However, if that would

not be the case, it would imply strange things for the following conjecture:

Conjecture 3.2 (Tame conjecture, TC(k, n)). Let k be a field and n a

positive integer. Then Autk(An) = T (k, n).

Corollary 3.3 (of Theorem 2.3). Suppose k = F2r where r ≥ 2 and

F ∈ Autk(An) such that E(F ) ∈ Sl\Al, l = #k. Then TC(k, n) is not true.

Such a counterexample over F2r might induce a counterexample over C,

but this is not clear.
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