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Abstract. It is proved that a Banach space X has the Lyapunov property
if its subspace Y and the quotient space X/Y have it.

Let Σ be a σ-algebra of subsets of a set Ω, X be a Banach space, µ : Σ →

X be a countably additive measure. The famous theorem of A. A. Lyapunov

([9], [11, Theorem 5.5], [2, p. 264]) states that the range µ(Σ) of an arbitrary X-

valued nonatomic measure µ is convex if X is a finite-dimensional space. Some

generalizations of this theorem to infinite-dimensional case have been obtained

by G. Knowles [7], I. I. Uhl [2], D. Pecherskii [10], V. Kadets [4], J. Elton and

Th. P. Hill [3], V. Kadets and M. Popov [5] under various additional assumptions

on the measure and the space. Most of these generalizations consider the closure

of the measure range. Without additional restrictions the theorem is valid only

in finite-dimensional case [2, p. 256, Corollary 6].

Definition 1. A Banach space X is said to have the Lyapunov property

(X ∈ LPr) if for every nonatomic measure µ valued in X the closure of its range

clµ(Σ) is convex.
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The spaces lp (1 ≤ p < ∞; p 6= 2) and c0 [6] have the Lyapunov property.

Other examples have not been constructed till now. The other known generaliza-

tions have been proved with additional restrictions on the measure (for example,

about the measures of bounded variations).

“Three spaces problem” appears for every Banach space property. Namely,

do a subspace Y and the quotient space X/Y have the property if X does and

does X have the property if Y and X/Y do? Some of these problems can be

solved easily in the case of the Lyapunov property. Indeed, if X ∈ LPr and

Y ⊂ X, then Y ∈ LPr, but X/Y do not need to have the Lyapunov property

(for instance, X = l1 because the set of its quotient spaces contains all separable

Banach spaces [8, p. 108]). In the same time the answer to the last problem

runs into difficulties. The purpose of this paper is the positive solution of the

mentioned problem:

Theorem 1. Let Y be a subspace of a Banach space X. If Y,X/Y ∈

LPr, then X ∈ LPr.

Let us remark that some new examples of spaces possessing the Lyapunov

property can be constructed due to this theorem (for instance lp1
⊕ lp2

⊕· · ·⊕ lpn
,

where 1 ≤ pk < ∞; pk 6= 2). To prove the theorem we need some lemmas.

Lemma 1. Let X ∈ LPr and µ : Σ → X be a nonatomic measure.

Then there is a nonatomic nonnegative measure λ : Σ → R such that for every

A ∈ Σ and n ∈ N there exists Bn ∈ Σ|A satisfying the following inequalities:
∥∥∥∥µ (Bn) −

1

2
µ (A)

∥∥∥∥ ≤
1

2n
and

∣∣∣∣λ (Bn) −
1

2
λ (A)

∣∣∣∣ ≤
1

2n
.(1)

P r o o f. By the Rybakov theorem [2, p. 267] there is a functional x∗ ∈

X∗ with ‖x∗‖ = 1 for which µ ≪ |x∗µ|. Put λ = |x∗µ|. Let A ∈ Σ. In

accordance with the Hahn decomposition theorem let us denote by Ω+ and Ω− the

positivity and negativity sets for x∗µ respectively. Then λ(C) = x∗µ (C
⋂

Ω+)−

x∗µ (C
⋂

Ω−) for any C ∈ Σ. Put A+ = A
⋂

Ω+ and A− = A
⋂

Ω−. Since X ∈

LPr, we can choose B+
n ∈ Σ|A+ and B−

n ∈ Σ|A− such that

∥∥∥∥µ (B+
n ) −

1

2
µ

(
A+

)∥∥∥∥ ≤

1

2n+1
and

∥∥∥∥µ (B−
n ) −

1

2
µ

(
A−

)∥∥∥∥ ≤
1

2n+1
. Then

∣∣∣∣x∗µ (B+
n ) −

1

2
x∗µ

(
A+

)∣∣∣∣ ≤
1

2n+1

and

∣∣∣∣x∗µ (B−
n ) −

1

2
x∗µ

(
A−

)∣∣∣∣ ≤
1

2n+1
. Define Bn as B+

n

⋃
B−

n . It is easy to check

that for Bn the inequalities (1) are true. �
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Lemma 2. Let X ∈ LPr, µ : Σ → X be a nonatomic measure, λ be the

measure from Lemma 1. Then for every A ∈ Σ with λ (A) 6= 0 and ε > 0 there

exist G′ ∈ Σ|A, G′ = A\G′ such that

(i) λ
(
G′

)
= λ

(
G′

)
=

1

2
λ (A),

(ii)

∥∥∥∥µ
(
G′

)
−

1

2
µ (A)

∥∥∥∥ < ε.

