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ABSTRACT. Let ay, ..., a, be positive integers, m = >_._,(a; —1) + 1 and
p = max{ay,...,a,}. For a graph G the symbol G — (aq,...,a,) means
that in every r-coloring of the vertices of G there exists a monochromatic
a;-clique of color ¢ for some ¢ € {1,...,7}. In this paper we consider the
vertex Folkman numbers

F(ai,...,ar;m—1) =min{|V(G)|: G — (a1,...,a,) and K1 ¢ G}

We prove that F(ay,...,a;m—1)=m+6, if p=3 and m = 6 (Theorem
3) and F(ay,...,ar;m—1)=m+7,if p=4 and m = 6 (Theorem 4).

1. Notations. We consider only finite, non-oriented graphs, without
loops and multiple edges. The vertex set and the edge set of a graph G will
be denoted by V(G) and E(G), respectively. We call p-clique of G any set of p
vertices, each two of which are adjacent. The largest natural number p, such that
the graph G contains a p-clique is denoted by cl(G) (the clique number of G).

2000 Mathematics Subject Classification: 05C55.
Key words: vertex Folkman graph, vertex Folkman number.
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If W C V(G) then G[W] is the subgraph of G induced by W and G — W
is the subgraph induced by V(G) \ W. We shall use also the following notations:

G — the complement of graph G;

a(G) — the vertex independence number of G;

N(v), v € V(G) — the set of all vertices of G adjacent to v;

X(G) — the chromatic number of G;

K,, — complete graph of n vertices;

C,, — simple cycle of n vertices.

K,, — Cp,, m < n — the graph obtained from K, by deleting all edges of
some cycle Cy,.

The equality C), = vq,vo,...,v, means that

V(Cy) ={v1,...,vn} and E(Cy,) = {[vi,vit1], i=1,...,n—1, [v1,v,]}.

Let G; and G2 be two graphs without common vertices. We denote by
G1 + G3 the graph G for which V(G) = V(G;) UV (Gs2) and E(G) = E(G1) U
E(G2) U E', where E' = {[z,y] : 2 € V(G1), y € V(G2)}.

The Ramsey number R(p, q) is the smallest natural number n, such that
for arbitrary n-vertex graph G, either cl(G) = p or a(G) = q. We need the
identities R(3,4) = R(4,3) =9, [3].

2. The vertex Folkman graphs and vertex Folkman numbers.

Definition. Let aq,...,a, be positive integers. An r-coloring
V(G)=WVuU...UV,, VinV;=0, i#j,

of the vertices of a graph G is said to be (ai,...,a,)-free if for alli € {1,...,r}
the graph G does not contain a monochromatic a;-clique of color i. The symbol
G — (a1, ...,a,) means that every r-coloring of V(G) is not (a1, ...,a,)-free.

A graph G such that G — (aq,...,a,) is called a vertex Folkman graph.
Obviously, it is true that:

Proposition 1. Let ay, ..., a, be positive integers, r = 2 and a; = 1 for
some i€ {l,...,r}. Then

G—(ay,...,ar) < G— (a1, ,0-1,0i11,---,0)
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Proposition 2. For each permutation ¢ of the symmetric group S

G —(a1,...,a;) & G = (a0, 00))

Define:
F(ai,...,ar;q) =min{|V(G)| : G — (a1,...,a,) and cl(G) < g}.

Clearly, G — (a1,...,a,) = cl(G) 2 max{as,...,ar}.
Folkman [2] proved that there exists a graph G, such that G — (a1, ..., a,)
and cl(G) = max{ay,...,a,}. Therefore,

(1) F(ai,...,ar;q) exist < ¢ > max{ai,...,a}.

and they are called vertex Folkman numbers. For every positive integers a1, ..
a, we define

*

(2) m:Z(ai—l)-i-l, p = max{ai,...,a}.
i=1

Obviously, K, — (a1,...,a,) and K,,_1 - (a1,...,a,). Therefore, if ¢ = m+1,
then F(ai,...,a,;q) = m. It is true that:

Proposition 3 ([13] and [14]). Let G be a graph, such that G —
(ai,...,a.). Then x(G) = m.

