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ABSTRACT. We prove that if a Banach space X admits a Lipschitz §-smooth
bump function, then (X*, weak*) is fragmented by a metric, generating a
topology, which is stronger than the 75-topology. We also use this to prove
that if X* admits a Lipschitz Gateaux-smooth bump function, then X is
sigma-fragmentable.

In [12] the authors proved that if a real Banach space admits an equivalent
(B-smooth norm, then every continuous convex function f defined on an open
subset U of X is generically g-differentiable, that is, f is §-differentiable at the
points of some dense G subset of U. In particular, X is weak Asplund when we
speak about the Gateaux bornology. In [2] it was described how to weaken the
hypothesis in this case, namely that the existence of Lipschitz Gateaux-smooth
bump is sufficient to guarantee that X is weak Asplund. Later, Li Yongxin
and Shi Shuzhong [10] strenghtened the result of [12] in the general case (for
generical g-differentiability) by proving that the conclusion in [12] is true even if
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188 1. Kortezov

the Banach space only admits a Lipschitz S-smooth bump function. This result
is generalised there in the terms of minimal weak* usco mappings ([10, Theorem
2], see Corollary 2 here). Meanwhile, Ribarska [14] has shown that if a Banach
space X admits an equivalent (-smooth norm, then (X*, weak*) is fragmented
by a metric, generating a topology, which is stronger than the 7g-topology (see
the definition), which is formally stronger than the results in [12]. Here we shall
see that the existence of a Lipschitz G-smooth bump is sufficient for the same
conclusion (Theorem 3). This result is stronger in view of the example of a space
with a Lipschitz Fréchet-smooth bump and no equivalent Gateaux-smooth norm
constructed in [4]. Thus we obtain a common strenghtening of the result in [14]
and the mentioned results from [10].

We learned by the referee that M. Fosgerau has proved in his Ph.D. Thesis
[3] that if a Banach space admits a Lipschitz Gateaux-smooth bump function,
then (X*, weak™) is fragmentable. Theorem 3 here contains this result as a special
case. The result of Fosgerau has not been published.

As a consequence we can also strengthen a result from [9], namely Corol-
lary 0.5. there, saying that if X is a Banach space, such that its dual X* has an
equivalent (not necessarily dual) Gateaux-smooth norm, then (X, weak) is sigma-
fragmentable by the norm. Here we prove this assertion under (possibly) weaker
assumption of X* having Lipschitz Gateaux-smooth bump instead of equivalent
Gateaux-smooth norm.

We use a game introduced in [7] and a method used in [10] for proving
our main theorem.

Definition 1. ([6]). The topological space X is called fragmentable by
a metric p if for every e > 0, every subset of X has a nonempty relatively open
subset of p—diameter less than €

Definition 2 ([5]). The Banach space X is called sigma-fragmentable if
for every e >0, X can be expressed as X = J,;~1 Xn such that for every n, every
subset of X, has a nonempty relatively weakly open subset of norm-diameter less
than €

In [7] the fragmentability of a space X was characterized by the existence
of a winning strategy for the player €2 in the following (“fragmenting”) game G.
Two players (2 and Q) alternatively take non-empty subsets of X. ¥ starts the
game by choosing any subset A; of X and 2 answers by taking a relatively open
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subset B1 C Ay. After that, on the n-th move X takes any subset A,, of the last
move B,,_1 of Q and the latter answers again by taking a relatively open subset
B, of the set A,, just chosen by Y. Using this way of selection, the players get a
sequence of non-empty sets A1 D By D Ay D --- A, D B, D ---, which is called
a play. The player €2 is said to have won the play if the set [),,~; A, contains at
most one point. -

Theorem 1 ([7, Theorem 1.1]). The topological space X is fragmentable
if and only if the player € has a winning strategy for the game G.

Theorem 2 ([8, Theorem 1.2]). Let t be some topology, possibly different
from the original topology T on X . The topological space (X, T) is fragmentable by
a metric which majorizes the topology t if and only if there exists a strategy for the
player Q such that ()~ An = O or(),,>; An = {z} and for every t-neighborhood
U of x, there exists a ;Jositive integer k with B, CU.

Let X be a real Banach space, and let 3 be a bornology on X. For
the notions of f-superdifferentiable and (-subdifferentiable extended real-valued
functions, f-smooth function, as well as 3-(sub/super)derivative we refer to [10],
[1] or [11]. The -derivative of a function f at a point = will be denoted by V5 f(z).
The Gateaux and Fréchet bornologies are denoted by G and F', respectively.

