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CO-CONNECTED SPACES

Věra Trnková
∗
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Abstract. Co-connected spaces, i.e. the spaces X for which any continu-
ous map X2 → X factors through a projection, are investigated. The main
result: every free monoid is isomorphic to the monoid of all nonconstant
continuous selfmaps of a metrizable co-connected space.

1. In [8], E-connected spaces are introduced where E is a class of spaces.

Let us recall that a topological space X is E-connected if every continuous map f :

X → E is constant, for all E ∈ E. This nice notion not only shows analogies with

properties of other structures (we do not mention the wide variety of papers where

the analogous notion is used outside topology), but it also admits to simplify the

formulations of some results, e.g. the famous result of [6] can be formulated such

that if E consists of one space E, then the class of all E-connected spaces contains

a regular space with more than one point iff E is a T1-space. And, clearly, a space
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X is connected iff it is E-connected for a non-trivial class E (i.e. containing a space

E with cardE > 1) of totally disconnected spaces.

The duality principle means, intuitively: turn the arrows! Hence the

dual notion, E-co-connectedness, offers the following definition: a space X is E-

co-connected if every continuous map E → X, E ∈ E, is constant. For some

classes E, this notion is also interesting. However, this dual notion of the usual

connectedness, i.e. the E-co-connectedness where E is a non-trivial class of totally

disconnected spaces, is no more interesting: the only spaces which are E-co-

connected in this sense would be the one-point spaces and the empty space.

Duality between the class C of all connected spaces and the class D of all

totally disconnected spaces is presented in [1]. Here, two operators C and D are

introduced by

C(E) = {X | for every E ∈ E, every continuous f : X → E is constant} ,
D(E) = {Y | for every E ∈ E, every continuous f : E → Y is constant} .

The duality between the operators C and D, developped in [1], is very faithful and,

clearly, C = C(D) and D = D(C). The faithfulness of this duality is caused by

the fact, that the arrows are turned only by our approach: both in D(C) = D and

in C(D) = C, the class of the maps is the same one, namely from the connected

spaces into the totally disconnected spaces; but in D(C) = D, we approach from

the side of their domains and in C(D) = C, we approach from the side of their

ranges.

This formal “turning of arrows” is the real duality (as used in the category

theory and its applications). However, nobody in the community of topologists

calls the totally disconnected spaces by the name “co-connected spaces”. Hence

this name seems still to be free. Let me offer a definition of co-connected spaces

which turns some arrows, so it has some features of duality.

However, since the turning of the arrows is not only a formal one, the

duality is not too faithful: the properties of the co-connected spaces are sometimes

far from the “dual properties” of the connected spaces. But the co-connected

spaces, obtained by this “non-formal turning of some arrows” form a class of

spaces which could be of some interest and of some importance.

2. If X is a topological space and n is a natural number, n = {0, . . . , n−

1}, let us denote by nX the coproduct (= the sum) of n copies of X, i.e. the

underlying set of nX is just
⋃

i∈n{i} ×X, every {i} ×X is clopen (=closed-and-

open) in nX and every coproduct-injection v
(n)
i : X → nX sending every x ∈ X
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to (i, x), i ∈ n, is a homeomorphism of X onto v
(n)
i (X). Our approach is based

on the evident equivalence of the following statements:

(0) X is connected;

(1) every continuous map f : X → 2X factors through v
(2)
0 or v

(2)
1 (i.e. there

exists a continuous g : X → X such that either f = v
(2)
0 ◦ g or f = v

(2)
1 ◦ g);

(2) for every natural number n ≥ 2 and every continuous map f : X → nX

there exists continuous g : X → X such that f = v
(n)
i ◦ g for some i ∈ n;

(3) there exists a natural number n ≥ 2 such that every continuous map f :

X → nX factors through some v
(n)
i , i ∈ n.

The statements (1), (2), (3) can be dualized and we show just below that the

dual statements are also equivalent. Hence it is quite natural “to dualize” also the

statement (0) and to call such spaces co-connected. This is really our definition

of co-connectedness.

3. If X is a topological space, we denote by Xn its n-th power and by

π
(n)
i : Xn → X the i-th projection, i ∈ n.

