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NEW SYMMETRIC (61,16,4) DESIGNS INVARIANT UNDER
THE DIHEDRAL GROUP OF ORDER 10∗

Ivan Landjev, Svetlana Topalova

Communicated by R. Hill

Abstract. In this note we construct five new symmetric 2-(61,16,4) de-
signs invariant under the dihedral group of order 10. As a by-product we
obtain 25 new residual 2-(45,12,4) designs. The automorphism groups of all
new designs are computed.

1. Introduction. Let V = {0, 1, . . . , v − 1} be a finite set of elements

called points, and let B = {B0, B1, . . . , Bb−1} be a collection of k-element subsets

of V called blocks. The incidence structure D = (V,B) is a 2− (v, k, λ) design (or

BIB (v, k, λ) design) if every unordered pair of points is contained in exactly λ

blocks of B. Each point from the point set of a 2-design is contained in a constant

number of blocks. This number is usually denoted by r. Obviously,

λ(v − 1) = r(k − 1),

λv(v − 1) = bk(k − 1).
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Every design D is determined by its incidence matrix A(D) = (aij)v×b, where

aij =

{

1 if i ∈ Bj,

0 otherwise.

Let D1 = (V,B1) and D2 = (V,B2) be two 2-designs with the same parame-

ters. They are said to be isomorphic if there exists a permutation ϕ ∈ Sv which

maps the blocks of B1 onto the blocks of B2, i.e. {x1, x2, . . . , xk} ∈ B1 implies

{xϕ
1 , x

ϕ
2 , . . . , x

ϕ
k} ∈ B2. If D1 = D2 = D the permutation ϕ is called an automor-

phism of D. The set of all automorphisms of D forms a group – the so-called full

automorphism group of D. We denote it by AutD. Every subgroup of AutD is

referred to as an automorphism group of D.

It is well-known that for every design with k < v, one has b ≥ v [4].

Designs with b = v are called symmetric. Let D be a symmetric 2 − (v, k, λ)

design with incidence matrix A(D). Then the matrix A(D)t is incidence matrix

of a symmetric design with the same parameters, which is called the dual D of

D. D and D are not necessarily isomorphic.

Let D = (V,B) be a symmetric 2 − (v, k, λ) design and let B be an

arbitrary block from B. Then the incidence structure D′ = (V \ B,B′ = {Bi \

B}b−1
i=1 )is a 2− (v − k, k − λ, λ) design. It is called the residual of D with respect

to B. For further notions and results on 2-designs we refer to [2], [10].

In this note we consider symmetric 2-(61,16,4) designs and the residual

2-(45,12,4) designs. Only one 2-(61,16,4) design is known to exist. It has been

constructed by Mitchell [8] as a member of an infinite family of symmetric designs

(see also [9]). Using a different method we produce here five new 2-(61,16,4)

designs and 25 new 2-(45,12,4) designs. Using a computer, we were able to

compute the full automorphism group of all new designs.

2. Possible automorphism groups of 2-(61,16,4) designs. In order

to construct new symmetric 2-(61,16,4) designs we assume that they possess a

nice group of automorphisms. We want it to be as large as possible. It turns

out that the largest prime dividing the order of the full automorphism group of a

hypothetical 2-(61,16,4) design is 5. Moreover, an automorphism of order 5 fixes

exactly one point and one block.

Let D be a symmetric 2 − (v, k, λ) design with an automorphism ϕ of

prime order p. It is well-known that an automorphism of a symmetric design
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fixes the same number of points and blocks. Denote by f the number of fixed

points (blocks) and by l = (v−f)/p the number of nontrivial point (block) orbits

of D under 〈ϕ〉. The following lemma is due to Aschbacher [1].

Lemma 2.1. If p is a prime which is an order of an automorphism of

a 2 − (v, k, λ) design with v > k then either p divides v or else p ≤ r.

Lemma 2.2. Let D be a symmetric 2− (v, k, λ) design and let p divide

|Aut D|, p > λ. Then

(a) l ≥ f ;

(b) l ≥ ⌈k−f
p

⌉f .

P r o o f. (a) Each fixed point is contained in a nontrivial block orbit. If not, there

would be a point orbit contained in two different fixed blocks and thus there

would be two blocks intersecting in more than λ points. On the other hand, each

block from a nontrivial block orbit contains at most one fixed point. This proves

(a).

(b) Each fixed block contains at least ⌈(k− f)/p⌉ nontrivial point orbits.

Furthermore, a nontrivial point orbit is contained in at most one fixed block.

This implies (b). �

Theorem 2.3. The only primes which might be orders of automorphisms

of a 2-(61,16,4) design D are 2, 3 and 5. An automorphism of order 5 of a

hypothetical 2-(61,16,4) design fixes exactly one point (and one block).

