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ABSTRACT. In this note we construct five new symmetric 2-(61,16,4) de-
signs invariant under the dihedral group of order 10. As a by-product we
obtain 25 new residual 2-(45,12,4) designs. The automorphism groups of all
new designs are computed.

1. Introduction. Let V = {0,1,...,v — 1} be a finite set of elements
called points, and let B = {By, By, ..., Bp_1} be a collection of k-element subsets
of V called blocks. The incidence structure D = (V, B) is a 2— (v, k, ) design (or
BIB (v, k,\) design) if every unordered pair of points is contained in exactly A
blocks of B. Each point from the point set of a 2-design is contained in a constant
number of blocks. This number is usually denoted by r. Obviously,

Av—=1) = r(k-1),

Mw—1) = bk(k—-1).
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Every design D is determined by its incidence matrix A(D) = (a;;)yxp, Where

1 if 7€ Bj,
aij = :
0 otherwise.

Let D1 = (V,By) and Dy = (V,Bs) be two 2-designs with the same parame-
ters. They are said to be isomorphic if there exists a permutation ¢ € S, which
maps the blocks of By onto the blocks of By, i.e. {z1,z2,...,21} € By implies
{«f, 2%, ... 27} € By. If Dy = Dy = D the permutation ¢ is called an automor-
phism of D. The set of all automorphisms of D forms a group — the so-called full
automorphism group of D. We denote it by Aut D. Every subgroup of AutD is
referred to as an automorphism group of D.

It is well-known that for every design with k& < v, one has b > v [4].
Designs with b = v are called symmetric. Let D be a symmetric 2 — (v, k, \)
design with incidence matrix A (D). Then the matrix A(D)! is incidence matrix
of a symmetric design with the same parameters, which is called the dual D of
D. D and D are not necessarily isomorphic.

Let D = (V,B) be a symmetric 2 — (v,k,A) design and let B be an
arbitrary block from B. Then the incidence structure D' = (V \ B,B' = {B; \
B} —lisa2— (v —k,k— A ) design. It is called the residual of D with respect
to B. For further notions and results on 2-designs we refer to [2], [10].

In this note we consider symmetric 2-(61,16,4) designs and the residual
2-(45,12,4) designs. Only one 2-(61,16,4) design is known to exist. It has been
constructed by Mitchell [8] as a member of an infinite family of symmetric designs
(see also [9]). Using a different method we produce here five new 2-(61,16,4)
designs and 25 new 2-(45,12,4) designs. Using a computer, we were able to
compute the full automorphism group of all new designs.

2. Possible automorphism groups of 2-(61,16,4) designs. In order
to construct new symmetric 2-(61,16,4) designs we assume that they possess a
nice group of automorphisms. We want it to be as large as possible. It turns
out that the largest prime dividing the order of the full automorphism group of a
hypothetical 2-(61,16,4) design is 5. Moreover, an automorphism of order 5 fixes
exactly one point and one block.

Let D be a symmetric 2 — (v, k, \) design with an automorphism ¢ of
prime order p. It is well-known that an automorphism of a symmetric design
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fixes the same number of points and blocks. Denote by f the number of fixed
points (blocks) and by | = (v— f)/p the number of nontrivial point (block) orbits
of D under (). The following lemma is due to Aschbacher [1].

Lemma 2.1. If p is a prime which is an order of an automorphism of
a?2— (v,k,\) design with v > k then either p divides v or else p < r.

Lemma 2.2. Let D be a symmetric 2 — (v, k, \) design and let p divide
|Aut D|,p > X. Then

(a) L= f;

(b) 1> L7
Proof. (a) Each fixed point is contained in a nontrivial block orbit. If not, there
would be a point orbit contained in two different fixed blocks and thus there
would be two blocks intersecting in more than A points. On the other hand, each
block from a nontrivial block orbit contains at most one fixed point. This proves
(a).

(b) Each fixed block contains at least [(k — f)/p] nontrivial point orbits.

Furthermore, a nontrivial point orbit is contained in at most one fixed block.
This implies (b). O

Theorem 2.3. The only primes which might be orders of automorphisms
of a 2-(61,16,4) design D are 2, 3 and 5. An automorphism of order 5 of a
hypothetical 2-(61,16,4) design fizes exactly one point (and one block).

