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ON A CLASS OF VERTEX FOLKMAN NUMBERS

Nedyalko Dimov Nenov

Communicated by R. Hill

Abstract. Let a1, . . . , ar be positive integers, m =
∑

r

i=1
(ai − 1) + 1 and

p = max{a1, . . . , ar}. For a graph G the symbol G → (a1, . . . , ar) means
that in every r-coloring of the vertices of G there exists a monochromatic
ai-clique of color i for some i ∈ {1, . . . , r}. In this paper we consider the
vertex Folkman numbers

F (a1, . . . , ar; m − 1) = min
{
|V (G)| : G → (a1, . . . , ar) and Km−1 6⊂ G}

We prove that F (a1, . . . , ar; m − 1) = m + 6, if p = 3 and m ≧ 6 (Theorem
3) and F (a1, . . . , ar; m − 1) = m + 7, if p = 4 and m ≧ 6 (Theorem 4).

1. Notations. We consider only finite, non-oriented graphs, without
loops and multiple edges. The vertex set and the edge set of a graph G will
be denoted by V (G) and E(G), respectively. We call p-clique of G any set of p

vertices, each two of which are adjacent. The largest natural number p, such that
the graph G contains a p-clique is denoted by cl(G) (the clique number of G).

2000 Mathematics Subject Classification: 05C55.
Key words: vertex Folkman graph, vertex Folkman number.



220 Nedyalko Dimov Nenov

If W ⊆ V (G) then G[W ] is the subgraph of G induced by W and G−W

is the subgraph induced by V (G) \W . We shall use also the following notations:

G — the complement of graph G;

α(G) — the vertex independence number of G;

N(v), v ∈ V (G) — the set of all vertices of G adjacent to v;

χ(G) — the chromatic number of G;

Kn — complete graph of n vertices;

Cn — simple cycle of n vertices.

Kn − Cm, m ≦ n — the graph obtained from Kn by deleting all edges of
some cycle Cm.

The equality Cn = v1, v2, . . . , vn means that

V (Cn) = {v1, . . . , vn} and E(Cn) = {[vi, vi+1], i = 1, . . . , n − 1, [v1, vn]}.

Let G1 and G2 be two graphs without common vertices. We denote by
G1 + G2 the graph G for which V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪
E(G2) ∪ E′, where E′ = {[x, y] : x ∈ V (G1), y ∈ V (G2)}.

The Ramsey number R(p, q) is the smallest natural number n, such that
for arbitrary n-vertex graph G, either cl(G) ≧ p or α(G) ≧ q. We need the
identities R(3, 4) = R(4, 3) = 9, [3].

2. The vertex Folkman graphs and vertex Folkman numbers.

Definition. Let a1, . . . , ar be positive integers. An r-coloring

V (G) = V1 ∪ . . . ∪ Vr, Vi ∩ Vj = ∅, i 6= j,

of the vertices of a graph G is said to be (a1, . . . , ar)-free if for all i ∈ {1, . . . , r}
the graph G does not contain a monochromatic ai-clique of color i. The symbol
G → (a1, . . . , ar) means that every r-coloring of V (G) is not (a1, . . . , ar)-free.

A graph G such that G → (a1, . . . , ar) is called a vertex Folkman graph.
Obviously, it is true that:

Proposition 1. Let a1, . . . , ar be positive integers, r ≧ 2 and ai = 1 for
some i ∈ {1, . . . , r}. Then

G → (a1, . . . , ar) ⇔ G → (a1, . . . , ai−1, ai+1, . . . , ar)
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Proposition 2. For each permutation ϕ of the symmetric group Sr

G → (a1, . . . , ar) ⇔ G → (aϕ(1), . . . , aϕ(r)).

Define:

F (a1, . . . , ar; q) = min{|V (G)| : G → (a1, . . . , ar) and cl(G) < q}.