Definition 3. Let 3 be a bornology on the space X. The (locally convex)
Tg-topology on the dual space X* is given by the zero-neighborhood base {Ds :
S e, e>0}, where Dg, = {z* € X* :Vx € S, (z*,z) < ¢}

In particular, 7¢ is the weak® topology and 7 is the norm topology (on
X™).

Proposition 1 ([10]). Let the Banach space X satisfy (Hg), that is,
let there exist a Lipschitz 3-smooth bump function v : X — [0,400). Then X

satisfies also (H//g), that is, there exists a Lipschitz (B-superdifferentiable function
w: X —[0,1] such that u(0) =0 and p(x) =1 for ||z|| > 1.

Definition 4. The continuous function p : X — [1,400] is called a
B-well function, if it is B-superdifferentiable, p(0) < +oo and p(x) = +oo for
ES

Proposition 2 ([10]). Let the Banach space X satisfy (Hp) Then there
exists a B-well function on X.
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Proposition 3 ([10]). Let po be a S-well function on X, u be the function
from the definition of (Hp), pn(z) = p(nx)/2" n = 1,2,... and {ex};2, C X.
Then

p —PO +Z/~Lk$_€k n=12...,
and
[ee]
Poo(@) = po(x) + Z#k(fﬁ — ex)
k=1

are all B-well functions on X.

Definition 5. Let p be a G-well function on X. The gauge function p*
on X* is defined for any x* € X* by

*(2*) = su <J}*,€>
)= e

Proposition 4 ([10]). Let p* be the gauge function from the last defini-
tion. Then there is some g € (0,1) such that

Vo' e X, (1 —eo)llz”]| < p*(2") < a7

Proposition 5 ([10]). Let p be a B-well function on X, eg € X with
pleg) < +oo and x§ € X* be such that

c:=p*(xy) =

then
(1) p is B-differentiable at ey and xfy = cVgp(eo);
(ii) VS € B,Ve > 0,35 > 0 such that

Dpeoassi={a" € X*1e—d< @e0) _ (a%) < e+ 0}

- .1‘8 + DS75.
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Lemma 1. Let the unit ball B* of the Banach space (X*, weak™) admit
a strategy wy for Q, such that (), An = @ or (),>1 An = {2*} and for every
Tg-neighborhood U of x*, there exists a positive integ;r k with B, C U. Then the
whole space X* also admits such a strategy.

Proof. This statement is analogous to Proposition 2.1. from [8], and the
proof follows the same idea.

As the space B* admits a strategy w; with the mentioned property, the
space nB* also does. Denote the latter strategy w,. Now we construct a strategy
w for the whole space. Let A1 # @ be the first choice of ¥.. If A; \ B* # O,
put w(A;) = A; \ B* (this is a relatively weak® open subset of A;). Otherwise,
if Ay C B*, then further follow the strategy wi. In general, let A, be the n-th
move of X. If A, \ nB* # O, put w(A,By,...,A,) = A, \ nB*. Otherwise, if
A, C nB*, then find the least k for which A; C kB* and follow the strategy wy.

For every play according to the strategy w we have one of the following
two alternatives: either (a) B, = A, \ nB* # O for all n > 1 (in this case
Nys1 Bn C > (X*\ nB*) = 0), or (b) for some positive integer k we get
Ap C kB* and after that follow the strategy wg. But then, by the initial remark,
Nysk An = D or (> An = {2*} and for every 73-neighborhood U of z*, there
exists an integer m > k with B,, C U. Thus w has the desired property. O

Theorem 3. Let the Banach space X satisfy (Hg). Then (X*, weak®)
is fragmentable by a metric d, such that the topology it generates is stronger than
the Tg-topology on X*.

Proof. Proof. We s/hall find a winning strategy w for the player
in the fragmenting game G with the additional property from Theorem 2, i.e.
Ny>1An = @ or ()~ An = {2*} and for every 7g-neighborhood z* + Dg, of
x*,_there exists a pos;tive integer k£ with By C 2* 4+ Dg.. According to the last
Lemma, it suffices to find such a strategy in B* rather than in X*. The frame of
the proof anyway follows the idea from Theorem 1 in [10].

