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DISCRIMINANT SETS OF FAMILIES OF HYPERBOLIC

POLYNOMIALS OF DEGREE 4 AND 5∗

Vladimir Petrov Kostov
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To the memory of my mother

Abstract. A real polynomial of one real variable is hyperbolic (resp.
strictly hyperbolic) if it has only real roots (resp. if its roots are real and
distinct). We prove that there are 116 possible non-degenerate configura-
tions between the roots of a degree 5 strictly hyperbolic polynomial and
of its derivatives (i.e. configurations without equalities between roots).
The standard Rolle theorem allows 286 such configurations. To obtain
the result we study the hyperbolicity domain of the family P (x; a, b, c) =
x5 − x3 + ax2 + bx + c (i.e. the set of values of a, b, c ∈ R for which the
polynomial is hyperbolic) and its stratification defined by the discriminant
sets Res(P (i), P (j)) = 0, 0 ≤ i < j ≤ 4.

1. Introduction.

1.1. Statement of the problem.

Definition 1. A real polynomial of degree n of one real variable is called
hyperbolic if it has only real roots (multiple roots are allowed). The derivatives
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of all orders ≤ n−1 of a hyperbolic polynomial are also hyperbolic. A polynomial
is strictly hyperbolic if its roots are real and distinct (hence, this is the case of
all its derivatives of orders ≤ n − 1 as well). If the coefficients of a polynomial
depend on parameters, then the set of the values of the parameters for which the
polynomial has only real roots is called its hyperbolicity domain.

Denote by xi
j the roots of the i-th derivative of a hyperbolic polynomial

of degree n, xi
1 ≤ . . . ≤ xi

n−i; we set xj = x0
j . The standard Rolle theorem implies

that if the polynomial is strictly hyperbolic, then for k > i, j = 1, . . . , n− k one

has

xi
j < xk

j < xi
j+k−i(1)

In the present paper we are interested in the question which non-degenerate con-

figurations of the roots of a hyperbolic polynomial and of its derivatives consis-

tent with these inequalities are possible to take place (i.e. configurations without

equalities between roots xi1
j1

= xi2
j2

, for any (i1, j1) 6= (i2, j2)). For n = 1, 2 or 3

all such configurations are realized by hyperbolic polynomials. For n = 1 and 2

there is a single possible configuration, respectively x1 and x1 < x1
1 < x2. For

n = 3 there are two possible such configurations:

x1 < x1
1 < x2

1 < x2 < x1
2 < x3 and x1 < x1

1 < x2 < x2
1 < x1

2 < x3

realized by the polynomial x3 − x + q respectively for q ∈ (0, 2
√

3/9) and q ∈
(−2

√
3/9, 0). For n = 4 there are 12 non-degenerate configurations consistent

with (1) two of which cannot be realized by hyperbolic polynomials, see Section 3.

In the present paper we consider a generic family of monic polynomials

of degree 5 and their derivatives of all orders. Our aim is to describe the possible

non-degenerate configurations of the roots of a hyperbolic polynomial of degree

5 and of its derivatives. We prove the following

Theorem 2. There are 116 possible non-degenerate configurations of the

roots of a hyperbolic polynomial of degree 5 and of its derivatives up to order 4.

On the other hand, there are 286 non-degenerate configurations consistent

with conditions (1) (for arbitrary n this number is

(

n+ 1

2

)

!
1!2! . . . (n− 1)!

1!3! . . . (2n− 1)!
, see

[14] or [15]). The different cases where non-degenerate configurations consistent

with (1) are not realized by hyperbolic polynomials are discussed in the form of

Observations. The absence of some of the configurations is closely connected with

the presence of overdetermined strata in any generic family of monic hyperbolic

polynomials, see Section 4.
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1.2. Historical remarks. The property of being hyperbolic has been

considered in the case of several variables as well. Some properties of hyperbolic

polynomials and criteria of hyperbolicity have been studied at the beginning of

the twentieth century, see e.g. [13], ch. 5-6. In the 60’s and 70’s the interest to

hyperbolic polynomials (mainly in the case of several variables) was stimulated

by the works of I. G. Petrovsky and L. Hörmander contributing to the theory of

linear partial differential equations with constant coefficients.

Also in the case of one variable some new results appeared, see e.g. [11].

In the 80’s V. I. Arnold and his students wrote several papers on hyperbolic

polynomials motivated by their application to potential theory, see [2], [3], [5],

[6] and [7]. Some of these results appeared in parallel in the thesis and papers of

I. Meguerditchian, see [9] and [10].

The case n = 4 is mentioned in [1].

Acknowledgement. The problems explored in this paper have been

stated by V. I. Arnold and it was B. Z. Shapiro who brought them to the attention

of the author and discussed them with him. To both of them the author expresses

his most sincere gratitude.

2. Preliminaries. Consider the generic family of polynomials P (x, a) =

xn + a1x
n−1 + . . .+ an, x, ai ∈ R. Denote by Π∗ its hyperbolicity domain. After

the shift x 7→ x− a1/n the study of Π∗ is reduced to the case a1 = 0.

Lemma 3. In the case a1 = 0 the polynomial P is hyperbolic only if

a2 ≤ 0. If a1 = a2 = 0, then P is hyperbolic only for a2 = . . . = an = 0.

Indeed, all derivatives of P must be hyperbolic, in particular P (n−2) =

(n!/2)xn−2 + (n − 2)!a2, therefore a2 ≤ 0. Let a1 = a2 = 0. As P (n−3) =

(n!/6)xn−3 + (n− 3)!a3 must be hyperbolic, one has a3 = 0 etc. �

For t ∈ R set ãj = ejtaj. One has P (etx, ã) = entP (x, a). Therefore

to study Π∗ it suffices to study Π = Π∗ ∩ {a1 = 0, a2 = −1}. This is what we

do. To find out the possible non-degenerate configurations of the roots of P and

of all its derivatives we consider the discriminant sets D(i, j) := {(a3, . . . , an) ∈
Π|Res(P (i), P (j)) = 0}.

The paper is structured as follows. We consider the case n = 4 in Sec-

tion 3. In Section 4 we define a stratification of Π and we introduce the notion

of an overdetermined stratum.

The rest of the paper deals with the case n = 5, i.e. with the family

P = x5 − x3 + ax2 + bx+ c. In Section 5 we describe the discriminant sets and
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we give pictures of them together with D(0, 1). We describe the non-degenerate

configurations of the roots of P (i) and P (j) (not of all derivatives simultaneously)

for (a, b, c) from each open part of Π into which it is divided by the set D(i, j).

In Section 6 we prove Theorem 16 from Section 4 which states that for

n = 5 there are only three overdetermined strata, all of dimension 0.

In Section 7 we use the results of Section 5 to prove Theorem 2 which

amounts to counting the number of open parts of Π into which all sets D(i, j)

together divide Π. Having the information of Section 5 the reader should be able

to describe the configuration of the roots of P and its derivatives in each of these

open parts.

3. The case n = 4. Consider the family of monic polynomials P =

x4 − x2 + ax + b, x, a, b ∈ R. The hyperbolicity domain Π of P is the interior

of the curvilinear triangle D′E′A′, see Fig. 1. The configurations of the roots of

P , P ′, P ′′ and P ′′′ (denoted respectively by 0, f, s, t) are indicated on the figure

by configuration vectors on which coinciding roots are put in square brackets.

E.g. the configuration vector corresponding to the point A′ ([0f0], s, [ft], s, [0f0])

means that x1 = x2 = x1
1 < x2

1 < x1
2 = x3

1 < x2
2 < x3 = x4 = x1

3.

The discriminant sets are:

D(0, 1) : 4b(4b− 1)2 + a2 − 27a4/4 − 36a2b = 0 D(0, 2) : ±a/
√

6 + b = 5/36

D(1, 2) : a = ±4/3
√

6 D(0, 3) : b = 0
D(1, 3) : a = 0 D(2, 3) = ∅

The set D(0, 1) has a self-intersection point at A′ and cusps at D′ and

E′; these cusp points belong to D(1, 2). The set D(0, 2) has a self-intersection

point at the point B′; the latter and A′ belong to D(1, 3). The line D(0, 3) is

tangent to D(0, 1) at C ′ where {C ′, A′} = D(0, 1)∩D(1, 3). All discriminant sets

are invariant w.r.t. the involution (a, b) 7→ (−a, b).
There are 10 open domains in Π defined by the 10 non-degenerate configu-

rations indicated beside the figure. By the general formula from the Introduction

there are 12 non-degenerate configurations consistent with (1). The absence of

the two configurations (0, f, 0, s, t, f, 0, s, f, 0) and (0, f, s, 0, f, t, s, 0, f, 0) is con-

nected with the fact that D(1, 3) passes through the intersection point of the two

lines of which D(0, 2) consists.

4. Overdetermined strata. Denote by PolCn (resp. by Poln) the

space of all monic polynomials of degree n with complex coefficients (resp. of
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Fig. 1. The case n=4

all monic hyperbolic polynomials of degree n). The set of all possible n-tuples

(Pn, . . . , P1) where Pi ∈ PolCi (resp. Pi ∈ Poli) can be identified with the space

X̃ of their roots (we denote the roots of Pi by xi
j, in the case of Poln one has

xi
1 ≤ . . . ≤ xi

n−i).

Stratify X̃. A stratum of codimension k in X̃ is a subset of X̃ defined by

k independent equalities of the form xi1
j1

= xi2
j2

, (j1, i1) 6= (j2, i2).