Proof. By Lemma 2.1 the primes p = 2,3,5,7,11,13, and 61 are ad-
missible orders of automorphisms of a 2-(61,16,4) design. It is known that a
(61,16,4) difference set in the cyclic group of order 61 does not exist [6]. Hence
p = 61 is ruled out. By Lemma 2.2(a) the only possibilities for p, f and [ are
p="Tf=5,l=8p=5,f=6,l=11;p=05,f = 1,1l = 12. The first two are
ruled out by Lemma 2.2(b). O

Using similar arguments we can prove that the largest prime dividing the
order of the full automorphism group of a 2-(45,12,4) design is 5. Moreover, an
automorphism of order 5 fixes no points and no blocks.

3. New symmetric 2-(61,16,4) designs. In what follows, we consider
symmetric 2-(61,16,4) designs with an automorphism ¢ of order 5. Without loss
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of generality we may assume that
e=(0)(12...5)(67...10) ... (5657 ... 60).

Let us note that such a design (if it exists) will be different from the one con-
structed by Mitchell. The Mitchell design has C3 x C5 as a full group of auto-
morphisms.

Suppose there exists a 2-(61,16,4) design D with an automorphism group
G = (p). The orbit matrix M = (mij);%:o of D with respect to G is defined
as a matrix whose rows and columns are indexed by the point and block orbits
of D, respectively, where m;; is the number of points from the i-th point orbit
contained in a block from the j-th block orbit. Here we assume that the row
(resp. column) indexed by 0 corresponds to the fixed point (resp. block). In this
notation, an orbit matrix M satisfies the following equations:

12 12
(3.1) D mij =15, > mg;=27i=1,2,3;
=1 =1
12 12
(3.2) D mij =16, > mi;=32,i=4,5,...,1%
=1 =1
12
(3.3) > majmp;=151<a < B<3;
j=1
12
(3.4) D majmp; =201 <=a < B,8>4
j=1

Using a computer we have found 2913 different matrices satisfying (3.1-
3.4). To get a design we have to replace the entries m;j, i,j = 1,2,...,12, in
every matrix M of this list by a (0,1)-circulant of order 5 having m;; ones per
row (column). This has to be done in such a way that the resulting matrix is the
incidence matrix of a 2-(61,16,4) design. In order to make the task of extend-
ing the 2913 (hypothetical) orbit matrices tractable, we assume an additional
automorphism of order 2:

¥ = (0)(1) (25) (34) (6) (710) (89) ... (56) (5760) (5859),
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in other words, we assume that a hypothetical 2-(61,16,4) design is invariant
under the dihedral group

Diy = (g, ¥ | ¢° =¢? =id,p Lo = o7 h).

It turns out that just one of the matrices satisfying (3.1-3.4) yields designs.
In fact, it gives five nonisomorphic designs, which we denote by D;,¢ = 1,2,3,4, 5.
Their incidence matrices are denoted by A(D;). It can be checked that A(Dy) =
A(D;)! and A(Ds) = A(Ds)t. The design Dj is self-dual. The incidence matrices
of D1, Dy and D3 are given below.

1l e e e o o o o o o o o0 o
e I I I 0 0 0 B B B A A A
e I I I A A A 0 0 0 B B B
e I I I B B B A A A 0 0 0
oo 0 B A0 B A0 B A 0 B A
oo 0 B AB A 0 A0 B A 0 B
A(Dy) = oo 0 B A A 0 BB A0 B A 0 ,
oo A 0 B 0 B A A 0 B B A 0
oo A 0 B A0 B 0O DB AA 0 B
oo A 0 B B AO0OBAUO 0 B A
oo B A 0O 0 B AB A 0 A 0 B
oo B A 0O A0 B A 0 B 0 B A
oo B A O B A 0 0 B A B A 0
1 e e e o o o o o o o o o
e I I I 0 0 0 B B B A A A
e I I I A A A 0 0 0O B B B
e I I I B B B A A A 0 0 0
oo 0 B A0 B A0 B A 0 B A
oo 0 B A B A0 A 0 B A 0 B
AMDy)=| o 0 A B B 0 A B A 0 A B 0|,
oo A 0 B 0O B A A 0 B B A 0
oo A 0 B AO0O B OB AAUO0 B
oo B 0 A AB 0B AUO0 0 A B
oo A B 0 0 A BB AUO0O DB 0 A
oo B A 0O A0 B A 0 B 0 B A
oo B A 0O B A 0 0 B A B A 0
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1 e e e o o o o o O O O O
e I I I 0 0 0 B B B A A A
e¢e T I I A A A 0 0 0 B B B
e I I I B B B A A A 0 0 0
oo 0 B A 0O B A0 A B OO0 A B
oo 0 B AB A0 B 0 A B 0 A

