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ABSTRACT. It is proved that a Banach space X has the Lyapunov property
if its subspace Y and the quotient space X/Y have it.

Let X be a o-algebra of subsets of a set {2, X be a Banach space, p: % —
X be a countably additive measure. The famous theorem of A. A. Lyapunov
([9], [11, Theorem 5.5], [2, p. 264]) states that the range p(X) of an arbitrary X-
valued nonatomic measure p is convex if X is a finite-dimensional space. Some
generalizations of this theorem to infinite-dimensional case have been obtained
by G. Knowles [7], I. I. Uhl [2], D. Pecherskii [10], V. Kadets [4], J. Elton and
Th. P. Hill [3], V. Kadets and M. Popov [5] under various additional assumptions
on the measure and the space. Most of these generalizations consider the closure
of the measure range. Without additional restrictions the theorem is valid only
in finite-dimensional case [2, p. 256, Corollary 6.

Definition 1. A Banach space X is said to have the Lyapunov property
(X € LPr) if for every nonatomic measure p valued in X the closure of its range
cu(X) is convex.
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The spaces [, (1 < p < oo; p # 2) and ¢ [6] have the Lyapunov property.
Other examples have not been constructed till now. The other known generaliza-
tions have been proved with additional restrictions on the measure (for example,
about the measures of bounded variations).

“Three spaces problem” appears for every Banach space property. Namely,
do a subspace Y and the quotient space X/Y have the property if X does and
does X have the property if Y and X/Y do? Some of these problems can be
solved easily in the case of the Lyapunov property. Indeed, if X € LPr and
Y C X, then Y € LPr, but X/Y do not need to have the Lyapunov property
(for instance, X = [ because the set of its quotient spaces contains all separable
Banach spaces [8, p. 108]). In the same time the answer to the last problem
runs into difficulties. The purpose of this paper is the positive solution of the
mentioned problem:

Theorem 1. Let Y be a subspace of a Banach space X. If Y, X/Y €
LPr, then X € LPr.

Let us remark that some new examples of spaces possessing the Lyapunov
property can be constructed due to this theorem (for instance l,,, ®1,, - -- B,
where 1 < pi < 00; p, # 2). To prove the theorem we need some lemmas.

Lemma 1. Let X € LPr and p : ¥ — X be a nonatomic measure.
Then there is a nonatomic nonnegative measure A : 3 — R such that for every
A € X and n € N there exists B,, € ¥|a satisfying the following inequalities:
1 1

1) B = gn ] < 55 ot B - pa| < 5

Proof. By the Rybakov theorem [2, p. 267] there is a functional z* €
X* with ||z*]] = 1 for which p < |z*p|. Put A = |z*u|. Let A € ¥. In
accordance with the Hahn decomposition theorem let us denote by O+ and Q™ the
positivity and negativity sets for x*u respectively. Then \(C) = x*u (C( Q) —
z*p (CNQ7) for any C € . Put AT = ANQT and A- = ANQ~. Since X €

p(Bf) - %u (A7)

1
o*u(ByY) — J% (A7)

LPr, we can choose Bl € ¥| 4+ and B;, € X|4- such that

E

< 1
— 2n+1

1
5 I S W Then

1 1
and ‘x*u (B,) — 5:6*# (A_)‘ < ——. Define B,, as B, |J B,,. It is easy to check

Qn—lﬂ and HH(BE) (A

— 2n+1 :
that for B,, the inequalities (1) are true. O
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Lemma 2. Let X € LPr, u: % — X be a nonatomic measure, A be the
measure from Lemma 1. Then for every A € ¥ with A(A) # 0 and € > 0 there
exist G' € ¥|a, G' = A\G’ such that

() A(@)=A(C) =50 (A),

(i) H,,L (@) - %,,L (A)H <e.