Clearly, G → (a1, . . . , ar) ⇒ cl(G) ≧ max{a1, . . . , ar}.
Folkman [2] proved that there exists a graph G, such that G → (a1, . . . , ar)

and cl(G) = max{a1, . . . , ar}. Therefore,

(1) F (a1, . . . , ar; q) exist ⇔ q > max{a1, . . . , ar}.

and they are called vertex Folkman numbers. For every positive integers a1, . . . ,
ar we define

(2) m =
r∑

i=1

(ai − 1) + 1, p = max{a1, . . . , ar}.

Obviously, Km → (a1, . . . , ar) and Km−1 9 (a1, . . . , ar). Therefore, if q ≧ m+1,
then F (a1, . . . , ar; q) = m. It is true that:

Proposition 3 ([13] and [14]). Let G be a graph, such that G →
(a1, . . . , ar). Then χ(G) ≧ m.

By (1), the numbers F (a1, . . . , ar;m) exist only if m ≧ p + 1. For these
numbers the following theorem is known:

Theorem A ([4]). Let a1, . . . , ar be positive integers and let m and p

satisfy (2), where m ≧ p+1. Then F (a1, . . . , ar;m) = m+p. If G → (a1, . . . , ar),
cl(G) < m and |V (G)| = m + p, then G = Km+p − C2p+1 = Km−p−1 + C2p+1.

The proof of this Theorem given in [4] is based on Lemma 1, [4, p. 251].
But the proof of this Lemma is not correct because the sentence “If we delete
both endpoints of any of its edges not adjacent to {x, y}, then α(G) decreases
again.” is not true (see p. 252). Correct proofs of theorem A are given in [13]
and [14].

According to (1), the numbers F (a1, . . . , ar;m−1) exist only if m ≧ p+2.
Very little is known about these numbers. It is true that:
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Theorem B ([13]). Let a1, . . . , ar be positive integers. Let m and p

satisfy (2), where m ≧ p + 2. Then F (a1, . . . , ar;m − 1) ≧ m + p + 2.

Theorem C ([15]). Let a1, . . . , ar be positive integers. Let m and p

satisfy (2), where m ≧ p + 2. If G is a graph such that G → (a1, . . . , ar) and
cl(G) < m − 1, then:

(a) |V (G)| ≧ m + p + α(G) − 1;
(b) if |V (G)| = m + p + α(G) − 1, then |V (G)| ≧ m + 3p.

According to Proposition 2, F (a1, . . . , ar; q) is a symmetric function and
thus we may assume that a1 ≦ a2 ≦ · · · ≦ ar. By Proposition 1, we may assume
also that ai ≧ 2, i = 1, . . . , r. Next theorem implies that in special situation
a1 = a2 = · · · = ar = 2, r ≧ 5, the inequality from Theorem B is exact.

Theorem D.

F (2, . . . , 2︸ ︷︷ ︸
r

; r) =

{
11, r = 3 or r = 4
r + 5, r ≧ 5.

Obviously, G → (2, . . . , 2︸ ︷︷ ︸
r

) ⇐⇒ χ(G) ≧ r + 1.

Mycielski in [5] presented an 11-vertex graph G, such that G → (2, 2, 2)
and cl(G) = 2, proving that F (2, 2, 2; 3) ≦ 11. Chvátal [1], proved that the
Mycielski’s graph is the smallest such graph and hence F (2, 2, 2; 3) = 11. The
inequality F (2, 2, 2, 2; 4) ≧ 11 was proved in [8] and inequality F (2, 2, 2, 2; 4) ≦ 11
was proved in [7] and [12] (see also [9]). The equality

F (2, . . . , 2︸ ︷︷ ︸
r

; r) = r + 5, r ≧ 5

was proved in [7, 12] and later in [4].
It is true also that:

Theorem E. F (3, 3; 4) = 14.

The inequality F (3, 3; 4) ≦ 14 was proved in [6] and the opposite inequal-
ity was verified by means of computer in [20].

Theorem F ([17]). F (2, 2, 2, 3; 5) = F (2, 3, 3; 5) = 12.



On a class of vertex Folkman numbers 223

Only a few more numbers of the type F (a1, . . . , ar;m − 1) are known,
namely: F (3, 4; 5) = 13, [10]; F (2, 2, 4; 5) = 13, [11]; F (4, 4; 6) = 14, [19];
F (2, 2, 2, 4; 6) = F (2, 3, 4; 6) = 14, [18].