We show that the following statements are equivalent:

(1̃) every continuous map f : X2 → X factors through π
(2)
0 or π

(2)
1 (i.e. there

exists a continuous map g : X → X such that either f = g ◦ π
(2)
0 or

f = g ◦ π
(2)
1 );

(2̃) for every natural number n ≥ 2 and every continuous map f : Xn → X

there exists continuous g : X → X such that f = g ◦ π
(n)
i for some i ∈ n;

(3̃) there exists a natural number n ≥ 2 such that every continuous map f :

Xn → X factors through some π
(n)
i , i ∈ n.

P r o o f. Clearly, (2̃) ⇒ (3̃).

(3̃) ⇒ (1̃): If (1̃) does not hold, i.e. there exists f : X2 → X which does

not factor through π
(2)
0 or π

(2)
1 , then f ◦π

(n)
{0,1} : Xn → X does not factor through

any π
(n)
i , i ∈ n, whenever π

(n)
{0,1} denotes the map sending any (x0, . . . , xn−1) ∈ Xn

to (x0, x1).
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(1̃) ⇒ (2̃): We proceed by induction. Let n ≥ 2 be a natural number

and let for every space X satisfying (1̃), every continuous map Xn → X factors

through π
(n)
i for some i ∈ n. Let a continuous map

f : Xn+1 → X

be given. We prove that it factors through some π
(n+1)
i , i ∈ n + 1.

a) For every z ∈ X, denote by ϕz : Xn → Xn+1 the map sending every

(x0, . . . , xn−1) to (x0, . . . , xn−1, z). Denote by A0 the set of all z ∈ X for which

there exists a continuous map g
(0)
z : X → X such that f ◦ϕz = g

(0)
z ◦ π

(n)
0 and by

A1 the set of all z ∈ X for which there exist i ∈ {1, . . . , n − 1} and a continuous

map g
(i)
z : X → X such that f ◦ ϕz = g

(i)
z ◦ π

(n)
i . By the induction hypothesis,

X = A0 ∪ A1.

b) Now, we show that for every z ∈ X,

f ◦ ϕz is a constant map iff z ∈ A0 ∩ A1.

In fact, if f ◦ ϕz = g
(i0)
z ◦ π

(n)
i0

is constant and i0 ∈ n, then necessarily

g
(i0)
z : X → X is constant, so that f ◦ ϕz = g

(i0)
z ◦ π

(n)
i for all i ∈ n, hence

z ∈ A0 ∩ A1. Conversely, if z ∈ A0 ∩ A1, then there exist i ∈ {1, . . . , n − 1} and

continuous maps g
(0)
z , g

(i)
z such that

g(0)
z ◦ π

(n)
0 = f ◦ ϕz = g(i)

z ◦ π
(n)
i .

Hence for every x, y ∈ X necessarily g
(0)
z (x) = g

(i)
z (y) so that g

(0)
z is constant so

that f ◦ ϕz is constant.

c) Now, we show that either A0 \A1 = Ø or A1 \A0 = Ø. Let us suppose

the contrary and choose a0 ∈ A0 \ A1 and a1 ∈ A1 \ A0. Since a0 ∈ A0, we get

f ◦ ϕa0
= g

(0)
a0

◦ π
(n)
0 . Since a0 /∈ A1, the map g

(0)
a0

: X → X must be nonconstant

so that, there exists d, d′ ∈ X such that g
(0)
a0

(d) 6= g
(0)
a0

(d′). Hence

f(d, c1, . . . , cn−1, a0) 6= f(d′, c1, . . . , cn−1, a0)

for arbitrarily chosen (c1, . . . , cn−1) ∈ Xn−1. Thus, choose some (c1, . . . , cn−1) ∈

Xn−1 and denote p = f(d, c1, . . . , cn−1, a1). Since a1 ∈ A1 \A0, p is also equal to

f(d′, c1, . . . , cn−1, a1). If p is equal to f(d, c1, . . . , cn−1, a0), we get

f(d′, c1, . . . , cn−1, a0) 6= f(d′, c1, . . . , cn−1, a1) ;

if p is equal to f(d′, c1, . . . , cn−1, a0) or it is distinct from the both points

f(d, c1, . . . , cn−1, a0) and f(d′, c1, . . . , cn−1, a0), we get

f(d, c1, . . . , cn−1, a0) 6= f(d, c1, . . . , cn−1, a1) .
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Let us investigate the later case (otherwise we exchange the notation of d and

d′). We define a map

m : X2 → Xn+1

by

m(y, z) = (y, c1, . . . , cn−1, z)

and put l = f ◦ m : X2 → X. Then l is continuous but it does not factor

through π
(2)
0 because l(d, a0) 6= l(d, a1) and it does not factor through π

(2)
1 because

l(d, a0) 6= l(d′, a0).