Proof. Let us choose B,, as in Lemma 1. We can select C), € X|p, if
1 1
X(Ba) = SA(A) or Co € Slap, if A(B) < FA(4) for which
1
A(Cy) = 5)\ (A) — A (Bn)‘ (because A is a nonatomic real-valued measure). By
(1), A(C,) — 0. Put G, = B, A C,,G!' = A\G),. Then \(G)) = A (G)) =

1
5)\ (A), A(G)\B,) — 0 and X (B,\G,, ) — 0. Since A > p the last condition

implies that u (B,\G,,) — 0 and u (G, \B )njgo 0. Together with inequality (1)

it gives us
1

Hu CAREAPY

— 0.
n—oo

So for sufficiently large n the sets G = G}, and G” = G will satisfy the conditions
(7) and (4i). O

Lemma 3.  Under the conditions of Lemma 2 for every A € ¥ with
A(A) #0 and e > 0 there exists a o-algebra X' C Y|4 such that for every B € ¥/
we have

@) nB) -2 55| <x )

and measure \ is nonatomic on %'.

Proof. Take A € ¥ and ¢ > 0. Employing Lemma 2, we choose sets

A1 S E|A, AQZA\Al with )\(Al):)\ (AQ) :%)\(A) and H,U,(Al) —%u (A) SEE
(ot that i (41) ~ g (4| =3 s (40) = (42 = [ 42) ~ 3 ()] < o

Employing Lemma 2 twice (for A = A; and A = Ay) we obtain A;; €
Yla, Are = Ai\A1 15 A1 € Xla,, Az = Ax\Ao; With AA) = )\(Al 2) =

A(Az1) = (Ag2) =12 (A) and Huuu 0= 2 an)]| < = [ (A - 240

<1 1
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€ . . . .
< —. When we continue this process we receive a tree of sets A;, i, i, ik €
16 21,802,500

{1,2}, n € N with

Ail,iz,...,in+1 C Ail,iQ,...,’inu A’il,iz,...,in,Q = A’il,iQ,...,in\Ail,’iz,...,’in,l,
1 1 1
oM (Ai17i27---7in—1) < —¢, A (Ai17i27~~~7in) = A (A)

H,u (Ai17i27~~~7in) ) on

goes

show that algebra X’ has the required property.
Let B = Ail,iz,...,in- Then

A (B) 1
B - 220 ) = (A i) = — (A
) =350 )] = i i) = o)
1
< e (A ig,in) — 511 (Ail,ig,...,in_l)
1 1
+§ HH (Ail,’iz,...,in_l) - 5” (Ail,’iz,...,in_Q) ‘ + .-
1 1
s 1) 0 ()
< 1 1 1
74—n€+§ﬁé—++2n 1—5

1 1 1

= eX(Aiyio,..in) -

Hence by triangle inequality and o-additivity of p and A we get (2) for B =
[ee]
U By, where B,, are disjoint sets of the form A; ;, . ;.. Then we obtain (2)

n=1

for every B € Y/ using approximation of \ (B) by bigger sets of the form B =
o0

U B,. O

n=1

Lemma 4. The statements of Lemmas 2 and 3 are valid for arbitrary
nonatomic measure \.
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Proof. Let p:¥ — X, A: ¥ — R, be nonatomic measures. Let v be
the measure which played the role of A in Lemma 1. Consider two cases.

Case 1: M < v. Take A € ¥, n € N. In view of Lemma 3, there is
¥/ C ¥|4 such that for any B € ¥

3) ) -

v is nonatomic measure with respect to ¥’. Applying the Lyapunov theorem to
the measure o : ¥/ — R? : 0 (A) = (v(4), A (A)), we obtain sets G',G" € ¥
such that A\ (G') = A (G") = %)\(A) and v (G') = v(G") = %V(A). Then (3)
implies inequality (#¢) which we need.

Case 2: A €« v. We decompose A into the sum of absolutely continuous
and strictly singular measures with respect to v : A = A1 + Ao. Then Ag is
concentrated on a v-negligible set S. Now we consider A\S and S () A separately.

By the case 1 chose G} C A\S so that A\; (G}) = %)\1 (A), ||u(GY) — %u (A)‘

1 1

o and G, C S A with Xy (G}) = 5)\ (SN A). Because A\ (G4) =0, u(Gy) =0
and A2 (G]) = 0 it is clear that G’ = G} |J G, satisfies (i7). Obviously, if Lemma
2 is valid for arbitrary A then Lemma 3 is valid too. O

<

The following statement is evident.