3. Main results.

Theorem 1. Let p ≧ 3 be integer, such that F (2, 2, p; p + 1) ≧ 2p + 5.
Then for each t ≧ 2 we have F (2, . . . , 2︸ ︷︷ ︸

t

, p; t + p − 1) ≧ t + 2p + 3.

Theorem 2. Let a1, . . . , ar be positive integers. Let m and p satisfy (2),
where p ≧ 3 and m ≧ p+2. If F (2, 2, p; p+1) ≧ 2p+5, then F (a1, . . . , ar;m−1) ≧

m + p + 3.

Theorem 3. Let a1, . . . , ar be positive integers. Let m and p satisfy
(2), where p = 3 and m ≧ 6. Then F (a1, . . . , ar;m − 1) = m + 6.

Remark 1. If m = 5, p = 3 and 2 ≦ a1 ≦ · · · ≦ ar then r = 2,
a1 = a2 = 3 or r = 3, a1 = a2 = 2, a3 = 3. According to Theorem E, F (3, 3; 4) =
14 > 11. The equality F (3, 3; 4) = 14 implies F (2, 2, 3; 4) ≦ 14 (see Lemma 4),
but the exact value of F (2, 2, 3; 4) is unknown.

Remark 2. The special situation a1 = · · · = ar = 3, r ≧ 3 of Theorem
3 was proved in [16].

Theorem 4. Let a1, . . . , ar be positive integers. Let m and p satisfy
(2), where p = 4 and m ≧ 6. Then F (a1, . . . , ar;m − 1) = m + 7.

4. Lemmas.

Lemma 1. Let a1, . . . , ar be positive integers and m and p satisfy (2).
Let G be a graph, such that cl(G) < m − 1, G → (a1, . . . , ar) and N(u) ⊆ N(v)
for some u, v ∈ V (G). Then |V (G)| ≧ m + p + 3.

P r o o f. Obviously, [u, v] 6∈ E(G). It is clear from G → (a1, . . . , ar) and
N(u) ⊆ N(v) that G−u → (a1, . . . , ar). By Theorem B, |V (G−u)| ≧ m+ p+2.
Therefore |V (G)| ≧ m + p + 3. �
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Lemma 2. Let a1, . . . , ar be positive integers and m and p satisfy (2).
Let G be a graph, such that cl(G) < m−1, G → (a1, . . . , ar) and α(G) 6= 2. Then
|V (G)| ≧ m + p + 3.

P r o o f. Since G cannot be complete we know that α(G) ≧ 3. If α(G) ≧ 4,
the inequality |V (G)| ≧ m + p + 3 it follows from Theorem C (a). Let α(G) = 3.
Suppose that |V (G)| ≦ m + p + 2. Then, according to Theorem B, |V (G)| =
m+p+2 = m+p+α(G)−1. From Theorem C (b), |V (G)| ≧ m+3p > m+p+2,
a contradiction. �

Lemma 3. Let n and p be fixed positive integers and p ≧ 2. Let G be a
graph, such that

(3)

b1, . . . , bs ∈ Z
1 ≦ b1 ≦ · · · ≦ bs ≦ p
s∑

i=1
(bi − 1) + 1 = n





=⇒ G → (b1, . . . , bs).

Then for every positive integer a1, . . . , ar, such that max{a1, . . . , ar} ≦ p and
r∑

i=1
(ai − 1) + 1 = m ≧ n, we have Km−n + G → (a1, . . . , ar).

P r o o f. We prove Lemma 3 by induction on t = m − n. Let t = 0, i.e.
m = n. According to Proposition 2, we may assume that 1 ≦ a1 ≦ · · · ≦ ar. By
(3), G → (a1, . . . , ar).