For P ∈ PolCn or P ∈ Poln set Pn−i = ((n − i)!/n!)P (i). One can embed

Poln into X̃ by sending P ∈ Poln into (Pn, . . . , P1); denote the embedding by π.

For a stratum S of X̃ denote by S′ its intersection with π(Poln).

Definition 4. The stratum S is said to be overdetermined if its codi-

mension in X̃ (called its order – ordS) is greater than the codimension of S′

in π(Poln) (called its codimension – codimS). Call surplus of S the difference

surpS = ordS − codimS.
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Definition 5. A multiplicity vector is a vector whose components are

the multiplicities of the roots of a hyperbolic polynomial. The roots are listed in

increasing order. Example: the multiplicity vector [1, 2, 2] means that one has

x1 < x2 = x3 < x4 = x5.

Example 6. For even n (resp. for odd n) the polynomial Pe = (x2 −
2/n)n/2 (resp. Po = x(x2 −2/(n−1))(n−1)/2) defines an overdetermined stratum.

Indeed, one has

P ′′

e = (n(n− 1)x2 − 2)(x2 − 2/n)n/2−2, P (n−2)
e = (n!/2)(x2 − 2/n(n − 1)),

hence, P
(n−2)
e divides P ′′

e . On the other hand, the polynomial Pe is completely

defined by the conditions its multiplicity vector to be [n/2, n/2] and its first three

coefficients to be 1, 0 and −1; these conditions do not formally imply that P
(n−2)
e

divides P ′′
e . It is also true that P

(n−1)
e = n!x divides all derivatives of Pe of odd

order.

For Po one has

P ′

o = (nx2−2/(n−1))(x2 −2/(n−1))(n−3)/2, P (n−2)
o = (n!/2)(x2 −2/n(n−1)),

hence, P
(n−2)
o divides P ′

o. However, Po is completely defined by the conditions its

multiplicity vector to be [(n−1)/2, 1, (n−1)/2], Po to be divisible by P
(n−1)
o = n!x

and the first three coefficients of Po to be 1, 0 and −1; these conditions do not

involve P
(n−2)
o or P ′

o.

Observe that if n is odd, then up to a constant factor and rescaling of the

x-axis one has Pe =
∫ x
0 Po(t)dt where Pe is defined for n+ 1.

Remarks 7. 1) In this example one has

ordPe ≥ 3n/2 − 1 codimPe = n− 2 surpPe ≥ n/2 + 1
ordPo ≥ (3n− 3)/2 codimPo = n− 2 surpPo ≥ (n+ 1)/2

because in the definition of the stratum of Pe in X̃ at least the following equalities

are involved: x1 = . . . = xn/2, xn/2+1 = . . . = xn; xn−1
1 = x2i−1

n/2−i+1 for i =

1, 2, . . . , n/2− 1; xn−2
1 = x2

n/2−1, x
n−2
2 = x2

n/2 and eventually some more of them;

for the stratum of Po we have the equalities x1 = . . . = x(n−1)/2, x(n+3)/2 = . . . =

xn; xn−1
1 = x2i

(n+1)/2−i for i = 0, 1, . . . , (n−3)/2; xn−2
1 = x1

(n−1)/2, x
n−2
2 = x1

(n+1)/2

and eventually others.

2) By definition, the polynomial (n/2)n/2((n/2)!/n!)(Pe)
(n/2)(x

√

2/n) is

the Legendre polynomial of degree n/2.
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To estimate more exactly the orders of the strata defined by Po and Pe

one can use the following

Proposition 8. For all even n and 0 < s < n/2 the polynomial P
(n/2+s)
e

divides the polynomial P
(n/2−s)
e .

P r o o f. The polynomial P
(n/2)
e (x

√

2/n) (denoted by y for short) satisfies

the differential equation

(x2 − 1)y′′ + 2xy′ − n(n+ 1)y = 0(2)

(recall that (n/2)n/2((n/2)!/n!)y is a Legendre polynomial). Denote (for k =

1, . . . , n/2) by y(−k) the primitive of y(−k+1) divisible by (x2 − 1)k. By (2), one

has ((x2 − 1)y′)′ = n(n + 1)y, hence, (x2 − 1)y′ = n(n + 1)y(−1) and y′ divides

y(−1). This means that P
(n/2+1)
e divides P

(n/2−1)
e .

Suppose that for i ≤ s one has (x2 − 1)iy(i) = αiy
(−i), αi ∈ R∗. Differen-

tiating equation (2) s times one gets

(x2 − 1)y(s+2) + (2s + 2)y(s+1) − (n(n + 1) − s(s+ 1))y(s) = 0, i.e.

((x2 − 1)s+1y(s+1))′ = (x2 − 1)sβsy
(s)

where βs = (n(n + 1) − s(s + 1)). Hence, ((x2 − 1)s+1y(s+1))′ = αsβsy
(−s).

Integrating both sides one gets (x2−1)s+1y(s+1) = αsβsy
(−s−1). This means that

P
(n/2+s+1)
e divides P

(n/2−s−1)
e . �

Remarks 9. 1) The presence of overdetermined strata of dimension 1

in the family of hyperbolic polynomials P (x, a) = xn +a2x
n−2 +a3x

n−3 + . . .+an

can be explained in part by the fact that outside 0, n − 1 sheats of discrimi-

nant sets Res(P (i), P (j)) = 0 never intersect transversally because they are all

invariant under the one-parameter group of quasi-homogeneous transformations

aj 7→ ejtaj, t ∈ R.

2) If at some point three discriminant sets intersect along a variety of

dimension higher than the expected one, then this variety does not necessarily

define an overdetermined stratum. Example: the three discriminant sets define

locally the conditions xb
a = xd

c , x
d
c = xh

g and xb
a = xh

g ; the third equality being

a corollary of the first two, the intersection with the third discriminant set does

not decrease the dimension of the intersection of the first two.

Proposition 10. There are no overdetermined strata for n < 4. For

n = 4 the points A′ and B′ (see Fig. 1) define the only overdetermined strata.
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Indeed, for n < 4 the proposition is to be checked directly. For n = 4

at A′ the condition x3
1 = x1

2 is not a corollary of x1 = x2, x3 = x4. At B′ the

condition x3
1 = x1

2 is not a corollary of x2 = x2
1, x3 = x2

2. Only at A′, B′, C ′ D′

and E′ do three discriminants or sheats of discriminants meet at one point and

all intersections by two are transversal. The points C ′, D′ and E′ do not define

overdetermined strata, see part 2) of Remarks 9. �

For n = 5 the exhaustive answer to the question which strata are overde-

termined is given by Theorem 16, see Subsection 5.1.

Definition 11. Call Gegenbauer’s polynomial of degree n the hyperbolic

polynomial of the form xn − xn−2 + . . . which is divisible by its second derivative

(one can show easily that for n ≥ 3 such a polynomial exists and is unique; more-

over, it is even or odd together with n). Hence, for any n Gegenbauer’s polynomial

defines an overdetermined stratum of dimension 0 in the family P (x, a)|a2=−1

(defined in 1) of Remarks 9) because it is completely defined by the condition to

be divisible by its second derivative and one gets the additional condition that

P (n−1) = n!x divides all its derivatives which are odd polynomials.

Remark 12. Denote by Q the polynomial Pe defined for n ∈ 2N∗.

Proposition 8 implies that up to rescaling of the x-axis and up to a non-zero

constant factor Gegenbauer’s polynomial of degree n/2 equals Q(n/2−1). Indeed,

Q(n/2+1) = (Q(n/2−1))′′ divides Q(n/2−1).

Example 13. For n = 3 (resp. n = 4, n = 5) Gegenbauer’s polynomial

equals x3−x (resp. x4−x2+5/36 = (x2−1/6)(x2−5/6), PG = x5−x3+21x/100 =

x(x2 − 3/10)(x2 − 7/10)).

One can obtain examples of overdetermined strata of higher dimension

(and in families of polynomials of higher degree) by integrating already existing

examples. In the case of Poln one has to check that the polynomial obtained by

integrating is hyperbolic for some values of the constant of integration.

Example 14. Consider the family of polynomials Q(x, a, b, c, d) = x6/6−
x4/4+ax3+bx2 +cx+d. One can transform this family (up to a constant factor)

into P (x, a)|a2=−1 (P is defined in 1) of Remarks 9), by rescaling the variable

x. The family Q contains an overdetermined stratum of dimension 1 (hence,

P contains such a stratum of dimension 2). Indeed, the polynomial R(x, d) =

x6/6 − x4/4 + 21x2/200 + d is hyperbolic for d ∈ [−81/6000,−49/6000]. (To see

this it suffices to evaluate R at its critical points which are the zeros of PG where

PG is defined in Example 13.) This polynomial is defined by the condition that R′′′
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divides R′ (these are in fact three conditions). They imply that R(5) divides R(3).

Hence, this defines an overdetermined stratum of dimension 1 of the family Q.

The example can be given also in the context of polynomials with complex

coefficients in which case the question of hyperbolicity of R(x, d) is not raised.

5. Description of the discriminant sets for n = 5.

5.1. Generalities and notation. In what follows we consider the family

P of polynomials where

P = x5 − x3 + ax2 + bx+ c P ′ = 5x4 − 3x2 + 2ax+ b P ′′ = 20x3 − 6x+ 2a

P ′′′ = 60x2 − 6 P (4) = 120x

For some of the couples (i, j) 6= (0, 1) the set D(i, j) divides Π into parts whose

open interiors are the subsets of Π where the configuration of the roots of P (i)

and P (j) is non-degenerate and fixed.