Let Ay C B* be the first move of the player ¥. Put so = sup{pj(z*) :
x* € A1}. According to Proposition 4, Jeo € (0,1) such that

Vo' e X, (1 —eo)llz”|| < p*(2") < la”.

Therefore sg < +o00. If s = 0 then A; contains only one point the strategy is
trivial (both the players have no choice in their moves and € wins). Let so > 0.
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Then there exist z+ € Ay and e; € X, such that (z1,e1) > po(e1)(1 —eg)so. We
put By = {z* € Ay : (z*,e1) > po(e1)(1 —ep)so} > «t. Then By = w(4;) is a
relatively weak™ open subset of A;.

Now let ¥ play some Ay C By. Put

Dy={e€X: sup (a*€) > po(e)(1 - o)sol.
z*€Asg
We have e; € Dy because Ay C Bi. As Ay is bounded, & +— sup ¢4, (z*, ) is
continuous and therefore D; is closed. Put p1(z) = po(x) + pi(x — e1), where uy
is as in Proposition 3. Let s; = sup{pj(z*) : 2* € As}. Then Va* € Ay C A;, one
has

* *
(1—60)80 < <$ 7€1> = <$ ,€1> < 51 < 3sp.

poler) — piler) = 7
Let &1 € (0,(1 — 29)?/2%) be such that (1 —eg)sp < (1 —¢&1)s;. Then Jat €
Ag,Jes € X, such that (x1,e2) > p1(e2)(1 —e1)s1. Now let Q play By = {z* €
Ay (z¥,e) > p1(e2)(1 —e1)s1} 2 ', Then By = w(Aj, By, Ag) is a relatively
weak* open subset of As.

In general, after ¥ plays some A, 1 C By, put

Du={c€X: sup (z"€)> pn1(e)(1 —cn1)sn 1} C Do 1.
¥ EAn+1

We have e, € D, because A,+1 C B,. Like before, D,, is closed. Put p,(z) =

Pn—1(2) + pin—1(x — ey), where p,,_1 is as in Proposition 3. Let s, = sup{p} (z*) :

x* € Apy1}. Then for every z* € A,41 C A, one has

* *
(1 —Enfl)Snfl < <J} ,€n> = <.1‘ ,€n> < s, < Sp-1-

pn—1(en) pnlen) —

Let £, € (0,(1 — g9)?/2"*!) be such that (1 —e,_1)sp_1 < (1 — &,)sn. Then
Jxt € Api1,Fens1 € X, such that (z7,enq1) > pnlent1)(1 — en)sn. Now let
Q play Buy1 = {2* € Apyr @ (@, ens1) > polens1)(1 — e4)sp}t 2 at. Then
Byy1 =w(A1, By, Ag, ..., Aptq) is a relatively weak™ open subset of A;,41.
If x, € Dyyq, then
sup (z*, )
¥ EAn+2

pn(l'n) > (1 - En)Sn > (1 - E1171)511717
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SO
dxt € Apga: (20, Zn) >(1—¢ep-1)Sn-1,
pn(xn)
that is,
(3, Tn)
(1) > pu(@n) = pu-1(Tn) + pin(Tn — €n).

(1 - 6n—l)sn—l

But z;, € A2 C Ayy1, s0

(2) 7(xn,mn> < 8p_1, i.€. (@0, Zn)

< Pn-1(Tn)-
pn—1(zn) Sn—1 pn=1(Zn)

193

Of course, ||zy|| < 1 (otherwise pp_1(zy) = 400, which would contradict

(1)). Then

* * p*(l'*) S0
) R

By (1),(2) and (3) we get

(T}, Tn) _ (3, Tn)

1- Enfl)Snfl Sn—1

(4) fin (T — €n) < (

5n71<$;’;7xn> En—150
(1—ep-1)sn—1 ~ (I —ep—1)sn—1(1 —€o)

But (1 —eg)so < (1 —ep—1)Sp—1, SO

S0

(1 - 6n—l)sn—l

< (1 - 60)_1

and from (4) we get

En—1

— < 2"
(1 — 60)2 ’

,U'n(xn - en) <

s0 ||zn — en]] < n~! by the definition of j,. Thus the diameters of the (closed)

sets in the nested sequence {D,} tend to 0, so let (2 ; Dy, = {exc}.
Now let y% € (,,>1 Bn- As yl, € By41, we have