Let t ≧ 1 and G̃ = Kt+G = Km−n+G. Let w ∈ V (Kt) and G′ = G̃−w =
Kt−1 + G. Consider an arbitrary r-coloring V1 ∪ . . . ∪ Vr of V (G̃). Suppose that
w ∈ Vi and let Vj, j 6= i contains no an aj-clique. We prove that Vi contains
an ai-clique. Since w ∈ Vi, if ai = 1 this is clear. Let ai ≧ 2. By the inductive
hypothesis,

(4) G′ = Kt−1 + G → (a1, . . . , ai−1, ai − 1, ai+1, . . . , ar)

Consider the r-coloring

V (G′) = V1 ∪ . . . ∪ (Vi \ {w}) ∪ . . . ∪ Vr.

From (4) it follows that Vi \ {w} contains an (ai − 1)-clique. Hence, Vi contains
an ai-clique. So, every r-coloring of V (G̃) is not (a1, . . . , ar)-free. Therefore,
G̃ = Km−n + G → (a1, . . . , ar). �
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Lemma 4. Let G → (a1, . . . , ar) and let for some i, ai ≧ 2. Then

G → (a1, . . . , ai−1, 2, ai − 1, ai+1, . . . , ar).

P r o o f. Consider an (a1, . . . , ai−1, ai−1, ai+1, . . . , ar)-free (r+1)-coloring
V (G) = V1 ∪ . . . ∪ Vr+1. If we color the vertices of Vi with the same color as the
vertices of Vr+1, we obtain an (a1, . . . , ar)-free coloring of V (G), a contradic-
tion. �

5. Proof of Theorem 1. We prove Theorem 1 by induction on t.
I. t = 3. If p = 3, the inequality follows from Theorem F. Therefore, we

may assume that p ≧ 4. Let G → (2, 2, 2, p) and cl(G) < p+2. We need to prove
that |V (G)| ≧ 2p + 6. Suppose that |N(v)| = |V (G)| − 1 for some v ∈ V (G).
Then G − v → (2, 2, p) and cl(G − v) < p + 1. By F (2, 2, p; p + 1) ≧ 2p + 5,
|V (G − v)| ≧ 2p + 5. Hence, |V (G)| ≧ 2p + 6. Therefore, we will assume that

(5) |N(v)| 6= |V (G)| − 1, ∀v ∈ V (G).

According to Theorem B, |V (G)| ≧ 2p + 5. Hence, it is sufficient to prove that
|V (G)| 6= 2p + 5. Assume the contrary. Then, by Lemma 1, N(u) * N(v),
∀u, v ∈ V (G). Therefore, |N(v)| 6= |V (G)| − 2. This, thogether with (5), implies
that

(6) |N(v)| ≦ |V (G)| − 3, ∀v ∈ V (G).

It follows from Lemma 2 that

(7) α(G) = 2.

According to Theorem B, F (2, 2, p + 1; p + 2) ≧ 2p + 6. Hence, G 9 (2, 2, p + 1).
Let V (G) = X∪Y ∪Z be a (2, 2, p+1)-free 3-coloring. According to (7), |X| ≦ 2,
|Y | ≦ 2. From (6) and (7) it follows that we may assume that |X| = 2, |Y | = 2.
Let X = {a, b}, Y = {c, d}, G1 = G[a, b, c, d] and G2 = G[Z]. Obviously,

G → (2, 2, 2, p) ⇒ G2 → (2, p).

Since Z contains no (p + 1)-cliques, cl(G2) < p + 1. From Theorem A it follows
that G2 = C2p+1. Let C2p+1 = v1, . . . , v2p+1. We define

Q = {v2i−1 : i = 1, . . . , p − 2} ∪ {v2p},
Q1 = Q ∪ {v2p−3} and Q2 = Q ∪ {v2p−2}.
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Obviously, Q1 and Q2 are p-cliques of C2p+1. From (7) it follows that E(G1)
contains two independent edges. Without loss of generality we can assume that
[a, c], [b, d] ∈ E(G1). From cl(G) < p + 2 it follows that one of the vertices a, c

is not adjacent to at least one of the vertices v1, . . . , v2p+1, say [a, v1] 6∈ E(G).
Consider the 4-coloring V (G) = V1 ∪ V2 ∪ V3 ∪ V4, where V1 = {v2p, v2p+1},
V2 = {v2p−1, v2p−2}, V3 = {c, d}. Since V1, V2, V3 are independent sets, it follows
from G → (2, 2, 2, p) that V4 contains a p-clique. Since Q′ = Q1 \ {v2p} is the
unique (p−1)-clique in V4 \{a, b} then this p-clique is either Q′∪{a} or Q′∪{b}.
Since v1 ∈ Q′ and [a, v1] 6∈ E(G), Q′ ∪ {a} is not a clique. Hence, Q′ ∪ {b} is a
p-clique and thus