We conclude that either A1 \ A0 = Ø, i.e. X = A0, or A0 \ A1 = Ø, i.e.

X = A1.

d) If X = A0, i.e. f(x0, . . . , xn−1, z) = g
(0)
z (x0), f does not depend on

x1, . . . , xn−1. Put h(x0, z) = g
(0)
z (x0). If h factors through π

(2)
0 , then f fac-

tors through π
(n+1)
0 ; if h factors through π

(2)
1 , then f factors through π

(n+1)
n . If

X = A1, then f(x0, x1, . . . , xn−1, z) = h(x1, . . . , xn−1, z), where h : Xn → X is

continuous. By the induction hypotheses, h factors through π
(n)
i for some i ∈ n.

Then, clearly, f factors through π
(n+1)
i+1 .

Remark. If X is a Hausdorff co-connected space, then for every cardinal

number n ≥ 2, every continuous f : Xn → X factors through a projection. In

fact, let S be the subspace of Xn consisting of all x ∈ Xn which differ from a

point a = {ai | i ∈ n} ∈ Xn in finitely many coordinates. If f ↾ S is constant then

f is constant hence it factors through any projection. If f ↾ S is nonconstant,

there exists a finite F0 ⊆ n such that

XF0

eF0

−−−−→ S
f↾S

−−−−→ X

is nonconstant, where eF0 sends any {xi | i ∈ F0} to {xi |xi ∈ n} with xi = ai for

all i ∈ n \ F0. Hence (f ↾ S) ◦ eF0 factors through a unique π
(F0)
i0

, i0 ∈ F0. Then

(f ↾ S) ◦ eF factors through π
(F )
i0

for every finite F , F0 ⊆ F ⊆ n, hence f ↾ S

factors through πn

i0
so that f factors through it.

4. Some statements about connected spaces can be dualized. The state-

ment

“if X is a non-empty space and n ≥ 2, then nX is never connected”

has its dual in the statement

“if cardX > 1 and n ≥ 2, then Xn is never co-connected”
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which is satisfied, evidently. In fact, the map f : X2 × X2 → X2 given by

f((x0, y0), (x1, y1)) = (x0, x1)

factors neither through π
(2)
0 nor through π

(2)
1 .

The assumption cardX > 1, stronger than the requirement that X is non-

empty, shows that the forming of the dual statements about connected spaces

has some features of the behavior of contravariant hom-functors. This would also

explain why the dual of the statement

“if X is connected, then Xn is also connected”,

i.e. the statement

“if X is co-connected, then nX is also co-connected”,

is not valid: contravariant hom-functors turn coproducts into products but not

vice versa.

5. The main advantage of the co-connected spaces is the possibility to

recover the monoid of all continuous selfmaps of the n-th power of the spaces,

n ≥ 2, from the monoid of all continuous selfmaps of the spaces themselves.

In fact, let us denote by (M, ◦) the monoid of all continuous selfmaps of a co-

connected space X and by (Mn,
n
◦) the monoid of all continuous selfmaps of the

space Xn. Then (Mn,
n
◦) is isomorphic to (Mn × nn,⊙)/∼ where ⊙ is the binary

operation on Mn × nn given by

(m0,m1, . . . ,mn−1, ϕ)⊙(m′
0, . . . ,m

′
n−1, ϕ

′)=(m0◦m
′
ϕ(0), . . . ,mn−1◦m

′
ϕ(n−1), ϕ◦ϕ

′)

where ◦ denotes also the composition of the maps, ϕ,ϕ′ : n → n (i.e. (Mn×nn,⊙)

is the wreath product, see e.g. [2], of the monoid (M, ◦) and the dual (nn, ◦)opp of

(nn, ◦)) and ∼ is the smallest equivalence on Mn ×nn (which is also the smallest

congruence of (Mn × nn,⊙)) for which

(m0,m1, . . . ,mn−1, ϕ) ∼ (m0,m1, . . . ,mn−1, ϕ
′)

whenever there exists i ∈ n such that ϕ(j) = ϕ′(j) for all j ∈ n \ {i} and mi is a

left zero of the monoid (M, ◦).