The set Π and the discriminant sets are invariant under the involution

σ : (a, b, c) 7→ (−a, b,−c)(3)

Notation 15. We denote the roots of P by x1 ≤ . . . ≤ x5, the ones of P ′

(resp. P ′′, P ′′′, P (4)) by f1 ≤ . . . ≤ f4 (resp. s1 ≤ s2 ≤ s3, t1 ≤ t2, l); we choose

these letters to match “first”, “second”, “third” and “last”. If it is necessary, we

use also the notation xi
j for the roots of P (i).

The following theorem is proved in Section 6.

Theorem 16. 1) For n = 5 the only overdetermined strata of Π are the

points Σ, Φ and F defined as follows:

Σ : x2 = t1, x4 = t2, x3 = s2 = l

Φ : x2 = s1, x3 = s2, x4 = s3, l = s2

F : x1 = x2, x4 = x5, f2 = t1, f3 = t2, l = s2 = x3

(the point Φ defines Gegenbauer’s polynomial of degree 5).

2) One has

ord Σ = 4 codim Σ = 3 surpΣ = 1

ord Φ = 4 codim Φ = 3 surpΦ = 1

ordF = 6 codimF = 3 surpF = 3
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Fig. 2. The sets D(0, 1), D(0, 3), D(0, 4), D(1, 2), D(1, 3), D(1, 4), D(2, 3) and D(2, 4)

5.2. The sets D(0, 1), D(0, 4), D(1, 2), D(1, 3), D(1, 4), D(2, 3)

and D(2, 4). In what follows we use in general the same notation for the points

and curves in Oabc ≃ R3 and for their projections in the ab-plane. On Fig. 2 we

show the set D(0, 1)∩Π (the boundary of Π) – this is the curvilinear tetrahedron

ABCD. Its interior (denoted by Π̃) represents all strictly hyperbolic polynomials

from the family P . Its faces (i.e. two-dimensional strata) represent hyperbolic

polynomials with multiplicity vectors as follows:

ABC [1, 2, 1, 1] ACD [2, 1, 1, 1] BCD [1, 1, 1, 2] ABD [1, 1, 2, 1]

The multiplicity vectors of the six edges and of the four vertices are noted on the

figure. The reader can find the proof of the properties of Π in [6] and [7]. One

can deduce from the results of [6] part 1) of the following proposition, parts 2)

and 3) being well-known classical results:
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Proposition 17. 1) The hyperbolicity domain Π is the set of points

contained between and on the graphs of two Lipschitz functions of the variables

a, b defined on the projection of Π on the (a, b)-plane. The first (resp. the sec-

ond) graph consists of the closures of the faces ACD and ABD (resp. ABC

and BCD). The values of the two functions coincide only on the union of the

projections in the (a, b)-plane of the four edges AB, AC, CD and BD.

2) Each of the four faces of Π is locally concave toward the interior of Π.

3) The discriminant sets D(i, j) are ruled surfaces.

The positive a-axis (resp. b-axis) is the half-line EM (resp. EF ). The

positive c-axis is the vertical half-line at E directed downward. The tetrahedron

ABCD is invariant under the involution (3), its projection on the ab-plane is

symmetric w.r.t. EF .

Proposition 18. The projections on the ab-plane of the six edges of Π

are real algebraic simple Jordan curves without inflection points. Their concavity

is as shown on Fig. 2.

The proposition is proved in Subsection 5.5.

The sets D(1, 4) = {b = 0} and D(2, 4) = {a = 0} are vertical planes,

i.e. planes parallel to the c-axis, they are represented by the dash-dot-dot lines

IJ and EF .

Remark 19. In the part of Π̃ whose projection on the ab-plane is inside

AKILEA (resp. inside BNJMEB or ICFDJMELI) one has f3 < l < f4 (resp.

f1 < l < f2 or f2 < l < f3). To the left (resp. right) of EF one has s2 < l < s3
(resp. s1 < l < s2). This is easy to deduce from the presence in the closures of

some of these projections of the points A, B and C whose multiplicity vectors

are [4, 1], [1, 4] and [3, 2].

The set D(0, 4) = {c = 0} is a horizontal plane. The set D(0, 4) ∩ Π is

the curvilinear plane figure FMNEKLF . It is tangent to the faces ADB and

ABC along the line segments LE and EM . (These line segments belong to the

line b = c = 0, they define hyperbolic polynomials for which 0 is a double root of

P , so they belong to D(0, 4) ∩ Π).

Remarks 20. 1) The tangency along LE and EM can be proved like

this. On LE one has x3 = x4 = l. By continuous deformation one can obtain

one of the two conditions x3 < x4 = l or x3 = l < x4 the polynomial remaining

hyperbolic and becoming strictly hyperbolic (the reader will easily prove the
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existence of these deformations). Hence, the deformations lead to different half-

planes of {c = 0} (defined by the line {b = c = 0}) and at the same time inside

Π. A similar remark holds for EM on which one has x2 = x3 = l etc.

2) In the part AKLEA (resp. KLFCMEK, LFDNEL, BEMNB) of

Π̃ one has x4 < l < x5 (resp. x3 < l < x4, x2 < l < x3, x1 < l < x2) – observe

that each of the closures of these parts contains exactly one of the vertices A, B,

C, D with known multiplicity vectors.

3) The segments LE and EM of tangency between D(0, 4) and D(0, 1)

divide D(0, 4) ∩ Π into three parts in which this intersection is defined by three

different conditions: x4 = l in KLEK, x3 = l in LFMEL and x2 = l in EMN .

The set D(1, 3) consists of the two vertical planes

D±(1, 3) : b± a
√

2/5 = 1/4.

Hence, they pass through the point F . Indeed, F defines the polynomial PF =

x(x2−1/2)2 (with multiplicity vector [2, 1, 2] and set of roots invariant under the

involution x 7→ −x). For this polynomial one has x1 = x2, x4 = x5, f2 = t1,

f3 = t2 and x3 = s2 = l. Recall that the point F defines an overdetermined

stratum, see Theorem 16.

Proposition 21. The plane D−(1, 3) intersects the face ABD only at

A. It is tangent to the edges AD and AC at A and it intersects the edge CD

only at F . One has D−(1, 3) ∩ AD = {A}, D−(1, 3) ∩ AC = {A}. The curve

θ = AF = ACD ∩D−(1, 3) is a simple Jordan curve projecting on the ab-plane

into a segment. Analogous statements hold for the plane D+(1, 3).

P r o o f. The tangency of D−(1, 3) to AB and AC at A can be derived

from the fact that D(0, 1) has a swallowtail singularity at A. The plane D−(1, 3)

intersects the face ABD and the edge AD only at A because their projections

on the ab-plane are tangent at A and the projection of the edge AD has the

concavity as shown on Fig. 2, see Proposition 18. The plane D−(1, 3) intersects

the edge AC also only at A (use again the tangency at A and the concavity).

The plane D−(1, 3) intersects the edge CD only at F . Indeed, if not,

then due to the concavity of its projection in the ab-plane the edge CD would

intersect D−(1, 3) exactly twice and the points C and D would be in one and the

same half-space w.r.t. D−(1, 3). However, one has f2 < t1 at C and f2 > t1 at

D (to be checked directly; see also Remarks 22 below).

The curve θ is a simple Jordan curve. Indeed, the face ACD is the graph

of a Lipschitz function defined on the projection of the face ACD in the ab-plane,
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see Proposition 17. To obtain θ one intersects this graph by the vertical plane

D−(1, 3) and the intersection projects in the ab-plane into a segment. �

Use the notation (fftftf) in the sense that f1 < f2 < t1 < f3 < t2 < f4.

Remarks 22. 1) In the part of Π̃ which projects on the ab-plane into

AFCA (resp. AFBEA, BFDB) one has (fftftf) (resp. (ftfftf), (ftftff)).

This can be deduced from the presence of the points A, B, C, D and E in the

closures of some of these parts. Hence, there is one non-degenerate configuration

of the roots only of P ′ and P ′′′ consistent with (1) which is not realized by a

hyperbolic polynomial of degree 5 – this is

(ffttff) i.e. f1 < f2 < t1 < t2 < f3 < f4(4)

Geometrically this is illustrated as follows: the intersecting planesD±(1, 3) divide

the space into four sectors the lower of which does not intersect with Π̃, see Fig. 2.

In the case of degree 4 there are two non-degenerate configurations of

the roots of the polynomial with all its derivatives which are missing but if one

considers only couples of derivatives, then all configurations are realized.

2) It is proved in [8] that all non-degenerate configurations of the roots of

P and P (i) (for any degree n and for any i ≥ 1) which are consistent with (1) can

be realized by hyperbolic polynomials. Hence, this result is optimal in the sense

that if one wants to have all non-degenerate configurations of the roots of P and

two or more of its derivatives, or just of the roots of two or more derivatives,

then there are counterexamples (e.g. choose the missing configuration (ffttff)

or complete it to a configuration of the roots of P , P ′ and P ′′′ etc.).

Observation 23. There are 40 non-degenerate configurations consistent

with (1) and (4) (hence, none of them is realized by a hyperbolic polynomial).

P r o o f. Suppose that t1 < x3 < t2. One must have t1 < x3, s2, l < t2
which gives 6 possible permutations of x3, s2, l within the interval (t1, t2). One has

also f1 < x2, s1 < f2 and f3 < x4, s3 < f4; one has two possible permutations of

x2, s1 within (f1, f2) and two permutations of x4, s3 within (f3, f4). Combining all

possibilities independently one gets 6×2×2 = 24 non-degenerate configurations.