(8) Q′ = Q1 \ {v2p} ⊆ N(b).

Let Q′′ = Q2 \ {v2p−5}. Similarly from the 4-coloring V (G) = V1 ∪ V2 ∪ V3 ∪ V4,
where V1 = {v2p−3, v2p−4}, V2 = {v2p−5, v2p−6}, V3 = {c, d} it follows that either
Q′′ ∪ {a} or Q′′ ∪ {b} is a p-clique. Since p ≧ 4, we have 2p − 6 ≧ 2 and thus
v1 ∈ Q′′. From [a, v1] 6∈ E(G) it follows that Q′′ ∪ {b} is a p-clique. Therefore,

(9) Q′′ = Q2 \ {v2p−5} ⊆ N(b).

By (8) and (9),

(10) Q1 ⊆ N(b).

(11) Q2 ⊆ N(b).

Case 1. [b, c] ∈ E(G). Consider the 4-coloring V (G) = V1 ∪ V2 ∪ V3 ∪ V4,
where V1 = {v2p−1, v2p−2}, V2 = {v2p−3, v2p−4}, V3 = {a, b}. Since V1, V2, V3 are
independent sets, then it follows from G → (2, 2, 2, p) that V4 contains a p-clique
L. Since Q is the unique (p − 1)-clique in V4 \ {a, b}, either Q ∪ {c} = L or
Q ∪ {d} = L. If Q ∪ {c} = L, then from cl(G) < p + 2, (10) and (11) it follows
that {c, v2p−2, v2p−3} is an independent set, contradicting equality (7). The case
L = Q ∪ {d} similarly leads to a contradiction.

Case 2. [b, c] 6∈ E(G). Consider the 4-coloring V (G) = V1 ∪ V2 ∪ V3 ∪ V4,
where V1 = {v2p, v2p+1}, V2 = {v2p−1, v2p−2}, V3 = {v2p−3, v2p−4}. Since V1, V2,
V3 are independent sets, then it follows from G → (2, 2, 2, p) that V4 contains a
p-clique L. Since cl(G1) = 2, |L∩V (C2p+1)| ≧ p−2. Observe that Q̃ = Q\{v2p}

is the unique (p−2)-clique in V4\{a, b, c, d}. Therefore, L∩V (C2p+1) = Q̃. From
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v1 ∈ Q̃ and [a, v1] 6∈ E(G) it follows that b ∈ L. By [b, c] 6∈ E(G), L = Q̃∪ {b, d}.
Thus,

(12) Q̃ = Q \ {v2p} ⊆ N(d).

Similarly, from the 4-coloring V (G) = V1 ∪ V2 ∪ V3 ∪ V4, where V1 =
{v2p−1, v2p−2}, V2 = {v2p−3, v2p−4}, V4 = {v2p−5, v2p−6}, it follows that

(13) Q \ {v2p−5} ⊆ N(d).

By (12) and (13),

(14) Q ⊆ N(d).

From cl(G) < p + 2, (10) and (14) it follows that [d, v2p−3] 6∈ E(G). By cl(G) <

p + 2, (11) and (14), [d, v2p−2] 6∈ E(G). So, {d, v2p−3, v2p−2} is an independent
set, contradicting equality (7).