By (1), the numbers F'(ay,...,a,;m) exist only if m = p + 1. For these
numbers the following theorem is known:

Theorem A ([4]). Let ay, ..., a, be positive integers and let m and p
satisfy (2), where m = p+1. Then F(ay,...,ar;m) =m+p. IfG — (all..,ar),
Cl(G) < m and ‘V(G)‘ =m+p, then G = Kerp — CZerl = Km,p,1 + CZerl'

The proof of this Theorem given in [4] is based on Lemma 1, [4, p. 251].
But the proof of this Lemma is not correct because the sentence “If we delete
both endpoints of any of its edges not adjacent to {z,y}, then a(G) decreases
again.” is not true (see p. 252). Correct proofs of theorem A are given in [13]
and [14].

According to (1), the numbers F(aq,...,a,;m—1) exist only if m = p+2.
Very little is known about these numbers. It is true that:
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Theorem B ([13]). Let ay, ..., a, be positive integers. Let m and p
satisfy (2), where m 2 p+ 2. Then F(ay,...,ap;m—1) 2 m+p+2.

Theorem C ([15]). Let a1, ..., a, be positive integers. Let m and p
satisfy (2), where m = p+ 2. If G is a graph such that G — (ay,...,a,) and
c(G) <m —1, then:

(a) V(G)] 2 m+p+a(G) - 1;

(b) if [V(G)|=m+p+a(G)—1, then [V(G)| =2 m+ 3p.

According to Proposition 2, F(aq,...,a,;q) is a symmetric function and
thus we may assume that a1 < as < --- < a,. By Proposition 1, we may assume
also that a; = 2,4 =1, ..., r. Next theorem implies that in special situation
ay =ag =---=a, =2, r 2 5, the inequality from Theorem B is exact.

Theorem D.

11 = =4
F(2,...,2:7) = , r=dorr
—— r+5 r2=5.

T

Obviously, G — (2,...,2) < x(G)=2r+1.
——

T

Mycielski in [5] presented an 11-vertex graph G, such that G — (2,2,2)
and cl(G) = 2, proving that F'(2,2,2;3) < 11. Chvatal [1], proved that the
Myecielski’s graph is the smallest such graph and hence F'(2,2,2;3) = 11. The
inequality F'(2,2,2,2;4) = 11 was proved in [8] and inequality F'(2,2,2,2;4) < 11
was proved in [7] and [12] (see also [9]). The equality

F2,....,2;r)=r+5, r=5
———
T

was proved in [7, 12] and later in [4].
It is true also that:

Theorem E. F(3,3;4) = 14.

The inequality F'(3,3;4) < 14 was proved in [6] and the opposite inequal-
ity was verified by means of computer in [20].

Theorem F ([17]). F(2,2,2,3;5) = F(2,3,3;5) = 12.
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Only a few more numbers of the type F(aq,...,a,;m — 1) are known,
namely: F(3,4;5) = 13, [10]; F(2,2,4;5) = 13, [11]; F(4,4;6) = 14, [19];
F(2,2,2,4;6) = F(2,3,4;6) = 14, [18].

3. Main results.

Theorem 1. Let p = 3 be integer, such that F(2,2,p;p+ 1) = 2p + 5.
Then for each t = 2 we have F(2,...,2,p;t+p—1) =2 t+2p+ 3.
——

Theorem 2. Let ay, ..., a, be positive integers. Let m and p satisfy (2),
wherep 2 3 andm 2 p+2. If F(2,2,p;p+1) = 2p+5, then F(ay,...,a,;m—1) =
m+p+ 3.

Theorem 3. Let ai, ..., a, be positive integers. Let m and p satisfy
(2), where p =3 and m 2 6. Then F(ay,...,a;;m —1) =m +6.

Remark 1. Ifm =5 p=3and 2 < a; < --- < a, then r = 2,
ap =ay=3orr=3,a; =as =2, ag = 3. According to Theorem E, F'(3,3;4) =
14 > 11. The equality F(3,3;4) = 14 implies F'(2,2,3;4) < 14 (see Lemma 4),
but the exact value of F'(2,2,3;4) is unknown.