Let now f2 < x3 < t1. One has two possible permutations of x2, s1
within (f1, f2), two possible permutations of x4, s3 within (f3, f4) and two possible

permutations of s2, l within (t1, t2) which gives 2 × 2 × 2 = 8 non-degenerate

configurations.

If t2 < x3 < f3, then in the same way one gets 8 more non-degenerate

configurations; all in all, we have 24 + 8 + 8 = 40 of them. �
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Observation 24. There are 102 non-degenerate configurations consistent

with (1) and (ftfftf). Only 66 of them are realized by hyperbolic polynomials,

see Lemmas 40, 42 and 43.

Observation 25. It follows from the general formula, see the Introduc-

tion, that for each of the cases (fftftf) and (ftftff) there are 72 non-degenerate

configurations consistent with (1). Indeed, it is clear that the numbers of config-

urations for both cases are equal because Π is invariant under the involution (3);

on the other hand one has 72 = (286− 102− 40)/2, see the general formula from

the Introduction and Observations 23 and 24. Out of these 72 configurations only

25 are realized by hyperbolic polynomials, see Lemma 41.

P r o o f o f O b s e r v a t i o n 24. Set Jl = (f2, x3), Jr = (x3, f3), J =

(t1, t2). If x2 ∈ (f1, s1) or x2 ∈ (s1, t1), and if x4 ∈ (t2, s3) or x4 ∈ (s3, f4), then

either s2 ∈ Jl or s2 ∈ Jr, the interval J is divided by the points f2, x3, f3, s2 into

5 parts to each of which l can belong. This gives 2×2×2×5 = 40 non-degenerate

configurations consistent with (1) and (4).

If x2 ∈ (t1, f2) and x4 ∈ (t2, s3) or x4 ∈ (s3, f4), then s2 ∈ Jl or s2 ∈ Jr,

and the interval J is divided into 6 parts by the points x2, f2, x3, f3, s2. This

gives another 2 × 2 × 6 = 24 non-degenerate configurations and one gets in the

same way another 24 of them if x2 ∈ (f1, s1) or x2 ∈ (s1, t1) and x4 ∈ (f3, t2).

If x2 ∈ (t1, f2) and x4 ∈ (f3, t2), then s2 ∈ Jl or s2 ∈ Jr and the points x2,

f2, x3, f3, s2, x4 divide J into 7 parts which gives 2×7 = 14 non-degenerate con-

figurations. Thus the total number of non-degenerate configurations consistent

with (1) and (4) is 40 + 24 + 24 + 14 = 102. �

The set D(1, 2) consists of lines parallel to the c-axis. It contains all

strata having a triple root (i.e. the edges AEB, AKC and BND).

Remark 26. The set D(1, 2) is the set of values of a and b for which P ′

has a multiple root and its form can be deduced from the well-known picture of the

swallowtail; its projection on the ab-plane contains the projections of the analytic

continuations of the edges AKC and BND (given in dash-dot-dot line) which

intersect further down (outside the figure). Hence, D(1, 2) does not contribute

to the partitioning of Π̃ into parts with fixed configuration of the roots of P and

of its derivatives. The form of D(1, 2) can be deduced from Fig. 1 turned upside

down, the lines D′M ′ and E′L′ from Fig. 1 become the lines BF and AF from

Fig. 2. (One has to rescale the axes but this leaves the picture essentially the

same.)
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The set D(2, 3) consists of the two planes a = ±
√

2/5. They are vertical

and contain the vertices A and B (because there is a quadruple root of P there,

hence, a root of P ′′ and of P ′′′). Thus D(2, 3) ∩ Π = {A,B}.

A B

C D

X

WY

T

Q Z

V

R

SU

Fig. 3. The set D(0, 3)

5.3. The set D(0, 3). The set D(0, 3) is the union of two planes

D±(0, 3) : c± b/
√

10 + a/10 = ±9/100
√

10

(one substitutes x in P (x) = 0 by each of the two roots ±1/
√

10 of P ′′). Its

intersection with Π consists of the two curvilinear triangles D+(0, 3) ∩ Π =

SWBZTQRS and D−(0, 3) ∩ Π = UQAYXWV U (see Fig. 3), tangent re-

spectively to the faces ABD and ABC along the line segments RB and V A. The

latter belong to the set D(0, 1) ∩D(0, 3) and to the planes D±(1, 3).

Remark 27. The tangency along RB and V A can be proved like this

(by analogy with Remark 20): on RB one has x3 = x4 = t2 = 1/
√

10. One can

define two deformations as a result of which the polynomial P becomes strictly

hyperbolic and either with x3 < x4 = t2 or with x3 = t2 < x4. Such polynomials

define points from D(0, 3) lying on different half-planes of SWBZTQRS (defined
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by the line BR) and inside Π. Hence, SWBZTQRS is tangent to ABD along

RB. The two parts of SWBZTQRS defined by the segment of tangency RB

are defined by two different conditions: x3 = t2 for RSWBYR and x4 = t2 for

TQRY BZT . (One has x2 = x3 = t1 = −1/
√

10 on V A, x3 = t1 on V UQAZV

and x2 = t1 on XWV ZAYX.)

The curvilinear triangles SWBZTQRS and UQAYXWV U intersect

along the line segment QZYW which is tangent to the faces ABC and ABD

respectively at the points Z and Y . The triangles divide Π into the following 8

parts characterized by configurations between the roots of P and P ′′′ (denoted

by x and t):

ATQZ (xxxtxtx) AQRY Z (xxtxxtx)

TQUCV Z (xxxttxx) QRSUVWY Z (xxtxtxx)

RSDXWY (xxttxxx) WXBY (xtxtxxx)

VWBY Z (xtxxtxx) AZY B (xtxxxtx)

(the notation (xxxtxtx) means x1 < x2 < x3 < t1 < x4 < t2 < x5).

The points defining the curvilinear triangle SWBZTQRS are character-

ized as follows:

S x1 = x2, x4 = x5, x3 = t2 W x4 = x5, x2 = t1, x3 = t2

Z x2 = x3 = t1, x4 = t2 T x1 = x2 = x3, x4 = t2

Q x1 = x2, x3 = t1, x4 = t2 R x1 = x2, x3 = x4 = t2

The equalities characterizing the points defining UQAYXWV U are obtained

from these ones by symmetry induced by the involution x 7→ −x.
Remarks 28. 1) The b-coordinates of the points T , X and Q, Z, Y , W

are positive. Indeed, the point T is defined by the polynomial

(40)−5/2PT (
√

40x) where

PT (x)=(x+3)3(x−2)(x−7)=x5−40x3−90x2+135x+378

and one has P ′′′

T = 60(x − 2)(x + 2); the projection on the ab-plane of the line

QW is parallel to the a-axis (this follows from the symmetry w.r.t. the b-axis of

the projection of Π on the ab-plane). The intersection of QW with {a = 0} is

the point Σ (the middle of the segment QZYW ; see Theorem 16) defining the

polynomial

PΣ = x5 − x3 + (9/100)x = x(x2 − 1/10)(x2 − 9/10) = x(x2 − 9/10)P ′′′

Σ /60 .
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This means that the b-coordinates of the points Q, Z, Y , W equal 9/100. Hence,

the points A, K, I, T , C (resp. B, N , J , X, D) are situated in this order on the

edge AC (resp. BD). Indeed, the point K defines the polynomial

PK = x(x−
√

3/2)(x+ 1/
√

6)3 = x5 − x3 − (4/3
√

6)x2 − x/12 .

2) Denote by Λ ∈ AC the point where one has x1 = x2 = x3 < x4 =

s3 < x5. Hence, Λ lies between T and C. Indeed, when a point runs over the

arc CA, then the root x4 of the polynomial defined by the point goes from x5 to

x3. Before having x4 = t2 (which takes place at T ) one must have somewhere

x4 = s3 because t2 < s3 < x5.

1 2

5

4

7

6

3

8

Ω

Ω 1

Ω
∗

Fig. 4. The set D(0, 2)
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F

A B

[3,2] [2,3]

[4,1] [1,4]

[2,1,2]

[1,3,1]

C D

E

Λ Φ

[3,1,1]
[1,1,3]

Γ Ξ

γ

α β

Θ

Fig. 5. The sets D(0, 2) and D(0, 1)

5.4. The set D(0, 2). The set D(0, 2) is defined by the condition that

P (xi) = P ′′(xi) = 0 for i = 2, 3 or 4. It can be easily described by its intersections

with the planes {a = const}, see Fig. 4 where these intersections of D(0, 1) and

D(0, 2) are shown. (We make use here of the pictures of the so-called butterfly

catastrophe from [4] and [12].) On Fig. 4 the parameter a takes 8 values from

−
√

2/5 (the first value) to 0 (the last one); for a ∈ [0,
√

2/5] the form of D(0, 2)

can be deduced from the one for a ∈ [
√

2/5, 0] using the involution (3).

The set D(0, 2) is represented together with D(0, 1) also on Fig. 5. It

consists of three sheats – the surfaces AΓFΞBEA = {x3 = s2}, ΛΓDΘBΛ =

{x4 = s3} and AΛCΞΘA = {x2 = s1} which are parts of one and the same

irreducible hypersurface. Inside the curvilinear tetrahedron AΛΓΦ (resp. BΘΞΦ)

one has x2 < s1, x3 < s2, x4 < s3 (resp. x2 > s1, x3 > s2, x4 > s3); one can

deduce from here the configurations of the roots of P and P ′′ in the other parts

as well.