(5) (Yoos en+1) > pulent1)(1 — en)sn.
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The sequence {s,} of positive reals is monotonely non-increasing, so let s, be
its limit. By Proposition 3,

poo() = po(z) + Z#k(fﬁ — €k)
k=1

is a B-well function on X, and p, — poo uniformly on the unit ball of X. Passing
to limit in (5), we get
(6) <y;oy 6oo> > poo(eoo)Soo-

But as for every integer n > 1 we have poo > pn,

<y* ’6 > * * * *
Ao < b (k) < (k) < s
Poo(eoo)

<y;o> €<>O>

< $oo and having in mind (6) we conclude that
Poo(€cc)

We let n — oo to get
(Y3er €0) _
Tyl T — SOO
Poc(€co)

and pio(y5,) = Seo. By Proposition 5(i) we get

Yno = So00-V 3Poo(€sc ), SO | ﬂ B, =1

n>1

Now let § > 0 be given. There exists an integer N such that for n > N
one has s, < Sgo + 6. Then

(7) YY" € Bui1 C Ant1, p5(y”) < oY) < sn < 800 + 6.
By the definition of B, we have

<y*7 en+1>

8 Vy* € Bpi1,
() Y e pn(en—I—l)

> (1 —ep)8n.

By poc(€so) < 00 we have |les|| < 1, so

<y*> €<>O> <y*, en+1>

pr(€ns1) pnl€ny1)

(Y, ) (U*, €nt1)

poo(eoo) pn(en-i-l)

poo(eoo) pn(en-i-l)

< ‘<y*,€oo> (v, eco)
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1 1 >'+'<y*>€oo_€n+1>

< |wse) (5o~ e pa(enr)

1 1
< |ly*|l. — + |less — €
1 (\pw(ew) pn<en+1>‘ leos n+1||)

< . — + |less — € — 0.
= <‘poo<eoo> ey | T Neee — emnl

And by (8) we get (after choosing n large enough) that

<y*7 €OO>
9) (o) > Soo — 0.
By (7), (9) and Proposition 5 (ii) we conclude that for any Dg. from the 73-
base Bp41 C y5 + Ds., for n sufficiently large, provided that ¢ is chosen in
the manner required in Proposition 5(ii). This fact, Theorem 2 and Lemma 1
show that (X™*,weak*) is fragmentable by a metric d, such that the topology it
generates is stronger than the 7g-topology on X*. This finishes the proof. 0O

In [9] it is shown that if X* admits an equivalent (not necessarily dual)
Géateaux-smooth norm, then X is sigma-fragmentable. Here we get the following
(possibly stronger) result:

Corollary 1. If X* has a Lipschitz Gateauz-smooth bump, then X is
sigma-fragmentable.

Proof. The last theorem shows that under the given condition,
(X**, weak™) is fragmented by a metric, such that the topology it generates is
stronger than the 7g-topology, that is, than the weak™ topology. Taking into
account the canonical embedding of (X, weak) into (X** weak™) we conclude
that (X, weak) is fragmented by a metric whose topology is stronger than the
weak topology on X. By Theorem 1.4 from [8] this means that X is sigma-
fragmentable. 0O

Remark. Of course, the existence of an equivalent Gateaux-smooth
norm implies the existence of a Lipschitz Gateaux-smooth bump. In view of a
known example from [4], the hypothesis in the corresponding result from [9] is
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stronger than ours in arbitrary Banach space setting, but we don’t know whether
it’s different for dual Banach spaces.

We now show that indeed Theorem 1 from [10] and its generalisation
Theorem 2 [10] are corollaries of the last theorem. We remind that a map F' :
Z — 2Y where Z,Y are Hausdorff spaces, is called an usco map if it is nonempty
compact valued and upper semicontinuous. Such a map is called a minimal usco
map, if it is minimal with respect to the inclusion of the graphs among all usco
maps with the same domain. When Y = (X*, w*) for some Banach space X,
we call F' w* — usco (correspondingly, minimal w* — usco). If F' is also convex-
valued, it is called conver w* — usco, and such a map which is minimal w.r.t the
inclusion is called a minimal convex w* — usco.

We need the following lemma.

Lemma 2 ([13, Proposition 2.5.]). Let F : Z — 2 be a minimal usco
map on the Baire space Z. LetY be a Hausdorff space, fragmented by a metric
d. Then there exists a dense Gg subset D of Z such that F is single-valued and

d-upper semicontinuous at every z € D.