In fact, we can investigate elements of Mn as n-tuples of continuous

maps Xn → X because every such n-tuple (f0, . . . , fn−1) determines uniquely

the map f = f0×̇ · · · ×̇fn−1 sending any x ∈ Xn to (f0(x), . . . , fn−1(x)) and,

vice versa, every continuous f : Xn → Xn determines uniquely the n-tuple
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(π
(n)
0 ◦ f, . . . , π

(n)
n−1 ◦ f) and these procedures are mutually inverse. Let us define

a map

h : (Mn × nn,⊙) → (Mn,
n
◦)

by the rule

h(m0, . . . ,mn−1, ϕ) = (m0 ◦ π
(n)
ϕ(0), . . . ,mn−1 ◦ π

(n)
ϕ(n−1)) .

Then, clearly, h is a homomorphism of the above monoids. Since X is co-

connected, h is surjective. Hence (Mn,
n
◦) is isomorphic to (Mn × nn,⊙)/Ker h,

where the kernel of h, Ker h, is just the decomposition {h−1(y) | y ∈ Mn}. But

∼ determines the same decomposition because m ∈ M is a left zero of the

monoid (M, ◦) iff the map m : X → X is constant and this is precisely when

m ◦ π
(n)
i = m ◦ π

(n)
j for some i, j ∈ n, i 6= j, and this happens precisely when

m ◦ π
(n)
i = m ◦ π

(n)
j for all i, j ∈ n. Thus, (Mn,

n
◦) is really isomorphic to

(Mn × nn,⊙)/∼.

6. Every co-connected space must be also connected (it is quite evident).

This statement cannot be dualized, most of the connected spaces are not co-

connected. In fact, co-connected spaces are quite rare. Rigid spaces (i.e. the

spaces for which every continuous selfmap is either the identity or a constant)

are examples of co-connected spaces: by [7], if X is a rigid space with cardX > 2

(i.e. distinct from the Sierpinski’s two-point space), then every continuous map

f : X2 → X is either π
(2)
0 or π

(2)
1 or constant, hence X is co-connected. We

present a theorem below which shows that there are more co-connected spaces

than only the rigid ones. For rigid spaces, the nonconstant continuous selfmaps

form the trivial monoid {1}. If L is a non-empty set, let us denote by L∗ the free

monoid over L, i.e. elements of L∗ are all words l1 . . . ln consisting of elements of

L, the composition ◦ in L∗ is just concatenation, i.e.

(l1 . . . ln) ◦ (l′1 . . . l′m) = l1 . . . lnl′1 . . . l′m ,

and the unit element of L∗ is just the empty word.

Theorem. For every set L there exists a co-connected metrizable space

such that its nonconstant continuous selfmaps form a monoid isomorphic to L∗.

Any cardinal number ℵ ≥ 2ℵ0 + cardL can be the cardinality of such space.

The proof of this theorem is in fact an application of the construction

presented in [10]. This application is outlined in 7.–10. below.
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7. First, to introduce our notation, let us recall some basic notions of

universal algebra (see e.g. [5]) which are used in [10]. Let (Σ, ar) be a signature of

(monosorted, finitary) universal algebras, i.e. Σ is a non-empty set and ar : Σ → ω

is its “arity function”, i.e. every σ ∈ Σ is an operation symbol of an arσ-ary

operation, where ω denotes the set of all finite ordinals. Let us denote Σn =

ar−1(n), i.e. Σn is the set of all symbols of n-ary operations. Hence Σ =
⋃∞

n=0 Σn

and the sets on the right side are disjoint.

