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ABSTRACT. A group-theoretic method of obtaining more general class of
generating functions from a given class of partial quasi-bilateral generat-
ing functions involving Hermite, Laguerre and Gegenbaur polynomials are
discussed.

1. Introduction and preliminaries. The usual generating relation
involving one special function is called linear or unilateral generating relation.
By the term usual bilateral generating function, we mean a function G(z, z, w)
which can be expanded in powers of w by the following relation:

Gz, z,w) = Z anW" fr(7)gn(2)
n=0
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where a,, is quite arbitrary that is independent of z and z and f,(x), gn(z) are
two different special functions. In particular, when two special functions are same
that is f,, = gn, we call the generating relation as bilinear generating relation.

Unlike the usual bilateral generating relations [1], we shall introduce the
concept of partial quasi-bilateral generating relation [2] for Hermite, Laguerre
and Gegenbaur polynomials.

Definition 1.1. By the term partial quasi-bilateral generating relation

for two classical polynomials, we mean the relation:

(1.1.1) G(z,z,w) = apu” fﬁln(x)T,ﬁmW(Z)
n=0

where the coefficients ay’s are quite arbitrary and Sf,?ln(x), Tp(ern)(z) are two

particular special functions.

The object of this note is to consider the operator

0 0
R, = $y28—$ +y3a—y + (1 4+ m — 22%)y?

which raises the index of the Hermite polynomial by two and to establish a group
theoretic method for obtaining a more general class of generating relation from
a given class of partial quasi-bilateral generating relations involving Hermite,
Laguerre and Gegenbaur polynomials when suitable one-parameter continuous
transformations group can be constructed for those special functions.

2. Main results.
a) Index raising operator for Hermite polynomial H,, ().
1 n+2

Here we would like to prove Ri[Hpin(z)y"] = —§Hm+n+2(:v)y where
0 0

Ry = a:y28— + y?’a— +(1+m-— 23:2)y2 which will help us in proving our main
€ Y

theorems.

Now

Ry [Hm-I—n (x)yn]

0 0
= 3321!2% + y?’a—y + (1 +m—22%)y° [Hpsn(2)y"]

0 _
= xy”+2%(Hm+n(:v)) + ny?’y” le+n(:v) +(1+m-— 2m2)y”+2Hm+n(x)



Partial quasi-bilateral generating function. . . 111

= Y2020+ 1) Hon 1 () + B (2) + (1 11— 20%) H ()]
=" 222(m 4+ n)Hpin-1(2) + (1 +m+n — 222 Hpyppyn ()]

= y" 21+ m+ n)Hypgn(2) — 220 Hpgn (2) = 20m +n) Hypn1(2))]
=y

n+2 ( +m + n)Hern(x) — JJHernJrl(x)]

1
= _Eyn+2[2me+n+l($) - 2(m +n+ ]-)Hm+n($)]

1
= —§Hm+n+2(33)yn+2

So the result is proved. If we slightly modify the operator R; as

Ry = ny%—Fy ag—i—(l 22?)y?, then we can similarly prove Ry[H,p, n(2)y™ ] =
1 m+n+2($)ym+n+2-

It may be worthy of mention here that in the derivation of generating
functions for Hermite polynomial by group-theoretic method, one has to consider
two operators which raise and lower the index of the Hermite polynomial by unity
in order to generate a Lie Algebra [3]. But the operator R; (or Rg) raises the
index of the Hermite polynomials by two.

b) Group-theoretic method. The group-theoretic method in the deriva-
tion of a more general class of generating relations from a given class of partial
quasi-bilateral generating relations involving Hermite, Laguerre and Gegenbaur
polynomials are discussed below.

Let us consider the partial quasi-bilateral generating relation involving
Hermite and Laguerre polynomials of the form:

(2.1.1) G(z,z,w) Zanw Hyyn(x)L (m+”)( )
where a,,’s are quite arbitrary and H,, (), LJ(Dern) (z) are Hermite and Laguerre

polynomials of order (m + n) and p respectively.
Now we seek the following two operators
30 0

— + (1 —22%)y® and Ry =t — — t

0
_ 2 7
fy =y 8x+y oy 0z

such that q
Ri[Hpyn(2)y™ "] = D) m+n+2(x)ym+n+2
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and
Ry [Léern) (Z)thrn] _ (_1)Lém+n+l) (Z)thrnJrl
where
_1 2way® x Yy
exp(whi) f(z,y) = (1 = 2wy®) "> exp <_1 - 2wy2>f (\/1 —2wy? /T - 2wy?

and exp(vRa)f(z,t) = exp(—vt)f(z + vt,1).
Now multiplying both sides of (2.1.1) by w™, we get

(2.1.2) w"G(x, z,w) Za W Hoon (2 )Lgm'”)(z)
We now replace ‘w’ by ‘wvyt’ in (2.1.2) and obtain

(2.1.3.) (woyt)"G(x, z,woyt) = Zan (woyt)™ " Hypyyon (0 )L(m+”)(z)
n=0

=D an(wo)" " (Hyppn(2)y™ ) (L ()17 F7).
n=0

We now operate [4] both sides of (2.1.3) by exp(wR;) exp(vR2) and as a result
of it, the relation (2.1.3) reduces to