P r o o f. By Lemma 2.1 the primes p = 2, 3, 5, 7, 11, 13, and 61 are ad-

missible orders of automorphisms of a 2-(61,16,4) design. It is known that a

(61,16,4) difference set in the cyclic group of order 61 does not exist [6]. Hence

p = 61 is ruled out. By Lemma 2.2(a) the only possibilities for p, f and l are

p = 7, f = 5, l = 8; p = 5, f = 6, l = 11; p = 5, f = 1, l = 12. The first two are

ruled out by Lemma 2.2(b). �

Using similar arguments we can prove that the largest prime dividing the

order of the full automorphism group of a 2-(45,12,4) design is 5. Moreover, an

automorphism of order 5 fixes no points and no blocks.

3. New symmetric 2-(61,16,4) designs. In what follows, we consider

symmetric 2-(61,16,4) designs with an automorphism ϕ of order 5. Without loss
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of generality we may assume that

ϕ = (0)(1 2 . . . 5)(6 7 . . . 10) . . . (56 57 . . . 60).

Let us note that such a design (if it exists) will be different from the one con-

structed by Mitchell. The Mitchell design has C3 × C3 as a full group of auto-

morphisms.

Suppose there exists a 2-(61,16,4) design D with an automorphism group

G = 〈ϕ〉. The orbit matrix M = (mij)
12
i,j=0 of D with respect to G is defined

as a matrix whose rows and columns are indexed by the point and block orbits

of D, respectively, where mij is the number of points from the i-th point orbit

contained in a block from the j-th block orbit. Here we assume that the row

(resp. column) indexed by 0 corresponds to the fixed point (resp. block). In this

notation, an orbit matrix M satisfies the following equations:

(3.1)

12
∑

i=1

mij = 15,

12
∑

i=1

m2
ij = 27, i = 1, 2, 3;

(3.2)

12
∑

i=1

mij = 16,

12
∑

i=1

m2
ij = 32, i = 4, 5, . . . , 12;

(3.3)
12

∑

j=1

mαjmβj = 15, 1 ≤ α < β ≤ 3;

(3.4)
12
∑

j=1

mαjmβj = 20, 1 <= α < β, β ≥ 4.

Using a computer we have found 2913 different matrices satisfying (3.1-

3.4). To get a design we have to replace the entries mij , i, j = 1, 2, . . . , 12, in

every matrix M of this list by a (0,1)-circulant of order 5 having mij ones per

row (column). This has to be done in such a way that the resulting matrix is the

incidence matrix of a 2-(61,16,4) design. In order to make the task of extend-

ing the 2913 (hypothetical) orbit matrices tractable, we assume an additional

automorphism of order 2:

ψ = (0)(1) (2 5) (3 4) (6) (7 10) (8 9) . . . (56) (57 60) (58 59),



New symmetric (61,16,4) designs invariant . . . 183

in other words, we assume that a hypothetical 2-(61,16,4) design is invariant

under the dihedral group

D10 = 〈ϕ,ψ | ϕ5 = ψ2 = id, ψ−1ϕψ = ϕ−1〉.

It turns out that just one of the matrices satisfying (3.1-3.4) yields designs.

In fact, it gives five nonisomorphic designs, which we denote by Di, i = 1, 2, 3, 4, 5.

Their incidence matrices are denoted by A(Di). It can be checked that A(D4) =

A(D1)
t and A(D5) = A(D2)

t. The design D3 is self-dual. The incidence matrices

of D1,D2 and D3 are given below.

A(D1) =















































1 e e e o o o o o o o o o
et I I I 0 0 0 B B B A A A
et I I I A A A 0 0 0 B B B
et I I I B B B A A A 0 0 0
ot 0 B A 0 B A 0 B A 0 B A
ot 0 B A B A 0 A 0 B A 0 B
ot 0 B A A 0 B B A 0 B A 0
ot A 0 B 0 B A A 0 B B A 0
ot A 0 B A 0 B 0 B A A 0 B
ot A 0 B B A 0 B A 0 0 B A
ot B A 0 0 B A B A 0 A 0 B
ot B A 0 A 0 B A 0 B 0 B A
ot B A 0 B A 0 0 B A B A 0















































,

A(D2) =















































1 e e e o o o o o o o o o
et I I I 0 0 0 B B B A A A
et I I I A A A 0 0 0 B B B
et I I I B B B A A A 0 0 0
ot 0 B A 0 B A 0 B A 0 B A
ot 0 B A B A 0 A 0 B A 0 B
ot 0 A B B 0 A B A 0 A B 0
ot A 0 B 0 B A A 0 B B A 0
ot A 0 B A 0 B 0 B A A 0 B
ot B 0 A A B 0 B A 0 0 A B
ot A B 0 0 A B B A 0 B 0 A
ot B A 0 A 0 B A 0 B 0 B A
ot B A 0 B A 0 0 B A B A 0















