P r o o f. Let us choose Bn as in Lemma 1. We can select Cn ∈ Σ|Bn
if

λ (Bn) ≥
1

2
λ (A) or Cn ∈ Σ|A\Bn

if λ (Bn) <
1

2
λ (A) for which

λ (Cn) =

∣∣∣∣
1

2
λ (A) − λ (Bn)

∣∣∣∣ (because λ is a nonatomic real-valued measure). By

(1), λ (Cn) −→
n→∞

0. Put G′
n = Bn △ Cn, G′′

n = A\G′
n. Then λ (G′

n) = λ (G′′
n) =

1

2
λ (A), λ (G′

n\Bn) −→
n→∞

0 and λ (Bn\G
′
n) −→

n→∞
0. Since λ ≫ µ the last condition

implies that µ (Bn\G
′
n) −→

n→∞
0 and µ (G′

n\Bn) −→
n→∞

0. Together with inequality (1)

it gives us ∥∥∥∥µ
(
G′

n

)
−

1

2
µ (A)

∥∥∥∥ −→
n→∞

0.

So for sufficiently large n the sets G′ = G′
n and G′′ = G′′

n will satisfy the conditions

(i) and (ii). �

Lemma 3. Under the conditions of Lemma 2 for every A ∈ Σ with

λ (A) 6= 0 and ε > 0 there exists a σ-algebra Σ′ ⊂ Σ|A such that for every B ∈ Σ′

we have ∥∥∥∥µ (B) − λ (B)
µ (A)

λ (A)

∥∥∥∥ ≤ ελ (B)(2)

and measure λ is nonatomic on Σ′.

P r o o f. Take A ∈ Σ and ε > 0. Employing Lemma 2, we choose sets

A1 ∈ Σ|A, A2=A\A1 with λ (A1)=λ (A2) =
1

2
λ (A) and

∥∥∥∥µ (A1)−
1

2
µ (A)

∥∥∥∥≤
1

4
ε

(note that

∥∥∥∥µ (A1)−
1

2
µ (A)

∥∥∥∥ =
1

2
‖µ (A1)−µ (A2)‖=

∥∥∥∥µ (A2)−
1

2
µ (A)

∥∥∥∥ ≤
1

4
ε).

Employing Lemma 2 twice (for A = A1 and A = A2) we obtain A1,1 ∈

Σ|A1
, A1,2 = A1\A1,1;A2,1 ∈ Σ|A2

, A2,2 = A2\A2,1 with λ (A1,1) = λ (A1,2) =

λ (A2,1) =λ (A2,2)=1
4λ (A) and

∥∥∥∥µ (A1,1) −
1

2
µ (A1)

∥∥∥∥ ≤
ε

16
,

∥∥∥∥µ (A2,1) −
1

2
µ (A2)

∥∥∥∥
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≤
ε

16
. When we continue this process we receive a tree of sets Ai1,i2,...,in , ik ∈

{1, 2}, n ∈ N with

Ai1,i2,...,in+1
⊂ Ai1,i2,...,in , Ai1,i2,...,in,2 = Ai1,i2,...,in\Ai1,i2,...,in,1,

∥∥∥∥µ (Ai1,i2,...,in) −
1

2
µ

(
Ai1,i2,...,in−1

)∥∥∥∥ ≤
1

4n
ε, λ (Ai1,i2,...,in) =

1

2n
λ (A)

Let Σ′ be a σ-algebra generated by the sets Ai1,i2,...,in . We are going to

show that algebra Σ′ has the required property.