1 wx?y? m
T [ty gy

=35> antwn (VB g ) (L g g

0o 00 00 N wm+n+svm+n+r fn42 (metntr) ny
T T m T
=Y 3 D)y (Hanneas (2)y ™) (L (2,
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Putting y =t =1 in (2.1.4) we get:

Qa2

(2.1.5) (1—2w)"2 exp <—1 — 2w) exp(—v)(wv)™ <ﬁ>m

G(L . &)
Vi—2w’ V1= 2w

m+n+svm+n+r

(0.] (o ¢] (o ¢] ot w .
= ZZZ(_D Tay, 255171 Hm+n+23($)Lé ot )(z)

Equating the coefficient of (wv)™ from both sides of (2.1.5) we get

_m+1 Qa2 a x n wv
— - —zt v, ——
1—2w V1 —2w vV1—2w

n+s,Un+r

00 00 00 w
:ZZZ(_DS-I—TQ” 95 g1l Hm+n+25(1‘)Ll(;m+n+r)(Z).

Thus we have the following theorem:

Theorem 2.1. If there exist the following partial quasi-bilateral generat-
ing functions for Hermite polynomial Hy,1p(x) and Laguerre polynomial L,(Jm+n)(z),
of order (m +n) and p of the form:

o0
G(z,z,w) = Z anwnHm+n($)L§;m+n) (2),
n=0

where ay, is quite arbitrary that is independent of x and z, then the following more
general generating relation holds:

Qw2

(1—2w)_mT+1exp ——— —v |G L,Z—I—w,&
1—2w v1—-2w V1—"2w

00 00 00 r whTsyntr (mtnr) 1
= E § § (=1)""ay 255l Hpnin2s(2) Ly (2), where [w] < 9
n=0r=0 s=0

Theorem 2.2. If there exist the following partial quasi-bilateral ge-

nerating functions for Hermite polynomial Hp,4n(x) and Gegenbaur polynomial
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CJ™(2) of order (m +n) and p of the form:
G(z,z,w) Zanw Hypoon () C™H (2),

where ay, is quite arbitrary that is independent of x and z, then the following more
general generating relation holds:

m+1 p+2m Qw2
1—2w)~ "5 (1 - 20)~ 25" -
(1= 20) "5 (1 — 20) " exp( 1_2w)

a ( T —w z wo >
VI=2w VT=20 (1-2v)v1-2w
o o o
2rfswn+svn+r
— Z Z Z o Hm+n+25(x)01gm+n+r) (2),
n=0r=0 s= e

1 1
where |w| < 3 and |v| < 7

Proof. Let us consider the following partial quasi-bilateral generat-
ing relation involving Hermite polynomial H,,,(x) and Gegenbaur polynomial
Cp™(x) of the form:

(2.2.1) G(z,z,w) Zanw Hpin(x )C(er")(z).
Multiplying both sides of (2.2.1), by w™ we get

(2.2.2) WGz, 2,w) =Y apw™ " Hy o (2)CS™ T (2).
n=0

Now replacing ‘w’ by ‘wvyt’ in (2.2.2) we get:

(2.2.3) (woyt)"G(z, z,woyt) = Za W)™ (Hypyn (2 )ym+”)(C]()m+”)tm+”).

We now seek the following two operators

0 0 0 0
Ry = wa% + yga—y + (1 —-22%)y*> and Ry = zt& + QtZa + pt
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such that 1

Ry[Hpyn()y™ "] = ) ment2()y" T
and

Ry [Cz()m'i'n)(z)tm—'—n] = 2(m + n)C]()m+n+1)(Z)tm+n+1
where

1 2war?y? €

exp(wRy)f(a,y) = (1=2wy?) ¥ exp (‘ﬁ) g (m 2wyt VI —y2wy2>
and

exp(uRa)f(2,0) = (-2 4 f (oEm ).

We now operate both sides of (2.2.3) by exp(wR;p)exp(vR2) and as a
result of it, the relation (2.2.3) reduces to

1 » 2wz?y?
(2.2.4) (1 —2wy?)"2(1 — 2vt)” 2 exp <_1—72wy2> (wov)™

Yyt mG x z woYt
(1 —2vt)y/1 — 2wy? V1= 2wy? VI =20t (1 = 20t)y/1 — 2wy?

S St (L o) (I ey

r!

=D > > (-1)’a, 9 (m + 1)y symAntT

n=0 r=0 s=0 QSS!T!
(Hosnpas (2)ym o 2s) (O () gmtnctr)
_= _ an
ral
n=0 r=0 s=0 §:T

(Hm+n+25 (w)mernJrQs)(CZ()ernJrr) (Z)thrnJrr)

Now putting y = ¢ = 1 in (2.2.4) and equating the coefficient of (wv)™ from both
sides of (2.2.4), we get:

pt+2m

2
(1—2w)7m7+1(1—22))7 2 exp (— 2w )G( - ; : ) - >
1—2w V12w 1-2v (1-2v)y/1-2w
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oo 00 00
2rfs(m+n)rwn+s,un+r .
=222 (V' o 2 (@) O (2),

n=0r=0 s=0

whenever

[e.e]
1 1
— m+
Gz, z,w) = n§_0 anW" Hy o (2)C™ T (2) and |w] < 5 Il <5
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