A(D;3) = oo 0 B A A0 B ADB 0 A B 0
oo A 0 B 0O B A B O A A B 0
oo A 0 B AO0O B O ABB 0 A
oo A 0 B B A 0 A B O0 0 A B
oo BA O 0O B A A B 0 B 0 A
oo B A0 A 0 BB O A 0 A B
oo B A 0O B A0 0 A B A B 0

Here I is the identity matrix of order 5, 0 — the all-zero matrix of size 5-by-5, A
is the circulant of order five with first row (01001), B is the circulant with first

row (00110), e = (11111), and o = (00000). Generators of the full automorphism
groups of Dy, Dy, D3 are given in Table 1.

Table 1.
Design Generators |Aut D;|
Dl ©, 1/1 90

(16 21 26) ... (20 25 30)(31 41 36) . .. (35 45 40)(46 56 51) ... (50 60 55)
(16 31 46) ... (20 35 50)(21 41 56) . .. (25 45 60)(26 36 51) ... (30 40 55)
DQ Sﬁﬂb 30
(16 36 56) . .. (20 40 60)(21 31 51) ... (25 35 55)(26 41 46) . . . (30 45 50)
Ds o 270
(1611)...(510 15)(31 36 41) ... (35 40 45)(46 56 51) ... (50 60 55)
(16 21 26) ... (20 25 30)(31 41 36) . .. (35 45 40)(46 56 51) ... (50 60 55)
(16 31 46) ... (20 35 50)(21 41 56) . .. (25 45 60)(26 36 51) ... . (30 40 55)

4. The residual 2-(45,12,4) designs. Deleting blocks from the con-
structed 2-(61,16,4) designs, we obtain 25 nonisomorphic 2-(45,12,4) designs.
They are denoted by Dj,i =1,2,...,25. In Table 2 we list the way of obtaining
each one of them along with the order of its full automorphism group.

For each point z we calculated the number m®) of unordered pairs (y,2),
Yy # x, z # x, such that z,y and z occur together in exactly A blocks. Let D be a
block design. The number of points C; with a given m(®*) = i is an invariant for
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D. It turns out that this invariant distinguishes all residual designs in Table 2

with one exception — the designs D} and Df. These two designs are distinguished
by the orders of their full automorphism groups.

Table 2.
D, | D, | D, | D, |D.| D, | D.| D} | D
Obtained from Dl Dl Dl Dl Dl D2 DQ D2 D2
Deleted block 0 1 |16 | 31 | 46 0 1 |16 | 31
[Aut D] 540 6| 6|6 18] 2] 26
Dty [ Dhy | Dhy | Dis | Dha | Dhs | Do | Dl
Obtained from D2 D2 D2 Dg Dg D4 D4 D4
Deleted block | 36 41 46 1 16 1 6 11
[Aut D] 6 | 6 | 2 | 18 6 | 18 | 18 | 18
1s | Dig | Do | Doy | Doy | Dy | Dy | Dis
Obtained from D4 D5 D5 D5 D5 D5 D5 D5
Deleted block 16 0 1 6 11 16 21 26
[Aut D] 2 130 6 | 6 | 6 | 2 | 2 | 2

5. Concluding remarks. Designs with parameters 2-(45,12,4) might be
of interest in connection with the problem of finding new extremal self-orthogonal
codes of length 60. The incidence matrix of a 2-(45,12,4) design can be con-
sidered as a generator matrix of a binary self-orthogonal code with parameters
[60, k], k < 30. There is a special interest in such codes of dimension k& = 30 and

minimum distance d = 12 [5][3]. It has been proved in [5] that the possible weight
enumerators of an extremal self orthogonal [60, 30, 12] code are either

W(z) =1+ (2555 + 643)2'% + (33600 — 38403) 2 + (278865 + 5766)2'0 . . .,

where 0 < 6 < 10, or

W(z) =1+ 3451212 4 241282 + 33608121¢ .. ..

It is still unknown whether there exist extremal self-orthogonal singly-even codes

for the weight enumerators with 8 = 2,3,...,9. Unfortunately, all codes obtained
from D]-Dj; have dimension less than 30. There is some hope that such an
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approach may work for [45,12,4] designs invariant under the cyclic group of

order 5 fixing no points or blocks.

1]
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