For a ∈ [−
√

2/5,
√

2/5] the intersections of D(0, 2) with the planes {a =

const} consist each of three lines. Indeed, the equation P ′′(x) = 20x3 − 6x +

2a = 0 defines three real values of x which are distinct for a ∈ (−
√

2/5,
√

2/5).

Substituting them in P = x5 − x3 + ax2 + bx+ c = 0 gives the equations of three
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lines in the bc-plane. For a = ±
√

2/5 two of the lines coincide. These lines are

the geometrical tangents at the singular points of the sets D(0, 1) ∩ {a = const}
(where one has P = P ′ = P ′′ = 0).

Set α = {(a, b, c) ∈ Π|x2 = s1, x3 = s2}, β = {(a, b, c) ∈ Π|x3 = s2, x4 =

s3}, γ = {(a, b, c) ∈ Π|x2 = s1, x4 = s3}. The sets α, β, γ consist of the self-

intersection points of D(0, 2) (denoted by dash-dotted curves on Fig. 5). One

has α = AΦΞ, β = ΓΦB, γ = ΛΦΘ.

Lemma 29. At A and B the set D(0, 2) has Whitney umbrella singular-

ities.

Indeed, set α = a +
√

2/5. One deduces from P ′′ having a double root

for α = 0 that for α close to 0 this root equals
√
αψ(α) where ψ is a germ of

a smooth function, ψ(0) 6= 0. The equation P (
√
αψ(α)) = 0 reads

√
αψ(α)(b −

αψ2(α) +α2ψ4(α)) = c. Set ξ = ψ(α)(b−αψ2(α) +α2ψ4(α)). The last equation

after taking squares of both sides becomes αξ2 = c2 which is the equation of

Whitney’s umbrella. �

Remarks 30. 1) The point on 1 of Fig. 4 where the horizontal line is

tangent to the set D(0, 1)∩{a = const} is not a smooth point for the latter one –

it is a point where Π has a swallowtail singularity (the points A and B of Fig. 2

correspond to a = ±
√

2/5). Note that the two planes from D(2, 3) are tangent

to D(0, 2) at the points A and B.

2) The sets D(0, 1)∩{a = const} can be parametrized with the parameter

x by writing c = −bx−ax2 +x3 −x5, b = −2ax+3x2 − 5x4. Hence, the function

(dc/dx)/(db/dx) equals −x on D(0, 1) ∩ {a = const}. This function equals tanφ

where φ is the angle between the tangent line and the positive b-axis. This means

that φ is a strictly monotonous function of x. Hence, for a ∈ (−
√

2/5,
√

2/5)

the three lines intersect two by two. Moreover, the intersection of D(0, 2) with

D(0, 1) is transversal inside each of the four faces of Π.

3) Only for a = 0 do the three lines intersect at one point Φ (see 8 of Fig.

4 or look at the middle of Fig. 5). This point defines Gegenbauer’s polynomial

PG = x5 − x3 + 21x/100 of degree 5 (one has x2 = s1, x3 = s2, x4 = s3), see

Definition 11.

Observation 31. The fact that Φ ∈ D(2, 4) and that one has x2 < s1,

x3 < s2, x4 < s3 inside AΛΓΦ explains why 36 non-degenerate configurations

consistent with (1) are not realized by hyperbolic polynomials. (We do not discuss

the question whether some of them are mentioned in previous observations or

not.)
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Indeed, if x2 < s1, x3 < s2, x4 < s3, then s2 < l (i.e. AΛΓΦ ⊂ {a ≤ 0})
and the same is true if the directions of all inequalities are reversed (this can be

deduced from Φ ∈ D(2, 4)). Hence, all non-degenerate configurations satisfying

the inequalities (A) : x2 < s1, x3 < s2, x4 < s3, s2 > l are impossible for hy-

perbolic polynomials (and all configurations with the directions of all inequalities

reversed).

Conditions (A) and (1) imply that t2 can belong to one of the three

intervals (independently of the positions of t1 and l): (s2, f3), (f3, x4) and (x4, s3).

Set I1 = (s1, f2), I2 = (f2, x3), I3 = (x3, s2). If l ∈ I3 (resp. l ∈ I2, l ∈ I1), then

t1 ∈ I1 or I2 or I3 (resp. t1 ∈ I1 or I2, t1 ∈ I1). This gives 6 possibilities for

t1, l which combined with the three possibilities for t2 gives 18 non-degenerate

configurations which cannot be realized by hyperbolic polynomials. Inverting

the direction of the inequalities (A) gives 18 more impossible non-degenerate

configurations. �

Proposition 32. 1) At the point Φ the set D(0, 2) is the transversal

intersection of three smooth hypersurfaces.

2) The projection on the ab-plane of the set α (resp. β) belongs to

AFDBA (resp. to ACFBA).

3) The set {x3 = s2} ⊂ D(0, 2) intersects the face ACD of Π along the

simple Jordan curve AΓF which projects on the ab-plane inside AKICFA (i.e.

below the line AF on Fig. 2), with extremities at A and F .

The proposition is proved in Subsection 5.6.

Observation 33. 1) The fact that the set α intersects D−(1, 3)∩Π only

at A, see part 2) of the proposition, explains the absence of some non-degenerate

configurations consistent with (1). Hence, the absence of configurations is ex-

plained not only with the presence of overdetermined strata.

2) The intersection of Π with a cylinder of small radius centered at F and

parallel to the c-axis looks like shown on Fig. 6. (The positive a-axis (c-axis) is to

the left (downward).) There are 10 non-degenerate configurations of the roots of

P and of its derivatives close to the one defined by the point F (they correspond

to the 10 components of the interior of Π, see the figure).

On the other hand, there are 24 non-degenerate configurations consistent

with (1) that can be obtained by perturbing the configuration at F (for the latter

one has x1 = x2, x4 = x5, f2 = t1, f3 = t2, x3 = s2 = l; perturbing x1 = x2 or

x4 = x5 (resp. f2 = t1 or f3 = t2, resp. x3 = s2 = l) gives one possibility (resp.

two, resp. six); all possibilities have to be combined independently).
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D (2,4)

D(0,1)

D(0,1)

D(0,4)

D(0,2)

D  (1,3)

D  (1,3)

+

−

Fig. 6. The discriminant sets close to the point F

Out of these 24 configurations six have already been mentioned in Ob-

servation 23 (see also 1) of Remarks 22) which leaves 18 configurations a priori

possible to realize by hyperbolic polynomials. Nevertheless, 8 of them are missing.

Remark 34. It follows from the proof of Proposition 32 (see (8)) that

locally, at Φ, the tetrahedron AΛΓΦ lies not only in {a ≤ 0} but also in {c ≥ 0}
(in both cases equality is possible only at Φ).

Observation 35. There are 24 non-degenerate configurations consistent

with (1) that can be obtained by perturbing the (degenerate) configuration at Σ.

Out of them only 20 are encountered close to Σ.

Indeed, Fig. 7 and 9 show that for a = a0 < 0 close to 0 there are 10

components containing Σ in their closures (the line αγ, see Fig. 9, does not pass

close to Σ for a0 small enough). By symmetry induced by the involution (3),

there are 10 components for a = a0 > 0 as well. On the other hand, Σ is defined

by x2 = t1, x4 = t2, x3 = s2 = l. Perturbing these equalities gives 24 different

non-degenerate configurations. �

5.5. Proof of Proposition 18. 10. Observe that each multiplicity vector

of an edge has two equal components. In order to simplify technically the proof

we prove the concavity separately for the edges AD, BC and CD, and then for

the other three edges. Recall that the multiplicity vectors of the edges AD,BC
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D(0,2), D(0,4)

Fig. 7. The discriminant sets for a = 0

and CD equal respectively [2, 2, 1], [1, 2, 2] and [2, 1, 2]. Hence, the edges can be

considered as curves parametrized as follows (we denote the three distinct roots

of P by u, v,w):

a = 4uvw + 2u2v + 2uv2 + u2w + v2w, b = 2uv2w + 2u2vw + u2v2(5)

where the parameters u, v,w satisfy the equalities

2u+ 2v + w = 0, u2 + v2 + 2uw + 2vw + 4uv = −1(6)

Set u+ v = s, uv = p. Equations (6) imply that w = −2s, −3s2 + 2p = −1, i.e.

p = (3s2 − 1)/2. Substituting in (5) one gets the couple of equations

a = −8ps+ 2ps+ (s2 − 2p)(−2s) = −5s3 + s,

b = 2p(−2s)s+ p2 = (−15s4 + 2s2 + 1)/4
(7)

An inflection point is defined by the condition dτ/ds = 0 where τ =

(db/ds)/(da/ds) = s. Hence, one has dτ/ds ≡ 1 which means that there are

no inflection points.
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20. For the other three edges (whose multiplicity vectors up to permuta-

tion equal [3, 1, 1]) write down the analogs of equations (5) and (6):

a = 3uvw + 3uw2 + 3vw2 + w3, b = 3uvw2 + uw3 + vw3

u+ v + 3w = 0, uv + 3uw + 3vw + 3w2 = −1

One has w = −s/3, p− 2s2/3 = −1 and the analog of (7) reads

a = 3p(−s/3) + 3s(−s/3)2 + (−s/3)3 = −10s3/27 + s,

b = 3p(−s/3)2 + s(−s/3)3 = 5s4/27 − s2/3

One has τ = −2s/3, dτ/ds ≡ −2/3, i.e. there are again no inflection points.