Remark 2. The special situation a; = --- = a, = 3, r 2 3 of Theorem
3 was proved in [16].

Theorem 4. Let ay, ..., a,. be positive integers. Let m and p satisfy
(2), where p=4 and m 2 6. Then F(ay,...,a;;m—1) =m+T.

4. Lemmas.

Lemma 1. Let ay, ..., a, be positive integers and m and p satisfy (2).
Let G be a graph, such that cl(G) <m —1, G — (a1,...,a,) and N(u) C N(v)
for some u,v € V(G). Then |V(G)| 2 m+p+ 3.

Proof. Obviously, [u,v] € E(G). It is clear from G — (ay,...,a,) and
N(u) € N(v) that G —u — (aq,...,a;). By Theorem B, |V(G —u)| = m+p+2.
Therefore |V(G)| 2m+p+3. O
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Lemma 2. Let ay, ..., a, be positive integers and m and p satisfy (2).
Let G be a graph, such that cl(G) <m—1, G — (a1,...,a,) and a(G) # 2. Then
V(G)| Zm+p+3.

Proof. Since G cannot be complete we know that a(G) = 3. If a(G) = 4,
the inequality |V (G)| = m + p + 3 it follows from Theorem C (a). Let a(G) = 3.
Suppose that |V(G)| < m + p + 2. Then, according to Theorem B, |V (G)| =
m+p+2=m+p+a(G)—1. From Theorem C (b), |V(G)| 2 m+3p > m+p+2,
a contradiction. O

Lemma 3. Let n and p be fized positive integers and p = 2. Let G be a
graph, such that

bi, ..., bs €Z
< <... < <
(3) ].S: bl = :bs :p _— G_> (bly---ybs)'
(bi—1)+1=n
i=1
Then for every positive integer ai, ..., ar, such that max{ai,...,a,} < p and

T
Y (a;—1)+1=m = n, we have Ky, + G — (aq,...,a,).
i=1

Proof. We prove Lemma 3 by induction on t = m —n. Let t = 0, i.e.
m = n. According to Proposition 2, we may assume that 1 < a; < --- < a,. By
(3)7G_>(a17"'>a7‘)‘~ -

Lett Z21and G = K4+G = Ky +G. Letw e V(Ky) and G/ = G—w =
K;_ 1+ G. Consider an arbitrary r-coloring V3 U... UV, of V(é) Suppose that
w € V; and let V;, j # ¢ contains no an aj-clique. We prove that V; contains
an a;-clique. Since w € Vj, if a; = 1 this is clear. Let a; = 2. By the inductive
hypothesis,

(4) G =Ki1+G— (a1,...,a;-1,a; — L,a;41,...,a)
Consider the r-coloring
VIG)=ViU...uVi\{whHU...UV,.
From (4) it follows that V; \ {w} contains an (a; — 1)-clique. Hence, V; contains

an a;-clique. So, every r-coloring of V(G) is not (a1,...,a,)-free. Therefore,
G=Knn+G—(ar,...,ay). O
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Lemma 4. Let G — (ay,...,a,) and let for some i, a; = 2. Then

G — (al,... ,ai_1,2,ai - 1,ai+1,... ,ar).

Proof. Consider an (ay,...,a;—1,a;—1,ai41,...,a,)-free (r+1)-coloring
V(G) =V1U...UV,41. If we color the vertices of V; with the same color as the
vertices of V,41, we obtain an (ai,...,a,)-free coloring of V(G), a contradic-
tion. O

5. Proof of Theorem 1. We prove Theorem 1 by induction on ¢.

I. t = 3. If p = 3, the inequality follows from Theorem F. Therefore, we
may assume that p = 4. Let G — (2,2,2,p) and cl(G) < p+ 2. We need to prove
that |[V(G)| 2 2p + 6. Suppose that |[N(v)| = |[V(G)| — 1 for some v € V(Q).
Then G — v — (2,2,p) and cl(G —v) < p+ 1. By F(2,2,p;p+ 1) = 2p + 5,
V(G —v)| 2 2p+ 5. Hence, |V(G)| 2 2p + 6. Therefore, we will assume that

() IN(@)[# [V(G)] =1, VveV(G).