Let B = Ai1,i2,...,in . Then

∥∥∥∥µ (B)−
λ (B)

λ (A)
µ (A)

∥∥∥∥ =

∥∥∥∥µ (Ai1,i2,...,in) −
1

2n
µ (A)

∥∥∥∥

≤

∥∥∥∥µ (Ai1,i2,...,in) −
1

2
µ

(
Ai1,i2,...,in−1

)∥∥∥∥

+
1

2

∥∥∥∥µ
(
Ai1,i2,...,in−1

)
−

1

2
µ

(
Ai1,i2,...,in−2

)∥∥∥∥ + · · ·

+
1

2n−1

∥∥∥∥µ (Ai1)−
1

2
µ (A)

∥∥∥∥

≤
1

4n
ε +

1

2

1

4n−1
ε + . . . +

1

2n−1

1

4
ε

= ε

(
1

22n
+

1

22(n−1)
+ · · · +

1

2n+1

)
≤

1

2n
ε

= ελ (Ai1,i2,...,in) .

Hence by triangle inequality and σ-additivity of µ and λ we get (2) for B =
∞⋃

n=1
Bn, where Bn are disjoint sets of the form Ai1,i2,...,ik . Then we obtain (2)

for every B ∈ Σ′ using approximation of λ (B) by bigger sets of the form B =
∞⋃

n=1
Bn. �

Lemma 4. The statements of Lemmas 2 and 3 are valid for arbitrary

nonatomic measure λ.
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P r o o f. Let µ : Σ → X, λ : Σ → R+ be nonatomic measures. Let ν be

the measure which played the role of λ in Lemma 1. Consider two cases.

Case 1: λ ≪ ν. Take A ∈ Σ, n ∈ N. In view of Lemma 3, there is

Σ′ ⊂ Σ|A such that for any B ∈ Σ′

∥∥∥∥µ (B) −
ν (B)

ν (A)
µ (A)

∥∥∥∥ ≤
1

2n
ν (B) ,(3)

ν is nonatomic measure with respect to Σ′. Applying the Lyapunov theorem to

the measure σ : Σ′ → R
2 : σ (A) = (ν (A) , λ (A)), we obtain sets G′, G′′ ∈ Σ′

such that λ (G′) = λ (G′′) =
1

2
λ (A) and ν (G′) = ν (G′′) =

1

2
ν (A). Then (3)

implies inequality (ii) which we need.

Case 2: λ 6≪ ν. We decompose λ into the sum of absolutely continuous

and strictly singular measures with respect to ν : λ = λ1 + λ2. Then λ2 is

concentrated on a ν-negligible set S. Now we consider A\S and S
⋂

A separately.

By the case 1 chose G′
1 ⊂ A\S so that λ1 (G′

1) =
1

2
λ1 (A),

∥∥∥∥µ (G′
1) −

1

2
µ (A)

∥∥∥∥ ≤

1

2n
and G′

2 ⊂ S
⋂

A with λ2 (G′
2) =

1

2
λ (S

⋂
A). Because λ1 (G′

2) = 0, µ (G′
2) = 0

and λ2 (G′
1) = 0 it is clear that G′ = G′

1

⋃
G′

2 satisfies (ii). Obviously, if Lemma

2 is valid for arbitrary λ then Lemma 3 is valid too. �

The following statement is evident.

Lemma 5. If X is a Banach space, Y is a subspace of X, µ : Σ → X

is a nonatomic measure, then µ : Σ → X/Y (µ (A) = µ (A)-the equivalence class

of µ (A)) is a nonatomic measure too.

Let X,Y be from the theorem, µ : Σ → X, λ : Σ → R+ be nonatomic

measures, λ (Ω) = 1. Fix A ∈ Σ, λ (A) 6= 0 and ε > 0. By lemmas 3 and 4 there

is a σ-algebra Σ′ ⊂ Σ|A such that

∥∥∥∥µ (B) −
λ (B)

λ (A)
µ (A)

∥∥∥∥ <
1

2
ελ (B)(4)

for all B ∈ Σ′ and λ is nonatomic on Σ′. Define σ : Σ′ → X by the rule

σ (B) = µ (B) −
λ (B)

λ (A)
µ (A).

Lemma 6. There exist a σ-algebra Σ̃ ⊂ Σ′ and a nonatomic measure

β : Σ̃ → Y such that

‖σ (B) − β (B)‖ < 2ε
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for all B ∈ Σ̃.