30. The concavity of the projections of the edges AB, AC, BD and

CD can be deduced from [10], Proposition 1.3.4, or by computing the (a, b)-

coordinates of the points A, B, C, D, E, F , I and J . For the edges AD and BC

one can deduce the sense of concavity from the (a, b)-coordinates of the points

A, B, C, D, L and M . �

5.6. Proof of Proposition 32. 10. Prove 1). The equation defining

D(0, 2) can be presented in the form

2 × 56 Res(P,P ′′) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

100 0 −100 100a 100b 100c 0 0
0 100 0 −100 100a 100b 100c 0
0 0 100 0 −100 100a 100b 100c
10 0 −3 a 0 0 0 0
0 10 0 −3 a 0 0 0
0 0 10 0 −3 a 0 0
0 0 0 10 0 −3 a 0
0 0 0 0 10 0 −3 a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

(because P ′′/2 = 10x3 − 3x + a). Denote by ri the i-th row of the determinant.

Replace r1, r2, r3 respectively by r1 − 10r4 +7r6, r2 − 10r5 +7r7, r3 − 10r6 +7r8.

This allows one to develop the determinant thrice w.r.t. the first column in which

there is a single non-zero entry equal to 10. The newly obtained determinant of

size 5 equals up to a factor (−10)3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

90a 100b− 21 100c + 7a 0 0
0 90a 100b− 21 100c + 7a 0
0 0 90a 100b− 21 100c + 7a
10 0 −3 a 0
0 10 0 −3 a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Replace r1 by r1 − 9ar4 − (10b− 21/10)r5 and r2 by r2 − 9ar5. Developing twice

w.r.t. the first column one gets the determinant of size 3 (up to a factor (−10)5)

∣

∣

∣

∣

∣

∣

100c + 34a (3/10)(100b − 21) − 9a2 −a(100b − 21)/10
100b − 21 100c + 34a −9a2

90a 100b − 21 100c + 7a

∣

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

∣

ϕ 3θ/10 − 9a2 −aθ/10
θ ϕ −9a2

90a θ ϕ− 27a

∣

∣

∣

∣

∣

∣

=(8)

= (ϕ− 27a)(ϕ2 − 3θ2/10) + terms of degree > 3

where θ = 100b − 21, ϕ = 100c + 34a. Set u = ϕ − 27a, v = ϕ −
√

3/10θ,

w = ϕ+
√

3/10θ. Hence, the set D(0, 2) at the point a = θ = ϕ = 0 is the union

of three hypersurfaces defined by equations of the form u + · · · = 0, v + · · · = 0

and w + · · · = 0 (dots indicate non-linear terms). They meet transversally at 0.

This proves 1).

20. Prove 3) before proving 2). Set PF = x5−x3+x/4 = x(x2−1/2)2 (the

polynomial defined by the point F ) and P1 = (x+ 1/
√

2)2(x− 1/
√

2 + 2/
√

10)2.

One has

P ′

1(−1/
√

10) = P ′′′

1 (−1/
√

10) = P ′

F (−1/
√

10) = P ′′′

F (−1/
√

10) = 0 .

Consider the family of polynomials Sλ = PF +λP1, λ ≤ 0. All polynomials

from this family have a double root at −1/
√

2 and S′

λ(−1/
√

10)=S′′′

λ (−1/
√

10)=0.

All polynomials from this family are hyperbolic. Indeed,

1) one has P1(−1/
√

10) > 0 and PF (−1/
√

10) < 0, hence, Sλ(−1/
√

10) <

0 for λ ≤ 0;

2) set χ = 1/
√

2 − 2/
√

10 ∈ (0, 1/
√

2]; one has PF (χ) > 0, P1(χ) = 0

(hence, Sλ(χ) > 0) and PF (1/
√

2) = 0, P1(1/
√

2) > 0 (hence, Sλ(1/
√

2) < 0);

3) finally, Sλ → ±∞ when x→ ±∞.

30. Recall that the curve θ was defined in Proposition 21.

All polynomials from θ (when defined up to a constant non-zero factor),

can be obtained from polynomials of the family Sλ by means of an affine change

of the independent variable x and vice versa.

Indeed, the roots of Sλ depend continuously on λ. For each λ ≤ 0 the

polynomial Sλ satisfies the conditions x1 = x2 and x1
2 = x3

1, see 20. Hence,
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up to rescaling of the x-axis and a constant factor such a polynomial equals a

polynomial from θ. Thus the family Sλ defines a curve θ′ ⊂ θ. These two curves

have the point F in common.

In the family Sλ the sets of ratios of the differences between the roots are

different for different values of λ. (One can observe that the ratio (x4−x2)/(x5−
x2) decreases from 1 to 0 because (x4 − x2) decreases and (x5 − x2) increases

tending to ∞.) For λ→ −∞ the set of ratios tends to the set of respective ratios

at A. The curve θ being simple and Jordan this means that θ′ = θ.

40. When λ decreases from 0 to −∞, the middle root x3 of Sλ increases

because one has S′

λ(x3) > 0 and P1(x3) ≥ 0 with equality only when x3 =

1/
√

2 − 2/
√

10.

At the same time the root x2
2 of S′′

λ decreases. Indeed, S′′′

λ (x2
2) < 0 and

the right root of P ′′
1 equals ϕ = −1/

√
10 + 1/

√
6 − 1/

√
30 < 0; hence, for λ = 0

one has P ′′
1 (x2

2) > 0 and when λ decreases from 0 to −∞ the root x2
2 decreases

from 0 to ϕ.

Hence, for all points of the curve AF one has x3 > x2
2. At the same time

one has x3 < x2
2 at the vertex C, i.e. to reach the vertex from a point of the curve

AF one has to cross the set D(0, 2) which means that the curve {x3 = x2
2}∩ACD

is projected inside AKICF . There remains to observe that for each a < 0 fixed

the intersection {x3 = x2
2} ∩ ACD consists of at most one point, see part 2) of

Remarks 30.

This proves 3).

50. To prove 2) we use again the family Sλ. We show in 60 – 70 that one

has

Sλ(x2
1) < Sλ(x2

2) for all λ ≤ 0 .(9)

This implies that the set α ∩ {a ≤ 0} has no point in common with the plane

D−(1, 3) except possibly A. Indeed, if not, then for the polynomial P defined by

such an intersection point there would hold P (x2
1) = P (x2

2), P (x1
2) = P (x3

1) = 0;

by adding to the polynomial a suitable constant one can obtain in addition to

these conditions the one that x1 = x2. Such a polynomial belongs to the curve

AF ⊂ ACD and up to a factor equals a polynomial from the family Sλ after an

affine change of the independent variable, see 30. By (9) this is impossible.

60. Recall that P ′′′

F = 60x2 − 6 = 60(x − 1/
√

10)(x + 1/
√

10). For

x ∈ (−1/
√

10, 0] one has 0 ≤ −P ′′′

F (x) ≤ P ′′′

F (−x− 2/
√

10) with equality only for

x = −1/
√

10. One has −P ′′′
1 (x) = P ′′′

1 (−x− 2/
√

10) and the signs of P ′′′

F and of
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−P ′′′
1 are the same on (−∞, 0]. Hence, for all λ ≤ 0 one has

0 ≥ S′′′

λ (x) ≥ −S′′′

λ (−x− 2/
√

10)(10)

S′′′

λ (x) < 0 on (−1/
√

10, 0] and S′′′

λ (x) > 0 on (−∞,−1/
√

10).

Inequality (10) implies that for all λ ≤ 0 one has

S′′

λ(x) ≥ S′′

λ(−x− 2/
√

10)(11)

Indeed, it suffices to integrate (10) on [−1/
√

10, x] and to use the fact that for

x = −1/
√

10 the values of the left and right side of (10) are the same. Hence, for

all λ ≤ 0 one has

x2
2 + 1/

√
10 > −1/

√
10 − x2

1(12)

Indeed, S′′

λ(x) decreases with positive values when x grows from −1/
√

10 to 0

or when x decreases from −1/
√

10 to −2/
√

10. Hence, it reaches faster the zero

value when x grows than when x decreases.

70. A second integration leads to

S′

λ(x) ≥ −S′

λ(−x− 2/
√

10)(13)

on [−1/
√

10, 0]. Inequality (13) implies after integration that Sλ(x)≥
Sλ(−x−2/

√
10) on [−1/

√
10, 0]; in particular (for x=−2/

√
10−x2

1), one has

Sλ(−2/
√

10−x2
1) ≥ Sλ(x2

1).

On the other hand, one has (12) and the function Sλ increases on

[−1/
√

10, 0]. Hence, Sλ(x2
2) > Sλ(−2/

√
10 − x2

1) ≥ Sλ(x2
1), i.e. (9) holds.

The proposition is proved. �

6. The overdetermined strata for n = 5 – proof of Theo-

rem 16. Part 2) of Theorem 16 follows from the equalities (between roots)

defining the three strata. Part 1) follows from the following three lemmas:

Lemma 36. All overdetermined strata of Π are of dimension 0.

Lemma 37. All overdetermined strata of Π belong to D(2, 4).

Lemma 38. The only overdetermined strata of dimension 0 and belong-

ing to D(2, 4) are the points Σ, Φ and F .