According to Theorem B, |V(G)| = 2p + 5. Hence, it is sufficient to prove that
|[V(G)| # 2p+ 5. Assume the contrary. Then, by Lemma 1, N(u) € N(v),
Vu,v € V(G). Therefore, |[N(v)| # |V(G)| — 2. This, thogether with (5), implies
that

(6) IN(v)| = [V(G)| =3, YveV(G).
It follows from Lemma 2 that
(7) a(G) =2.

According to Theorem B, F(2,2,p+ 1;p+2) = 2p+ 6. Hence, G - (2,2,p+1).
Let V(G) = XUY UZ be a (2,2,p+1)-free 3-coloring. According to (7), | X| < 2,
Y| < 2. From (6) and (7) it follows that we may assume that |X| =2, |Y| = 2.
Let X = {a,b}, Y = {c,d}, G1 = Gla,b,c,d| and Gy = G[Z]. Obviously,

G — (2,272,17) = G2 - (27p)

Since Z contains no (p + 1)-cliques, cl(G2) < p + 1. From Theorem A it follows
that G2 = CZerl- Let CZerl =V1y...,U2p41- We define

Q:{Ugi_l 1= 1,...,p—2}U{’U2p},
Q1=QU{vgy 3} and Q2= QU {vy a2}
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Obviously, Q1 and Q2 are p-cliques of Capi1. From (7) it follows that FE(G)
contains two independent edges. Without loss of generality we can assume that
[a,c], [b,d] € E(Gy). From cl(G) < p + 2 it follows that one of the vertices a, ¢
is not adjacent to at least one of the vertices vy, ..., vopi1, say [a,v1] € E(G).
Consider the 4-coloring V(G) = Vi U Vo U V3 U Vy, where Vi = {vap, vapt1},
Vo = {vap—1,v2p—2}, V3 = {c,d}. Since V1, Va, V3 are independent sets, it follows
from G — (2,2,2,p) that Vj contains a p-clique. Since Q' = Q1 \ {vz,} is the
unique (p — 1)-clique in V4 \ {a, b} then this p-clique is either Q" U{a} or Q" U{b}.
Since v; € Q" and [a,v1] € E(G), Q" U {a} is not a clique. Hence, Q' U {b} is a
p-clique and thus

(8) Q"= Q1 \{vzp} S N (D).

Let Q" = Q2 \ {vop—s5}. Similarly from the 4-coloring V(G) = V4 U Vo U Va3 U Vg,
where Vi = {vap_3,v2p—a}, Vo = {vap_5,v2p—6}, V3 = {c,d} it follows that either
Q" U{a} or Q" U {b} is a p-clique. Since p = 4, we have 2p — 6 = 2 and thus
v1 € Q". From [a,v1] ¢ E(G) it follows that Q" U {b} is a p-clique. Therefore,

9) Q" = Q2 \ {vays5} C N(b).
By (8) and (9),

(10) Q1 S N(b).

(11) Q2 € N(b).

Case 1. [b,c] € E(G). Consider the 4-coloring V(G) = V1 U Vo U V3 U Vy,
where Vi = {vop_1,v2p—2}, Vo = {vap_3,v2p—a}, V3 = {a,b}. Since V1, V5, V3 are
independent sets, then it follows from G — (2,2,2,p) that V4 contains a p-clique
L. Since @ is the unique (p — 1)-clique in Vj \ {a, b}, either Q U {c} = L or
QUA{d} = L. If QU {c} = L, then from cl(G) < p+ 2, (10) and (11) it follows
that {c,vap—2,v2p—3} is an independent set, contradicting equality (7). The case
L = Q U {d} similarly leads to a contradiction.

