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ABSTRACT. It is shown that the invertible polynomial maps over a finite
field Fy, if looked at as bijections Fy — Fy, give all possible bijections in
the case ¢ = 2, or ¢ = p” where p > 2. In the case ¢ = 2" where r > 1
it is shown that the tame subgroup of the invertible polynomial maps gives
only the even bijections, i.e. only half the bijections. As a consequence it
is shown that a set S C [y can be a zero set of a coordinate if and only if

#S — qn—ll

1. Introduction. Though many theorems about polynomial maps are
true for an arbitrary field, or an arbitrary algebraically closed field, these theorems
are mostly used for the characteristic zero case, or more specifically, for the
complex numbers. However, it might be interesting to study polynomial maps
over characteristic p > 0, or even over finite fields. Some research in this direction
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has been done, see for example in [6], [1], [2] and [3] (Chapter 10, Paragraph
3). The case that we are considering, the automorphism group, or the tame
automorphism group, over a finite field might be very useful, as can be seen in
the paper [5]. In fact, it might be one of the few useful applications of polynomial
mappings in the “real” world of “money, economics and data travel”: in [5] a
method is given on how to encrypt data using the tame automorphism group
over a finite field. Therefore, a theoretical approach of the automorphism group
or the tame automorphism group over a finite field can give a good foundation
for similar applications. Also it might induce some ideas on already standing
conjectures over the complex numbers, like the tame generators conjecture.

2. Bijections induced by automorphisms over F,n.

Definition 2.1. Let k be a field, A, = k[X1,...,X,]. Following the
tradition, and since the endomorphisms of A, are determined by the images of
the variables X1, ..., Xy, we identify the endomorphisms with the n-tuples in A}}.

P(k™) is the set of all maps k™ — k™.
B(k™) C P(k™) is the set of all bijections k" — k™.

€ : Endg(A,) — P(k™) is the functor sending e € Endi(A,,) (e = (e1,...,e,) €
AT ) to the map E(e) : k™ — k™ defined by

Ele)(a,...,an) = (e1(a1,...,an),...,en(a1,...,apn)).

Aut(k,n) := {e € Endg(A,) | E(e) € B(k™)}.
Auty(Ay,) := the group of automorphisms of the k-algebra A,, (i.e. Autg(A,) is
the set of invertible elements of Endy(A,)).
T(k,n) is the tame automorphism subgroup of Autyg(Ay), generated by (X7 +
f(Xa, ..., Xpn), Xo, ..., Xy) forall f € k[Xo,...,X,] and by all linear maps.
As usual, “#S5” will denote the number of elements in a finite set S.
Remark.  Aut(k,n) is in general larger than Autg(A,): when k is
the finite field with p™ elements, let ¢ := (an,Xg, ..., Xpn). Then the map
E(an,Xg, ..., Xp) is a bijection k™ — k™ but ¢ is not an invertible element of
Endg(A,).

In this article we will try to answer the question whether £(Auty(4,)) =
B(k™). The case when k is infinite is easy:
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Lemma 2.2. If k is not a finite field then E(Aut(k,n)) (and hence
E(Auty(Ay,))) is smaller than B(k™).

Proof. Suppose F' = (F},..., F,) is a polynomial map k™ — k" inter-
changing 0 and A := (1,0,...,0), and the identity anywhere else. Then F; — X;
is a polynomial map k"™ — k which is zero everywhere if i > 2 or zero almost
everywhere if ¢ = 1. Over an infinite field this implies F; — X; =0. O

In the case when k is a finite field we have a surprising result:

Theorem 2.3. Let k be a finite field. Then:
(i) #E(T(k,1)) = #B(k)/(#k — 2)!, so E(T(k,1)) = B(k) only if k = Fy, Fs.
(ii) If n > 2 and char(k) # 2 or k = Fy, then E(T(k,n)) = B(k™).

(iii) If n > 2 and k = Fom, where m > 2, then #&(T'(k,n)) = #B(k™)/2.
In fact, E(T'(k,n)) is the alternating subgroup A; of the symmetric group
S; = B(k™) where | = #k"™.