Indeed, these points and E are the only ones from Π∩D(2, 4) where four

sheats of discriminant sets meet at one point, see Fig. 7. The stratum E is not

overdetermined, see 2) of Remarks 9. �
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P r o o f o f L em m a 36. 10. To have an overdetermined stratum one

needs to have at least two equalities of the form xj1
i1

= xj2
i2

. Therefore one has to

consider the intersections D(k1, k2) ∩D(k3, k4), (k1, k2) 6= (k3, k4).

20. One has to exclude the possibilities to have overdetermined strata

of dimensions 2 or 1. As D(2, 3) ∩ Π = {A,B}, no overdetermined stratum of

dimension 1 or 2 can be contained in D(2, 3). The set D(1, 2) intersects Π along

strata of dimension 1 or 0 (the closures of the edges AB, AC, BD); in the absence

of intersection with another discriminant set the points of these edges (excluding

their vertices) cannot belong to overdetermined strata, i.e. the edges can contain

points of overdetermined strata only of dimension 0. Therefore we exclude the

sets D(2, 3) and D(1, 2) from further consideration.

30. Exclude dimension 2. Recall that some of the discriminant sets are

unions of planes, namely, D(0, 3), D(1, 3), D(0, 4), D(1, 4), D(2, 4). All planes

defined by these sets are different, so their intersections by two and with each of

the other two discriminant sets D(0, 1) and D(0, 2) define strata of dimension at

most 1. One has dim(D(0, 1)∩D(0, 2)) = 1 because the lines building up D(0, 2)

lie in the planes a =const whereas the strata of Π are transversal to these planes,

see [7]. Hence, there are no overdetermined strata of dimension 2.

40. Exclude dimension 1. One can check directly that no three of the sets

D(0, 3), D(1, 3), D(0, 4), D(1, 4), D(2, 4) intersect locally along a line, therefore

their intersections do not define overdetermined strata of dimension 1.

Of their intersections by two only the segments LE, EM , AV and BR

belong to D(0, 1) and EF belongs to D(0, 2) but these are not overdetermined

strata, see 2) of Remarks 9. (One has {LE ∪ EM} = D(0, 4) ∩ D(1, 4) ∩ Π,

AV = D−(0, 3) ∩D−(1, 3) ∩ Π,

BR = D+(0, 3) ∩D+(1, 3) ∩ Π, EF = D(0, 4) ∩D(2, 4) ∩ Π.)

Indeed, one can notice that D(0, 1) and D(0, 2) do not contain verti-

cal lines which excludes all intersections by two along vertical segments (i.e.

D(1, 3) ∩ D(1, 4), D(1, 3) ∩ D(2, 4) and D(1, 4) ∩ D(2, 4)). The two segments

constituting D(1, 3) ∩ D(0, 4), the two segments constituting D(1, 4) ∩ D(0, 3)

and the two segments D+(0, 3)∩D−(1, 3) and D−(0, 3)∩D+(1, 3) have only their

extremities in common with D(0, 1). Their extremities do not belong to D(0, 2)

(we leave the details here for the reader; use the geometry of D(0, 2) and Propo-

sition 32). Hence, only isolated points of these segments can belong to D(0, 1)

or D(0, 2). (We use the fact that if a line intersects D(0, 2) ∩Π along a segment,

then necessarily the endpoints of the segment belong to D(0, 1).) Only the ex-
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tremities of the segments constituting D(0, 3) ∩D(0, 4) belong to D(0, 1); these

segments contain the points D(0, 1) ∋ (±9/10
√

10, 0, 0) 6∈ D(0, 2), hence, these

two segments do not give rise to one-dimensional overdetermined strata either.

The intersection D(0, 3) ∩ D(2, 4) ∩ Π consists of two segments passing

through the point Σ, see Fig. 7, of which only isolated points can belong to other

discriminant sets.

50. There remains to exclude the possibility to have overdetermined strata

of dimension 1 belonging to D(0, 1) or D(0, 2). If such strata belong to the

intersection of two planes constituting the other discriminant sets, then their

nonexistence is already proved in 40, so it suffices to consider the one-dimensional

strata belonging to D(0, 1)∩D(0, 2) and to show that they do not belong locally

to any of the planes from the other discriminant sets. This is true –

for the intersections with D(1, 3) or D(1, 4) see part 3) of Proposition 32

and Fig. 2 and 5;

for the ones with D(0, 4) or D(2, 4) see Fig. 2, 5 and 7;

for the one with D(0, 3) see Fig. 3 and 5.

The lemma is proved. �

P r o o f o f L em m a 37. To have an overdetermined stratum of dimen-

sion 0 one needs at least four independent equalities of the form xj1
i1

= xj2
i2

. The

proof of the lemma can be deduced from the following statements the (somewhat

tedious) verification of which is left for the reader:

1) Nowhere in Π\D(2, 4) do three planes from the discriminant sets meet

at one and the same point excepting the intersection points D±(0, 3)∩D±(1, 3)∩
D(1, 4). The latter do not belong to other discriminant sets except D(0, 1), hence,

they do not define overdetermined strata, see 2) of Remarks 9.

2) Nowhere in Π\D(2, 4) (except the vertices A, B, C, D) does a self-

intersection point of D(0, 2) belong to the intersection of two planes from the

discriminant sets or to the intersection of one such plane with D(0, 1).

3) Nowhere in Π\D(2, 4) does a point from D(0, 1) ∩ D(0, 2) belong to

the intersection of two planes from the discriminant sets.

4) The set D(0, 2) does not intersect transversally an edge of D(0, 1). It

either contains whole edges (AC, AB, DB) or intersects it at the points E, F ,

Λ, Θ where D(0, 2) has self-intersection.

5) A self-intersection point of D(0, 2) does not belong to the closure of an

edge of Π except for the vertices A, B, C, D and the points E, F , Λ, Θ. The

points Λ, Θ do not belong to any of the planes from the discriminant sets, hence,
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they are not overdetermined strata.

6) None of the four vertices A, B, C, D is an overdetermined stratum.

7) A point of an edge, different from A, B, C, D and not in D(2, 4)

belongs to at most one of the planes from the discriminant sets.

Indeed, if one needs four independent equalities xj1
i1

= xj2
i2

outside D(2, 4),

one needs either

– the intersection of four planes of the discriminant sets (impossible by

1)), or

– the intersection of three of them and of D(0, 1) or D(0, 2) (also impos-

sible by 1)), or

– the intersection of two of them with an edge of Π or with the set of self-

intersection points of D(0, 2) or with a point from D(0, 1) ∩D(0, 2) (impossible

respectively by 7), 2) and 3)), or

– a plane from the discriminant sets passing through a vertex of Π or

through the intersection point of an edge of Π with D(0, 2) or through a point

from D(0, 1) which is also a self-intersection point of D(0, 2) (see respectively 6),

4) and 2)), or

– an edge of Π has a point in common with the set of self-intersection

points of D(0, 2) (see 5)). �

7. Proof of Theorem 2.

Definition 39. Call component a maximal open part of Π with one and

the same non-degenerate configuration of the roots of P and its derivatives.

To prove the theorem we count the number of components into which

the discriminant sets divide Π. (We do not raise the question whether these

components are connected or not.) As Π is invariant under the involution (3), we

count only the components which project (in the ab-plane) to the left of EF and

then multiply their number by 2. We count separately the numbers of components

projecting into each of the three parts A∆EA, AKICFA and ∆EF∆.

Theorem 2 is an immediate corollary of the following four lemmas:

Lemma 40. There are 12 components of Π projecting into A∆EA.

Lemma 41. There are 25 components of Π projecting into AKICFA.

Lemma 42. There are 6 components of Π projecting into ∆EF∆ and

with negative c-coordinate.
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Fig. 8. Components projecting on A∆EA

Lemma 43. There are 15 components of Π projecting into ∆EF∆ and

with positive c-coordinate.

Recall that one of the discriminant sets is D(0, 4) : c = 0 and that on the

figures the positive c-axis is directed downward. For convenience in the proofs

we use the same notation for the sets D(i, j), α, β, γ, and for their intersections

with the planes {a =const}.

P r o o f o f L em m a 40. We show on Fig. 8 the intersection of Π with

a vertical plane parallel to the bc-one and intersecting the edge AC between A

and I. On the figure only the set D(0, 4) is not shown. The plane D+(0, 3) does

not intersect the part of Π projecting on A∆EA (see Remarks 28) and neither

does the surface ΛΓDΘBΛ ⊂ D(0, 2), see Fig. 5 and Lemma 44 below.

There are 6 components to the left of the line representing D−(1, 3).

The set D(0, 4) intersects them all which makes 12 components projecting on

A∆EA. �
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P r o o f o f L e m m a 41. Use again Fig. 8 (like in the proof of Lemma 40).

To the right of the line representing D−(1, 3) there are 5 components which

are intersected by each of the planes {c = 0} = D(0, 4), {b = 0} = D(1, 4),

TQRSWBZT ⊂ D+(0, 3) and by the surface ΛΓDΘBΛ ⊂ D(0, 2). These sur-

faces do not intersect each other inside the part of Π which is over AKICFA.

Indeed, every point from {c = 0} ∩ Π has a negative b-coordinate while every

point from TQRSWBZT ∩ Π has a positive one, see Remarks 28. This means

that the three planes do not intersect inside the part of Π over AKICFA. As

for ΛΓDΘBΛ, one can apply Lemma 44.

Hence, these four surfaces divide each of the 5 components into 5 parts

which makes 25 components of Π over AKICFA. �

Lemma 44. 1) The part λ of the surface ΛΓDΘBΛ ⊂ D(0, 2) project-

ing in the ab-plane inside AΛCFBA (resp. the part µ of ΘΞCΛAΘ projecting

inside BΘDFAB) does not intersect the surface TQRYBZT ⊂ D+(0, 3) (resp.