II. t = 4. Let G → (2, 2, 2, 2, p) and cl(G) < p + 3. We need to prove that
|V (G)| ≧ 2p+7. According to Theorem B, |V (G)| ≧ 2p+6. Hence, it is sufficien
to prove that |V (G)| 6= 2p+6. Assume the contrary. As in the previous situation
t = 3, we may assume that the graph G satisfies the conditions (6) and (7).
According to Theorem B, F (2, 2, p + 2; p + 3) ≧ 2p + 8. Hence, G 9 (2, 2, p + 2).
Let V (G) = X ∪ Y ∪ Z be a (2, 2, p + 2)-free 3-coloring. From (6) and (7) it
follows that we may assume that |X| = 2, |Y | = 2. Let X = {a, b}, Y = {c, d}
and G1 = G[Z]. Observe that

G → (2, 2, 2, 2, p) ⇒ G1 → (2, 2, p).

Since Z contains no (p + 2)-cliques, cl(G1) < p + 2. According to Theorem A,
G1 = K1 + C2p+1. Let V (K1) = {w} and C2p+1 = v1, . . . , v2p+1. From (7) it
follows that either [a,w] ∈ E(G) or [b, w] ∈ E(G), say [a,w] ∈ E(G). Similarly,
we may assume also that [c, w] ∈ E(G). From (6) it follows that [w, b] 6∈ E(G)
and [w, d] 6∈ E(G).

Case 1. [a, c] 6∈ E(G). Obviously, G[w, a, b, c, d] contains no 3-cliques.
Since C2p+1 − {v1, . . . , v7} contains no (p − 2)-cliques, the set M = V (G) \
{v1, . . . , v7} contains no p-cliques. Thus, the 5-coloring

V (G) = {v1, v2} ∪ {v3, v4} ∪ {v5, v6} ∪ {v7} ∪ M

is (2, 2, 2, 2, p)-free, a contradiction.
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Case 2. [a, c] ∈ E(G). From cl(G) < p+3 it follows that one of the vertices
a, c is not adjacent to at least of the vertices v1, . . . , v2p+1, say [a, v1] 6∈ E(G).
Since G[w, b, c, d] contains no 3-cliques, then N = V (G) \ {a, v1, . . . , v7} contains
no p-cliques. Thus, the 5-coloring

V (G) = {v1, a} ∪ {v2, v3} ∪ {v4, v5} ∪ {v6, v7} ∪ N

is (2, 2, 2, 2, p)-free, a contradiction.

III. t ≧ 5. Let

G → (2, . . . , 2︸ ︷︷ ︸
t

, p) and cl(G) < p + t − 1.

Then, according to Proposition 3,

(15) χ(G) ≧ t + p.

We need to prove that |V (G)| ≧ t + 2p + 3.

Case 1. G → (2, t+p−2). Obviously, χ(C2t+2p−3) = t+p−1. Thus, from
(15) it follows that G 6= C2t+2p−3. According to Theorem A, |V (G)| ≧ 2t+2p−2.
Observe that if t ≧ 5, then 2t+2p−2 ≧ t+2p+3. Therefore, |V (G)| ≧ t+2p+3.

Case 2. G 9 (2, t + p − 2). Let V (G) = X ∪ Y be (2, t + p − 2)-free
2-coloring and G1 = G[Y ]. Clearly, we may assume that X 6= ∅. It is clear also
that

G → (2, . . . , 2︸ ︷︷ ︸
t

, p) ⇒ G1 → (2, . . . , 2︸ ︷︷ ︸
t−1

, p)

Since Y contains no (t + p − 2)-cliques, cl(G1) < t + p − 2. By the inductive
hypothesis, |V (G1)| ≧ t + 2p + 2. Since X 6= ∅, |V (G)| ≧ t + 2p + 3. �

6. Proof of Theorem 2. Consider the set M ⊆ {a1, . . . , ar}, where
ai ∈ M ⇐⇒ ai = 2. We prove Theorem 2 by induction on n = m − |M | − 1.
Obviously, n =

∑
ai≧3

(ai − 1) ≧ p− 1. The base of the induction is then n = p− 1.