Lemma 5. If X is a Banach space, Y is a subspace of X, u: % — X
is a nonatomic measure, then @ : ¥ — X/Y (@ (A) = p (A)-the equivalence class
of 1 (A)) is a nonatomic measure too.

Let X,Y be from the theorem, p : ¥ — X, A : ¥ — R4 be nonatomic
measures, A (2) = 1. Fix A € ¥, A(A4) # 0 and € > 0. By lemmas 3 and 4 there
is a o-algebra ¥’ C |4 such that

A(B)

(1) n5)- 35 < e

for all B € ¥/ and X is nonatomic on Y. Define o : ¥ — X by the rule

o (B) = u(B) - %uw

_ Lemma 6. There exist a o-algebra Y C Y and a nonatomic measure
B :3% =Y such that
lo(B) —B(B)| < 2¢



150 V. M. Kadets, O. 1. Viadimirskaya

for all B € 3.
Proof. By inequality (4) and nonatomicity of A we can choose sets
1
ALAQ S Y such that A = A1UA2,)\(A1) = )\(AQ) = 5/\(14), and ||E (Al)H <

1
55)\ (A). Clearly, there is z € 7 (A1) such that ||z|| < e3A (A). Denote

a(A)) =z, a(Ay) = —=,

Applying step by step Lemma 2 and Lemma 4, we get sets A;, ;. € ¥,
k = 2,3,...; ’il,...,ik = 1,2, such that Ail,...,ik,1 = Ai1,...,ik71,1UAZ&,---,ik,Qv
1 1 _ 1_

/\(Aih---,ik) = 5/\ (Aily---yikfl) = Q_k/\(A)7 and |o (Ai17~~~7ik7171) - 50 (Ai17~~~,ik71) ‘

1
< e=—-A(A). Tt is readily seen that in every equivalence class & (An,...,ik_l,l) —

22k
1
56 (Aih...,ik_l) C X there exists an element x;, _; , such that H:L‘“Zk_IH <
1

1
a(Ai, i) = 3¢ (Aiy, ier) + Tig, i
1

« (Ailv---vik—hZ) = 504 (Aily---yik—l) = Liy,ig—1-

Evidently, o (Ail,,,,,i,ﬁl,l) €T (Ail,...,ik,l,l) and o« (Ail,...,ik,l,z) €0 (Ai1,.--,ik71,2)'

By ¥ denote o-algebra generated by the sets A;, ;. Iterating the inequa-
. 1 1 .

lity ‘|O‘(Ai1,---7ik)|| < 5 Ha (Aibm,ik—l)H + EQTk)‘(A)> we obtain ‘|O‘(Ai1,~~~,ik)|| <
1

2k—1

() lo (B)|| < 2eA(B)

€ A(A) =2eX (A,,...4,.)- Let us extend a to Y and show that

for any B € Y. For this purpose we take B = J A;,,.. i, where [ is a finite set
1

of indices and A;, . .

are mutually disjoint sets. Put a(B) = > o (A, i)
T

Clearly,
la (B < lla (Aiyi ) € 22> A (A, i) = 26X (B).
I I

This proves that inequality (5) is valid for elements of algebra S, generated by the

sets A, ... Now applying the Kluvanek-Uhl extension theorem [1| we obtain
1,

ik
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the extension of a to . Thus, we have constructed the measure « : Y - X
such that a (B) € & (B) for any B € ¥ and ||a (B)]|| < 2eA (B). « is a nonatomic
measure because A is nonatomic by construction. It is clear that 8 = a — ¢ has
the required property. The lemma is proved. O

Let us complete the proof of the theorem. Since (3 : Y — Y is nonatomic
measure and Y € LPr, we see that by Lemma 2 there is B € 3 such that

AB) = %)\(A) and
o) - 3o <o

Thus we have

o(B) = 50| <lo® -8B+ |50 - 5|+ |88)- 35 )

1 1
Since o (B) — 57 (A) =u(B) — ol (A), the proof is completed. O
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