Case 2. [b,c] ¢ E(G). Consider the 4-coloring V(G) = V1 U Vo U V3 U Vy,
where V1 = {ng,vngrl}, V2 = {ngfl,vgpfg}, V3 = {ngfg,’ljgple}. Since Vl, VQ,
V3 are independent sets, then it follows from G — (2,2,2,p) that Vj contains a
p-clique L. Since cl(G1) =2, [LNV(Capt1)| = p—2. Observe that @ = Q\{v2,}
is the unique (p—2)-clique in V4 \ {a, b, ¢,d}. Therefore, LNV (Capi1) = Q. From
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vy € Q and [a,v1] € E(G) it follows that b € L. By [b,d] € E(G), L = QU {b,d}.
Thus,

(12) Q= Q\ {v2p} C N(d).

Similarly, from the 4-coloring V(G) = V4 U Vo U V3 U V), where V] =
{vap—1,v2p_2}, Vo = {vop_3,v2p_4}, Vi = {v2p_5,v2p_6}, it follows that

(13) Q\ {vzp-5} € N(d).
By (12) and (13),

(14) Q C N(d).

From cl(G) < p+ 2, (10) and (14) it follows that [d,ve,—3] € E(G). By cl(G) <
p+2, (11) and (14), [d,vep—2] &€ E(G). So, {d,vap—3,v9p—2} is an independent
set, contradicting equality (7).

II. t =4. Let G — (2,2,2,2,p) and cl(G) < p+ 3. We need to prove that
|[V(G)| 2 2p+ 7. According to Theorem B, |V (G)| = 2p+ 6. Hence, it is sufficien
to prove that |V (G)| # 2p+ 6. Assume the contrary. As in the previous situation
t = 3, we may assume that the graph G satisfies the conditions (6) and (7).
According to Theorem B, F(2,2,p+2;p+3) = 2p+ 8. Hence, G - (2,2,p + 2).
Let V(G) = X UY UZ be a (2,2,p + 2)-free 3-coloring. From (6) and (7) it
follows that we may assume that |X| =2, [Y| = 2. Let X = {a,b}, Y = {¢,d}
and G1 = G[Z]. Observe that

G—(2,2,2,2,p) = G1 — (2,2,p).

Since Z contains no (p + 2)-cliques, cl(G1) < p + 2. According to Theorem A,
G1 = K, —|—62p+1. Let V(Kl) = {w} and 02p+1 = V1,.-.,V2pt1- From (7) it
follows that either [a,w] € E(G) or [b,w] € E(G), say [a,w] € E(G). Similarly,
we may assume also that [c,w] € E(G). From (6) it follows that [w,b] € E(G)
and [w,d] ¢ E(G).

Case 1. [a,c] € E(G). Obviously, Glw,a,b,c,d] contains no 3-cliques.
Since Capt+1 — {v1,...,v7} contains no (p — 2)-cliques, the set M = V(G) \
{v1,...,v7} contains no p-cliques. Thus, the 5-coloring

V(G) = {’Ul,’Ug} U {’Ug,’U4} U {U5,U6} U {1}7} UM

is (2,2,2,2,p)-free, a contradiction.
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Case 2. [a,c] € E(G). From cl(G) < p+3 it follows that one of the vertices
a, c is not adjacent to at least of the vertices vy, ..., vapt1, say [a,v1] & E(G).
Since G[w, b, ¢, d] contains no 3-cliques, then N = V(G) \ {a,v1,...,v7} contains
no p-cliques. Thus, the 5-coloring

V(G) = {v1,a} U{vg,v3} U{vg,v5} U{vg,v7} UN
is (2,2,2,2,p)-free, a contradiction.
1L ¢ > 5. Let

G—(2,...,2,p) and cl(G)<p+t—1.
———

t

Then, according to Proposition 3,
(15) x(G) 2 t+p.

We need to prove that |[V(G)| = ¢+ 2p + 3.

Case 1. G — (2,t+p—2). Obviously, X(Cati9p—3) = t+p—1. Thus, from
(15) it follows that G # Cat49p—3. According to Theorem A, |[V(G)| 2 2t+2p—2.
Observe that if ¢ = 5, then 2t +2p—2 = t+42p+ 3. Therefore, |V(G)| = t+2p+3.