The standard construction of a free Σ-algebra A = (A, {aσ |σ ∈ Σ}) on a

set of generators G (see e.g. [5]) describes its underlying set A as the set of all

Σ-terms
⋃∞

k=0 Ak where

A0 = G ∪ Σ0 (the set of Σ-terms of the depth 0)

Ak+1 = Ak ∪
⋃

σ∈Σ\Σ0

{σ(t0, . . . , tarσ−1) | ti ∈ Ak for all i ∈ arσ}

(the set of all Σ-terms of the depth ≤ k + 1) ,

and the operations

aσ : Aarσ → A , σ ∈ Σ ,

are defined such that aσ(∗) = σ for σ ∈ Σ0 (where A0 is a fix one-point set {∗})

and, for σ ∈ Σ \ Σ0, aσ is the map which sends the arσ-tuple (t0, . . . , tarσ−1) of

Σ-terms to the Σ-term σ(t0, . . . , tarσ−1).

8. Let Σ0 be infinite and let us denote by

P = (P, {pσ |σ ∈ Σ})

the initial Σ-algebra, i.e. the free Σ-algebra on the empty set of generators, i.e.

P =
⋃∞

k=0 Pk where P0 = Σ0 and Pk+1 = Pk ∪
⋃

σ∈Σ\Σ0
{σ(t0, . . . , tarσ−1) | ti ∈

Pk for all i ∈ arσ}.

For every n ∈ ω, we define the set M (n) of maps Pn → P as follows:

M
(n)
0 = {π

(n)
0 , . . . , π

(n)
n−1} ∪ {const(n)

σ |σ ∈ Σ0}

where π
(n)
i : Pn → P denotes the i-th projection and const

(n)
σ : Pn → P denotes

the constant map with the value σ ∈ Σ0 ⊆ P ;

M
(n)
k+1 = M

(n)
k ∪

⋃

σ∈Σ\Σ0

{pσ ◦ (f0×̇ · · · ×̇farσ−1) | fi ∈ M
(n)
k for all i ∈ arσ}
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where fi : Pn → P are in M
(n)
k , f = f0×̇ · · · ×̇farσ−1 denotes the map Pn → P arσ

sending any y ∈ Pn to (f0(y), . . . , farσ−1(y)), pσ : P arσ → P is the σ-th operation

of the initial Σ-algebra P and ◦ denotes the composition of these maps,

M (n) =

∞⋃

k=0

M
(n)
k .

Let An denote the free Σ-algebra on n generators g0, . . . , gn−1, let An be its

underlying set and let λ : An → M (n) be the map defined inductively by

λ(gi) = π
(n)
i , λ(σ) = const

(n)
σ for σ ∈ Σ0 ,

λ(σ(t0, . . . , tarσ−1)) = pσ ◦ (λ(t0)×̇ · · · ×̇λ(tarσ−1)) for σ ∈ Σ \ Σ0 .

It is well-known and easy to see that λ is a bijection of An onto M (n).

9. In [10], for every signature (Σ, ar) with

cardΣ0 ≥ 2ℵ0 + card(Σ \ Σ0) ,

a metric ̺ on the underlying set P of the initial Σ-algebra P = (P, {pσ |σ ∈ Σ})

is constructed such that the metric space X = (P, ̺) has the following property:

for every n ∈ ω, the set C(Xn,X) of all continuous maps Xn → X is

precisely the set M (n).

We show that, for suitable choice of the signature (Σ, ar), the space X =

(P, ̺) satisfies the requirements of our theorem.

10. Now, we finish the proof of the Theorem. Let a set L be given.

Choose a signature (Σ, ar) such that

Σ1 = L , cardΣ0 ≥ 2ℵ0 + cardL ,

Σn = Ø for all n ∈ ω \ {0, 1} .

Let P = (P, {pσ |σ ∈ Σ}) be the initial Σ-algebra, let ̺ be a metric on P men-

tioned in 9, i.e. for the metric space X = (P, ̺), the set C(Xn,X) is equal to

M (n).

a) We show that the metric space X is co-connected. Thus, let f ∈

C(X2,X) = M (2) =
⋃∞

k=0 M
(2)
k be given. Let k be the smallest ordinal such that
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f ∈ M
(2)
k . If f ∈ M

(2)
0 , then either f = π

(2)
0 or f = π

(2)
1 or f = const

(2)
σ for some

σ ∈ Σ0, so f factors through π
(2)
0 or π

(2)
1 in any case. We proceed by induction.