AZVWXY A ⊂ D−(0, 3)).

2) A point from λ (resp. µ) with given coordinates (a, b) has a greater

(resp. smaller) c-coordinate than the point from TQRY BZT (resp. AZVWXY A)

with the same coordinates (a, b).

P r o o f. We prove part 2) (only for TQRYBZT , for AZVWXY A the

proof is analogous), part 1) is an immediate corollary of it. Use 4 of Fig. 4.

Recall that the positive c-axis is directed downward. The points from TQRYBZT

belong to lines d tangent to the sets Π∩a =const the points of tangency Ω∗ lying

inside the arc ΩΩ1 while the points from λ belong to the tangent lines passing

through Ω1. (The point Ω∗ belongs to the line BR on Fig. 3.) There remains to

observe that the points from TQRY BZT belong to the half-line of d on the same

side as Ω (i.e. to the left of Ω∗, see 4 of Fig. 4) which provides the necessary

inequality between the c-coordinates. �

P r o o f o f L em m a 42. The intersection of Π with the plane {a = 0} is

represented on Fig. 7. One can see on the figure the points Σ, Φ and F defining

overdetermined strata. For a < 0 and close to 0 the six components above the line

EF on the figure still exist (remind that the positive c-axis is directed downward

and that we count only components in the strip between D(1, 4) and D−(1, 3),

and lying above D(0, 4) on the figure).

The two sheats of D(0, 3) intersect below EF for a < 0, see Fig. 9 (one

has c + a/10 = 0 at the intersection point, hence, if a < 0, then c > 0). Also

below EF or outside the strip between D(1, 4) and D(1, 3) lie the three self-
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Fig. 9. The discriminant sets for a = a0 < 0 close to 0

intersection points of D(0, 2) for a < 0; these points belong to the right of the

four sectors defined by the intersection of D+(0, 3) and D−(0, 3). All this can be

deduced from the slope of the line αβ and from the concavity of the boundary of

Π, see Fig. 9 representing an intersection of Π with {a = a0} for a0 < 0, see also

Remarks 30.

Hence, no new components excepting these 6 appear in Π∩{c < 0} when

a becomes negative. �

P r o o f o f L em m a 43. 10. For a0 < 0 denote by κ(a0), τ(a0) the parts

of the sets Π∩{c > 0, a = a0}, Π∩{c < 0, a = a0} which are between D(1, 4) and

D−(1, 3), see Fig. 9 (recall that D(0, 4) is defined by c = 0 and that the c-axis is

directed downward).



Discriminant sets of families of hyperbolic polynomials of degree 4 and 5 149

For a = a0 < 0 and close to 0 the three lines of the set D(0, 2)∩ {a = a0}
do not intersect within τ(a0). Indeed, the segment of the line αβ lying in the

strip between D(1, 4) and D−(1, 3) belongs to {c > 0} (recall that the slope of

the lines tangent to D(a0) = D(0, 1) ∩ {a = a0} is a monotonous function of the

point on D(a0), see 2) of Remarks 30; hence, αβ intersects D(1, 4) and D−(1, 3)

in {c > 0}). The intersection point γ lies in the half-plane defined by αβ as

shown on Fig. 9, compare with 7 of Fig. 4. The intersection points of the three

lines αβ, βγ and αγ coincide only at Φ, therefore there are exactly 7 regions of

κ(a0) into which it is divided by these three lines.

The 7 regions can be defined by continuity when a decreases and for some

values of a some of them disappear (for a < −
√

2/5 they have all disappeared).

Each of the regions can be characterized by being above or below (in the sense

of the c-coordinate) w.r.t. each of the three lines αβ, βγ and αγ (recall that the

lines are never vertical).

20. To count the number of components mentioned in the lemma one has

to see which of these 7 regions is intersected by the sets D±(0, 3) and to which

of them their intersection point belongs.

Lemma 45. 1) For a < 0 the line D−(0, 3) can intersect only regions 1,

5 and 6. For each of these regions there are values of a < 0 for which the line

does intersect it.

2) The line D+(0, 3) can intersect only regions 1, 2, 6 and 7. For each of

these regions there are values of a < 0 for which the line does intersect it.

3) For a < 0 the intersection point D+(0, 3)∩D−(0, 3) when it belongs to

κ(a) belongs to region 6.

Before proving the lemma count the number of components. Regions 2, 5

and 7 are intersected just by one of the two lines D±(0, 3), therefore each of them

gives rise to two components. Region 1 gives rise to three and region 6 to four

components, and the non-intersected regions 3 and 4 give rise to one component

each. This makes 3 × 2 + 3 + 4 + 2 = 15 components. �

P r o o f o f L e m m a 45. Prove 1). For small values of a < 0 the line

D−(0, 3) intersects the face ABD of Π at a point whose b-coordinate is strictly

positive. The segment of this line cut off by D(1, 4) and D−(1, 3) lies between

the face ABC and the line αγ. This can be deduced from the concavity of the

boundary of Π, see Proposition 17. Hence, the line D−(0, 3) intersects regions 1,

5 and 6 at least for a < 0 small enough and it never intersects regions 2, 3, 4 or

7. This proves 1).
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Prove 2). The concavity of the boundary of Π implies that the line

D+(0, 3) can intersect only regions 1,2,6 and 7, never 3,4, or 5. Choose for

a0 the value a∗0 for which the set Π ∩ {a = a0} contains the point Z, see Fig.

3. For such a choice the intersection point of D+(0, 3) and D−(0, 3) belongs to

D−(1, 3) ∩ABC. On the other hand, the point α lies to the left of D−(1, 3), see

part 3) of Proposition 32; for a = a∗0 and for a = a0 < 0 close to 0 the point α

is on different sides w.r.t. D+(0, 3). Hence, for some value of a ∈ (a∗0, 0) the line

D+(0, 3) intersects region 7, hence, 6 and 2 as well. When a < 0 is small enough

it intersects region 1. This proves 2).

Prove 3). The intersection point of D+(0, 3) and D−(0, 3) belongs to the

plane c+ a/10 = 0 (see their equations in Subsection 5.3); it follows from 1) and

2) that it can belong only to the closures of regions 1 or 6. For a < 0 small

enough the points α and β are close to the points defined by the systems

100c + 7a = 0, 100c + 34a±
√

3/10(100b − 21) = 0,

see (8). Hence, for these values of a the points α and β have smaller c-coordinates

than D+(0, 3) ∩ D−(0, 3) and the point from the line αβ with the same b-

coordinate as D+(0, 3) ∩ D−(0, 3) has an even smaller c-coordinate than it, see

the slope of the line αβ on Fig. 9. This means that for a < 0 small enough the

intersection point D+(0, 3) ∩D−(0, 3) belongs to region 6.

Prove that this is the case for all a < 0. Find all values of a 6= 0 for which

this intersection point belongs to D(0, 2) (in order to leave region 6 and enter

into region 1 the intersection point must cross D(0, 2)). To this end one has to

solve the system consisting of equation
∣

∣

∣

∣

∣

∣

100c+ 34a (3/10)(100b − 21) − 9a2 −a(100b − 21)/10
100b− 21 100c + 34a −9a2

90a 100b − 21 100c + 7a

∣

∣

∣

∣

∣

∣

= 0(14)

see (8), and the equations c+a/10 = 0, b = 9/100 derived from the ones defining

the planes D±(0, 3). Replace in the determinant c by −a/10 and b by 9/100.

This gives the equation
∣

∣

∣

∣

∣

∣

24a −36/10 − 9a2 12a/10
−12 24a −9a2

90a −12 −3a

∣

∣

∣

∣

∣

∣

= 0

which is equivalent to a(675a4 − 340a2 + 28) = 0. Its roots are 0, ±
√

2/5,

±
√

14/135. The root −
√

2/5 has to be excluded from consideration because

Π ∩ {a = −
√

2/5} = {A}.
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For a = −
√

14/135 one has c = (1/10)
√

14/135, b = 9/100 and one

obtains the polynomial

P ∗ = x5 − x3 −
√

14/135x2 + (9/100)x + (1/10)
√

14/135

= (x2 − 1/10)(x3 − (9/10)x −
√

14/135)

with roots x1 = (
√

7/30−
√

87/30)/2, x2 = −
√

7/30, x3 = −1/
√

10, x4 = 1/
√

10,

x5 = (
√

7/30 +
√

87/30)/2.

For P ∗ one has x2 = s1, x3 = t1, x4 = t2 which means that P ∗ 6∈
κ(a). Indeed, if P ∗ were in κ(a), then one should have x3 = s2, not x2 = s1
(because the intersection point must belong to AΓFΞBEA, see the beginning of

Subsection 5.4). In fact, the projection in the ab-plane of the point P ∗ belongs to

AKICFA and D+(0, 3) intersects D−(0, 3) to the right of D−(1, 3), see Fig. 9.

Hence, the intersection pointD+(0, 3)∩D−(0, 3) can belong only to region

6. The lemma is proved. �
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perboliques. Thèse de doctorat, Univ. de Rennes I, soutenue le 24.01.1991.

[11] W. Nuij. A note on hyperbolic polynomials. Math. Scand. 23 (1968), 69–
72.

[12] T. Poston, I. Stewart. Catastrophe theory and its applications. Pitman
Publ., Boston-London-Melbourne, 1978.
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