P r o o f. By inequality (4) and nonatomicity of λ we can choose sets

A1,A2 ∈ Σ′ such that A = A1
⋃

A2, λ (A1) = λ (A2) =
1

2
λ (A), and ‖σ (A1)‖ <

ε
1

2
λ (A). Clearly, there is x ∈ σ (A1) such that ‖x‖ ≤ ε1

2λ (A). Denote

α (A1) = x, α (A2) = −x,

Applying step by step Lemma 2 and Lemma 4, we get sets Ai1,...,iκ ∈ Σ′,

k = 2, 3, . . .; i1, . . . , ik = 1, 2, such that Ai1,...,ik−1
= Ai1,...,ik−1,1

⋃
Ai1,...,ik,2,

λ (Ai1,...,ik) =
1

2
λ

(
Ai1,...,ik−1

)
=

1

2k
λ (A), and

∥∥∥∥σ
(
Ai1,...,ik−1,1

)
−

1

2
σ

(
Ai1,...,ik−1

)∥∥∥∥

< ε
1

22k
λ (A). It is readily seen that in every equivalence class σ

(
Ai1,...,ik−1,1

)
−

1

2
σ

(
Ai1,...,ik−1

)
⊂ X there exists an element xi1,...,ik−1

such that
∥∥xi1,...,ik−1

∥∥ ≤

ε
1

22k
λ (A). Put

α
(
Ai1,...,ik−1,1

)
=

1

2
α

(
Ai1,...,ik−1

)
+ xi1,...,ik−1

,

α
(
Ai1,...,ik−1,2

)
=

1

2
α

(
Ai1,...,ik−1

)
− xi1,...,ik−1

.

Evidently, α
(
Ai1,...,ik−1,1

)
∈ σ

(
Ai1,...,ik−1,1

)
and α

(
Ai1,...,ik−1,2

)
∈ σ

(
Ai1,...,ik−1,2

)
.

By Σ̃ denote σ-algebra generated by the sets Ai1,...,ik . Iterating the inequa-

lity ‖α (Ai1,...,ik)‖ ≤
1

2

∥∥α
(
Ai1,...,ik−1

)∥∥ + ε
1

22k
λ (A), we obtain ‖α (Ai1,...,ik)‖ ≤

ε
1

2k−1
λ (A) = 2ελ (Ai1,...,ik). Let us extend α to Σ̃ and show that

‖α (B)‖ ≤ 2ελ (B)(5)

for any B ∈ Σ̃. For this purpose we take B =
⋃
I

Ai1,...,ik , where I is a finite set

of indices and Ai1,...,ik are mutually disjoint sets. Put α (B) =
∑
I

α (Ai1,...,ik).

Clearly,

‖α (B)‖ ≤
∑

I

‖α (Ai1,...,ik)‖ ≤ 2ε
∑

I

λ (Ai1,...,ik) = 2ελ (B) .

This proves that inequality (5) is valid for elements of algebra S, generated by the

sets Ai1,...,ik . Now applying the Kluvanek-Uhl extension theorem [1] we obtain
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the extension of α to Σ̃. Thus, we have constructed the measure α : Σ̃ → X

such that α (B) ∈ σ (B) for any B ∈ Σ̃ and ‖α (B)‖ ≤ 2ελ (B). α is a nonatomic

measure because λ is nonatomic by construction. It is clear that β = α − σ has

the required property. The lemma is proved. �

Let us complete the proof of the theorem. Since β : Σ̃ → Y is nonatomic

measure and Y ∈ LPr, we see that by Lemma 2 there is B ∈ Σ̃ such that

λ (B) =
1

2
λ (A) and

∥∥∥∥β (B) −
1

2
β (A)

∥∥∥∥ ≤ ε.

Thus we have
∥∥∥∥σ (B) −

1

2
σ (A)

∥∥∥∥ ≤ ‖σ (B) − β (B)‖ +

∥∥∥∥
1

2
σ (A) −

1

2
β (A)

∥∥∥∥ +

∥∥∥∥β (B) −
1

2
β (A)

∥∥∥∥
≤ 3ε.

Since σ (B) −
1

2
σ (A) = µ (B) −

1

2
µ (A), the proof is completed. �
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