Let us suppose that f ∈ M
(2)
k+1, i.e. f = pσ ◦(f0×̇ · · · ×̇farσ−1) for some σ ∈ Σ\Σ0

and fi ∈ M
(2)
k , i ∈ arσ. Since Σ2 = Σ3 = . . . = Ø, necessarily σ ∈ Σ1; hence

f = pσ◦f0 and f0 factors through π
(2)
0 or π

(2)
1 , by the induction hypothesis. Thus,

f also factors through π
(2)
0 or π

(2)
1 .

b) We show that the nonconstant continuous selfmaps of X form a monoid

isomorphic to L∗. We show that every nonconstant continuous selfmap f : X →

X is of the form f = pσk
◦ . . . ◦ pσ1

, σ1, . . . , σk ∈ L, or f = 1, where 1 : X → X is

the identity map. We have f ∈ C(X,X) = M (1) =
⋃∞

k=0 M
(1)
k . If f ∈ M

(1)
0 , then

f ∈ {π
(1)
0 } ∪ {const

(1)
σ |σ ∈ Σ0}; since f is nonconstant, necessarily f = π

(1)
0 = 1;

then we proceed by induction in k: if f ∈ M
(1)
k+1, then necessarily f = pσ ◦ f0 for

a nonconstant f0 ∈ M
(1)
k ; by the induction hypothesis, f0 = pσk−1

◦ . . . ◦ pσ1
or

f0 = 1, hence f is equal to pσ ◦pσk−1
◦. . .◦pσ1

or to pσ. If λ : A1 → M (1) is as in 8,

λ−1 is a bijection of the set of all nonconstant elements of M (1) onto (Σ1)
∗ = L∗

so that λ restricted to all the Σ-terms of the form (σk(σk−1 . . . (σ1(g0) . . .) gives

an isomorphism of the monoid L∗ onto the monoid of all nonconstant continuous

selfmaps of X.

11. Should compact Hausdorff co-connected spaces be called co-continua?

Let us present some facts about them.

Proposition. Let X be a metrizable realcompact co-connected space.

Then its β-compactification βX is also co-connected.

P r o o f. Let a metrizable realcompact co-connected space X be given.

a) Let f : βX × βX → βX be a continuous map. We prove that either

f is constant or it maps X × X into X. Thus, let us suppose that there exists a

point (x0, x1) ∈ X × X such that z = f(x0, x1) is in βX \ X. We prove that f

is constant. Let {x(n)} be a sequence of elements of X × X which converges to

x = (x0, x1). Then {f(x(n))} converges to z ∈ βX \ X. Since X is realcompact,

each non-discrete closed set in βX \ X has the cardinality at least 2ℵ0 (see e.g.

[4], Th. 9.11). Hence there exists n0 such that f(x(n)) = z for all n ≥ n0, so that

f−1(z) contains an open neighbourhood of x in X × X. Thus, X × X ∩ f−1(z)

must be open in X × X. However, it must be also closed in X × X. Since co-

connected space is always connected, X × X is connected, hence f ↾ X × X is

constant, hence f is constant.
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b) If f : βX × βX → βX si constant, then it factors through the both

projections. If it maps X×X into X, then f ↾ X×X factors through a projection

π
(2)
i , i ∈ 2, i.e. f ↾ X × X = g ◦ π

(2)
i for some continuous g : X → X. Then f

factors through the i-th projection of βX × βX, evidently. �

Remark. Let L be a non-empty set of a nonmeasurable cardinality.

Then there exists a compact Hausdorff co-connected space X such that its non-

constant continuous selfmaps form a monoid isomorphic to the free monoid L∗.

In fact, by the Theorem, there exists a metrizable co-connected space X

with cardX = 2ℵ0 +cardL such that all its nonconstant continuous selfmaps form

a monoid isomorphic to L∗. Since cardX is nonmeasurable, it is realcompact (see

e.g. [4], 15.24), hence βX is also co-connected, by the above Proposition. And

every continuous selfmap βX → βX is either constant or sends X into X (the

reasonning is just the same as in the proof of the above Proposition).

12. Problem. By [9], for every monoid M there exist a metrizable space

X and a compact Hausdorff space Y such that all the nonconstant continuous

selfmaps of X form a monoid isomorphic to M and the same statement is true

for Y .

Question. For what monoids M such space X (or Y ) can be also co-

connected?
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