According to Proposition 1 and Proposition 2 we may assume that 2 ≦ a1 ≦ · · · ≦

ar = p. From these inequalities and n = p−1 it follows that a1 = · · · = ar−1 = 2.
Therefore, if n = p − 1, Theorem 2 follows from Theorem 1. Let n ≧ p. Then
from some i ∈ {1, . . . , r − 1}, ai ≧ 3. By Lemma 4,

F (a1, . . . , ar;m − 1) ≧ F (a1, . . . , ai−1, 2, ai − 1, ai+1, . . . , ar;m − 1).
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By the inductive hypothesis,

F (a1, . . . , ai−1, 2, ai − 1, . . . , ar;m − 1) ≧ m + p + 3.

Hence, F (a1, . . . , ar;m − 1) ≧ m + p + 3. �

7. Proof of Theorem 3.

I. Proof of the inequality F (a1, . . . , ar; m − 1) ≧ m + 6. Let G

be a graph such that G → (2, 2, 3) and cl(G) < 4. By Theorem B, |V (G)| ≧ 10.
From R(4, 3) = 9 and cl(G) < 4 it follows that α(G) ≧ 3. According to Lemma
2, |V (G)| ≧ 11. Hence, F (2, 2, 3; 4) ≧ 11. From Theorem 2, it follows that
F (a1, . . . , ar;m − 1) ≧ m + 6.

II. Proof of the inequality F (a1, . . . , ar; m−1) ≦ m+6. Consider
the graph P1, whose complementary graph P 1 is given in Fig. 1. We prove that
this graph satisfies the conditions of Lemma 3 with p = 3 and n = 6. Obviously,
from 




bi ∈ Z, i = 1, . . . , s
2 ≦ b1 ≦ b2 ≦ · · · ≦ bs ≦ 3

s∑
i=1

(bi − 1) + 1 = 6

it follows that:

1. s = 3, b1 = 2, b2 = b3 = 3;

2. s = 4, b1 = b2 = b3 = 2, b4 = 3;

3. s = 5, b1 = b2 = b3 = b4 = b5 = 2.

It is proved in [17] that P1 → (2, 3, 3). From Lemma 4 it follows that P1 →
(2, 2, 2, 3) and P1 → (2, 2, 2, 2, 2). By Proposition 1 and Lemma 3, Km−6 + P1 →
(a1, . . . , ar). Since cl(P1) = 4, cl(Km−6 + P1) = m − 2. Hence, F (a1, . . . , ar;m −
1) ≦ |V (Km−6 + P1)| = m + 6.

8. Proof of Theorem 4.

I. Proof of the inequality F (a1, . . . , ar; m − 1) ≧ m + 7. Since
F (2, 2, 4; 5) = 13, [11], from Theorem 2 it follows that F (a1, . . . , ar;m − 1) ≧

m + 7.
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Fig. 1. Graph P 1. Fig. 2. Graph P 2.

II. Proof of the inequality F (a1, . . . , ar; m−1) ≦ m+7. Consider
the graph P2, whose complementary graph P 2 is given in Fig. 2. This is well
known construction of Greenwood and Gleason [3], which shows that the Ramsey
number R(3, 5) ≧ 14. We prove that this graph satisfies the conditions of Lemma
3 with p = 4 and m = 6. Obviously, from





bi ∈ Z, i = 1, . . . , s
2 ≦ b1 ≦ · · · ≦ bs ≦ 4

s∑
i=1

(bi − 1) + 1 = 6

it follows that:

1. s = 2, b1 = 3, b2 = 4;

2. s = 3, b1 = b2 = 2, b3 = 4;

3. s = 3, b1 = 2, b3 = b4 = 3;

4. s = 4, b1 = b2 = b3 = 2, b4 = 3;

5. s = 5, b1 = b2 = b3 = b4 = b5 = 2.

It is proved in [10] that P2 → (3, 4). From Lemma 4 it follows that P2 →
(2, 2, 4), P2 → (2, 3, 3), P2 → (2, 2, 2, 3), P2 → (2, 2, 2, 2, 2). By Proposition 1 and
Lemma 3, Km−6 + P2 → (a1, . . . , ar). Since cl(P2) = 4, cl(Km−6 + P2) = m − 2.
Hence, F (a1, . . . , ar;m − 1) ≦ |V (Km−6 + P2)| = m + 7.
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