Lemma 3 ([11, Lemma 7.12]). Let T : Z — 2% be a w*-usco map on
the Hausdorff space Z. For z € Z, define €d1'(z) to be the weak™ closed convex

hull of T(z). Then the map €0l is conver w*-usco.

Corollary 2 ([10, Theorem 2}). If X satisfies (Hg), Z is a Baire space
and F : Z — 2% is a minimal convex w*-usco map, then F is single-valued and

Tg-upper semicontinuous in all the points of some dense Gs subset D of Z.

Proof. Let T be a minimal w*-usco map contained in F' (for the existence
of such T see [11, Proposition 7.3]). By Theorem 3, X* is fragmentable by a
metric d, which generates a topology stronger than the 7g-topology on X*. By
the Lemma 2, T is single-valued and d-upper semicontinuous in all the points
of some dense Gy subset D of Z. But as the d-topology is stronger than the
Tg-topology, T' is also T7g-upper semicontinuous in the points of D. By Lemma 3,
col is convex w*-usco, and the minimality of F implies col = F. Of course, F is
single-valued in the points of D, and we now see that it is 7g-upper semicontinuous
there. Let W be some 7g-open set containing F'(zg) for some zy € D. Take some
S € B,e > 0, such that for the basic 75-open (convex) set

U=Dg.={z" € X" :Vx e85 (z"z)<e}
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we have F'(z9) +2U C W. Now T is 7g-upper semicontinuous in zp, so let V' 3 2
be open neighborhood with T(V)) C T'(29) + U. Then for every z € V, we have

F(z) =¢oT'(z) Ceo(T(20)+U) C T (zp) + U C el (z0)+2U = F(z9)+2U C W.

Thus F' is 7g-upper semicontinuous in the points of D. [

REFERENCES

J. M. BORWEIN, D. PREISS. A smooth variational principle with appli-
cations to sub- differentiability and to differentiability of convex functions.
Trans. Amer. Math. Soc. 303 (1987), 517-527.

R. DEVILLE, G. GODEFROY, V. ZIZLER. Un principe variationnel utilisant
des fonctions bosses. C. R. Acad. Sci. Paris, sér. I 312 (1991), 281-286.

M. FOSGERAU. Ph.D. Thesis, Univ. College London (1992), 52-62.

R. G. HAYDON. A counterexample to several questions about scattered
spaces. Bull. London Math. Soc. 22 (1990), 261-268.

J. E. JAYNE, I. NaAMI0KA, C. A. ROGERS. Topological properties of Banach
spaces. Proc. London Math. Soc. 66 (1993), 651-672.

J. E. JAYNE, C. A. ROGERS. Borel selectors for upper semi-continuous
set-valued maps. Acta Math. 56 (1985), 41-79.

P. S. KENDEROV, W. MOORS. Game characterization of fragmentability of
topological spaces. Math. and Education in Math. 25 (1996), 8-18.

P. S. KENDEROV, W. MOORS. Fragmentability and Sigma-Fragmentability
of Banach Spaces, preprint.

P. S. KEnDEROV, W. MOORS. Fragmentability of Banach spaces. C. R.
Acap. BuLa. Scr. 49, 2 (1996), 9-12.

L1 YongxiN, SHI SHUZHONG. Differentiability of convex functions on a
Banach space with a smooth bump function. J. Conver Analysis 1, 1 (1994),
47-60.



198 1. Kortezov

[11] R. R. PHELPS. Convex functions, monotone operators and differentiability.
Lect. Notes in Math., vol. 1364, Springer-Verlag, 1993.

[12] D. Preiss, R. R. PHELPs, I. NAMIOKA. Smooth Banach spaces and
monotone usco mappings. Israel. J. Math. 72 (1990), 257-279.

[13] N. RIBARSKA. Internal characterization of fragmentable spaces. Mathe-
matika 34 (1987), 243-257.

[14] N. RiBARSKA. The dual of a Gateaux smooth Banach space is weak* frag-
mentable. Proc. Amer. Math. Soc. 114, 4 (1992), 1003-1008.

Institute of Mathematics

Bulgarian Academy of Sciences

Acad. G. Bonchev str., bl. 8

1113 Sofia Received December 12, 1996
Bulgaria Revised November 11, 1997