,
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A(D3) =















































1 e e e o o o o o o o o o
et I I I 0 0 0 B B B A A A
et I I I A A A 0 0 0 B B B
et I I I B B B A A A 0 0 0
ot 0 B A 0 B A 0 A B 0 A B
ot 0 B A B A 0 B 0 A B 0 A
ot 0 B A A 0 B A B 0 A B 0
ot A 0 B 0 B A B 0 A A B 0
ot A 0 B A 0 B 0 A B B 0 A
ot A 0 B B A 0 A B 0 0 A B
ot B A 0 0 B A A B 0 B 0 A
ot B A 0 A 0 B B 0 A 0 A B
ot B A 0 B A 0 0 A B A B 0















































.

Here I is the identity matrix of order 5, 0 – the all-zero matrix of size 5-by-5, A

is the circulant of order five with first row (01001), B is the circulant with first

row (00110), e = (11111), and o = (00000). Generators of the full automorphism

groups of D1,D2,D3 are given in Table 1.

Table 1.

Design Generators |AutDi|
D1 ϕ, ψ 90

(16 21 26) . . . (20 25 30)(31 41 36) . . . (35 45 40)(46 56 51) . . . (50 60 55)
(16 31 46) . . . (20 35 50)(21 41 56) . . . (25 45 60)(26 36 51) . . . (30 40 55)

D2 ϕ, ψ 30
(16 36 56) . . . (20 40 60)(21 31 51) . . . (25 35 55)(26 41 46) . . . (30 45 50)

D3 ϕ, ψ 270
(1 6 11) . . . (5 10 15)(31 36 41) . . . (35 40 45)(46 56 51) . . . (50 60 55)

(16 21 26) . . . (20 25 30)(31 41 36) . . . (35 45 40)(46 56 51) . . . (50 60 55)
(16 31 46) . . . (20 35 50)(21 41 56) . . . (25 45 60)(26 36 51) . . . (30 40 55)

4. The residual 2-(45,12,4) designs. Deleting blocks from the con-

structed 2-(61,16,4) designs, we obtain 25 nonisomorphic 2-(45,12,4) designs.

They are denoted by D′

i, i = 1, 2, . . . , 25. In Table 2 we list the way of obtaining

each one of them along with the order of its full automorphism group.

For each point x we calculated the number m(x) of unordered pairs (y, z),

y 6= x, z 6= x, such that x, y and z occur together in exactly λ blocks. Let D be a

block design. The number of points Ci with a given m(x) = i is an invariant for
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D. It turns out that this invariant distinguishes all residual designs in Table 2

with one exception – the designs D′

1 and D′

6. These two designs are distinguished

by the orders of their full automorphism groups.

Table 2.

D′

1
D′

2
D′

3
D′

4
D′

5
D′

6
D′

7
D′

8
D′

9

Obtained from D1 D1 D1 D1 D1 D2 D2 D2 D2

Deleted block 0 1 16 31 46 0 1 16 31
|AutD′

i
| 540 6 6 6 6 180 2 2 6

D′

10
D′

11
D′

12
D′

13
D′

14
D′

15
D′

16
D′

17

Obtained from D2 D2 D2 D3 D3 D4 D4 D4

Deleted block 36 41 46 1 16 1 6 11
|AutD′

i
| 6 6 2 18 6 18 18 18

D′

18 D′

19 D′

20 D′

21 D′

22 D′

23 D′

24 D′

25

Obtained from D4 D5 D5 D5 D5 D5 D5 D5

Deleted block 16 0 1 6 11 16 21 26
|AutD′

i
| 2 30 6 6 6 2 2 2

5. Concluding remarks. Designs with parameters 2-(45,12,4) might be

of interest in connection with the problem of finding new extremal self-orthogonal

codes of length 60. The incidence matrix of a 2-(45,12,4) design can be con-

sidered as a generator matrix of a binary self-orthogonal code with parameters

[60, k], k ≤ 30. There is a special interest in such codes of dimension k = 30 and

minimum distance d = 12 [5][3]. It has been proved in [5] that the possible weight

enumerators of an extremal self orthogonal [60, 30, 12] code are either

W (z) = 1 + (2555 + 64β)z12 + (33600 − 384β)z14 + (278865 + 576β)z16 . . . ,

where 0 ≤ β ≤ 10, or

W (z) = 1 + 3451z12 + 24128z14 + 336081z16 . . . .

It is still unknown whether there exist extremal self-orthogonal singly-even codes

for the weight enumerators with β = 2, 3, . . . , 9. Unfortunately, all codes obtained

from D′

1–D
′

25 have dimension less than 30. There is some hope that such an



186 Ivan Landjev, Svetlana Topalova

approach may work for [45, 12, 4] designs invariant under the cyclic group of

order 5 fixing no points or blocks.
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