The proof will go in several steps. It will involve the fact that B(k™), with
composition of maps as operation, is isomorphic to the symmetic group S; where
[ = (#k™), because every bijection o € B(k™) can be seen as a permutation of
elements in k™. This enables us to use a theorem of Jordan:

Definition 2.4. Let G be a transitive subgroup of S,. G is called a
primitive subgroup if there exist no two elements i,j € {1,...,n} such that for

any g € G we have either {g(i),9(j)} = {i,j5} or {9(i),9(j)} N{i,j} = 0.
Theorem 2.5. Let G be a primitive subgroup of Sy,. Suppose G contains
a 3-cycle. Then G contains the alternating subgroup A,,.
For a proof, see [4].
Definition 2.6. Let k be a finite field, and let o = (a1,..., ) € k7,
bek. Let
fi = H (Xz — CL) S ]C[XZ]

ack
a# o

Let X := fi(a1) - fu(an). Then define

Fapy = 0AT T £i(X0).
=1
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Notice that fi, () =band fop)(3) =0 for all g € k"\{a}.
Definition 2.7. Let k be a finite field.
(i) Let o € k"1 b € k. Then define

Tlap) = (X1 + flap(Xar .o Xn), X, ..., X0).
(i) Leti € {2,...,n}. Define
o= (X5, Xo, .o, Xim1, X1, Xig1, .., Xin),
the map interchanging X; and Xy.
(iii) Choose some a € k* such that {1,a,a?,...} = k*. Define

7:=(aXy,Xo,..., Xp).
(iv) Let G be the subgroup of T'(k,n) generated by all ooy, all o; and T.

Lemma 2.8. £(G) = E(T'(k,n)).

Proof. We need to show that (1) for any f € k[Xao,...,X,] there exists
o € G such that £(o) = E(X1 + f, Xs,...,X,), and that (2) for each linear map
L we have some o € G such that £(c) = £(L).
Part (1): Let ¢ := (X1 + f, Xo,...,X,,) for some f € k[X,,...,X,]. Notice that
O/ b)T (o ") = T(a b0 (b)) = (Xl +g,Xo,... ,Xn), where g € k‘[XQ, R ,Xn]
satisfies (in case o # ") g(a/) =V, g(a”) = b". In the same way we see that if
we define o to be the composition of all 6, f(a)), Where a runs through k"1 then
o= (X1+g,Xs,...,X,) and g(a) = f(a) for all a € k"~ L. Thus E(o) = £(C).
Part (2): Since 0;7m0; = (X1,..., Xi 1,a™X;, Xit1,- .., Xpn) and {1,a,a?,...} =
k*, we can get any map L; y := (Xi,...,X;-1,AX;, Xj41,...,X,,) where A € k*
is arbitrary. It is well-known that these maps, together with the maps o, =
(X1 4+ 7Xo+ ...+ X, Xo,..., X,,) where v := (y2,...,7,) € k"', generate
the group of linear maps. By part (1) for each v € k"! there exists a map
f € G such that £(o,) = £(uy), and that suffices to prove (2). O

Lemma 2.9. Let k be a finite field. Let G be as in Definition 2.7 (iv).
Then
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(i) £(G) is a primitive group;
(ii) £(G) contains a 3-cycle.

Proof. (i): The fact that £(G) is transitive follows from the fact that
G contains all linear bijections k™ — k™. So we need to show that for arbitrary
r=(ry,...,m),s = (81,...,5n) € k", r # s, there exists some o € G such that
o(r)#r,o(s)=s. Leti € {1,...,n} be such that r; # s;. If i > 2, then we take
the map o, 1), where a € k"1 is the n — 1-tuple of the last n — 1 coordinates of
r=(r;,a) € k™. Then o, 1y(r) = (1 +1,a) and o(41)(s) = s. In the case i = 1
we can take 020 (a,5)02 for some other appropriate r, s.
(ii): Let o:= (0,...,0) € k"~ and let

0:=0(1) = (X1+f01(Xg,...,Xn),Xg,...,Xn),
K= 02002 = (X17X2+f0,1 (X17X37"'7Xn)7X37"'7Xn)'

Then o permutes only the set V; := {(a,0,...,0) | a € k} and p permutes only
the set V5 := {(0,a,0,...,0) | a € k}. Both o and p are cyclic of order char(k) on
Vi, respectively on V. Let ¢ := o~ 'u~top. Then C acts trivially on ™\ (V7 U V3)
and nontrivially only on a subset of V; U Va. Now if o & Vo, 0(a) & Va, then
one can easily check (using the fact that p works only on elements of V3) that
((a) = a. Also if a &€ Vi, u(a) € Vi, then one can easily check (using the fact
that o works only on elements of V) that ((a) = «. Thus the only cases left are:
1) a & Va,0(a) € V3 (the element A := (—1,0,...,0)),

2) a & Vi, u(a) € Vi (the element B := (0,—1,0,...,0)),
3) a € V1, a € V5 (the element O :=0).
Notice that a(4) = 0,0(B) = B, u(B) = O, u(A) = 4,0(0) & Va,u(0) & Vi.
Using this we see that ((A) = B, ((B) = O, ((0O) = A and hence ¢ is a 3-
cycle. O

Now we are ready for the proof of the main result:

Proof of Theorem 2.3. We will use notations as in Definition 2.7.
We will consider B(k") as a subgroup of S;» where ¢ = #k. By Theorem 2.5,
Lemma 2.8 and Lemma 2.9 we see that Ag» is a subgroup of £(G) = E(T'(k, n)).
(i) Case n = 1: T'(k,1) consists only of the linear maps © — ax + b where a €
k*,b € k. These maps are all different bijections, so these are #k* x #k = (¢—1)q
different maps. Since #B(k) = (#k)! the result follows.
(ii) Case n > 2, char(k)# 2: If we can find o € G such that £(c) € Agn, then
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E(G) = Syn; in other words, find o € G such that the sign of £(o) is -1. Our claim
is: 7 is such an element. 7 (or £(7)) has order ¢ — 1 and consists of a number of
separate (q — 1)-cycles: there is a separate cycle in the set V, := {(a,a) | a € k*}

n—1

for each o € k"~ !'. Hence 7 has ¢ cycles of order ¢ — 1. Now a cycle of order

"=l ig odd too, hence the

g — 1 has sign —1 since ¢ — 1 is even. Since ¢ is odd, ¢
sign of 7 is —1.

Case n > 2, k = Fa: In this case we can find another element of sign -1, namely
0(o,1) Where o= (0,...,0) € k"=, This map acts nontrivially only on (0,...,0)
and (1,0,...,0); it interchanges them. Hence the sign is —1. The rest is the same
as in the previous case.

(iii) Case n > 2, k = F, = For, r > 2: We will show that every generator of G
has sign 1, so £(G) = Agn.

1) U(Za,b) = (X1 + 2f(ap), X2,...,Xn) = Id, (since 2 = 0 mod (2)). Hence
O(a,p) consists only of 2-cycles. If we count the number of elements which stay
invariant, then we will know how many 2-cycles contains it. The set of non-
invariant elements is V := {(a,) | a € k}, hence we have #V/2 = 27 /2 = 21
2-cycles. Since 271 is even ( for r > 2), the sign of T(ap) 18 1.

2) 02-2 = Id, hence o; consists only of 2-cycles, too. Let us look at oo. This
map leaves V := {(a,a,a) | a € k,a € k"~?} invariant. Hence we have (#k" —
#V)/2 = (27" — (2")" 1) /2 = 27 1(27 — 1) 2-cycles. This number is also
even (since rn —r — 1 > 2 for n,r > 2) hence the sign is 1.

3) 7 has order 2" — 1 and consists of a number of (2" — 1)-cycles. These cycles
have sign 1, hence 7 also has sign 1. O

3. Conclusions. Using Theorem 2.3 we can also completely define all
zero sets of coordinates over finite fields. Z(F') will be the zero set of F', and k a
finite field of ¢ elements. Recall that a coordinate is an element F' € k[X7,..., X,
such that there exist Fy,..., F, € k[Xi,...,X,] satisfying k[F, F,,..., F,] =
E[X1,..., X

Corollary 3.1. A set S C k™ is a zero set of a coordinate
F € k[X1,...,X,] if and only if #S = ¢" 1.

Proof. The case n = 1 is trivial, since every coordinate is of the form
aXj +b where a € k*. So let n > 2 and define V := {(0,«) | « € k""1}. S being
the zero set of a coordinate is equivalent to having an automorphism ¢ satisfying
©(S) = WV (the first component of ¢ will be the coordinate). The “only if”-part
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of Corollary 3.1 follows from the fact that ¢ induces a bijection k" — k", and
thus #S = #p(S) = #Vy. Conversely, we need to find an invertible polynomial
map ¢ satisfying ¢(S) = Vj. In other words, we need to find a bijection B which
sends S to Vp and is induced by an invertible polynomial map ¢ (i.e. B := &(p)).
Using Theorem 2.3, in the cases ¢ = 2 or ¢ = p" where p > 2 we can find such
a bijection B. In the case ¢ = 2",r > 2, we will show that there exists an
even bijection which sends S to V. We can achieve this by taking two elements
a,b € E"\(SUVp), a # b (this is possible since ¢ > 2, n > 1) and then taking
a bijection B sending S to Vj and the identity on £™\(S U Vp U {a,b}) and then
either interchanging a and b or sending a to @ and b to b. O

Notice that the first two results of Theorem 2.3 are also true if we replace
T(k,n) by Auty(Ay); however, the third one is unclear. However, if that would
not be the case, it would imply strange things for the following conjecture:

Conjecture 3.2 (Tame conjecture, TC(k,n)). Let k be a field and n a
positive integer. Then Autp(A,) =T (k,n).

Corollary 3.3 (of Theorem 2.3). Suppose k = For where r > 2 and
F € Auti(A,,) such that E(F) € S)\A;, | = #k. Then TC(k,n) is not true.

Such a counterexample over For might induce a counterexample over C,
but this is not clear.
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