Case 2. G - (2,t+p—2). Let V(G) = X UY be (2,t + p — 2)-free
2-coloring and G7 = G[Y]. Clearly, we may assume that X # (. Tt is clear also
that

G—(2,....,2,p) = G1—(2,...,2,p)
t t—1
Since Y contains no (t + p — 2)-cliques, cl(G1) < t + p — 2. By the inductive
hypothesis, |[V(G1)| 2t +2p+2. Since X 0, [V(G)| 2t +2p+3. O

6. Proof of Theorem 2. Consider the set M C {ay,...,a,}, where
a; € M <= a; = 2. We prove Theorem 2 by induction on n = m — |M| — 1.
Obviously, n = ) (a; —1) 2 p— 1. The base of the induction is then n = p — 1.

aig?)
According to Proposition 1 and Proposition 2 we may assume that 2 < ap < --- <
a, = p. From these inequalities and n = p—1 it follows that a; = --- = a,_1 = 2.

Therefore, if n = p — 1, Theorem 2 follows from Theorem 1. Let n = p. Then
from some i € {1,...,r — 1}, a; =2 3. By Lemma 4,

F(ay,...,ap;m—1) 2 F(ay,...,a;-1,2,a; — 1, a;41,...,a,;m — 1).
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By the inductive hypothesis,
F(ay,...,a;-1,2,a; —1,...,ap;;m —1) Z2m+p+ 3.

Hence, F(a1,...,a;;m—1)Z2m+p+3. O

7. Proof of Theorem 3.

I. Proof of the inequality F(a1,...,a,;m —1) =2 m + 6. Let G
be a graph such that G — (2,2,3) and cl(G) < 4. By Theorem B, |V (G)| = 10.
From R(4,3) = 9 and cl(G) < 4 it follows that a(G) = 3. According to Lemma
2, |V(G)| =z 11. Hence, F(2,2,3;4) = 11. From Theorem 2, it follows that
F(ay,...,a;;m—1) 2 m+6.

II. Proof of the inequality F(ai,...,a,;m—1) < m+ 6. Consider
the graph P;, whose complementary graph P; is given in Fig. 1. We prove that
this graph satisfies the conditions of Lemma 3 with p = 3 and n = 6. Obviously,
from

it follows that:

1. 8:3, b1:2, b2:b3:3;

2. s=4,by =by=b3 =2, by = 3;

3. 8:5, b1:b2:b3:b4:b5:2.

It is proved in [17] that P, — (2,3, 3). From Lemma 4 it follows that P; —
(2,2,2,3) and P, — (2,2,2,2,2). By Proposition 1 and Lemma 3, K,,,_¢ + P —
(a1,...,a,). Since cl(P) =4, (K- + P1) = m — 2. Hence, F(ay,...,ar;m —
D) £ V(g + P)| = m + 6.

8. Proof of Theorem 4.

I. Proof of the inequality F(ai,...,ar;m — 1) = m + 7. Since
F(2,2,4;5) = 13, [11], from Theorem 2 it follows that F(ay,...,a,;m —1) =
m+7.
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Fig. 1. Graph P;. Fig. 2. Graph Ps.

II. Proof of the inequality F(ai,...,a,;m—1) < m—+ 7. Consider
the graph P, whose complementary graph P, is given in Fig. 2. This is well
known construction of Greenwood and Gleason [3], which shows that the Ramsey
number R(3,5) = 14. We prove that this graph satisfies the conditions of Lemma
3 with p =4 and m = 6. Obviously, from

beZ, i1=1,...,s
25b1 S Sbs54

S

S (hi—1)+1=6
=1

it follows that:

1. s=2,by =3, by =4;

2. s=3,b =by=2, by =4;

3. 5=3 b =2, by =by = 3;

4. s=4,b1 =by=0b3 =2, by = 3;

5. s=5,b; =by=0bg=by =b; =2.

It is proved in [10] that P, — (3,4). From Lemma 4 it follows that P, —
(2,2,4), Py — (2,3,3), Py — (2,2,2,3), P» — (2,2,2,2,2). By Proposition 1 and
Lemma 3, K,,_¢ + P, — (a1,...,a,). Since cl(Py) =4, c(K,,—¢ + P2) = m — 2.
Hence, F(ay,...,ap;m —1) S|V (Kp—o+ P2)| =m+ 1.
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